1
|
Pan Q, Li Z, Ju X, Hou C, Xiao Y, Shi R, Fu C, Danchin A, You C. Escherichia coli segments its controls on carbon-dependent gene expression into global and specific regulations. Microb Biotechnol 2021; 14:1084-1106. [PMID: 33650807 PMCID: PMC8085971 DOI: 10.1111/1751-7915.13776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 02/05/2021] [Accepted: 02/05/2021] [Indexed: 01/20/2023] Open
Abstract
How bacteria adjust gene expression to cope with variable environments remains open to question. Here, we investigated the way global gene expression changes in E. coli correlated with the metabolism of seven carbon substrates chosen to trigger a large panel of metabolic pathways. Coarse-grained analysis of gene co-expression identified a novel regulation pattern: we established that the gene expression trend following immediately the reduction of growth rate (GR) was correlated to its initial expression level. Subsequent fine-grained analysis of co-expression demonstrated that the Crp regulator, coupled with a change in GR, governed the response of most GR-dependent genes. By contrast, the Cra, Mlc and Fur regulators governed the expression of genes responding to non-glycolytic substrates, glycolytic substrates or phosphotransferase system transported sugars following an idiosyncratic way. This work allowed us to expand additional genes in the panel of gene complement regulated by each regulator and to elucidate the regulatory functions of each regulator comprehensively. Interestingly, the bulk of genes controlled by Cra and Mlc were, respectively, co-regulated by Crp- or GR-related effect and our quantitative analysis showed that each factor took turns to work as the primary one or contributed equally depending on the conditions.
Collapse
Affiliation(s)
- Qing Pan
- Shenzhen Key Laboratory of Microbial Genetic EngineeringCollege of Life Sciences and OceanologyShenzhen UniversityShenzhen, GuangdongChina
- Shandong Provincial Key Laboratory of Energy GeneticsKey Laboratory of BiofuelsQingdao Engineering Research Center of Biomass Resources and EnvironmentQingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdao, ShandongChina
| | - Zongjin Li
- Shenzhen Key Laboratory of Microbial Genetic EngineeringCollege of Life Sciences and OceanologyShenzhen UniversityShenzhen, GuangdongChina
| | - Xian Ju
- Shenzhen Key Laboratory of Microbial Genetic EngineeringCollege of Life Sciences and OceanologyShenzhen UniversityShenzhen, GuangdongChina
| | - Chaofan Hou
- Shenzhen Key Laboratory of Microbial Genetic EngineeringCollege of Life Sciences and OceanologyShenzhen UniversityShenzhen, GuangdongChina
| | - Yunzhu Xiao
- Shenzhen Key Laboratory of Microbial Genetic EngineeringCollege of Life Sciences and OceanologyShenzhen UniversityShenzhen, GuangdongChina
| | - Ruoping Shi
- Shenzhen Key Laboratory of Microbial Genetic EngineeringCollege of Life Sciences and OceanologyShenzhen UniversityShenzhen, GuangdongChina
| | - Chunxiang Fu
- Shandong Provincial Key Laboratory of Energy GeneticsKey Laboratory of BiofuelsQingdao Engineering Research Center of Biomass Resources and EnvironmentQingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdao, ShandongChina
| | - Antoine Danchin
- Kodikos Labs/Stellate TherapeuticsInstitut Cochin24 rue du Faubourg Saint‐JacquesParis75014France
| | - Conghui You
- Shenzhen Key Laboratory of Microbial Genetic EngineeringCollege of Life Sciences and OceanologyShenzhen UniversityShenzhen, GuangdongChina
| |
Collapse
|
2
|
Gangi Setty T, Sarkar A, Coombes D, Dobson RCJ, Subramanian R. Structure and Function of N-Acetylmannosamine Kinases from Pathogenic Bacteria. ACS OMEGA 2020; 5:30923-30936. [PMID: 33324800 PMCID: PMC7726757 DOI: 10.1021/acsomega.0c03699] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 10/20/2020] [Indexed: 06/12/2023]
Abstract
