1
|
Revert-Ros F, Ventura I, Prieto-Ruiz JA, Hernández-Andreu JM, Revert F. The Versatility of Collagen in Pharmacology: Targeting Collagen, Targeting with Collagen. Int J Mol Sci 2024; 25:6523. [PMID: 38928229 PMCID: PMC11203716 DOI: 10.3390/ijms25126523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/01/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
Collagen, a versatile family of proteins with 28 members and 44 genes, is pivotal in maintaining tissue integrity and function. It plays a crucial role in physiological processes like wound healing, hemostasis, and pathological conditions such as fibrosis and cancer. Collagen is a target in these processes. Direct methods for collagen modulation include enzymatic breakdown and molecular binding approaches. For instance, Clostridium histolyticum collagenase is effective in treating localized fibrosis. Polypeptides like collagen-binding domains offer promising avenues for tumor-specific immunotherapy and drug delivery. Indirect targeting of collagen involves regulating cellular processes essential for its synthesis and maturation, such as translation regulation and microRNA activity. Enzymes involved in collagen modification, such as prolyl-hydroxylases or lysyl-oxidases, are also indirect therapeutic targets. From another perspective, collagen is also a natural source of drugs. Enzymatic degradation of collagen generates bioactive fragments known as matrikines and matricryptins, which exhibit diverse pharmacological activities. Overall, collagen-derived peptides present significant therapeutic potential beyond tissue repair, offering various strategies for treating fibrosis, cancer, and genetic disorders. Continued research into specific collagen targeting and the application of collagen and its derivatives may lead to the development of novel treatments for a range of pathological conditions.
Collapse
Affiliation(s)
| | | | | | | | - Fernando Revert
- Mitochondrial and Molecular Medicine Research Group, Facultad de Medicina y Ciencias de la Salud, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain; (F.R.-R.); (I.V.); (J.A.P.-R.); (J.M.H.-A.)
| |
Collapse
|
2
|
Darula Z, McCabe MC, Barrett A, Schmitt LR, Maslanka MD, Saviola AJ, Orgel J, Burlingame A, Staab-Weijnitz CA, Stenmark K, Weaver V, Chalkley RJ, Hansen KC. Assessing Heterogeneity in the N-Telopeptides of Type I Collagen by Mass Spectrometry. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.31.587441. [PMID: 38585857 PMCID: PMC10996605 DOI: 10.1101/2024.03.31.587441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Collagen cross-links created by the lysyl oxidase and lysyl hydroxylase families of enzymes are a significant contributing factor to the biomechanical strength and rigidity of tissues, which in turn influence cell signaling and ultimately cell phenotype. In the clinic, the proteolytically liberated N-terminal cross-linked peptide of collagen I (NTX) is used as a biomarker of bone and connective tissue turnover, which is altered in several disease processes. Despite the clinical utility of these collagen breakdown products, the majority of the cross-linked peptide species have not been identified in proteomic datasets. Here we evaluate several parameters for the preparation and identification of these peptides from the collagen I-rich Achilles tendon. Our refined approach involving chemical digestion for protein solubilization coupled with mass spectrometry allows for the identification of the NTX cross-links in a range of modification states. Based on the specificity of the enzymatic cross-linking reaction we utilized follow-up variable modification searches to facilitate identification with a wider range of analytical workflows. We then applied a spectral library approach to identify differences in collagen cross-links in bovine pulmonary hypertension. The presented method offers unique opportunities to understand extracellular matrix remodeling events in development, aging, wound healing, and fibrotic disease that modulate collagen architecture through lysyl-hydroxylase and lysyl-oxidase enzymes.
Collapse
|
3
|
Roy A, Gauld JW. Sulfilimine bond formation in collagen IV. Chem Commun (Camb) 2024; 60:646-657. [PMID: 38116662 DOI: 10.1039/d3cc05715a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
The collagen IV network plays a crucial role in providing structural support and mechanical integrity to the basement membrane and surrounding tissues. A key aspect of this network is the formation of intra- and inter-collagen fibril crosslinks. One particular crosslink, an inter-residue sulfilimine bond, has been found, so far, to be unique to collagen IV. More specifically, these crosslinks are primarily formed between methionine and lysine or hydroxylysine residues and can occur within a single collagen fibril or between different collagen fibrils. Due to its significance as the major crosslink in the collagen IV network, the sulfilimine bond plays critical roles in tissue development and various human diseases. While the proposed reaction mechanism for sulfilimine bond formation is supported by experimental evidence, the precise nature of this bond remained uncertain until computational studies were conducted. The process involves the reaction of hypohalous acids (e.g., HOBr, HOCl), produced by a peroxidasin enzyme in the basement membrane, with the sidechain sulfur of methionine or sidechain nitrogen of lysine/hydroxylysine residues in collagen IV, to form halosulfonium or haloamine intermediates, respectively. The halosulfonium/haloamine then reacts with the sidechain amine/sulfide of the lysine (or hydroxylysine) or methionine respectively, eventually resulting in the formation of the sulfilimine (MetSNLys/Hyl) crosslink. The sulfilimine product formed not only plays a crucial role in physiological processes but also finds applications in various industrial and pharmaceutical contexts. In this review, we provide a comprehensive summary of existing studies, including our own research, aimed at understanding the reaction mechanism, protonation states, characteristic nature, and dynamic behavior of the sulfilimine bond in collagen IV. The goal is to offer readers an overview of this critically important biochemical bond.
Collapse
Affiliation(s)
- Anupom Roy
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario N9B 3P4, Canada.
| | - James W Gauld
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario N9B 3P4, Canada.
| |
Collapse
|
4
|
Boudko SP, Pedchenko VK, Pokidysheva EN, Budko AM, Baugh R, Coates PT, Fidler AL, Hudson HM, Ivanov SV, Luer C, Pedchenko T, Preston RL, Rafi M, Vanacore R, Bhave G, Hudson JK, Hudson BG. Collagen IV of basement membranes: III. Chloride pressure is a primordial innovation that drives and maintains the assembly of scaffolds. J Biol Chem 2023; 299:105318. [PMID: 37797699 PMCID: PMC10656227 DOI: 10.1016/j.jbc.2023.105318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 10/07/2023] Open
Abstract
Collagen IV scaffold is a primordial innovation enabling the assembly of a fundamental architectural unit of epithelial tissues-a basement membrane attached to polarized cells. A family of six α-chains (α1 to α6) coassemble into three distinct protomers that form supramolecular scaffolds, noted as collagen IVα121, collagen IVα345, and collagen IVα121-α556. Chloride ions play a pivotal role in scaffold assembly, based on studies of NC1 hexamers from mammalian tissues. First, Cl- activates a molecular switch within trimeric NC1 domains that initiates protomer oligomerization, forming an NC1 hexamer between adjoining protomers. Second, Cl- stabilizes the hexamer structure. Whether this Cl--dependent mechanism is of fundamental importance in animal evolution is unknown. Here, we developed a simple in vitro method of SDS-PAGE to determine the role of solution Cl- in hexamer stability. Hexamers were characterized from 34 animal species across 15 major phyla, including the basal Cnidarian and Ctenophora phyla. We found that solution Cl- stabilized the quaternary hexamer structure across all phyla except Ctenophora, Ecdysozoa, and Rotifera. Further analysis of hexamers from peroxidasin knockout mice, a model for decreasing hexamer crosslinks, showed that solution Cl- also stabilized the hexamer surface conformation. The presence of sufficient chloride concentration in solution or "chloride pressure" dynamically maintains the native form of the hexamer. Collectively, our findings revealed that chloride pressure on the outside of cells is a primordial innovation that drives and maintains the quaternary and conformational structure of NC1 hexamers of collagen IV scaffolds.
