1
|
Holland SH, Carmona-Martinez R, O’Connor K, O’Neil D, Roos A, Spendiff S, Lochmüller H. A Deficiency in Glutamine-Fructose-6-Phosphate Transaminase 1 (Gfpt1) in Skeletal Muscle Results in Reduced Glycosylation of the Delta Subunit of the Nicotinic Acetylcholine Receptor (AChRδ). Biomolecules 2024; 14:1252. [PMID: 39456185 PMCID: PMC11506803 DOI: 10.3390/biom14101252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/25/2024] [Accepted: 09/28/2024] [Indexed: 10/28/2024] Open
Abstract
The neuromuscular junction (NMJ) is the site where the motor neuron innervates skeletal muscle, enabling muscular contraction. Congenital myasthenic syndromes (CMS) arise when mutations in any of the approximately 35 known causative genes cause impaired neuromuscular transmission at the NMJ, resulting in fatigable muscle weakness. A subset of five of these CMS-causative genes are associated with protein glycosylation. Glutamine-fructose-6-phosphate transaminase 1 (Gfpt1) is the rate-limiting enzyme within the hexosamine biosynthetic pathway (HBP), a metabolic pathway that produces the precursors for glycosylation. We hypothesized that deficiency in Gfpt1 expression results in aberrant or reduced glycosylation, impairing the proper assembly and stability of key NMJ-associated proteins. Using both in vitro and in vivo Gfpt1-deficient models, we determined that the acetylcholine receptor delta subunit (AChRδ) has reduced expression and is hypo-glycosylated. Using laser capture microdissection, NMJs were harvested from Gfpt1 knockout mouse muscle. A lower-molecular-weight species of AChRδ was identified at the NMJ that was not detected in controls. Furthermore, Gfpt1-deficient muscle lysates showed impairment in protein O-GlcNAcylation and sialylation, suggesting that multiple glycan chains are impacted. Other key NMJ-associated proteins, in addition to AChRδ, may also be differentially glycosylated in Gfpt1-deficient muscle.
Collapse
Affiliation(s)
- Stephen Henry Holland
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Dr. Eric Poulin Center for Neuromuscular Disorders, Brain and Mind Research Institute, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | | | - Kaela O’Connor
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Daniel O’Neil
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
| | - Andreas Roos
- Dr. Eric Poulin Center for Neuromuscular Disorders, Brain and Mind Research Institute, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Department of Pediatric Neurology, Center for Neuromuscular Disorders, Centre for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, 45147 Essen, Germany
- Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Sally Spendiff
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
| | - Hanns Lochmüller
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Dr. Eric Poulin Center for Neuromuscular Disorders, Brain and Mind Research Institute, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Faculty of Medicine, Medical Center, University of Freiburg, 79085 Freiburg, Germany
- Centro Nacional de Analisis Genomico (CNAG), 08028 Barcelona, Spain
| |
Collapse
|
2
|
Brockmöller S, Worek F, Rothmiller S. Protein networking: nicotinic acetylcholine receptors and their protein-protein-associations. Mol Cell Biochem 2024; 479:1627-1642. [PMID: 38771378 DOI: 10.1007/s11010-024-05032-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/04/2024] [Indexed: 05/22/2024]
Abstract
Nicotinic acetylcholine receptors (nAChR) are complex transmembrane proteins involved in neurotransmission in the nervous system and at the neuromuscular junction. nAChR disorders may lead to severe, potentially fatal pathophysiological states. To date, the receptor has been the focus of basic and applied research to provide novel therapeutic interventions. Since most studies have investigated only the nAChR itself, it is necessary to consider the receptor as part of its protein network to understand or elucidate-specific pathways. On its way through the secretory pathway, the receptor interacts with several chaperones and proteins. This review takes a closer look at these molecular interactions and focuses especially on endoplasmic reticulum biogenesis, secretory pathway sorting, Golgi maturation, plasma membrane presentation, retrograde internalization, and recycling. Additional knowledge regarding the nAChR protein network may lead to a more detailed comprehension of the fundamental pathomechanisms of diseases or may lead to the discovery of novel therapeutic drug targets.
Collapse
Affiliation(s)
- Sabrina Brockmöller
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Bavaria, Germany.
| | - Franz Worek
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Bavaria, Germany
| | - Simone Rothmiller
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Bavaria, Germany
| |
Collapse
|
3
|
Noonan JD, Beech RN. Two residues determine nicotinic acetylcholine receptor requirement for RIC-3. Protein Sci 2023; 32:e4718. [PMID: 37417463 PMCID: PMC10443321 DOI: 10.1002/pro.4718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 06/11/2023] [Accepted: 06/26/2023] [Indexed: 07/08/2023]
Abstract
Nicotinic acetylcholine receptors (N-AChRs) mediate fast synaptic signaling and are members of the pentameric ligand-gated ion channel (pLGIC) family. They rely on a network of accessory proteins in vivo for correct formation and transport to the cell surface. Resistance to cholinesterase 3 (RIC-3) is an endoplasmic reticulum protein that physically interacts with nascent pLGIC subunits and promotes their oligomerization. It is not known why some N-AChRs require RIC-3 in heterologous expression systems, whereas others do not. Previously we reported that the ACR-16 N-AChR from the parasitic nematode Dracunculus medinensis does not require RIC-3 in Xenopus laevis oocytes. This is unusual because all other nematode ACR-16, like the closely related Ascaris suum ACR-16, require RIC-3. Their high sequence similarity limits the number of amino acids that may be responsible, and the goal of this study was to identify them. A series of chimeras and point mutations between A. suum and D. medinensis ACR-16, followed by functional characterization with electrophysiology, identified two residues that account for a majority of the receptor requirement for RIC-3. ACR-16 with R/K159 in the cys-loop and I504 in the C-terminal tail did not require RIC-3 for functional expression. Mutating either of these to R/K159E or I504T, residues found in other nematode ACR-16, conferred a RIC-3 requirement. Our results agree with previous studies showing that these regions interact and are involved in receptor synthesis. Although it is currently unclear what precise mechanism they regulate, these residues may be critical during specific subunit folding and/or assembly cascades that RIC-3 may promote.
Collapse
Affiliation(s)
- Jennifer D. Noonan
- Institute of Parasitology, Macdonald Campus, McGill UniversityMontrealQuébecCanada
| | - Robin N. Beech
- Institute of Parasitology, Macdonald Campus, McGill UniversityMontrealQuébecCanada
| |
Collapse
|
4
|
Chrestia JF, Turani O, Araujo NR, Hernando G, Esandi MDC, Bouzat C. Regulation of nicotinic acetylcholine receptors by post-translational modifications. Pharmacol Res 2023; 190:106712. [PMID: 36863428 DOI: 10.1016/j.phrs.2023.106712] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/21/2023] [Accepted: 02/24/2023] [Indexed: 03/04/2023]
Abstract
Nicotinic acetylcholine receptors (nAChRs) comprise a family of pentameric ligand-gated ion channels widely distributed in the central and peripheric nervous system and in non-neuronal cells. nAChRs are involved in chemical synapses and are key actors in vital physiological processes throughout the animal kingdom. They mediate skeletal muscle contraction, autonomic responses, contribute to cognitive processes, and regulate behaviors. Dysregulation of nAChRs is associated with neurological, neurodegenerative, inflammatory and motor disorders. In spite of the great advances in the elucidation of nAChR structure and function, our knowledge about the impact of post-translational modifications (PTMs) on nAChR functional activity and cholinergic signaling has lagged behind. PTMs occur at different steps of protein life cycle, modulating in time and space protein folding, localization, function, and protein-protein interactions, and allow fine-tuned responses to changes in the environment. A large body of evidence demonstrates that PTMs regulate all levels of nAChR life cycle, with key roles in receptor expression, membrane stability and function. However, our knowledge is still limited, restricted to a few PTMs, and many important aspects remain largely unknown. There is thus a long way to go to decipher the association of aberrant PTMs with disorders of cholinergic signaling and to target PTM regulation for novel therapeutic interventions. In this review we provide a comprehensive overview of what is known about how different PTMs regulate nAChR.