Several pathogenic bacteria import and catabolize sialic acids as a source of carbon and nitrogen. Within the sialic acid catabolic pathway, the enzyme N-acetylmannosamine kinase (NanK) catalyzes the phosphorylation of N-acetylmannosamine to N-acetylmannosamine-6-phosphate. This kinase belongs to the ROK superfamily of enzymes, which generally contain a conserved zinc-finger (ZnF) motif that is important for their structure and function. Previous structural studies have shown that the ZnF motif is absent in NanK of Fusobacterium nucleatum (Fn-NanK), a Gram-negative bacterium that causes the gum disease gingivitis. However, the effect in loss of the ZnF motif on the kinase activity is unknown. Using kinetic and thermodynamic studies, we have studied the functional properties of Fn-NanK to its substrates ManNAc and ATP, compared its activity with other ZnF motif-containing NanK enzymes from closely related Gram-negative pathogenic bacteria Haemophilus influenzae (Hi-NanK), Pasteurella multocida (Pm-NanK), and Vibrio cholerae (Vc-NanK). Our studies show a 10-fold decrease in substrate binding affinity between Fn-NanK (apparent KM ≈ 700 μM) and ZnF motif-containing NanKs (apparent KM ≈ 60 μM). To understand the structural features that combat the loss of the ZnF motif in Fn-NanK, we solved the crystal structures of functionally homologous ZnF motif-containing NanKs from P. multocida and H. influenzae. Here, we report Pm-NanK:unliganded, Pm-NanK:AMPPNP, Pm-NanK:ManNAc, Hi-NanK:ManNAc, and Hi-NanK:ManNAc-6P:ADP crystal structures. Structural comparisons of Fn-NanK with Hi-NanK, Pm-NanK, and hMNK (human N-acetylmannosamine kinase domain of UDP-N-acetylglucosamine-2-epimerase/N-acetylmannosamine kinase, GNE) show that even though there is less sequence identity, they have high degree of structural similarity. Furthermore, our structural analyses highlight that the ZnF motif of Fn-NanK is substituted by a set of hydrophobic residues, which forms a hydrophobic cluster that helps the proper orientation of ManNac in the active site. In summary, ZnF-containing and ZnF-lacking NanK enzymes from different Gram-negative pathogenic bacteria are functionally very similar but differ in their metal requirement. Our structural studies unveil the structural modifications in Fn-NanK that compensate the loss of the ZnF motif in comparison to other NanK enzymes.
Collapse
Affiliation(s)
- Thanuja Gangi Setty
- Institute for Stem
Cell Science and Regenerative Medicine, GKVK Post, Bangalore, KA 560065, India
- The University of Trans-Disciplinary Health Sciences
& Technology (TDU), Bangalore, KA 560064, India
| | - Arunabha Sarkar
- National Centre for Biological Sciences − TIFR, Bangalore 560065, India
| | - David Coombes
- Biomolecular Interaction Centre and School
of Biological Sciences, University of Canterbury, Christchurch 8140, New Zealand
| | - Renwick C. J. Dobson
- Biomolecular Interaction Centre and School
of Biological Sciences, University of Canterbury, Christchurch 8140, New Zealand
- Bio21 Molecular Science and Biotechnology
Institute, Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Ramaswamy Subramanian
- Institute for Stem
Cell Science and Regenerative Medicine, GKVK Post, Bangalore, KA 560065, India
- Department of Biological
Sciences and Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
3
|
Jeckelmann JM, Erni B. The mannose phosphotransferase system (Man-PTS) - Mannose transporter and receptor for bacteriocins and bacteriophages. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183412. [PMID: 32710850 DOI: 10.1016/j.bbamem.2020.183412] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/08/2020] [Accepted: 07/14/2020] [Indexed: 02/06/2023]
Abstract
Mannose transporters constitute a superfamily (Man-PTS) of the Phosphoenolpyruvate Carbohydrate Phosphotransferase System (PTS). The membrane complexes are homotrimers of protomers consisting of two subunits, IIC and IID. The two subunits without recognizable sequence similarity assume the same fold, and in the protomer are structurally related by a two fold pseudosymmetry axis parallel to membrane-plane (Liu et al. (2019) Cell Research 29 680). Two reentrant loops and two transmembrane helices of each subunit together form the N-terminal transport domain. Two three-helix bundles, one of each subunit, form the scaffold domain. The protomer is stabilized by a helix swap between these bundles. The two C-terminal helices of IIC mediate the interprotomer contacts. PTS occur in bacteria and archaea but not in eukaryotes. Man-PTS are abundant in Gram-positive bacteria living on carbohydrate rich mucosal surfaces. A subgroup of IICIID complexes serve as receptors for class IIa bacteriocins and as channel for the penetration of bacteriophage lambda DNA across the inner membrane. Some Man-PTS are associated with host-pathogen and -symbiont processes.