Collapse
Affiliation(s)
- Sergei P Boudko
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA.
| | - Vadim K Pedchenko
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Elena N Pokidysheva
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | - Rachel Baugh
- Department of Medical Education and Administration, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Patrick Toby Coates
- Central Northern Adelaide Renal and Transplantation Service, Royal Adelaide Hospital, Adelaide, Australia
| | - Aaron L Fidler
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Heather M Hudson
- Department of Rehabilitation Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Sergey V Ivanov
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Carl Luer
- Mote Marine Laboratory, Sarasota, Florida, USA
| | - Tetyana Pedchenko
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Robert L Preston
- School of Biological Sciences, Illinois State University, Normal, Illinois, USA
| | - Mohamed Rafi
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Roberto Vanacore
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Gautam Bhave
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Julie K Hudson
- Department of Medical Education and Administration, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Billy G Hudson
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA; Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee, USA; Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee, USA; Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
5
|
LeBleu VS, Dai J, Tsutakawa S, MacDonald BA, Alge JL, Sund M, Xie L, Sugimoto H, Tainer J, Zon LI, Kalluri R. Identification of unique α4 chain structure and conserved antiangiogenic activity of α3NC1 type IV collagen in zebrafish. Dev Dyn 2023; 252:1046-1060. [PMID: 37002899 PMCID: PMC10524752 DOI: 10.1002/dvdy.590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 01/17/2023] [Accepted: 02/28/2023] [Indexed: 04/03/2023] Open
Abstract
BACKGROUND Type IV collagen is an abundant component of basement membranes in all multicellular species and is essential for the extracellular scaffold supporting tissue architecture and function. Lower organisms typically have two type IV collagen genes, encoding α1 and α2 chains, in contrast with the six genes in humans, encoding α1-α6 chains. The α chains assemble into trimeric protomers, the building blocks of the type IV collagen network. The detailed evolutionary conservation of type IV collagen network remains to be studied. RESULTS We report on the molecular evolution of type IV collagen genes. The zebrafish α4 non-collagenous (NC1) domain, in contrast with its human ortholog, contains an additional cysteine residue and lacks the M93 and K211 residues involved in sulfilimine bond formation between adjacent protomers. This may alter α4 chain interactions with other α chains, as supported by temporal and anatomic expression patterns of collagen IV chains during the zebrafish development. Despite the divergence between zebrafish and human α3 NC1 domain (endogenous angiogenesis inhibitor, Tumstatin), the zebrafish α3 NC1 domain exhibits conserved antiangiogenic activity in human endothelial cells. CONCLUSIONS Our work supports type IV collagen is largely conserved between zebrafish and humans, with a possible difference involving the α4 chain.
Collapse
Affiliation(s)
- Valerie S LeBleu
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Feinberg School of Medicine and Kellogg School of Management, Northwestern University, Chicago, Illinois, USA
- Division of Matrix Biology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Jianli Dai
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Susan Tsutakawa
- Lawrence Berkeley National Laboratory, University of California, Berkeley, California, USA
| | - Brian A MacDonald
- Division of Matrix Biology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Joseph L Alge
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Malin Sund
- Division of Matrix Biology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Liang Xie
- Division of Matrix Biology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Hikaru Sugimoto
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Division of Matrix Biology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - John Tainer
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Leonard I Zon
- Department of Hematology/Oncology, Children's Hospital, Boston, Massachusetts, USA
| | - Raghu Kalluri
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Division of Matrix Biology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Department of Bioengineering, Rice University, Houston, Texas, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
6
|
Roy A, Gauld JW. Molecular Dynamics Investigation on the Effects of Protonation and Lysyl Hydroxylation on Sulfilimine Cross-links in Collagen IV. ACS OMEGA 2022; 7:39680-39689. [PMID: 36385809 PMCID: PMC9647856 DOI: 10.1021/acsomega.2c03360] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Collagen IV networks are an essential component of basement membranes that are important for their structural integrity and thus that of an organism's tissues. Improper functioning of these networks has been associated with several diseases. Cross-links, such as sulfilimine bonds interconnecting NC1 domains, are critical for forming and mechanically stabilizing these collagen IV networks. More specifically, the sulfilimine cross-links form between methionine (Met93) and lysine/hydroxylsine (Lys211/Hyl211) residues of NC1 domains. Therefore, the dynamic nature of the sulfilimine bond in collagen IV is crucial for network formation. To understand the dynamic nature of a neutral and protonated sulfilimine bond in collagen IV, we performed molecular dynamics (MD) simulations on four sulfilimine cross-linked systems (i.e., Met93S-NLys211, Met93S-NHLys211 +, Met93S-NHyl211, and Met93S-NHHyl211 +) of collagen IV. The MD results showed that the neutral Met93S-NLys211 system has the smallest protein backbone and showed the cross-linked residues' RMSD value. The conformational change analyses showed that the conformations of the sulfilimine cross-linked residues take on a U-shape for the Met93S-NHyl211 and Met93S-HNHyl211 + systems, whereas the conformations of the sulfilimine cross-linked residues are more open for the Met93S-NLys211, and Met93S-NHLys211 + systems. Protonation is a crucial biochemical process to stabilize the protein structure or the biological cross-links. Furthermore, the protonation of the sulfilimine bond could potentially influence hydrogen bond interaction with near amino acid residues, and according to water distribution analyses, the sulfilimine bond can potentially exist in one or more protonation states.
Collapse
|
7
|
Pehrsson M, Mortensen JH, Manon-Jensen T, Bay-Jensen AC, Karsdal MA, Davies MJ. Enzymatic cross-linking of collagens in organ fibrosis - resolution and assessment. Expert Rev Mol Diagn 2021; 21:1049-1064. [PMID: 34330194 DOI: 10.1080/14737159.2021.1962711] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: Enzymatic cross-linking of the collagens within the extracellular matrix (ECM) catalyzed by enzymes such as lysyl oxidase (LOX) and lysyl oxidase like-enzymes 1-4 (LOXL), transglutaminase 2 (TG2), and peroxidasin (PXDN) contribute to fibrosis progression through extensive collagen cross-linking. Studies in recent years have begun elucidating the important role of collagen cross-linking in perpetuating progression of organ fibrosis independently of inflammation through an increasingly stiff and noncompliant ECM. Therefore, collagen cross-linking and the cross-linking enzymes have become new targets in anti-fibrotic therapy as well as targets of novel biomarkers to properly assess resolution of the fibrotic ECM.Areas covered: The enzymatic actions of enzymes catalyzing collagen cross-linking and their relevance in organ fibrosis. Potential biomarkers specifically quantifying proteolytic fragments of collagen cross-linking is discussed based on Pubmed search done in November 2020 as well as the authors knowledge.Expert opinion: Current methods for the assessment of fibrosis involve the use of invasive and/or cumbersome and expensive methods such as tissue biopsies. Thus, an unmet need exists for the development and validation of minimally invasive biomarkers of proteolytic fragments of cross-linked collagens. These biomarkers may aid in the development and proper assessment of fibrosis resolution in coming years.
Collapse
Affiliation(s)
- Martin Pehrsson
- Department of Biomedical Science, University of Copenhagen, Copenhagen, Denmark.,Biomarkers & Research, Nordic Bioscience A/S, Herlev, Denmark
| | | | | | | | | | | |
Collapse
|
8
|
Eble JA, Niland S. The extracellular matrix in tumor progression and metastasis. Clin Exp Metastasis 2019; 36:171-198. [PMID: 30972526 DOI: 10.1007/s10585-019-09966-1] [Citation(s) in RCA: 331] [Impact Index Per Article: 66.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 04/05/2019] [Indexed: 02/06/2023]
Abstract
The extracellular matrix (ECM) constitutes the scaffold of tissues and organs. It is a complex network of extracellular proteins, proteoglycans and glycoproteins, which form supramolecular aggregates, such as fibrils and sheet-like networks. In addition to its biochemical composition, including the covalent intermolecular cross-linkages, the ECM is also characterized by its biophysical parameters, such as topography, molecular density, stiffness/rigidity and tension. Taking these biochemical and biophysical parameters into consideration, the ECM is very versatile and undergoes constant remodeling. This review focusses on this remodeling of the ECM under the influence of a primary solid tumor mass. Within this tumor stroma, not only the cancer cells but also the resident fibroblasts, which differentiate into cancer-associated fibroblasts (CAFs), modify the ECM. Growth factors and chemokines, which are tethered to and released from the ECM, as well as metabolic changes of the cells within the tumor bulk, add to the tumor-supporting tumor microenvironment. Metastasizing cancer cells from a primary tumor mass infiltrate into the ECM, which variably may facilitate cancer cell migration or act as barrier, which has to be proteolytically breached by the infiltrating tumor cell. The biochemical and biophysical properties therefore determine the rates and routes of metastatic dissemination. Moreover, primed by soluble factors of the primary tumor, the ECM of distant organs may be remodeled in a way to facilitate the engraftment of metastasizing cancer cells. Such premetastatic niches are responsible for the organotropic preference of certain cancer entities to colonize at certain sites in distant organs and to establish a metastasis. Translational application of our knowledge about the cancer-primed ECM is sparse with respect to therapeutic approaches, whereas tumor-induced ECM alterations such as increased tissue stiffness and desmoplasia, as well as breaching the basement membrane are hallmark of malignancy and diagnostically and histologically harnessed.