Collapse
Affiliation(s)
- Juan Facundo Chrestia
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca 8000, Argentina
| | - Ornella Turani
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca 8000, Argentina
| | - Noelia Rodriguez Araujo
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca 8000, Argentina
| | - Guillermina Hernando
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca 8000, Argentina
| | - María Del Carmen Esandi
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca 8000, Argentina
| | - Cecilia Bouzat
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca 8000, Argentina.
| |
Collapse
|
5
|
Bloemeke N, Meighen‐Berger K, Hitzenberger M, Bach NC, Parr M, Coelho JPL, Frishman D, Zacharias M, Sieber SA, Feige MJ. Intramembrane client recognition potentiates the chaperone functions of calnexin. EMBO J 2022; 41:e110959. [PMID: 36314723 PMCID: PMC9753464 DOI: 10.15252/embj.2022110959] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022] Open
Abstract
One-third of the human proteome is comprised of membrane proteins, which are particularly vulnerable to misfolding and often require folding assistance by molecular chaperones. Calnexin (CNX), which engages client proteins via its sugar-binding lectin domain, is one of the most abundant ER chaperones, and plays an important role in membrane protein biogenesis. Based on mass spectrometric analyses, we here show that calnexin interacts with a large number of nonglycosylated membrane proteins, indicative of additional nonlectin binding modes. We find that calnexin preferentially bind misfolded membrane proteins and that it uses its single transmembrane domain (TMD) for client recognition. Combining experimental and computational approaches, we systematically dissect signatures for intramembrane client recognition by calnexin, and identify sequence motifs within the calnexin TMD region that mediate client binding. Building on this, we show that intramembrane client binding potentiates the chaperone functions of calnexin. Together, these data reveal a widespread role of calnexin client recognition in the lipid bilayer, which synergizes with its established lectin-based substrate binding. Molecular chaperones thus can combine different interaction modes to support the biogenesis of the diverse eukaryotic membrane proteome.
Collapse
Affiliation(s)
- Nicolas Bloemeke
- Department of Bioscience, Center for Functional Protein Assemblies (CPA), TUM School of Natural SciencesTechnical University of MunichGarchingGermany
| | - Kevin Meighen‐Berger
- Department of Bioscience, Center for Functional Protein Assemblies (CPA), TUM School of Natural SciencesTechnical University of MunichGarchingGermany
| | - Manuel Hitzenberger
- Department of Bioscience, Center for Functional Protein Assemblies (CPA), TUM School of Natural SciencesTechnical University of MunichGarchingGermany
| | - Nina C Bach
- Department of Bioscience, Center for Functional Protein Assemblies (CPA), TUM School of Natural SciencesTechnical University of MunichGarchingGermany
| | - Marina Parr
- Department of Bioinformatics, TUM School of Life SciencesTechnical University of MunichFreisingGermany
| | - Joao PL Coelho
- Department of Bioscience, Center for Functional Protein Assemblies (CPA), TUM School of Natural SciencesTechnical University of MunichGarchingGermany
| | - Dmitrij Frishman
- Department of Bioinformatics, TUM School of Life SciencesTechnical University of MunichFreisingGermany
| | - Martin Zacharias
- Department of Bioscience, Center for Functional Protein Assemblies (CPA), TUM School of Natural SciencesTechnical University of MunichGarchingGermany
| | - Stephan A Sieber
- Department of Bioscience, Center for Functional Protein Assemblies (CPA), TUM School of Natural SciencesTechnical University of MunichGarchingGermany
| | - Matthias J Feige
- Department of Bioscience, Center for Functional Protein Assemblies (CPA), TUM School of Natural SciencesTechnical University of MunichGarchingGermany
| |
Collapse
|
6
|
Speculation on How RIC-3 and Other Chaperones Facilitate α7 Nicotinic Receptor Folding and Assembly. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27144527. [PMID: 35889400 PMCID: PMC9318448 DOI: 10.3390/molecules27144527] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/07/2022] [Accepted: 07/09/2022] [Indexed: 11/17/2022]
Abstract
The process of how multimeric transmembrane proteins fold and assemble in the endoplasmic reticulum is not well understood. The alpha7 nicotinic receptor (α7 nAChR) is a good model for multimeric protein assembly since it has at least two independent and specialized chaperones: Resistance to Inhibitors of Cholinesterase 3 (RIC-3) and Nicotinic Acetylcholine Receptor Regulator (NACHO). Recent cryo-EM and NMR data revealed structural features of α7 nAChRs. A ser-ala-pro (SAP) motif precedes a structurally important but unique "latch" helix in α7 nAChRs. A sampling of α7 sequences suggests the SAP motif is conserved from C. elegans to humans, but the latch sequence is only conserved in vertebrates. How RIC-3 and NACHO facilitate receptor subunits folding into their final pentameric configuration is not known. The artificial intelligence program AlphaFold2 recently predicted structures for NACHO and RIC-3. NACHO is highly conserved in sequence and structure across species, but RIC-3 is not. This review ponders how different intrinsically disordered RIC-3 isoforms from C. elegans to humans interact with α7 nAChR subunits despite having little sequence homology across RIC-3 species. Two models from the literature about how RIC-3 assists α7 nAChR assembly are evaluated considering recent structural information about the receptor and its chaperones.
Collapse
|
7
|
Cornman RS, Cryan PM. Positively selected genes in the hoary bat ( Lasiurus cinereus) lineage: prominence of thymus expression, immune and metabolic function, and regions of ancient synteny. PeerJ 2022; 10:e13130. [PMID: 35317076 PMCID: PMC8934532 DOI: 10.7717/peerj.13130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 02/25/2022] [Indexed: 01/12/2023] Open
Abstract
Background Bats of the genus Lasiurus occur throughout the Americas and have diversified into at least 20 species among three subgenera. The hoary bat (Lasiurus cinereus) is highly migratory and ranges farther across North America than any other wild mammal. Despite the ecological importance of this species as a major insect predator, and the particular susceptibility of lasiurine bats to wind turbine strikes, our understanding of hoary bat ecology, physiology, and behavior remains poor. Methods To better understand adaptive evolution in this lineage, we used whole-genome sequencing to identify protein-coding sequence and explore signatures of positive selection. Gene models were predicted with Maker and compared to seven well-annotated and phylogenetically representative species. Evolutionary rate analysis was performed with PAML. Results Of 9,447 single-copy orthologous groups that met evaluation criteria, 150 genes had a significant excess of nonsynonymous substitutions along the L. cinereus branch (P < 0.001 after manual review of alignments). Selected genes as a group had biased expression, most strongly in thymus tissue. We identified 23 selected genes with reported immune functions as well as a divergent paralog of Steep1 within suborder Yangochiroptera. Seventeen genes had roles in lipid and glucose metabolic pathways, partially overlapping with 15 mitochondrion-associated genes; these adaptations may reflect the metabolic challenges of hibernation, long-distance migration, and seasonal variation in prey abundance. The genomic distribution of positively selected genes differed significantly from background expectation by discrete Kolmogorov-Smirnov test (P < 0.001). Remarkably, the top three physical clusters all coincided with islands of conserved synteny predating Mammalia, the largest of which shares synteny with the human cat-eye critical region (CECR) on 22q11. This observation coupled with the expansion of a novel Tbx1-like gene family may indicate evolutionary innovation during pharyngeal arch development: both the CECR and Tbx1 cause dosage-dependent congenital abnormalities in thymus, heart, and head, and craniodysmorphy is associated with human orthologs of other positively selected genes as well.