Collapse
Affiliation(s)
- Jean-Marc Jeckelmann
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland.
| | - Bernhard Erni
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland.
| |
Collapse
|
4
|
Coombes D, Davies JS, Newton-Vesty MC, Horne CR, Setty TG, Subramanian R, Moir JWB, Friemann R, Panjikar S, Griffin MDW, North RA, Dobson RCJ. The basis for non-canonical ROK family function in the N-acetylmannosamine kinase from the pathogen Staphylococcus aureus. J Biol Chem 2020; 295:3301-3315. [PMID: 31949045 DOI: 10.1074/jbc.ra119.010526] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 12/31/2019] [Indexed: 12/31/2022] Open
Abstract
In environments where glucose is limited, some pathogenic bacteria metabolize host-derived sialic acid as a nutrient source. N-Acetylmannosamine kinase (NanK) is the second enzyme of the bacterial sialic acid import and degradation pathway and adds phosphate to N-acetylmannosamine using ATP to prime the molecule for future pathway reactions. Sequence alignments reveal that Gram-positive NanK enzymes belong to the Repressor, ORF, Kinase (ROK) family, but many lack the canonical Zn-binding motif expected for this function, and the sugar-binding EXGH motif is altered to EXGY. As a result, it is unclear how they perform this important reaction. Here, we study the Staphylococcus aureus NanK (SaNanK), which is the first characterization of a Gram-positive NanK. We report the kinetic activity of SaNanK along with the ligand-free, N-acetylmannosamine-bound and substrate analog GlcNAc-bound crystal structures (2.33, 2.20, and 2.20 Å resolution, respectively). These demonstrate, in combination with small-angle X-ray scattering, that SaNanK is a dimer that adopts a closed conformation upon substrate binding. Analysis of the EXGY motif reveals that the tyrosine binds to the N-acetyl group to select for the "boat" conformation of N-acetylmannosamine. Moreover, SaNanK has a stacked arginine pair coordinated by negative residues critical for thermal stability and catalysis. These combined elements serve to constrain the active site and orient the substrate in lieu of Zn binding, representing a significant departure from canonical NanK binding. This characterization provides insight into differences in the ROK family and highlights a novel area for antimicrobial discovery to fight Gram-positive and S. aureus infections.
Collapse
Affiliation(s)
- David Coombes
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch 8140, New Zealand
| | - James S Davies
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch 8140, New Zealand
| | - Michael C Newton-Vesty
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch 8140, New Zealand
| | - Christopher R Horne
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch 8140, New Zealand
| | - Thanuja G Setty
- Institute for Stem Cell Biology and Regenerative Medicine, NCBS, GKVK Campus, Bellary Road, Bangalore, Karnataka 560 065, India; The University of Trans-Disciplinary Health Sciences and Technology (TDU), Bangalore, KA 560064, India
| | - Ramaswamy Subramanian
- Institute for Stem Cell Biology and Regenerative Medicine, NCBS, GKVK Campus, Bellary Road, Bangalore, Karnataka 560 065, India
| | - James W B Moir
- Department of Biology, University of York, Helsington, York YO10 5DD, United Kingdom
| | - Rosmarie Friemann
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Guldhedsgatan 10A, 413 46 Gothenburg, Sweden; Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, 40530 Gothenburg, Sweden
| | - Santosh Panjikar
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia; Australian Synchrotron, ANSTO, Victoria 3168, Australia
| | - Michael D W Griffin
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Rachel A North
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch 8140, New Zealand.