Collapse
Affiliation(s)
- Johannes A Eble
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstr. 15, 48149, Münster, Germany.
| | - Stephan Niland
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstr. 15, 48149, Münster, Germany
| |
Collapse
|
9
|
Pedchenko V, Kitching AR, Hudson BG. Goodpasture's autoimmune disease - A collagen IV disorder. Matrix Biol 2018; 71-72:240-249. [PMID: 29763670 DOI: 10.1016/j.matbio.2018.05.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 05/10/2018] [Indexed: 02/04/2023]
Abstract
Goodpasture's (GP) disease is an autoimmune disorder characterized by the deposition of pathogenic autoantibodies in basement membranes of kidney and lung eliciting rapidly progressive glomerulonephritis and pulmonary hemorrhage. The principal autoantigen is the α345 network of collagen IV, which expression is restricted to target tissues. Recent discoveries include a key role of chloride and bromide for network assembly, a novel posttranslational modification of the antigen, a sulfilimine bond that crosslinks the antigen, and the mechanistic role of HLA in genetic susceptibility and resistance to GP disease. These advances provide further insights into molecular mechanisms of initiation and progression of GP disease and serve as a basis for developing of novel diagnostic tools and therapies for treatment of Goodpasture's disease.
Collapse
Affiliation(s)
- Vadim Pedchenko
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, United States; Center for Matrix Biology, Department of Biochemistry, Department of Pathology, Microbiology and Immunology, Department of Cell and Developmental Biology, Vanderbilt Ingram Cancer Center, Vanderbilt Institute of Chemical Biology, Vanderbilt University Medical Center, Nashville, TN, United States.
| | - A Richard Kitching
- Centre for inflammatory diseases, Monash University Department of Medicine, 246 Clayton Rd, Clayton, VIC 3168, Australia; Department of Nephrology, Monash Health, 246 Clayton Rd, Clayton, VIC 3168, Australia; Department and Pediatric Nephrology, Monash Health, 246 Clayton Rd, Clayton, VIC 3168, Australia
| | - Billy G Hudson
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, United States; Center for Matrix Biology, Department of Biochemistry, Department of Pathology, Microbiology and Immunology, Department of Cell and Developmental Biology, Vanderbilt Ingram Cancer Center, Vanderbilt Institute of Chemical Biology, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
10
|
Grosche J, Meißner J, Eble JA. More than a syllable in fib-ROS-is: The role of ROS on the fibrotic extracellular matrix and on cellular contacts. Mol Aspects Med 2018; 63:30-46. [PMID: 29596842 DOI: 10.1016/j.mam.2018.03.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 03/16/2018] [Accepted: 03/21/2018] [Indexed: 01/01/2023]
Abstract
Fibrosis is characterized by excess deposition of extracellular matrix (ECM). However, the ECM changes during fibrosis not only quantitatively but also qualitatively. Thus, the composition is altered as the expression of various ECM proteins changes. Moreover, also posttranslational modifications, secretion, deposition and crosslinkage as well as the proteolytic degradation of ECM components run differently during fibrosis. As several of these processes involve redox reactions and some of them are even redox-regulated, reactive oxygen species (ROS) influence fibrotic diseases. Redox regulation of the ECM has not been studied intensively, although evidences exist that the alteration of the ECM, including the redox-relevant processes of its formation and degradation, may be of key importance not only as a cause but also as a consequence of fibrotic diseases. Myofibroblasts, which have differentiated from fibroblasts during fibrosis, produce most of the ECM components and in return obtain important environmental cues of the ECM, including their redox-dependent fibrotic alterations. Thus, myofibroblast differentiation and fibrotic changes of the ECM are interdependent processes and linked with each other via cell-matrix contacts, which are mediated by integrins and other cell adhesion molecules. These cell-matrix contacts are also regulated by redox processes and by ROS. However, most of the redox-catalyzing enzymes are localized within cells. Little is known about redox-regulating enzymes, especially the ones that control the formation and cleavage of redox-sensitive disulfide bridges within the extracellular space. They are also important players in the redox-regulative crosstalk between ECM and cells during fibrosis.
Collapse
Affiliation(s)
- Julius Grosche
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstr. 15, 48149 Münster, Germany
| | - Juliane Meißner
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstr. 15, 48149 Münster, Germany
| | - Johannes A Eble
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstr. 15, 48149 Münster, Germany.
| |
Collapse
|
11
|
Perry G, Xiao W, Welsh GI, Perriman AW, Lennon R. Engineered basement membranes: from in vivo considerations to cell-based assays. Integr Biol (Camb) 2018; 10:680-695. [DOI: 10.1039/c8ib00138c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Engineered basement membranes are required to mimic in vivo properties within cell-based assays.
Collapse
Affiliation(s)
- Guillaume Perry
- Sorbonne Université, Laboratoire d’Electronique et d’Electromagnétisme
- F-75005 Paris
- France
| | - Wenjin Xiao
- School of Cellular and Molecular Medicine, University of Bristol
- BS8 1TD Bristol
- UK
| | - Gavin I. Welsh
- Bristol Renal, Bristol Medical School, University of Bristol
- BS1 3NY Bristol
- UK
| | - Adam W. Perriman
- School of Cellular and Molecular Medicine, University of Bristol
- BS8 1TD Bristol
- UK
| | - Rachel Lennon
- Wellcome Trust Centre for Cell Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester
- M13 9PT Manchester
- UK
| |
Collapse
|
12
|
Añazco C, López-Jiménez AJ, Rafi M, Vega-Montoto L, Zhang MZ, Hudson BG, Vanacore RM. Lysyl Oxidase-like-2 Cross-links Collagen IV of Glomerular Basement Membrane. J Biol Chem 2016; 291:25999-26012. [PMID: 27770022 DOI: 10.1074/jbc.m116.738856] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 10/06/2016] [Indexed: 01/08/2023] Open
Abstract
The 7S dodecamer is recognized as an important structural cross-linking domain of collagen IV networks that provide mechanical stability to basement membranes, a specialized form of extracellular matrix essential for the development and maintenance of tissue architecture. Although the 7S dodecamer is stabilized by covalent cross-linking, the molecular mechanism by which such cross-links are formed has not been revealed. Here, we aimed to identify the enzyme(s) that cross-links the 7S dodecamer and characterize its expression in the kidney glomerulus. Pharmacological inhibition of candidate extracellular matrix enzymes revealed that lysyl oxidase activity is required for cross-linking of 7S polypeptides. Among all lysyl oxidase family members, lysyl oxidase-like-2 (LOXL2) was identified as the isoform cross-linking collagen IV in mouse embryonal PFHR-9 cells. Biochemical analyses revealed that LOXL2 readily promoted the formation of lysyl-derived cross-links in the 7S dodecamer but not in the NC1 domain. We also established that LOXL2 is the main lysyl oxidase family member present in the glomerular extracellular matrix. Altogether, we demonstrate that LOXL2 is a novel component of the molecular machinery that forms cross-linked collagen IV networks, which are essential for glomerular basement membrane stability and molecular ultrafiltration function.