Collapse
|
8
|
Mulcahy MJ, Huard SM, Paulo JA, Wang JH, McKinney S, Marks MJ, Henderson BJ, Lester HA. Protein profiling in the habenula after chronic (-)-menthol exposure in mice. J Neurochem 2021; 158:1345-1358. [PMID: 34407206 DOI: 10.1111/jnc.15495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 07/10/2021] [Accepted: 08/11/2021] [Indexed: 11/30/2022]
Abstract
The identification of proteins that are altered following nicotine/tobacco exposure can facilitate and positively impact the investigation of related diseases. In this report, we investigated the effects of chronic (-)-menthol exposure in 14 murine brain regions for changes in total β2 subunit protein levels and changes in epibatidine binding levels using immunoblotting and radioligand binding assays. We identified the habenula as a region of interest due to the region's marked decreases in β2 subunit and nAChR levels in response to chronic (-)-menthol alone. Thus, we further examined the habenula, a brain region associated with both the reward and withdrawal components of addiction, for additional protein level alterations using mass spectrometry. A total of 552 proteins with altered levels were identified after chronic (-)-menthol exposure. Enriched in the proteins with altered levels after (-)-menthol exposure were proteins associated with signaling, immune systems, RNA regulation, and protein transport. The continuation and expansion of the brain region-specific protein profiling in response to (-)-menthol will provide a better understanding of how this common flavorant in tobacco and e-liquid products may affect addiction and general health.
Collapse
Affiliation(s)
- Matthew J Mulcahy
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - Stephanie M Huard
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Jonathan H Wang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - Sheri McKinney
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - Michael J Marks
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - Brandon J Henderson
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia, USA
| | - Henry A Lester
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| |
Collapse
|
9
|
Marinko J, Huang H, Penn WD, Capra JA, Schlebach JP, Sanders CR. Folding and Misfolding of Human Membrane Proteins in Health and Disease: From Single Molecules to Cellular Proteostasis. Chem Rev 2019; 119:5537-5606. [PMID: 30608666 PMCID: PMC6506414 DOI: 10.1021/acs.chemrev.8b00532] [Citation(s) in RCA: 167] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Indexed: 12/13/2022]
Abstract
Advances over the past 25 years have revealed much about how the structural properties of membranes and associated proteins are linked to the thermodynamics and kinetics of membrane protein (MP) folding. At the same time biochemical progress has outlined how cellular proteostasis networks mediate MP folding and manage misfolding in the cell. When combined with results from genomic sequencing, these studies have established paradigms for how MP folding and misfolding are linked to the molecular etiologies of a variety of diseases. This emerging framework has paved the way for the development of a new class of small molecule "pharmacological chaperones" that bind to and stabilize misfolded MP variants, some of which are now in clinical use. In this review, we comprehensively outline current perspectives on the folding and misfolding of integral MPs as well as the mechanisms of cellular MP quality control. Based on these perspectives, we highlight new opportunities for innovations that bridge our molecular understanding of the energetics of MP folding with the nuanced complexity of biological systems. Given the many linkages between MP misfolding and human disease, we also examine some of the exciting opportunities to leverage these advances to address emerging challenges in the development of therapeutics and precision medicine.
Collapse
Affiliation(s)
- Justin
T. Marinko
- Department
of Biochemistry, Vanderbilt University, Nashville, Tennessee 37240, United States
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240, United States
| | - Hui Huang
- Department
of Biochemistry, Vanderbilt University, Nashville, Tennessee 37240, United States
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240, United States
| | - Wesley D. Penn
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - John A. Capra
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240, United States
- Department
of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37245, United States
| | - Jonathan P. Schlebach
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Charles R. Sanders
- Department
of Biochemistry, Vanderbilt University, Nashville, Tennessee 37240, United States
| |
Collapse
|
10
|
Modulation of Endocannabinoid-Binding Receptors in Human Neuroblastoma Cells by Tunicamycin. Molecules 2019; 24:molecules24071432. [PMID: 30979007 PMCID: PMC6479803 DOI: 10.3390/molecules24071432] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/09/2019] [Accepted: 04/09/2019] [Indexed: 01/22/2023] Open
Abstract
Endocannabinoid (eCB)-binding receptors can be modulated by several ligands and membrane environment, yet the effect of glycosylation remains to be assessed. In this study, we used human neuroblastoma SH-SY5Y cells to interrogate whether expression, cellular localization, and activity of eCB-binding receptors may depend on N-linked glycosylation. Following treatment with tunicamycin (a specific inhibitor of N-linked glycosylation) at the non-cytotoxic dose of 1 µg/mL, mRNA, protein levels and localization of eCB-binding receptors, as well as N-acetylglucosamine (GlcNAc) residues, were evaluated in SH-SY5Y cells by means of quantitative real-time reverse transcriptase-polymerase chain reaction (qRT-PCR), fluorescence-activated cell sorting (FACS), and confocal microscopy, respectively. In addition, the activity of type-1 and type-2 cannabinoid receptors (CB1 and CB2) was assessed by means of rapid binding assays. Significant changes in gene and protein expression were found upon tunicamycin treatment for CB1 and CB2, as well as for GPR55 receptors, but not for transient receptor potential vanilloid 1 (TRPV1). Deglycosylation experiments with N-glycosidase-F and immunoblot of cell membranes derived from SH-SY5Y cells confirmed the presence of one glycosylated form in CB1 (70 kDa), that was reduced by tunicamycin. Morphological studies demonstrated the co-localization of CB1 with GlcNAc residues, and showed that tunicamycin reduced CB1 membrane expression with a marked nuclear localization, as confirmed by immunoblotting. Cleavage of the carbohydrate side chain did not modify CB receptor binding affinity. Overall, these results support N-linked glycosylation as an unprecedented post-translational modification that may modulate eCB-binding receptors’ expression and localization, in particular for CB1.
Collapse
|
11
|
D'Alessandro M, Richard M, Stigloher C, Gache V, Boulin T, Richmond JE, Bessereau JL. CRELD1 is an evolutionarily-conserved maturational enhancer of ionotropic acetylcholine receptors. eLife 2018; 7:39649. [PMID: 30407909 PMCID: PMC6245729 DOI: 10.7554/elife.39649] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 11/05/2018] [Indexed: 12/22/2022] Open
Abstract
The assembly of neurotransmitter receptors in the endoplasmic reticulum limits the number of receptors delivered to the plasma membrane, ultimately controlling neurotransmitter sensitivity and synaptic transfer function. In a forward genetic screen conducted in the nematode C. elegans, we identified crld-1 as a gene required for the synaptic expression of ionotropic acetylcholine receptors (AChR). We demonstrated that the CRLD-1A isoform is a membrane-associated ER-resident protein disulfide isomerase (PDI). It physically interacts with AChRs and promotes the assembly of AChR subunits in the ER. Mutations of Creld1, the human ortholog of crld-1a, are responsible for developmental cardiac defects. We showed that Creld1 knockdown in mouse muscle cells decreased surface expression of AChRs and that expression of mouse Creld1 in C. elegans rescued crld-1a mutant phenotypes. Altogether these results identify a novel and evolutionarily-conserved maturational enhancer of AChR biogenesis, which controls the abundance of functional receptors at the cell surface.