| | - Renwick C J Dobson
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch 8140, New Zealand; Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
5
|
Fernandez M, Plumbridge J. Complex synergistic amino acid-nucleotide interactions contribute to the specificity of NagC operator recognition and induction. MICROBIOLOGY-SGM 2019; 165:792-803. [PMID: 31107208 DOI: 10.1099/mic.0.000814] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
NagC is a transcription factor that represses genes involved in N-acetylglucosamine catabolism in Escherichia coli. Repression by NagC is relieved by interaction with GlcNAc6P, the product of transport of GlcNAc into the cell. The DNA-binding domain of NagC contains a classic helix-turn-helix (HTH) motif, but specific operator recognition requires, in addition, an adjacent linker sequence, which is thought to form an extended wing. Sequences in the linker region are required to distinguish NagC-binding sites from those of its paralogue, Mlc. In investigating the contribution of the HTH to operator recognition, we have identified mutations in the first two positions of the recognition helix of the DNA-binding motif of NagC, which change NagC from being a repressor, which binds in the absence of the inducing signal (GlcNAc6P), to one whose binding is enhanced by GlcNAc6P. In this case GlcNAc6P behaves as a co-repressor rather than an inducer for NagC. The NagC mutants exhibiting this paradoxical behaviour have basic amino acids, arginine or lysine, at two critical positions of the recognition helix. Introducing a third amino acid change converts NagC back to a protein, which represses in the absence of GlcNAc6P. The triple mutant also effectively represses a modified NagC operator that is not repressed by wild-type NagC, showing that this form of NagC is a more promiscuous DNA binder. Specific recognition of the NagC operator thus involves a modulation of basic amino acid-DNA interactions, which affects the ability to discriminate against other permissive sites.
Collapse
Affiliation(s)
- Marion Fernandez
- UMR8261,CNRS, Université de Paris, Institut de Biologie Physico-Chimique, 13, rue P. et M. Curie, 75005 Paris, France
| | - Jacqueline Plumbridge
- UMR8261,CNRS, Université de Paris, Institut de Biologie Physico-Chimique, 13, rue P. et M. Curie, 75005 Paris, France
| |
Collapse
|
6
|
Crigler J, Bannerman-Akwei L, Cole AE, Eiteman MA, Altman E. Glucose can be transported and utilized in Escherichia coli by an altered or overproduced N-acetylglucosamine phosphotransferase system (PTS). Microbiology (Reading) 2018; 164:163-172. [DOI: 10.1099/mic.0.000596] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Jacob Crigler
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN 37132, USA
| | - Laude Bannerman-Akwei
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN 37132, USA
- Biological Sciences, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Ashley E. Cole
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN 37132, USA
| | - Mark A. Eiteman
- Biochemical Engineering, College of Engineering, University of Georgia, Athens, GA 30602, USA
| | - Elliot Altman
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN 37132, USA
| |
Collapse
|
7
|
Caing-Carlsson R, Goyal P, Sharma A, Ghosh S, Setty TG, North RA, Friemann R, Ramaswamy S. Crystal structure of N-acetylmannosamine kinase from Fusobacterium nucleatum. Acta Crystallogr F Struct Biol Commun 2017; 73:356-362. [PMID: 28580924 PMCID: PMC5458393 DOI: 10.1107/s2053230x17007439] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 05/19/2017] [Indexed: 12/15/2022] Open
Abstract
Sialic acids comprise a varied group of nine-carbon amino sugars that are widely distributed among mammals and higher metazoans. Some human commensals and bacterial pathogens can scavenge sialic acids from their environment and degrade them for use as a carbon and nitrogen source. The enzyme N-acetylmannosamine kinase (NanK; EC 2.7.1.60) belongs to the transcriptional repressors, uncharacterized open reading frames and sugar kinases (ROK) superfamily. NanK catalyzes the second step of the sialic acid catabolic pathway, transferring a phosphate group from adenosine 5'-triphosphate to the C6 position of N-acetylmannosamine to generate N-acetylmannosamine 6-phosphate. The structure of NanK from Fusobacterium nucleatum was determined to 2.23 Å resolution by X-ray crystallography. Unlike other NanK enzymes and ROK family members, F. nucleatum NanK does not have a conserved zinc-binding site. In spite of the absence of the zinc-binding site, all of the major structural features of enzymatic activity are conserved.