Collapse
Affiliation(s)
- Carolina Añazco
- From the Division of Nephrology and Hypertension, Department of Medicine, and.,Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Alberto J López-Jiménez
- From the Division of Nephrology and Hypertension, Department of Medicine, and.,Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Mohamed Rafi
- From the Division of Nephrology and Hypertension, Department of Medicine, and
| | - Lorenzo Vega-Montoto
- From the Division of Nephrology and Hypertension, Department of Medicine, and.,Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Ming-Zhi Zhang
- From the Division of Nephrology and Hypertension, Department of Medicine, and
| | - Billy G Hudson
- From the Division of Nephrology and Hypertension, Department of Medicine, and.,Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Roberto M Vanacore
- From the Division of Nephrology and Hypertension, Department of Medicine, and .,Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| |
Collapse
|
13
|
Schmelzer CE, Nagel MB, Dziomba S, Merkher Y, Sivan SS, Heinz A. Prolyl hydroxylation in elastin is not random. Biochim Biophys Acta Gen Subj 2016; 1860:2169-77. [DOI: 10.1016/j.bbagen.2016.05.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 04/14/2016] [Accepted: 05/10/2016] [Indexed: 12/30/2022]
|
14
|
Mao M, Alavi MV, Labelle-Dumais C, Gould DB. Type IV Collagens and Basement Membrane Diseases. CURRENT TOPICS IN MEMBRANES 2015; 76:61-116. [DOI: 10.1016/bs.ctm.2015.09.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
15
|
The collagenopathies: review of clinical phenotypes and molecular correlations. Curr Rheumatol Rep 2014; 16:394. [PMID: 24338780 DOI: 10.1007/s11926-013-0394-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Genetic defects of collagen formation (the collagenopathies) affect almost every organ system and tissue in the body. They can be grouped by clinical phenotype, which usually correlates with the tissue distribution of the affected collagen subtype. Many of these conditions present in childhood; however, milder phenotypes presenting in adulthood are increasingly recognized. Many are difficult to differentiate clinically. Precise diagnosis by means of genetic testing assists in providing prognosis information, family counseling, and individualized treatment. This review provides an overview of the current range of clinical presentations associated with collagen defects, and the molecular mechanisms important to understanding how the results of genetic testing affect medical care.
Collapse
|
16
|
Robertson WE, Rose KL, Hudson BG, Vanacore RM. Supramolecular organization of the α121-α565 collagen IV network. J Biol Chem 2014; 289:25601-10. [PMID: 25006246 DOI: 10.1074/jbc.m114.571844] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Collagen IV is a family of 6 chains (α1-α6), that form triple-helical protomers that assemble into supramolecular networks. Two distinct networks with chain compositions of α121 and α345 have been established. These oligomerize into separate α121 and α345 networks by a homotypic interaction through their trimeric noncollagenous (NC1) domains, forming α121 and α345 NC1 hexamers, respectively. These are stabilized by novel sulfilimine (-S=N-) cross-links, a covalent cross-link that forms between Met(93) and Hyl(211) at the trimer-trimer interface. A third network with a composition of α1256 has been proposed, but its supramolecular organization has not been established. In this study we investigated the supramolecular organization of this network by determining the chain identity of sulfilimine-cross-linked NC1 domains derived from the α1256 NC1 hexamer. High resolution mass spectrometry analyses of peptides revealed that sulfilimine bonds specifically cross-link α1 to α5 and α2 to α6 NC1 domains, thus providing the spatial orientation between interacting α121 and α565 trimers. Using this information, we constructed a three-dimensional homology model in which the α565 trimer shows a good chemical and structural complementarity to the α121 trimer. Our studies provide the first chemical evidence for an α565 protomer and its heterotypic interaction with the α121 protomer. Moreover, our findings, in conjunction with our previous studies, establish that the six collagen IV chains are organized into three canonical protomers α121, α345, and α565 forming three distinct networks: α121, α345, and α121-α565, each of which is stabilized by sulfilimine bonds between their C-terminal NC1 domains.
Collapse
Affiliation(s)
- Wesley E Robertson
- From the Division of Nephrology and Hypertension, Department of Medicine
| | - Kristie L Rose
- Department of Biochemistry, Proteomics Laboratory-Mass Spectrometry Research Center, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Billy G Hudson
- From the Division of Nephrology and Hypertension, Department of Medicine, Department of Biochemistry, Center for Matrix Biology, Department of Pathology, Microbiology, and Immunology, and
| | - Roberto M Vanacore
- From the Division of Nephrology and Hypertension, Department of Medicine, Center for Matrix Biology,
| |
Collapse
|
17
|
Ronsein GE, Winterbourn CC, Di Mascio P, Kettle AJ. Cross-linking methionine and amine residues with reactive halogen species. Free Radic Biol Med 2014; 70:278-87. [PMID: 24486343 DOI: 10.1016/j.freeradbiomed.2014.01.023] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 01/03/2014] [Accepted: 01/20/2014] [Indexed: 01/14/2023]
Abstract
Irreversible cross-links are increasingly being recognized as important posttranslational oxidative protein modifications that contribute to tissue injury during oxidative stress and inflammation. They also have a structural function in extracellular matrix proteins such as collagen IV. Likely contenders for forming such cross-links are the reactive halogen species that are generated by neutrophils and eosinophils, including hypochlorous acid, hypobromous acid, and their related haloamines. Methionine residues are kinetically preferred targets for these oxidants and oxidation can potentially result in sulfilimine (>S=N-) bonds with amines. Therefore, we investigated whether oxidation of methionine in the model peptide formyl-Met-Leu-Phe-Lys (fMLFK) produces cross-links with lysine residues, using mass spectrometry to characterize the products. As expected, the sulfoxide was the major product with each reactive halogen species. However, intra- and intermolecular cross-linked products were also formed. Isomers of an intramolecular sulfilimine were readily produced by hypobromous acid and bromamines, with hypochlorous acid forming lesser amounts. The predominant cross-link with chloramines was an intermolecular bond between the sulfur of fMLFK and the amine derived from the chloramine. Reactive halogen species also formed these sulfilimine cross-links in other peptides that contain methionine. We propose that protein cross-links involving methionine and amine residues will form via this mechanism when granulocytes are activated at sites of inflammation. Our results also support the proposal that reactive halogen species generated by the peroxidase peroxidasin could be responsible for the sulfilimine bonds that are integral to the structure of collagen IV.
Collapse
Affiliation(s)
- Graziella E Ronsein
- Departamento de Bioquí;mica, Instituto de Química, Universidade de São Paulo, 05508-900 São Paulo, SP, Brazil.
| | - Christine C Winterbourn
- The Centre for Free Radical Research, Department of Pathology, University of Otago at Christchurch, Christchurch, New Zealand
| | - Paolo Di Mascio
- Departamento de Bioquí;mica, Instituto de Química, Universidade de São Paulo, 05508-900 São Paulo, SP, Brazil.
| | - Anthony J Kettle
- The Centre for Free Radical Research, Department of Pathology, University of Otago at Christchurch, Christchurch, New Zealand
| |
Collapse
|
18
|
Ravikiran B, Mahalakshmi R. Unusual post-translational protein modifications: the benefits of sophistication. RSC Adv 2014. [DOI: 10.1039/c4ra04694c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This review summarizes the “seemingly bizarre”, yet naturally occurring, covalent non-disulphide cross-links in enzymatic and scaffolding proteins and their functions.