Collapse
Affiliation(s)
- Manuela D'Alessandro
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U 1217, Institut NeuroMyoGène, Lyon, France
| | - Magali Richard
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U 1217, Institut NeuroMyoGène, Lyon, France
| | - Christian Stigloher
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U 1217, Institut NeuroMyoGène, Lyon, France
| | - Vincent Gache
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U 1217, Institut NeuroMyoGène, Lyon, France
| | - Thomas Boulin
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U 1217, Institut NeuroMyoGène, Lyon, France
| | - Janet E Richmond
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, United States
| | - Jean-Louis Bessereau
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U 1217, Institut NeuroMyoGène, Lyon, France
| |
Collapse
|
12
|
Mulcahy MJ, Blattman SB, Barrantes FJ, Lukas RJ, Hawrot E. Resistance to Inhibitors of Cholinesterase 3 (Ric-3) Expression Promotes Selective Protein Associations with the Human α7-Nicotinic Acetylcholine Receptor Interactome. PLoS One 2015; 10:e0134409. [PMID: 26258666 PMCID: PMC4530945 DOI: 10.1371/journal.pone.0134409] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 07/08/2015] [Indexed: 11/19/2022] Open
Abstract
The α7-nicotinic acetylcholine receptor (α7-nAChR) is a ligand-gated ion channel widely expressed in vertebrates and is associated with numerous physiological functions. As transmembrane ion channels, α7-nAChRs need to be expressed on the surface of the plasma membrane to function. The receptor has been reported to associate with proteins involved with receptor biogenesis, modulation of receptor properties, as well as intracellular signaling cascades and some of these associated proteins may affect surface expression of α7-nAChRs. The putative chaperone resistance to inhibitors of cholinesterase 3 (Ric-3) has been reported to interact with, and enhance the surface expression of, α7-nAChRs. In this study, we identified proteins that associate with α7-nAChRs when Ric-3 is expressed. Using α-bungarotoxin (α-bgtx), we isolated and compared α7-nAChR-associated proteins from two stably transfected, human tumor-derived cell lines: SH-EP1-hα7 expressing human α7-nAChRs and the same cell line further transfected to express Ric-3, SH-EP1-hα7-Ric-3. Mass spectrometric analysis of peptides identified thirty-nine proteins that are associated with α7-nAChRs only when Ric-3 was expressed. Significantly, and consistent with reports of Ric-3 function in the literature, several of the identified proteins are involved in biological processes that may affect nAChR surface expression such as post-translational processing of proteins, protein trafficking, and protein transport. Additionally, proteins affecting the cell cycle, the cytoskeleton, stress responses, as well as cyclic AMP- and inositol triphosphate-dependent signaling cascades were identified. These results illuminate how α-bgtx may be used to isolate and identify α7-nAChRs as well as how the expression of chaperones such as Ric-3 can influence proteins associating with α7-nAChRs. These associating proteins may alter activities of α7-nAChRs to expand their functionally-relevant repertoire as well as to affect biogenesis and membrane trafficking of α7-nAChRs.
Collapse
Affiliation(s)
- Matthew J. Mulcahy
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, Rhode Island, United States of America
| | - Sydney B. Blattman
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, Rhode Island, United States of America
| | - Francisco J. Barrantes
- Laboratory of Molecular Neurobiology, Institute of Biomedical Research, UCA-CONICET, Buenos Aires, Argentina
| | - Ronald J. Lukas
- Division of Neurobiology, Barrow Neurological Institute, Phoenix, Arizona, United States of America
| | - Edward Hawrot
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, Rhode Island, United States of America
- * E-mail:
| |
Collapse
|
13
|
Dash B, Li MD. Analysis of rare variations reveals roles of amino acid residues in the N-terminal extracellular domain of nicotinic acetylcholine receptor (nAChR) alpha6 subunit in the functional expression of human alpha6*-nAChRs. Mol Brain 2014; 7:35. [PMID: 24886653 PMCID: PMC4022547 DOI: 10.1186/1756-6606-7-35] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 04/22/2014] [Indexed: 12/17/2022] Open
Abstract
Background Functional heterologous expression of naturally-expressed and apparently functional mammalian α6*-nicotinic acetylcholine receptors (nAChRs; where ‘*’ indicates presence of additional subunits) has been difficult. Here we wanted to investigate the role of N-terminal domain (NTD) residues of human (h) nAChR α6 subunit in the functional expression of hα6*-nAChRs. To this end, instead of adopting random mutagenesis as a tool, we used 15 NTD rare variations (i.e., Ser43Pro, Asn46Lys, Asp57Asn, Arg87Cys, Asp92Glu, Arg96His, Glu101Lys, Ala112Val, Ser156Arg, Asn171Lys, Ala184Asp, Asp199Tyr, Asn203Thr, Ile226Thr and Ser233Cys) in nAChR hα6 subunit to probe for their effect on the functional expression of hα6*-nAChRs. Results N-terminal α-helix (Asp57); complementary face/inner β-fold (Arg87 or Asp92) and principal face/outer β-fold (Ser156 or Asn171) residues in the hα6 subunit are crucial for functional expression of the hα6*-nAChRs as variations in these residues reduce or abrogate the function of hα6hβ2*-, hα6hβ4- and hα6hβ4hβ3-nAChRs. While variations at residues Ser43 or Asn46 (both in N-terminal α-helix) in hα6 subunit reduce hα6hβ2*-nAChRs function those at residues Arg96 (β2-β3 loop), Asp199 (loop F) or Ser233 (β10-strand) increase hα6hβ2*-nAChR function. Similarly substitution of NTD α-helix (Asn46), loop F (Asp199), loop A (Ala112), loop B (Ala184), or loop C (Ile226) residues in hα6 subunit increase the function of hα6hβ4-nAChRs. All other variations in hα6 subunit do not affect the function of hα6hβ2*- and hα6hβ4*-nAChRs. Incorporation of nAChR hβ3 subunits always increase the function of wild-type or variant hα6hβ4-nAChRs except for those of hα6(D57N, S156R, R87C or N171K)hβ4-nAChRs. It appears Asp57Lys, Ser156Arg or Asn171Lys variations in hα6 subunit drive the hα6hβ4hβ3-nAChRs into a nonfunctional state as at spontaneously open hα6(D57N, S156R or N171K)hβ4hβ3V9’S-nAChRs (V9’S; transmembrane II 9’ valine-to-serine mutation) agonists act as antagonists. Agonist sensitivity of hα6hβ4- and/or hα6hβ4hβ3-nAChRs is nominally increased due to Arg96His, Ala184Asp, Asp199Tyr or Ser233Cys variation in hα6 subunit. Conclusions Hence investigating functional consequences of natural variations in nAChR hα6 subunit we have discovered additional bases for cell surface functional expression of various subtypes of hα6*-nAChRs. Variations (Asp57Asn, Arg87Cys, Asp92Glu, Ser156Arg or Asn171Lys) in hα6 subunit that compromise hα6*-nAChR function are expected to contribute to individual differences in responses to smoked nicotine.
Collapse
Affiliation(s)
| | - Ming D Li
- Department of Psychiatry and Neurobehavioral Sciences, School of Medicine, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW Congenital myasthenic syndromes (CMSs) form a heterogeneous group of genetic diseases characterized by a dysfunction of neuromuscular transmission because of mutations in numerous genes. This review will focus on the causative genes recently identified and on the therapy of CMSs. RECENT FINDINGS Advances in exome sequencing allowed the discovery of a new group of genes that did not code for the known molecular components of the neuromuscular junction, and the definition of a new group of glycosylation-defective CMS. Rather than the specific drugs used, some of them having been known for decades, it is the rigorous therapeutic strategy that is now offered to the patient in relation to the identified mutated gene that is novel and promising. SUMMARY In addition to the above main points, we also present new data on the genes that were already known with an emphasis on the clinic and on animal models that may be of use to understand the pathophysiology of the disease. We also stress not only the diagnosis difficulties between congenital myopathies and CMSs, but also the continuum that may exist between the two.