Collapse
Affiliation(s)
- Rhawnie Caing-Carlsson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530 Gothenburg, Sweden
| | - Parveen Goyal
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530 Gothenburg, Sweden
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Box 440, 40530 Gothenburg, Sweden
| | - Amit Sharma
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530 Gothenburg, Sweden
- Atomic Physics, Department of Physics, Lund University, Professorsgatan 1, 22363 Lund, Sweden
| | - Swagatha Ghosh
- Institute for Stem Cell Biology and Regenerative Medicine, GKVK Post, Bangalore 560 065, India
| | - Thanuja Gangi Setty
- Institute for Stem Cell Biology and Regenerative Medicine, GKVK Post, Bangalore 560 065, India
- School of Life Sciences, TransDisciplinary University, Bangalore 560 064, India
| | - Rachel A. North
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530 Gothenburg, Sweden
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8041, New Zealand
| | - Rosmarie Friemann
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530 Gothenburg, Sweden
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Box 440, 40530 Gothenburg, Sweden
- Department of Structural Biology, Stanford University School of Medicine, 299 Campus Drive West, Stanford, CA 94305-5126, USA
| | - S. Ramaswamy
- Institute for Stem Cell Biology and Regenerative Medicine, GKVK Post, Bangalore 560 065, India
| |
Collapse
|
8
|
Bekiesch P, Forchhammer K, Apel AK. Characterization of DNA Binding Sites of RokB, a ROK-Family Regulator from Streptomyces coelicolor Reveals the RokB Regulon. PLoS One 2016; 11:e0153249. [PMID: 27145180 PMCID: PMC4856308 DOI: 10.1371/journal.pone.0153249] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 03/27/2016] [Indexed: 12/27/2022] Open
Abstract
ROK-family proteins have been described to act either as sugar kinases or as transcriptional regulators. Few ROK-family regulators have been characterized so far and most of them are involved in carbon catabolite repression. RokB (Sco6115) has originally been identified in a DNA-affinity capturing approach as a possible regulator of the heterologously expressed novobiocin biosynthetic gene cluster in Streptomyces coelicolor M512. Interestingly, both, the rokB deletion mutants as well as its overexpressing mutants showed significantly reduced novobiocin production in the host strain S.coelicolor M512. We identified the DNA-binding site for RokB in the promoter region of the novobiocin biosynthetic genes novH-novW. It overlaps with the novH start codon which may explain the reduction of novobiocin production caused by overexpression of rokB. Bioinformatic screening coupled with surface plasmon resonance based interaction studies resulted in the discovery of five RokB binding sites within the genome of S. coelicolor. Using the genomic binding sites, a consensus motif for RokB was calculated, which differs slightly from previously determined binding motifs for ROK-family regulators. The annotations of the possible members of the so defined RokB regulon gave hints that RokB might be involved in amino acid metabolism and transport. This hypothesis was supported by feeding experiments with casamino acids and L-tyrosine, which could also explain the reduced novobiocin production in the deletion mutants.
Collapse
Affiliation(s)
- Paulina Bekiesch
- Pharmaceutical Biology, Pharmaceutical Institute, Eberhard-Karls-Universität Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany
- German Centre for Infection Research (DZIF), Partner site Tübingen, 72076, Tübingen, Germany
| | - Karl Forchhammer
- Microbiology/Department of Organismic Interactions, Interfaculty Institute of Microbiology and Infection, Eberhard-Karls-Universität Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany
| | - Alexander Kristian Apel
- Pharmaceutical Biology, Pharmaceutical Institute, Eberhard-Karls-Universität Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany
- German Centre for Infection Research (DZIF), Partner site Tübingen, 72076, Tübingen, Germany
- * E-mail:
| |
Collapse
|
9
|
Bréchemier-Baey D, Pennetier C, Plumbridge J. Dual inducer signal recognition by an Mlc homologue. Microbiology (Reading) 2015; 161:1694-1706. [DOI: 10.1099/mic.0.000126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Dominique Bréchemier-Baey