Collapse
Affiliation(s)
- Boddepalli Ravikiran
- Molecular Biophysics Laboratory
- Department of Biological Sciences
- Indian Institute of Science Education and Research
- Bhopal, India
| | - Radhakrishnan Mahalakshmi
- Molecular Biophysics Laboratory
- Department of Biological Sciences
- Indian Institute of Science Education and Research
- Bhopal, India
| |
Collapse
|
19
|
Singh B, Fleury C, Jalalvand F, Riesbeck K. Human pathogens utilize host extracellular matrix proteins laminin and collagen for adhesion and invasion of the host. FEMS Microbiol Rev 2012; 36:1122-80. [PMID: 22537156 DOI: 10.1111/j.1574-6976.2012.00340.x] [Citation(s) in RCA: 206] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2011] [Revised: 02/08/2012] [Accepted: 03/29/2012] [Indexed: 01/11/2023] Open
Abstract
Laminin (Ln) and collagen are multifunctional glycoproteins that play an important role in cellular morphogenesis, cell signalling, tissue repair and cell migration. These proteins are ubiquitously present in tissues as a part of the basement membrane (BM), constitute a protective layer around blood capillaries and are included in the extracellular matrix (ECM). As a component of BMs, both Lns and collagen(s), thus function as major mechanical containment molecules that protect tissues from pathogens. Invasive pathogens breach the basal lamina and degrade ECM proteins of interstitial spaces and connective tissues using various ECM-degrading proteases or surface-bound plasminogen and matrix metalloproteinases recruited from the host. Most pathogens associated with the respiratory, gastrointestinal, or urogenital tracts, as well as with the central nervous system or the skin, have the capacity to bind and degrade Lns and collagen(s) in order to adhere to and invade host tissues. In this review, we focus on the adaptability of various pathogens to utilize these ECM proteins as enhancers for adhesion to host tissues or as a targets for degradation in order to breach the cellular barriers. The major pathogens discussed are Streptococcus, Staphylococcus, Pseudomonas, Salmonella, Yersinia, Treponema, Mycobacterium, Clostridium, Listeria, Porphyromonas and Haemophilus; Candida, Aspergillus, Pneumocystis, Cryptococcus and Coccidioides; Acanthamoeba, Trypanosoma and Trichomonas; retrovirus and papilloma virus.
Collapse
Affiliation(s)
- Birendra Singh
- Medical Microbiology, Department of Laboratory Medicine Malmö, Skåne University Hospital, Lund University, Malmö, Sweden
| | | | | | | |
Collapse
|
20
|
Boudko SP, Engel J, Bächinger HP. The crucial role of trimerization domains in collagen folding. Int J Biochem Cell Biol 2012; 44:21-32. [DOI: 10.1016/j.biocel.2011.09.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2011] [Revised: 09/27/2011] [Accepted: 09/27/2011] [Indexed: 10/17/2022]
|
21
|
Ončák M, Berka K, Slavíček P. Novel Covalent Bond in Proteins: Calculations on Model Systems Question the Bond Stability. Chemphyschem 2011; 12:3449-57. [DOI: 10.1002/cphc.201100664] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Indexed: 11/12/2022]
|
22
|
Dyksterhuis LB, Dyksterhuis LD, White JF, Hickey M, Kirby N, Mudie S, Hawley A, Vashi A, Nigro J, Werkmeister JA, Ramshaw JAM. Impact of heparan sulfate chains and sulfur-mediated bonds on the mechanical properties of bovine lens capsule. Biophys J 2011; 100:2077-83. [PMID: 21539774 DOI: 10.1016/j.bpj.2011.03.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Revised: 03/15/2011] [Accepted: 03/18/2011] [Indexed: 01/03/2023] Open
Abstract
We assessed the importance of glycosaminoglycans and sulfur-mediated bonds for the mechanical properties of lens capsules by comparing the stress-strain responses from control and treated pairs of bovine source. No significant change in mechanical properties was observed upon reduction of disulfide bonds. However, removal of glycosaminoglycan chains resulted in a significantly stiffer lens capsule, whereas high concentrations of reducing agent, which is expected to reduce the recently reported sulfilimine bond of collagen IV, resulted in a significantly less stiff lens capsule. A comparison of the diffraction patterns of the control and strongly reduced lens capsules indicated structural rearrangements on a nanometer scale.
Collapse
Affiliation(s)
- L B Dyksterhuis
- CSIRO Materials Science and Engineering, Clayton, Australia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Parkin JD, San Antonio JD, Pedchenko V, Hudson B, Jensen ST, Savige J. Mapping structural landmarks, ligand binding sites, and missense mutations to the collagen IV heterotrimers predicts major functional domains, novel interactions, and variation in phenotypes in inherited diseases affecting basement membranes. Hum Mutat 2011; 32:127-43. [PMID: 21280145 DOI: 10.1002/humu.21401] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Collagen IV is the major protein found in basement membranes. It comprises three heterotrimers (α1α1α2, α3α4α5, and α5α5α6) that form distinct networks, and are responsible for membrane strength and integrity.We constructed linear maps of the collagen IV heterotrimers ("interactomes") that indicated major structural landmarks, known and predicted ligand-binding sites, and missense mutations, in order to identify functional and disease-associated domains, potential interactions between ligands, and genotype–phenotype relationships. The maps documented more than 30 known ligand-binding sites as well as motifs for integrins, heparin, von Willebrand factor (VWF), decorin, and bone morphogenetic protein (BMP). They predicted functional domains for angiogenesis and haemostasis, and disease domains for autoimmunity, tumor growth and inhibition, infection, and glycation. Cooperative ligand interactions were indicated by binding site proximity, for example, between integrins, matrix metalloproteinases, and heparin. The maps indicated that mutations affecting major ligand-binding sites, for example, for Von Hippel Lindau (VHL) protein in the α1 chain or integrins in the α5 chain, resulted in distinctive phenotypes (Hereditary Angiopathy, Nephropathy, Aneurysms, and muscle Cramps [HANAC] syndrome, and early-onset Alport syndrome, respectively). These maps further our understanding of basement membrane biology and disease, and suggest novel membrane interactions, functions, and therapeutic targets.
Collapse
Affiliation(s)
- J Des Parkin
- Department of Medicine (Northern Health), The University of Melbourne, Northern Health, Epping VIC 3076, Australia
| | | | | | | | | | | |
Collapse
|
24
|
Abstract
Collagens are the most abundant proteins in mammals. The collagen family comprises 28 members that contain at least one triple-helical domain. Collagens are deposited in the extracellular matrix where most of them form supramolecular assemblies. Four collagens are type II membrane proteins that also exist in a soluble form released from the cell surface by shedding. Collagens play structural roles and contribute to mechanical properties, organization, and shape of tissues. They interact with cells via several receptor families and regulate their proliferation, migration, and differentiation. Some collagens have a restricted tissue distribution and hence specific biological functions.
Collapse
Affiliation(s)
- Sylvie Ricard-Blum
- Institut de Biologie et Chimie des Protéines, UMR 5086 CNRS, Université Lyon 1, Lyon, 69367, France.
| |
Collapse
|
25
|
Luo W, Wang XP, Kashtan CE, Borza DB. Alport alloantibodies but not Goodpasture autoantibodies induce murine glomerulonephritis: protection by quinary crosslinks locking cryptic α3(IV) collagen autoepitopes in vivo. THE JOURNAL OF IMMUNOLOGY 2010; 185:3520-8. [PMID: 20709951 DOI: 10.4049/jimmunol.1001152] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The noncollagenous (NC1) domains of alpha3alpha4alpha5(IV) collagen in the glomerular basement membrane (GBM) are targets of Goodpasture autoantibodies or Alport posttransplant nephritis alloantibodies mediating rapidly progressive glomerulonephritis. Because the autoepitopes but not the alloepitopes become cryptic upon assembly of alpha3alpha4alpha5NC1 hexamers, we investigated how the accessibility of B cell epitopes in vivo influences the development of glomerulonephritis in mice passively immunized with human anti-GBM Abs. Alport alloantibodies, which bound to native murine alpha3alpha4alpha5NC1 hexamers in vitro, deposited linearly along the mouse GBM in vivo, eliciting crescentic glomerulonephritis in Fcgr2b(-/-) mice susceptible to Ab-mediated inflammation. Goodpasture autoantibodies, which bound to murine alpha3NC1 monomer and dimer subunits but not to native alpha3alpha4alpha5NC1 hexamers in vitro, neither bound to the mouse GBM in vivo nor induced experimental glomerulonephritis. This was due to quinary NC1 crosslinks, recently identified as sulfilimine bonds, which comprehensively locked the cryptic Goodpasture autoepitopes in the mouse GBM. In contrast, non-crosslinked alpha3NC1 subunits were identified as a native target of Goodpasture autoantibodies in the GBM of squirrel monkeys, a species susceptible to Goodpasture autoantibody-mediated nephritis. Thus, crypticity of B cell autoepitopes in tissues uncouples potentially pathogenic autoantibodies from autoimmune disease. Crosslinking of alpha3alpha4alpha5NC1 hexamers represents a novel mechanism averting autoantibody binding and subsequent tissue injury by posttranslational modifications of an autoantigen.