Collapse
|
15
|
Rudolf R, Khan MM, Lustrino D, Labeit S, Kettelhut IC, Navegantes LCC. Alterations of cAMP-dependent signaling in dystrophic skeletal muscle. Front Physiol 2013; 4:290. [PMID: 24146652 PMCID: PMC3797997 DOI: 10.3389/fphys.2013.00290] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 09/24/2013] [Indexed: 12/19/2022] Open
Abstract
Autonomic regulation processes in striated muscles are largely mediated by cAMP/PKA-signaling. In order to achieve specificity of signaling its spatial-temporal compartmentation plays a critical role. We discuss here how specificity of cAMP/PKA-signaling can be achieved in skeletal muscle by spatio-temporal compartmentation. While a microdomain containing PKA type I in the region of the neuromuscular junction (NMJ) is important for postsynaptic, activity-dependent stabilization of the nicotinic acetylcholine receptor (AChR), PKA type I and II microdomains in the sarcomeric part of skeletal muscle are likely to play different roles, including the regulation of muscle homeostasis. These microdomains are due to specific A-kinase anchoring proteins, like rapsyn and myospryn. Importantly, recent evidence indicates that compartmentation of the cAMP/PKA-dependent signaling pathway and pharmacological activation of cAMP production are aberrant in different skeletal muscles disorders. Thus, we discuss here their potential as targets for palliative treatment of certain forms of dystrophy and myasthenia. Under physiological conditions, the neuropeptide, α-calcitonin-related peptide, as well as catecholamines are the most-mentioned natural triggers for activating cAMP/PKA signaling in skeletal muscle. While the precise domains and functions of these first messengers are still under investigation, agonists of β2-adrenoceptors clearly exhibit anabolic activity under normal conditions and reduce protein degradation during atrophic periods. Past and recent studies suggest direct sympathetic innervation of skeletal muscle fibers. In summary, the organization and roles of cAMP-dependent signaling in skeletal muscle are increasingly understood, revealing crucial functions in processes like nerve-muscle interaction and muscle trophicity.
Collapse
Affiliation(s)
- Rüdiger Rudolf
- Institute of Molecular and Cell Biology, University of Applied Sciences Mannheim , Mannheim, Germany ; Institute of Toxicology and Genetics, Karlsruhe Institute of Technology , Eggenstein-Leopoldshafen, Germany
| | | | | | | | | | | |
Collapse
|
16
|
Colombo SF, Mazzo F, Pistillo F, Gotti C. Biogenesis, trafficking and up-regulation of nicotinic ACh receptors. Biochem Pharmacol 2013; 86:1063-73. [DOI: 10.1016/j.bcp.2013.06.023] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 06/24/2013] [Accepted: 06/26/2013] [Indexed: 12/11/2022]
|
17
|
Zoltowska K, Webster R, Finlayson S, Maxwell S, Cossins J, Müller J, Lochmüller H, Beeson D. Mutations in GFPT1 that underlie limb-girdle congenital myasthenic syndrome result in reduced cell-surface expression of muscle AChR. Hum Mol Genet 2013; 22:2905-13. [DOI: 10.1093/hmg/ddt145] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
18
|
Biosynthesis of ionotropic acetylcholine receptors requires the evolutionarily conserved ER membrane complex. Proc Natl Acad Sci U S A 2013; 110:E1055-63. [PMID: 23431131 DOI: 10.1073/pnas.1216154110] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The number of nicotinic acetylcholine receptors (AChRs) present in the plasma membrane of muscle and neuronal cells is limited by the assembly of individual subunits into mature pentameric receptors. This process is usually inefficient, and a large number of the synthesized subunits are degraded by endoplasmic reticulum (ER)-associated degradation. To identify cellular factors required for the synthesis of AChRs, we performed a genetic screen in the nematode Caenorhabditis elegans for mutants with decreased sensitivity to the cholinergic agonist levamisole. We isolated a partial loss-of-function allele of ER membrane protein complex-6 (emc-6), a previously uncharacterized gene in C. elegans. emc-6 encodes an evolutionarily conserved 111-aa protein with two predicted transmembrane domains. EMC-6 is ubiquitously expressed and localizes to the ER. Partial inhibition of EMC-6 caused decreased expression of heteromeric levamisole-sensitive AChRs by destabilizing unassembled subunits in the ER. Inhibition of emc-6 also reduced the expression of homomeric nicotine-sensitive AChRs and GABAA receptors in C. elegans muscle cells. emc-6 is orthologous to the yeast and human EMC6 genes that code for a component of the recently identified ER membrane complex (EMC). Our data suggest this complex is required for protein folding and is connected to ER-associated degradation. We demonstrated that inactivation of additional EMC members in C. elegans also impaired AChR synthesis and induced the unfolded protein response. These results suggest that the EMC is a component of the ER folding machinery. AChRs might provide a valuable proxy to decipher the function of the EMC further.
Collapse
|
19
|
Ballesta JJ, del Pozo C, Castelló-Banyuls J, Faura CC. Selective down-regulation of α4β2 neuronal nicotinic acetylcholine receptors in the brain of uremic rats with cognitive impairment. Exp Neurol 2012; 236:28-33. [PMID: 22510484 DOI: 10.1016/j.expneurol.2012.03.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 01/31/2012] [Accepted: 03/29/2012] [Indexed: 01/02/2023]
Abstract
Cognitive impairment is common in patients with chronic kidney disease. Brain nicotinic acetylcholine receptors modulate cognitive functions, such as learning and memory. Pharmacological cholinergic enhancement is useful in patients with cognitive dysfunction. The major nicotinic acetylcholine receptor subtypes in the brain are heteromeric α4β2 and homomeric α7 receptors. To study the involvement of neuronal acetylcholine receptors in cognitive impairment in uremic rats, bilateral nephrectomy was performed. 24 weeks after nephrectomy, memory was assessed using the one trial step-down inhibitory avoidance test. Neuronal nicotinic acetylcholine receptors in the brain were studied by radioligand binding, immunoprecipitation, Western blot and sucrose gradient experiments. We demonstrated that rats with severe renal failure show disorders of short term memory. Long term memory was not altered in these rats. The number of functional α4β2 heteromeric neuronal nicotinic receptors was decreased in the brains of rats with severe renal failure. There was a significant correlation between the degree of renal impairment and the number of heteromeric nicotinic acetylcholine receptors in the brain. The down-regulation of functional α4β2 receptors in the brains of rats with severe renal failure was not due to a reduction of α4 or β2 subunit proteins. The number of α7 homomeric neuronal nicotinic acetylcholine receptors was not altered. These findings may have important clinical significance for the management of cognitive impairment in patients with chronic kidney disease.
Collapse
Affiliation(s)
- Juan J Ballesta
- Institute of Neurosciences, CSIC-Universidad Miguel Hernández, Avenida Ramon y Cajal, 03550 San Juan de Alicante, Spain.
| | | | | | | |
Collapse
|
20
|
Whitaker GM, Lynn FC, McIntosh CHS, Accili EA. Regulation of GIP and GLP1 receptor cell surface expression by N-glycosylation and receptor heteromerization. PLoS One 2012; 7:e32675. [PMID: 22412906 PMCID: PMC3296735 DOI: 10.1371/journal.pone.0032675] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Accepted: 02/02/2012] [Indexed: 12/25/2022] Open
Abstract
In response to a meal, Glucose-dependent Insulinotropic Polypeptide (GIP) and Glucagon-like Peptide-1 (GLP-1) are released from gut endocrine cells into the circulation and interact with their cognate G-protein coupled receptors (GPCRs). Receptor activation results in tissue-selective pleiotropic responses that include augmentation of glucose-induced insulin secretion from pancreatic beta cells. N-glycosylation and receptor oligomerization are co-translational processes that are thought to regulate the exit of functional GPCRs from the ER and their maintenance at the plasma membrane. Despite the importance of these regulatory processes, their impact on functional expression of GIP and GLP-1 receptors has not been well studied. Like many family B GPCRs, both the GIP and GLP-1 receptors possess a large extracellular N-terminus with multiple consensus sites for Asn-linked (N)-glycosylation. Here, we show that each of these Asn residues is glycosylated when either human receptor is expressed in Chinese hamster ovary cells. N-glycosylation enhances cell surface expression and function in parallel but exerts stronger control over the GIP receptor than the GLP-1 receptor. N-glycosylation mainly lengthens receptor half-life by reducing degradation in the endoplasmic reticulum. N-glycosylation is also required for expression of the GIP receptor at the plasma membrane and efficient GIP potentiation of glucose-induced insulin secretion from the INS-1 pancreatic beta cell line. Functional expression of a GIP receptor mutant lacking N-glycosylation is rescued by co-expressed wild type GLP1 receptor, which, together with data obtained using Bioluminescence Resonance Energy Transfer, suggests formation of a GIP-GLP1 receptor heteromer.