- Université Paris Diderot, Sorbonne Paris Cité, Institut de Biologie Physico-Chimique, 13 rue P. et M. Curie, 75005 Paris, France
| | - Carole Pennetier
- Université Paris Diderot, Sorbonne Paris Cité, Institut de Biologie Physico-Chimique, 13 rue P. et M. Curie, 75005 Paris, France
| | - Jacqueline Plumbridge
- Université Paris Diderot, Sorbonne Paris Cité, Institut de Biologie Physico-Chimique, 13 rue P. et M. Curie, 75005 Paris, France
| |
Collapse
|
10
|
Romero-Rodríguez A, Robledo-Casados I, Sánchez S. An overview on transcriptional regulators in Streptomyces. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1849:1017-39. [PMID: 26093238 DOI: 10.1016/j.bbagrm.2015.06.007] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 06/09/2015] [Accepted: 06/12/2015] [Indexed: 12/19/2022]
Abstract
Streptomyces are Gram-positive microorganisms able to adapt and respond to different environmental conditions. It is the largest genus of Actinobacteria comprising over 900 species. During their lifetime, these microorganisms are able to differentiate, produce aerial mycelia and secondary metabolites. All of these processes are controlled by subtle and precise regulatory systems. Regulation at the transcriptional initiation level is probably the most common for metabolic adaptation in bacteria. In this mechanism, the major players are proteins named transcription factors (TFs), capable of binding DNA in order to repress or activate the transcription of specific genes. Some of the TFs exert their action just like activators or repressors, whereas others can function in both manners, depending on the target promoter. Generally, TFs achieve their effects by using one- or two-component systems, linking a specific type of environmental stimulus to a transcriptional response. After DNA sequencing, many streptomycetes have been found to have chromosomes ranging between 6 and 12Mb in size, with high GC content (around 70%). They encode for approximately 7000 to 10,000 genes, 50 to 100 pseudogenes and a large set (around 12% of the total chromosome) of regulatory genes, organized in networks, controlling gene expression in these bacteria. Among the sequenced streptomycetes reported up to now, the number of transcription factors ranges from 471 to 1101. Among these, 315 to 691 correspond to transcriptional regulators and 31 to 76 are sigma factors. The aim of this work is to give a state of the art overview on transcription factors in the genus Streptomyces.
Collapse
Affiliation(s)
- Alba Romero-Rodríguez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México, D.F. 04510, Mexico
| | - Ivonne Robledo-Casados
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México, D.F. 04510, Mexico
| | - Sergio Sánchez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México, D.F. 04510, Mexico.
| |
Collapse
|
11
|
Bréchemier-Baey D, Domínguez-Ramírez L, Oberto J, Plumbridge J. Operator recognition by the ROK transcription factor family members, NagC and Mlc. Nucleic Acids Res 2014; 43:361-72. [PMID: 25452338 PMCID: PMC4288165 DOI: 10.1093/nar/gku1265] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
NagC and Mlc, paralogous members of the ROK family of proteins with almost identical helix-turn-helix DNA binding motifs, specifically regulate genes for transport and utilization of N-acetylglucosamine and glucose. We previously showed that two amino acids in a linker region outside the canonical helix-turn-helix motif are responsible for Mlc site specificity. In this work we identify four amino acids in the linker, which are required for recognition of NagC targets. These amino acids allow Mlc and NagC to distinguish between a C/G and an A/T bp at positions ±11 of the operators. One linker position, glycine in NagC and arginine in Mlc, corresponds to the major specificity determinant for the two proteins. In certain contexts it is possible to switch repression from Mlc-style to NagC-style, by interchanging this glycine and arginine. Secondary determinants are supplied by other linker positions or the helix-turn-helix motif. A wide genomic survey of unique ROK proteins shows that glycine- and arginine-rich sequences are present in the linkers of nearly all ROK family repressors. Conserved short sequence motifs, within the branches of the ROK evolutionary tree, suggest that these sequences could also be involved in operator recognition in other ROK family members.