Collapse
Affiliation(s)
- Wentian Luo
- Division of Nephrology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | | | | |
Collapse
|
26
|
Rowe RG, Weiss SJ. Navigating ECM barriers at the invasive front: the cancer cell-stroma interface. Annu Rev Cell Dev Biol 2010; 25:567-95. [PMID: 19575644 DOI: 10.1146/annurev.cellbio.24.110707.175315] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A seminal event in cancer progression is the ability of the neoplastic cell to mobilize the necessary machinery to breach surrounding extracellular matrix barriers while orchestrating a host stromal response that ultimately supports tissue-invasive and metastatic processes. With over 500 proteolytic enzymes identified in the human genome, interconnecting webs of protease-dependent and protease-independent processes have been postulated to drive the cancer cell invasion program via schemes of daunting complexity. Increasingly, however, a body of evidence has begun to emerge that supports a unifying model wherein a small group of membrane-tethered enzymes, termed the membrane-type matrix metalloproteinases (MT-MMPs), plays a dominant role in regulating cancer cell, as well as stromal cell, traffic through the extracellular matrix barriers assembled by host tissues in vivo. Understanding the mechanisms that underlie the regulation and function of these metalloenzymes as host cell populations traverse the dynamic extracellular matrix assembled during neoplastic states should provide new and testable theories regarding cancer invasion and metastasis.
Collapse
Affiliation(s)
- R Grant Rowe
- The Division of Molecular Medicine & Genetics, Department of Internal Medicine, The Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA.
| | | |
Collapse
|
27
|
Todorović V, Desai BV, Eigenheer RA, Yin T, Amargo EV, Mrksich M, Green KJ, Patterson MJS. Detection of differentially expressed basal cell proteins by mass spectrometry. Mol Cell Proteomics 2009; 9:351-61. [PMID: 19955077 DOI: 10.1074/mcp.m900358-mcp200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The ability of cells to modulate interactions with each other and the substrate is essential for epithelial tissue remodeling during processes such as wound healing and tumor progression. However, despite strides made in the field of proteomics, proteins involved in adhesion have been difficult to study. Here, we report a method for the enrichment and analysis of proteins associated with the basal surface of the cell and its underlying matrix. The enrichment involves deroofing the cells with 20 mM ammonium hydroxide and the removal of cytosolic and organellar proteins by stringent water wash. Proteomic profiling was achieved by LC-FTMS, which allowed comparison of differentially expressed or shared proteins under different cell states. First, we analyzed and compared the basal cell components of mouse keratinocytes lacking the cell-cell junction molecule plakoglobin with their control counterparts. Changes in the molecules involved in motility and invasion were detected in plakoglobin-deficient cells, including decreased detection of fibronectin, integrin beta(4), and FAT tumor suppressor. Second, we assessed the differences in basal cell components between two human oral squamous cell carcinoma lines originating from different sites in the oral cavity (CAL33 and UM-SCC-1). The data show differences between the two lines in the type and abundance of proteins specific to cell adhesion, migration, and angiogenesis. Therefore, the method described here has the potential to serve as a platform to assess proteomic changes in basal cell components including extracellular and adhesion-specific proteins involved in wound healing, cancer, and chronic and acquired adhesion-related disorders.
Collapse
Affiliation(s)
- Viktor Todorović
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Vanacore R, Ham AJL, Voehler M, Sanders CR, Conrads TP, Veenstra TD, Sharpless KB, Dawson PE, Hudson BG. A sulfilimine bond identified in collagen IV. Science 2009; 325:1230-4. [PMID: 19729652 PMCID: PMC2876822 DOI: 10.1126/science.1176811] [Citation(s) in RCA: 183] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Collagen IV networks are ancient proteins of basement membranes that underlie epithelia in metazoa from sponge to human. The networks provide structural integrity to tissues and serve as ligands for integrin cell-surface receptors. They are assembled by oligomerization of triple-helical protomers and are covalently crosslinked, a key reinforcement that stabilizes networks. We used Fourier-transform ion cyclotron resonance mass spectrometry and nuclear magnetic resonance spectroscopy to show that a sulfilimine bond (-S=N-) crosslinks hydroxylysine-211 and methionine-93 of adjoining protomers, a bond not previously found in biomolecules. This bond, the nitrogen analog of a sulfoxide, appears to have arisen at the divergence of sponge and cnidaria, an adaptation of the extracellular matrix in response to mechanical stress in metazoan evolution.
Collapse
Affiliation(s)
- Roberto Vanacore
- Department of Medicine and Center for Matrix Biology, Vanderbilt University, Nashville TN 37232, USA
| | - Amy-Joan L. Ham
- Department of Biochemistry, Vanderbilt University, Nashville TN 37232, USA
| | - Markus Voehler
- Department of Chemistry, Vanderbilt University, Nashville TN 37232, USA
| | - Charles R. Sanders
- Department of Biochemistry, Vanderbilt University, Nashville TN 37232, USA
| | - Thomas P. Conrads
- Laboratory of Proteomics and Analytical Technologies, Advanced Technology Program, SAIC-Frederick, Inc., NCI at Frederick, MD 21702
| | - Timothy D. Veenstra
- Laboratory of Proteomics and Analytical Technologies, Advanced Technology Program, SAIC-Frederick, Inc., NCI at Frederick, MD 21702
| | - K. Barry Sharpless
- Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037
| | - Philip E. Dawson
- Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037
- Department of Cell Biology, The Scripps Research Institute, La Jolla, CA 92037
| | - Billy G. Hudson
- Department of Medicine and Center for Matrix Biology, Vanderbilt University, Nashville TN 37232, USA
- Department of Biochemistry, Vanderbilt University, Nashville TN 37232, USA
- Department of Pathology, Vanderbilt University, Nashville TN 37232, USA
| |
Collapse
|
29
|
Breaching the basement membrane: who, when and how? Trends Cell Biol 2008; 18:560-74. [DOI: 10.1016/j.tcb.2008.08.007] [Citation(s) in RCA: 349] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Revised: 08/20/2008] [Accepted: 08/22/2008] [Indexed: 12/16/2022]
|
30
|
Vanacore RM, Ham AJL, Cartailler JP, Sundaramoorthy M, Todd P, Pedchenko V, Sado Y, Borza DB, Hudson BG. A role for collagen IV cross-links in conferring immune privilege to the Goodpasture autoantigen: structural basis for the crypticity of B cell epitopes. J Biol Chem 2008; 283:22737-48. [PMID: 18499662 DOI: 10.1074/jbc.m803451200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The detailed structural basis for the cryptic nature (crypticity) of a B cell epitope harbored by an autoantigen is unknown. Because the immune system may be ignorant of the existence of such "cryptic" epitopes, their exposure could be an important feature in autoimmunity. Here we investigated the structural basis for the crypticity of the epitopes of the Goodpasture autoantigen, the alpha3alpha4alpha5 noncollagenous-1 (NC1) hexamer, a globular domain that connects two triple-helical molecules of the alpha3alpha4alpha5 collagen IV network. The NC1 hexamer occurs in two isoforms as follows: the M-isoform composed of monomer subunits in which the epitopes are accessible to autoantibodies, and the D-isoform composed of both monomer and dimer subunits in which the epitopes are cryptic. The D-isoform was characterized with respect to quaternary structure, as revealed by mass spectrometry of dimer subunits, homology modeling, and molecular dynamics simulation. The results revealed that the D-isoform contains two kinds of cross-links as follows: S-hydroxylysyl-methionine and S-lysyl-methionine cross-links, which stabilize the alpha3alpha5-heterodimers and alpha4alpha4-homodimers, respectively. Construction and analysis of a three-dimensional model of the D-isoform of the alpha3alpha4alpha5 NC1 hexamer revealed that crypticity is a consequence of the following: (a) sequestration of key residues between neighboring subunits that are stabilized by domain-swapping interactions, and (b) by cross-linking of subunits at the trimer-trimer interface, which stabilizes the structural integrity of the NC1 hexamer and protects against binding of autoantibodies. The sequestrated epitopes and cross-linked subunits represent a novel structural mechanism for conferring immune privilege at the level of quaternary structure. Perturbation of the quaternary structure may be a key factor in the etiology of Goodpasture disease.