Collapse
Affiliation(s)
- Gina M. Whitaker
- Cardiovascular Research Group, University of British Columbia, Vancouver, British Columbia, Canada
- Life Sciences Institute, Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Francis C. Lynn
- Life Sciences Institute, Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Christopher H. S. McIntosh
- Life Sciences Institute, Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- Diabetes Research Group, University of British Columbia, Vancouver, British Columbia, Canada
| | - Eric A. Accili
- Cardiovascular Research Group, University of British Columbia, Vancouver, British Columbia, Canada
- Life Sciences Institute, Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
21
|
Chaperoning α7 neuronal nicotinic acetylcholine receptors. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1818:718-29. [PMID: 22040696 DOI: 10.1016/j.bbamem.2011.10.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2011] [Revised: 09/25/2011] [Accepted: 10/17/2011] [Indexed: 11/22/2022]
Abstract
The α7 subtype of nicotinic acetylcholine receptors (AChRs) is one of the most abundant members of the Cys-loop family of receptors present in the central nervous system. It participates in various physiological processes and has received much attention as a potential therapeutic target for a variety of pathologies. The importance of understanding the mechanisms controlling AChR assembly and cell-surface delivery lies in the fact that these two processes are key to determining the functional pool of receptors actively engaged in synaptic transmission. Here we review recent studies showing that RIC-3, a protein originally identified in the worm Caenorhabditis elegans, modulates the expression of α7 AChRs in a subtype-specific manner. Potentiation of AChR expression by post-transcriptional events is also critically assessed.
Collapse
|
22
|
Papandréou MJ, Barbouche R, Guieu R, Rivera S, Fantini J, Khrestchatisky M, Jones IM, Fenouillet E. Mapping of domains on HIV envelope protein mediating association with calnexin and protein-disulfide isomerase. J Biol Chem 2010; 285:13788-96. [PMID: 20202930 DOI: 10.1074/jbc.m109.066670] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The cell catalysts calnexin (CNX) and protein-disulfide isomerase (PDI) cooperate in establishing the disulfide bonding of the HIV envelope (Env) glycoprotein. Following HIV binding to lymphocytes, cell-surface PDI also reduces Env to induce the fusogenic conformation. We sought to define the contact points between Env and these catalysts to illustrate their potential as therapeutic targets. In lysates of Env-expressing cells, 15% of the gp160 precursor, but not gp120, coprecipitated with CNX, whereas only 0.25% of gp160 and gp120 coprecipitated with PDI. Under in vitro conditions, which mimic the Env/PDI interaction during virus/cell contact, PDI readily associated with Env. The domains of Env interacting in cellulo with CNX or in vitro with PDI were then determined using anti-Env antibodies whose binding site was occluded by CNX or PDI. Antibodies against domains V1/V2, C2, and the C terminus of V3 did not bind CNX-associated Env, whereas those against C1, V1/V2, and the CD4-binding domain did not react with PDI-associated Env. In addition, a mixture of the latter antibodies interfered with PDI-mediated Env reduction. Thus, Env interacts with intracellular CNX and extracellular PDI via discrete, largely nonoverlapping, regions. The sites of interaction explain the mode of action of compounds that target these two catalysts and may enable the design of further new competitive agents.
Collapse
|
23
|
UBXD4, a UBX-containing protein, regulates the cell surface number and stability of alpha3-containing nicotinic acetylcholine receptors. J Neurosci 2009; 29:6883-96. [PMID: 19474315 DOI: 10.1523/jneurosci.4723-08.2009] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Adaptor proteins are likely to modulate spatially and temporally the trafficking of a number of membrane proteins, including neuronal nicotinic acetylcholine receptors (nAChRs). A yeast two-hybrid screen identified a novel UBX-containing protein, UBXD4, as one of the cytosolic proteins that interact directly with the alpha3 and alpha4 nAChR subunits. The function of UBX-containing proteins is largely unknown. Immunoprecipitation and confocal microscopy confirmed the interaction of UBXD4 with alpha3-containing nAChRs (alpha3* nAChRs) expressed in HEK293 cells, PC12 cells, and rat cortical neurons. Overexpression of UBXD4 in differentiated PC12 cells (dPC12) increased nAChR cell surface expression, especially that of the alpha3beta2 subtype. These findings were corroborated by electrophysiology, immunofluorescent staining, and biotinylation of surface receptors. Silencing of UBXD4 led to a significant reduction of alpha3* nAChRs in rat cortical neurons and dPC12 cells. Biochemical and immunofluorescence studies of endogenous UBXD4 showed that the protein is located in both the ER and cis-Golgi compartments. Our investigations also showed that the alpha3 subunit is ubiquitinated and that UBXD4 can interfere with its ubiquitination and consequent degradation by the proteasome. Our data suggest that UBXD4 modulates the distribution of alpha3* nAChRs between specialized intracellular compartments and the plasma membrane. This effect is achieved by controlling the stability of the alpha3 subunit and, consequently, the number of receptors at the cell surface.
Collapse
|
24
|
Albuquerque EX, Pereira EFR, Alkondon M, Rogers SW. Mammalian nicotinic acetylcholine receptors: from structure to function. Physiol Rev 2009; 89:73-120. [PMID: 19126755 PMCID: PMC2713585 DOI: 10.1152/physrev.00015.2008] [Citation(s) in RCA: 1246] [Impact Index Per Article: 83.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The classical studies of nicotine by Langley at the turn of the 20th century introduced the concept of a "receptive substance," from which the idea of a "receptor" came to light. Subsequent studies aided by the Torpedo electric organ, a rich source of muscle-type nicotinic receptors (nAChRs), and the discovery of alpha-bungarotoxin, a snake toxin that binds pseudo-irreversibly to the muscle nAChR, resulted in the muscle nAChR being the best characterized ligand-gated ion channel hitherto. With the advancement of functional and genetic studies in the late 1980s, the existence of nAChRs in the mammalian brain was confirmed and the realization that the numerous nAChR subtypes contribute to the psychoactive properties of nicotine and other drugs of abuse and to the neuropathology of various diseases, including Alzheimer's, Parkinson's, and schizophrenia, has since emerged. This review provides a comprehensive overview of these findings and the more recent revelations of the impact that the rich diversity in function and expression of this receptor family has on neuronal and nonneuronal cells throughout the body. Despite these numerous developments, our understanding of the contributions of specific neuronal nAChR subtypes to the many facets of physiology throughout the body remains in its infancy.
Collapse
Affiliation(s)
- Edson X Albuquerque
- Department of Pharmacology and Experimental Therapeutics, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | | | | |
Collapse
|
25
|
Millar NS, Harkness PC. Assembly and trafficking of nicotinic acetylcholine receptors (Review). Mol Membr Biol 2008; 25:279-92. [PMID: 18446614 DOI: 10.1080/09687680802035675] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are members of an extensive super-family of neurotransmitter-gated ion channels. In humans, nAChRs are expressed within the nervous system and at the neuromuscular junction and are important targets for pharmaceutical drug discovery. They are also the site of action for neuroactive pesticides in insects and other invertebrates. Nicotinic receptors are complex pentameric transmembrane proteins which are assembled from a large family of subunits; seventeen nAChR subunits (alpha1-alpha10, beta1-beta4, gamma, delta and epsilon) have been identified in vertebrate species. This review will discuss nAChR subunit diversity and factors influencing receptor assembly and trafficking.
Collapse
Affiliation(s)
- Neil S Millar
- Department of Pharmacology, University College London, London, UK.
| | | |
Collapse
|
26
|
Wells GB. Structural answers and persistent questions about how nicotinic receptors work. FRONTIERS IN BIOSCIENCE : A JOURNAL AND VIRTUAL LIBRARY 2008; 13:5479-510. [PMID: 18508600 PMCID: PMC2430769 DOI: 10.2741/3094] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The electron diffraction structure of nicotinic acetylcholine receptor (nAChR) from Torpedo marmorata and the X-ray crystallographic structure of acetylcholine binding protein (AChBP) are providing new answers to persistent questions about how nAChRs function as biophysical machines and as participants in cellular and systems physiology. New high-resolution information about nAChR structures might come from advances in crystallography and NMR, from extracellular domain nAChRs as high fidelity models, and from prokaryotic nicotinoid proteins. At the level of biophysics, structures of different nAChRs with different pharmacological profiles and kinetics will help describe how agonists and antagonists bind to orthosteric binding sites, how allosteric modulators affect function by binding outside these sites, how nAChRs control ion flow, and how large cytoplasmic domains affect function. At the level of cellular and systems physiology, structures of nAChRs will help characterize interactions with other cellular components, including lipids and trafficking and signaling proteins, and contribute to understanding the roles of nAChRs in addiction, neurodegeneration, and mental illness. Understanding nAChRs at an atomic level will be important for designing interventions for these pathologies.
Collapse
Affiliation(s)
- Gregg B Wells
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M Health Science Center, College Station, TX 77843-1114, USA.
| |
Collapse
|
27
|
Affiliation(s)
- Julio J Caramelo
- Fundación Instituto Leloir and the Instituto de Investigaciones Bioquímicas de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas, Avenida Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina
| | | |
Collapse
|
28
|
Peptide-based interactions with calnexin target misassembled membrane proteins into endoplasmic reticulum-derived multilamellar bodies. J Mol Biol 2008; 378:337-52. [PMID: 18367207 DOI: 10.1016/j.jmb.2008.02.056] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2007] [Revised: 02/14/2008] [Accepted: 02/25/2008] [Indexed: 11/24/2022]
Abstract
Oligomeric assembly of neurotransmitter transporters is a prerequisite for their export from the endoplasmic reticulum (ER) and their subsequent delivery to the neuronal synapse. We previously identified mutations, e.g., in the gamma-aminobutyric acid (GABA) transporter-1 (GAT1), which disrupted assembly and caused retention of the transporter in the ER. Using one representative mutant, GAT1-E101D, we showed here that ER retention was due to association of the transporter with the ER chaperone calnexin: interaction with calnexin led to accumulation of GAT1 in concentric bodies corresponding to previously described multilamellar ER-derived structures. The transmembrane domain of calnexin was necessary and sufficient to direct the protein into these concentric bodies. Both yellow fluorescent protein-tagged versions of wild-type GAT1 and of the GAT1-E101D mutant remained in disperse (i.e., non-aggregated) form in these concentric bodies, because fluorescence recovered rapidly (t(1/2) approximately 500 ms) upon photobleaching. Fluorescence energy resonance transfer microscopy was employed to visualize a tight interaction of GAT1-E101D with calnexin. Recognition by calnexin occurred largely in a glycan-independent manner and, at least in part, at the level of the transmembrane domain. Our findings are consistent with a model in which the transmembrane segment of calnexin participates in chaperoning the inter- and intramolecular arrangement of hydrophobic segment in oligomeric proteins.
Collapse
|
29
|
Gao JR, Deacutis JM, Scott JG. The nicotinic acetylcholine receptor subunits Mdalpha5 and Mdbeta3 on autosome 1 of Musca domestica are not involved in spinosad resistance. INSECT MOLECULAR BIOLOGY 2007; 16:691-701. [PMID: 18092998 DOI: 10.1111/j.1365-2583.2007.00770.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Spinosad is a relatively new insecticide that exerts its toxic action via nicotinic acetylcholine receptors (nAChRs). Spinosad resistance in house flies appears to be due to an altered target site. To evaluate the molecular basis of spinosad resistance, two nAChR subunit genes, Mdalpha5 and Mdbeta3 were cloned and characterized from an insecticide-susceptible (aabys) and spinosad resistant (rspin) strain of the house fly, Musca domestica. The Mdalpha5 and Mdbeta3 cDNAs encode proteins of 781 and 432 amino acid residues, respectively. Phylogenetic analysis with insect nAChR subunits suggested that Mdalpha5 and Mdbeta3 are most closely related to Dalpha5 and Dbeta3 of Drosophila melanogaster, respectively. Mdbeta3 is intronless, which is unique among all previously described nAChR genes. A-to-I RNA editing was found at 13 sites in Mdalpha5, eleven of which resulted in amino acid substitutions. No evidence for A-to-I RNA editing was found in Mdbeta3. Mdalpha5 expression, quantified by real time PCR, was 340- and 23-fold higher in the head and thorax than in the abdomen. Mdbeta3 expression was more uniform, being only 2.4-fold higher in the head and 1.4-fold lower in the thorax, compared to the abdomen. There was no difference in the expression of Mdalpha5 and Mdbeta3 between the aabys and rspin strains. Although Mdalpha5 and Mdbeta3 both map to the same chromosome as spinosad resistance, there were no unique features of either gene in rspin, relative to the aabys strain. This suggests neither Mdalpha5 nor Mdbeta3 is responsible for spinosad resistance in house flies.
Collapse
Affiliation(s)
- J-R Gao
- Department of Entomology, Comstock Hall, Cornell University, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
30
|
Wanamaker CP, Green WN. Endoplasmic reticulum chaperones stabilize nicotinic receptor subunits and regulate receptor assembly. J Biol Chem 2007; 282:31113-23. [PMID: 17728248 PMCID: PMC2365492 DOI: 10.1074/jbc.m705369200] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We examined interactions between the endoplasmic reticulum (ER) chaperones calnexin (CN), ERp57, and immunological heavy chain-binding protein (BiP) and nicotinic acetylcholine receptor (nAChR) subunits. The three chaperones rapidly associate with newly synthesized nAChR subunits. Interactions between nAChR subunits and ERp57 occur via transient intermolecular disulfide bonds and do not require subunit N-linked glycosylation. The associations of ERp57 or CN with AChR subunits are long lived and prolong subunit lifetime approximately 10-fold. Coexpression of CN or ERp57 alone does not affect nAChR assembly or trafficking, but together they cause a significant decrease in nAChR expression and assembly. In contrast, associations with BiP are shorter lived and do not alter nAChR expression and assembly. However, a mutated BiP that slows its dissociation significantly increases its associations and decreases nAChR expression and assembly. Our results suggest that interactions with the chaperones regulate the levels of nAChRs assembled in the ER by stabilizing and sequestering subunits during assembly.
Collapse
Affiliation(s)
| | - William N. Green
- To whom correspondence should be addressed: Dept. of Neurobiology, University of Chicago, 947 E. 58th St., Chicago, IL 60637. Tel.: 773−702−1763; Fax: 773−702−3774; E-mail: .
| |
Collapse
|
31
|
Kalamida D, Poulas K, Avramopoulou V, Fostieri E, Lagoumintzis G, Lazaridis K, Sideri A, Zouridakis M, Tzartos SJ. Muscle and neuronal nicotinic acetylcholine receptors. FEBS J 2007; 274:3799-845. [PMID: 17651090 DOI: 10.1111/j.1742-4658.2007.05935.x] [Citation(s) in RCA: 219] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are integral membrane proteins and prototypic members of the ligand-gated ion-channel superfamily, which has precursors in the prokaryotic world. They are formed by the assembly of five transmembrane subunits, selected from a pool of 17 homologous polypeptides (alpha1-10, beta1-4, gamma, delta, and epsilon). There are many nAChR subtypes, each consisting of a specific combination of subunits, which mediate diverse physiological functions. They are widely expressed in the central nervous system, while, in the periphery, they mediate synaptic transmission at the neuromuscular junction and ganglia. nAChRs are also found in non-neuronal/nonmuscle cells (keratinocytes, epithelia, macrophages, etc.). Extensive research has determined the specific function of several nAChR subtypes. nAChRs are now important therapeutic targets for various diseases, including myasthenia gravis, Alzheimer's and Parkinson's diseases, and schizophrenia, as well as for the cessation of smoking. However, knowledge is still incomplete, largely because of a lack of high-resolution X-ray structures for these molecules. Nevertheless, electron microscopy studies on 2D crystals of nAChR from fish electric organs and the determination of the high-resolution X-ray structure of the acetylcholine binding protein (AChBP) from snails, a homolog of the extracellular domain of the nAChR, have been major steps forward and the data obtained have important implications for the design of subtype-specific drugs. Here, we review some of the latest advances in our understanding of nAChRs and their involvement in physiology and pathology.