Collapse
Affiliation(s)
- Roberto M Vanacore
- Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Four decades have passed since the first discovery of collagen IV by Kefalides in 1966. Since then collagen IV has been investigated extensively by a large number of research laboratories around the world. Advances in molecular genetics have resulted in identification of six evolutionary related mammalian genes encoding six different polypeptide chains of collagen IV. The genes are differentially expressed during the embryonic development, providing different tissues with specific collagen IV networks each having unique biochemical properties. Newly translated alpha-chains interact and assemble in the endoplasmic reticulum in a chain-specific fashion and form unique heterotrimers. Unlike most collagens, type IV collagen is an exclusive member of the basement membranes and through a complex inter- and intramolecular interactions form supramolecular networks that influence cell adhesion, migration, and differentiation. Collagen IV is directly involved in a number of genetic and acquired disease such as Alport's and Goodpasture's syndromes. Recent discoveries have also highlighted a new and direct role for collagen IV in the development of rare genetic diseases such as cerebral hemorrhage and porencephaly in infants and hemorrhagic stroke in adults. Years of intensive investigations have resulted in a vast body of information about the structure, function, and biology of collagen IV. In this review article, we will summarize essential findings on the structural and functional relationships of different collagen IV chains and their roles in health and disease.
Collapse
Affiliation(s)
- Jamshid Khoshnoodi
- Department of Medicine, Vanderbilt University, Nashville, Tennessee, 37232
| | - Vadim Pedchenko
- Department of Medicine, Vanderbilt University, Nashville, Tennessee, 37232
| | - Billyg Hudson
- Department of Medicine, Vanderbilt University, Nashville, Tennessee, 37232
| |
Collapse
|
32
|
Borza DB. Autoepitopes and alloepitopes of type IV collagen: role in the molecular pathogenesis of anti-GBM antibody glomerulonephritis. Nephron Clin Pract 2007; 106:e37-43. [PMID: 17570938 DOI: 10.1159/000101791] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Anti-glomerular basement membrane (anti-GBM) antibodies elicited by autoimmune or alloimmune mechanisms are associated with aggressive forms of rapid progressive glomerulonephritis. Pathogenic anti-GBM autoantibodies and alloantibodies target the noncollagenous (NC1) domains of the alpha3alpha4alpha5(IV) collagen, a major GBM component. In autoimmune anti-GBM glomerulonephritis, a breakdown of immune self-tolerance leads to the activation of autoreactive B and T cells recognizing epitopes within the alpha3NC1 subunit. In the GBM, the conformational epitopes targeted by anti-GBM autoantibodies are structurally sequestered within the alpha3alpha4alpha5NC1 hexamer complex formed upon assembly of collagen IV chains into trimeric molecules and networks. Autoantibodies selectively bind to and dissociate a subset of alpha3alpha4alpha5NC1 hexamers composed of monomer subunits, whereas hexamers containing NC1 dimer subunits are resistant to dissociation by autoantibodies. The crypticity of alpha3NC1 autoepitopes suggests that self-tolerance to alpha3(IV) collagen is broken by structural alterations of the native alpha3alpha4alpha5NC1 hexamer that unmask normally sequestered epitopes, triggering an autoimmune reaction. Post-transplant anti-GBM nephritis in the renal allograft of transplanted Alport patients is mediated by an alloimmune reaction to the NC1 domains of alpha3alpha4alpha5(IV) collagen, present in the allograft GBM but absent from Alport basement membranes. Alloantibodies from patients with autosomal-recessive Alport syndrome predominantly bind to the alpha3NC1 domain, whereas alloantibodies from X-linked Alport patients target preferentially, though not exclusively, epitopes within the alpha5NC1 subunit. The accessibility of the alloantigenic sites within the alpha3alpha4alpha5NC1 hexamers, contrasting with the crypticity of autoantigenic sites, suggest that different molecular forms of alpha3alpha4alpha5(IV) collagen initiate the immunopathogenic responses in the two forms of anti-GBM disease. Advances in elucidating the structure of the GBM antigen and the identification of the pathogenic B and T cell epitopes, along with new insights into the pathogenic mechanisms at cellular and molecular level will facilitate the development of targeted strategies for prevention, detection, and treatment of human anti-GBM antibody glomerulonephritis.
Collapse
Affiliation(s)
- Dorin-Bogdan Borza
- Division of Nephrology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232-2372, USA.
| |
Collapse
|
33
|
Takaluoma K, Lantto J, Myllyharju J. Lysyl hydroxylase 2 is a specific telopeptide hydroxylase, while all three isoenzymes hydroxylate collagenous sequences. Matrix Biol 2007; 26:396-403. [PMID: 17289364 DOI: 10.1016/j.matbio.2007.01.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2006] [Revised: 11/20/2006] [Accepted: 01/09/2007] [Indexed: 10/23/2022]
Abstract
Lysyl hydroxylase (LH), with three isoenzymes in vertebrates, catalyzes the formation of hydroxylysine by acting on -X-Lys-Gly- triplets in the collagenous domains of proteins of the collagen superfamily and also in -X-Lys-Ala- or -X-Lys-Ser- sequences in the telopeptides located at the ends of the polypeptide chains in some fibril-forming collagens. The hydroxylysine residues are essential for the stability of collagen crosslinks and act as carbohydrate attachment sites. The extent of lysine hydroxylation varies between collagen types, between tissues in the same collagen type and in certain diseases, suggesting that the LH isoenzymes may have different substrate specificities. We studied here the hydroxylation of synthetic peptides representing various hydroxylation sites in type I and IV collagens by purified recombinant LHs in vitro and of a recombinant full-length type I procollagen chain coexpressed with each LH in insect cells. All three LHs hydroxylated peptides representing collagenous sequences of type I and IV collagens, although with different K(m) and V(max) values. Furthermore, all three hydroxylated the collagenous domain of the coexpressed type I procollagen chain to a similar extent. None of the isoenzymes hydroxylated peptides representing the N and C telopeptides of type I collagen, but LH2, unlike the other two isoenzymes, hydroxylated the N telopeptide in the coexpressed procollagen chain. Hydroxylation of the telopeptide lysines by LH2 thus occurs only in the context of a long peptide. These data provide the first direct evidence that LH2 is a specific telopeptide hydroxylase, while all three LHs act on collagenous sequences.
Collapse
Affiliation(s)
- Kati Takaluoma
- Collagen Research Unit, Biocenter Oulu and Department of Medical Biochemistry and Molecular Biology, University of Oulu, FIN-90014, Oulu, Finland
| | | | | |
Collapse
|
34
|
Hotary K, Li XY, Allen E, Stevens SL, Weiss SJ. A cancer cell metalloprotease triad regulates the basement membrane transmigration program. Genes Dev 2006; 20:2673-86. [PMID: 16983145 PMCID: PMC1578694 DOI: 10.1101/gad.1451806] [Citation(s) in RCA: 294] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Carcinoma cells initiate the metastatic cascade by inserting invasive pseudopodia through breaches in the basement membrane (BM), a specialized barrier of cross-linked, extracellular matrix macromolecules that underlies epithelial cells and ensheaths blood vessels. While BM invasion is the sine qua non of the malignant phenotype, the molecular programs that underlie this process remain undefined. To identify genes that direct BM remodeling and transmigration, we coupled high-resolution electron microscopy with an ex vivo model of invasion that phenocopies the major steps observed during the transition of carcinoma in situ to frank malignancy. Herein, a triad of membrane-anchored proteases, termed membrane type-1, type-2, and type-3 metalloproteinases, are identified as the triggering agents that independently confer cancer cells with the ability to proteolytically efface the BM scaffolding, initiate the assembly of invasive pseudopodia, and propagate transmigration. These studies characterize the first series of gene products capable of orchestrating the entire BM remodeling program that distinguishes the carcinomatous phenotype.
Collapse
Affiliation(s)
- Kevin Hotary
- Division of Molecular Medicine and Genetics, Department of Internal Medicine, Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | | | |
Collapse
|
35
|
Avery NC, Bailey AJ. The effects of the Maillard reaction on the physical properties and cell interactions of collagen. ACTA ACUST UNITED AC 2006; 54:387-95. [PMID: 16962252 DOI: 10.1016/j.patbio.2006.07.005] [Citation(s) in RCA: 156] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2006] [Accepted: 07/04/2006] [Indexed: 12/29/2022]
Abstract
The non-enzymic glycation of collagen occurs as its turnover decreases during maturation, with complex carbohydrates accumulating slowly and the end-products of these reactions being permanent. The nature of these advanced glycation end-reaction products (AGEs) can be categorised as: 1) cross-linking: intermolecular cross-linking may occur between two adjacent molecules and involve lysine to lysine or lysine to arginine residues. Several compounds have been characterised. They are believed to be located between the triple helical domains of adjacent molecules in the fibre resulting in major changes of the physical properties, primarily, fibre stiffness, thermal denaturation temperature and enzyme resistance, all of which increase slowly with age but the rate is accelerated in diabetes mellitus due to high glucose levels: 2) side-chain modifications: these changes alter the charge profile of the molecule affecting the interactions within the fibre and if they occur at specific sites can affect the cell-collagen interaction. Modification of arginine within the sites RGD and GFOGER recognised by the two specific integrins (alpha1beta2 and alpha2beta1) for collagen reduce cell interactions during turnover and for platelet interactions (alpha1beta2). These changes can ultimately affect repair of, for example, vascular damage and dermal wound healing in diabetes mellitus. Both types of modification are deleterious to the optimal properties of collagen as a supporting framework structure and as a controlling factor in cell matrix interactions. Glycation during ageing and diabetes is therefore responsible for malfunctioning of the diverse collagenous tissues throughout the body.
Collapse
Affiliation(s)
- N C Avery
- Collagen Research Group, University of Bristol, Langford, BS40 5DU Bristol, UK
| | | |
Collapse
|
36
|
Boutte AM, Woltjer RL, Zimmerman LJ, Stamer SL, Montine KS, Manno MV, Cimino PJ, Liebler DC, Montine TJ. Selectively increased oxidative modifications mapped to detergent‐insoluble forms of Aβ and β‐III tubulin in Alzheimer's disease. FASEB J 2006; 20:1473-83. [PMID: 16816122 DOI: 10.1096/fj.06-5920com] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Deleterious post-translational modifications (PTMs) to the neuronal cytoskeleton are a proposed mechanistic link between accumulation of amyloid (A) beta peptides and subsequent abnormalities of tau and neurodegeneration in Alzheimer's disease (AD). Here we tested the hypothesis that PTMs on neuronal tubulins selectively accumulate in a pathological protein fraction in AD. We used new software, P-MOD, to identify comprehensively and map PTMs using mass spectral data from soluble (normal) and detergent-insoluble (pathological) protein fractions from AD, as well as total extracts from controls, for selected proteins: Abeta, tau, apolipoprotein (apo) E, glial fibrillary acidic protein (GFAP), alpha-III tubulin, and beta-III tubulin. Our results confirmed direct observations of others by identifying methionine (M) sulfoxides at Abeta position 35 and numerous sites of tau phosphorylation in detergent-insoluble protein from AD, while no PTMs were enriched on primarily astrocyte-derived apoE or GFAP in this fraction. P-MOD mapped several abundant M sulfoxides to neuron-enriched beta-III tubulin but not its heterodimeric partner, neuron-enriched alpha-III tubulin, a result confirmed by selective suppression of CNBr-mediated cleavage of beta-III tubulin. These findings are the first comprehensive assessment of PTMs in AD and point to oxidative modification of beta-III tubulin as a potential contributor to the neuronal cytoskeletal disruption that is characteristic of AD.
Collapse
Affiliation(s)
- Angela M Boutte
- Center for Molecular Neuroscience, Vanderbilt University, Nashville, Tennessee, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Khoshnoodi J, Sigmundsson K, Cartailler JP, Bondar O, Sundaramoorthy M, Hudson BG. Mechanism of chain selection in the assembly of collagen IV: a prominent role for the alpha2 chain. J Biol Chem 2005; 281:6058-69. [PMID: 16373348 DOI: 10.1074/jbc.m506555200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Collagens comprise a large superfamily of extracellular matrix proteins that play diverse roles in tissue function. The mechanism by which newly synthesized collagen chains recognize each other and assemble into specific triple-helical molecules is a fundamental question that remains unanswered. Emerging evidence suggests a role for the non-collagenous domain (NC1) located at the C-terminal end of each chain. In this study, we have investigated the molecular mechanism underlying chain selection in the assembly of collagen IV. Using surface plasmon resonance, we have determined the kinetics of interaction and assembly of the alpha1(IV) and alpha2(IV) NC1 domains. We show that the differential affinity of alpha2(IV) NC1 domain for dimer formation underlies the driving force in the mechanism of chain discrimination. Given its characteristic domain recognition and affinity for the alpha1(IV) NC1 domain, we conclude that the alpha2(IV) chain plays a regulatory role in directing chain composition in the assembly of (alpha1)(2)alpha2 triple-helical molecule. Detailed crystal structure analysis of the [(alpha1)(2)alpha2](2) NC1 hexamer and sequence alignments of the NC1 domains of all six alpha-chains from mammalian species revealed the residues involved in the molecular recognition of NC1 domains. We further identified a hypervariable region of 15 residues and a beta-hairpin structural motif of 13 residues as two prominent regions that mediate chain selection in the assembly of collagen IV. To our knowledge, this report is the first to combine kinetics and structural data to describe molecular basis for chain selection in the assembly of a collagen molecule.
Collapse
Affiliation(s)
- Jamshid Khoshnoodi
- Department of Medicine, Vanderbilt University School of Medicine, Medical Center, 1161 21st Avenue South, Nashville, TN 37232, USA.
| | | | | | | | | | | |
Collapse
|
38
|
Pedchenko VK, Chetyrkin SV, Chuang P, Ham AJL, Saleem MA, Mathieson PW, Hudson BG, Voziyan PA. Mechanism of perturbation of integrin-mediated cell-matrix interactions by reactive carbonyl compounds and its implication for pathogenesis of diabetic nephropathy. Diabetes 2005; 54:2952-60. [PMID: 16186398 DOI: 10.2337/diabetes.54.10.2952] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Perturbation of interactions between cells and the extracellular matrix (ECM) of renal glomeruli may contribute to characteristic histopathological lesions found in the kidneys of patients with diabetic nephropathy. However, the mechanism by which the diabetic conditions may affect cell-ECM interactions is unknown. Existing hypotheses suggest a role of glucose in direct modification of ECM. Here, we have demonstrated that carbonyl compound methylglyoxal (MGO) completely inhibited endothelial cell adhesion to recombinant alpha3 noncollagenous 1 domain of type IV collagen mediated via a short collagenous region containing RGD (Arg-Gly-Asp) sequence as well as binding of purified alpha(v)beta(3) integrin to this protein. Specific MGO adducts of the arginine residue were detected within RGD sequence using mass spectrometry. Modification by carbonyl compounds glyoxal or glycolaldehyde had similar but smaller effects. MGO strongly inhibited adhesion of renal glomerular cells, podocytes, and mesangial cells to native collagen IV and laminin-1 as well as binding of collagen IV to its major receptor in glomerular cells, alpha(1)beta(1) integrin. In contrast, modification of these proteins by glucose had no effect on cell adhesion. Pyridoxamine, a promising drug for treatment of diabetic nephropathy, protected cell adhesion and integrin binding from inhibition by MGO. We suggest that in diabetes, perturbation of integrin-mediated cell-matrix interactions occurs via the modification of critical arginine residues in renal ECM by reactive carbonyl compounds. This mechanism may contribute to the development of diabetic nephropathy.
Collapse
Affiliation(s)
- Vadim K Pedchenko
- Division of Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee 37232-2372, USA
| | | | | | | | | | | | | | | |
Collapse
|