Collapse
Affiliation(s)
- Dimitra Kalamida
- Department of Pharmacy, University of Patras, Rio Patras, Greece
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Gao JR, Deacutis JM, Scott JG. The nicotinic acetylcholine receptor subunit Mdalpha6 from Musca domestica is diversified via post-transcriptional modification. INSECT MOLECULAR BIOLOGY 2007; 16:325-34. [PMID: 17439546 DOI: 10.1111/j.1365-2583.2007.00730.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Recent studies showed that deletion of a nicotinic acetylcholine receptor (nAChR) subunit gene, Dalpha6 in Drosophila melanogaster results in a strain that is resistant to spinosad, indicating that Dalpha6 is important for the toxic action of this insecticide. To determine if spinosad resistance in house flies was due to a mutation(s) of Mdalpha6 (the orthologue of Dalpha6 from house flies), cDNAs were cloned and characterized from an insecticide-susceptible and a spinosad-resistant strain of the house fly, Musca domestica. The cDNAs contain a 1470-bp open reading frame encoding 490 amino acid residues, 415-bp 5' untranslated region (UTR) and a polymorphic 3'-UTR of approximately 371 bp. The predicted mature protein possesses 468 amino acid residues, has the typical features of a nAChR alpha subunit and is 97% identical to Dalpha6. Quantitative real-time PCR analysis revealed that Mdalpha6 was expressed in the head and the thorax at 1300- and 26-fold higher levels, respectively, than in the abdomen. There was no difference in the expression level of Mdalpha6 between spinosad-resistant and susceptible strains. Ten isoforms arising from alternative splicing were characterized, with isoform II being most common. A-to-I RNA editing was examined and found at 12 sites: editing at 11 of these sites resulted in an amino acid substitution. Mdalpha6 is linked to autosome 1 (spinosad resistance was previously shown to be linked to autosome 1). Single nucleotide polymorphisms, alternative splicing, mRNA levels and A-to-I RNA editing were compared between head and thorax and between insecticide-susceptible and spinosad-resistant strains. These comparisons indicate that Mdalpha6 is not responsible for spinosad resistance in house flies.
Collapse
Affiliation(s)
- J-R Gao
- Department of Entomology, Comstock Hall, Cornell University, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
33
|
Free RB, Hazelwood LA, Cabrera DM, Spalding HN, Namkung Y, Rankin ML, Sibley DR. D1 and D2 dopamine receptor expression is regulated by direct interaction with the chaperone protein calnexin. J Biol Chem 2007; 282:21285-300. [PMID: 17395585 DOI: 10.1074/jbc.m701555200] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
As for all proteins, G protein-coupled receptors (GPCRs) undergo synthesis and maturation within the endoplasmic reticulum (ER). The mechanisms involved in the biogenesis and trafficking of GPCRs from the ER to the cell surface are poorly understood, but they may involve interactions with other proteins. We have now identified the ER chaperone protein calnexin as an interacting protein for both D(1) and D(2) dopamine receptors. These protein-protein interactions were confirmed using Western blot analysis and co-immunoprecipitation experiments. To determine the influence of calnexin on receptor expression, we conducted assays in HEK293T cells using a variety of calnexin-modifying conditions. Inhibition of glycosylation either through receptor mutations or treatments with glycosylation inhibitors partially blocks the interactions with calnexin with a resulting decrease in cell surface receptor expression. Confocal fluorescence microscopy reveals the accumulation of D(1)-green fluorescent protein and D(2)-yellow fluorescent protein receptors within internal stores following treatment with calnexin inhibitors. Overexpression of calnexin also results in a marked decrease in both D(1) and D(2) receptor expression. This is likely because of an increase in ER retention because confocal microscopy revealed intracellular clustering of dopamine receptors that were co-localized with an ER marker protein. Additionally, we show that calnexin interacts with the receptors via two distinct mechanisms, glycan-dependent and glycan-independent, which may underlie the multiple effects (ER retention and surface trafficking) of calnexin on receptor expression. Our data suggest that optimal receptor-calnexin interactions critically regulate D(1) and D(2) receptor trafficking and expression at the cell surface, a mechanism likely to be of importance for many GPCRs.
Collapse
Affiliation(s)
- R Benjamin Free
- Molecular Neuropharmacology Section, NINDS, National Institutes of Health, Bethesda, Maryland 20892-9405, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Gao JR, Deacutis JM, Scott JG. Characterization of the nicotinic acetylcholine receptor subunit gene Mdalpha2 from the house fly, Musca domestica. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2007; 64:30-42. [PMID: 17167752 DOI: 10.1002/arch.20158] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
A nicotinic acetylcholine receptor (nAChR) subunit gene, Mdalpha2, was isolated and characterized from the house fly, Musca domestica. This is the first nAChR family member cloned from house flies. Mdalpha2 had a cDNA of 2,607 bp, which included a 696 bp 5'-untranslated region (UTR), an open reading frame of 1,692 bp, and a 219 bp 3'-UTR. Its deduced amino acid sequence possesses the typical characteristics of nAChRs. Mdalpha2 genomic sequence was 11.2 kb in length in the aabys strain and 10.9 kb in the OCR strain, including eight exons and seven introns. Based on the deduced amino acid sequence, Mdalpha2 had the closest phylogenetic relationship to the Drosophila melanogaster Dalpha2 and Anopheles gambiae Agamalpha2, and a similar genomic structure to Dalpha2. Quantitative real-time PCR analysis showed that Mdalpha2 is expressed in the head and the thorax at 150- and 8.5-fold higher levels than in the abdomen. Linkage analysis of a Mdalpha2 polymorphism indicates this gene is on autosome 2. The importance of these results in understanding the diversity and phylogenetic relationships of insect nAChRs, the physiology of nAChRs in the house fly, and the utility of nAChR sequences in resistance detection/monitoring is discussed.
Collapse
Affiliation(s)
- Jian-Rong Gao
- Department of Entomology, Comstock Hall, Cornell University, Ithaca, New York 14853, USA
| | | | | |
Collapse
|
35
|
Williams DB. Beyond lectins: the calnexin/calreticulin chaperone system of the endoplasmic reticulum. J Cell Sci 2006; 119:615-23. [PMID: 16467570 DOI: 10.1242/jcs.02856] [Citation(s) in RCA: 344] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Calnexin and calreticulin are related proteins that comprise an ER chaperone system that ensures the proper folding and quality control of newly synthesized glycoproteins. The specificity for glycoproteins is conferred by a lectin site that recognizes an early oligosaccharide processing intermediate on the folding glycoprotein, Glc1Man9GlcNAc2. In addition, calnexin and calreticulin possess binding sites for ATP, Ca2+, non-native polypeptides and ERp57, an enzyme that catalyzes disulfide bond formation, reduction and isomerization. Recent studies have revealed the locations of some of these ligand-binding sites and have provided insights into how they contribute to overall chaperone function. In particular, the once controversial non-native-polypeptide-binding site has now been shown to function both in vitro and in cells. Furthermore, there is clear evidence that ERp57 participates in glycoprotein biogenesis either alone or in tandem with calnexin and calreticulin.
Collapse
Affiliation(s)
- David B Williams
- Department of Biochemistry and Immunology, University of Toronto, Toronto, Ontario, Canada, M5S 1A8.
| |
Collapse
|