Collapse
Affiliation(s)
- Dominique Bréchemier-Baey
- CNRS-FRE3630 (ex UPR9073), Université Paris Diderot, Sorbonne Paris Cité, Institut de Biologie Physico-Chimique, 13 rue P. et M. Curie, 75005 Paris, France
| | - Lenin Domínguez-Ramírez
- Division de Ciencias Biologicas y la Salud, Universidad Autonoma Metropolitana, Lerma, Lerma de Villada, Mexico
| | - Jacques Oberto
- UMR8621-CNRS Institut de Génétique et Microbiologie, Université Paris XI, 91405 Orsay, France
| | - Jacqueline Plumbridge
- CNRS-FRE3630 (ex UPR9073), Université Paris Diderot, Sorbonne Paris Cité, Institut de Biologie Physico-Chimique, 13 rue P. et M. Curie, 75005 Paris, France
| |
Collapse
|
12
|
The transcription factor Mlc promotes Vibrio cholerae biofilm formation through repression of phosphotransferase system components. J Bacteriol 2014; 196:2423-30. [PMID: 24769694 DOI: 10.1128/jb.01639-14] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The phosphoenol phosphotransferase system (PTS) is a multicomponent signal transduction cascade that regulates diverse aspects of bacterial cellular physiology in response to the availability of high-energy sugars in the environment. Many PTS components are repressed at the transcriptional level when the substrates they transport are not available. In Escherichia coli, the transcription factor Mlc (for makes large colonies) represses transcription of the genes encoding enzyme I (EI), histidine protein (HPr), and the glucose-specific enzyme IIBC (EIIBC(Glc)) in defined media that lack PTS substrates. When glucose is present, the unphosphorylated form of EIIBC(Glc) sequesters Mlc to the cell membrane, preventing its interaction with DNA. Very little is known about Vibrio cholerae Mlc. We found that V. cholerae Mlc activates biofilm formation in LB broth but not in defined medium supplemented with either pyruvate or glucose. Therefore, we questioned whether V. cholerae Mlc functions differently than E. coli Mlc. Here we have shown that, like E. coli Mlc, V. cholerae Mlc represses transcription of PTS components in both defined medium and LB broth and that E. coli Mlc is able to rescue the biofilm defect of a V. cholerae Δmlc mutant. Furthermore, we provide evidence that Mlc indirectly activates transcription of the vps genes by repressing expression of EI. Because activation of the vps genes by Mlc occurs under only a subset of the conditions in which repression of PTS components is observed, we conclude that additional inputs present in LB broth are required for activation of vps gene transcription by Mlc.
Collapse
|
13
|
Mutt E, Rani SS, Sowdhamini R. Structural updates of alignment of protein domains and consequences on evolutionary models of domain superfamilies. BioData Min 2013; 6:20. [PMID: 24237883 PMCID: PMC4175504 DOI: 10.1186/1756-0381-6-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 09/24/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Influx of newly determined crystal structures into primary structural databases is increasing at a rapid pace. This leads to updation of primary and their dependent secondary databases which makes large scale analysis of structures even more challenging. Hence, it becomes essential to compare and appreciate replacement of data and inclusion of new data that is critical between two updates. PASS2 is a database that retains structure-based sequence alignments of protein domain superfamilies and relies on SCOP database for its hierarchy and definition of superfamily members. Since, accurate alignments of distantly related proteins are useful evolutionary models for depicting variations within protein superfamilies, this study aims to trace the changes in data in between PASS2 updates. RESULTS In this study, differences in superfamily compositions, family constituents and length variations between different versions of PASS2 have been tracked. Studying length variations in protein domains, which have been introduced by indels (insertions/deletions), are important because theses indels act as evolutionary signatures in introducing variations in substrate specificity, domain interactions and sometimes even regulating protein stability. With this objective of classifying the nature and source of variations in the superfamilies during transitions (between the different versions of PASS2), increasing length-rigidity of the superfamilies in the recent version is observed. In order to study such length-variant superfamilies in detail, an improved classification approach is also presented, which divides the superfamilies into distinct groups based on their extent of length variation. CONCLUSIONS An objective study in terms of transition between the database updates, detailed investigation of the new/old members and examination of their structural alignments is non-trivial and will help researchers in designing experiments on specific superfamilies, in various modelling studies, in linking representative superfamily members to rapidly expanding sequence space and in evaluating the effects of length variations of new members in drug target proteins. The improved objective classification scheme developed here would be useful in future for automatic analysis of length variation in cases of updates of databases or even within different secondary databases.
Collapse
Affiliation(s)
- Eshita Mutt
- National Centre for Biological Sciences (TIFR), UAS-GKVK Campus, Bellary Road, 560 065 Bangalore, India.
| | | | | |
Collapse
|
14
|
Arêde P, Botelho T, Guevara T, Usón I, Oliveira DC, Gomis-Rüth FX. Structure-function studies of the staphylococcal methicillin resistance antirepressor MecR2. J Biol Chem 2013; 288:21267-21278. [PMID: 23733184 DOI: 10.1074/jbc.m112.448134] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Methicillin resistance in Staphylococcus aureus is elicited by the MecI-MecR1-MecA axis encoded by the mec locus. Recently, MecR2 was also identified as a regulator of mec through binding of the methicillin repressor, MecI. Here we show that plasmid-encoded full-length MecR2 restores resistance in a sensitive S. aureus mecR2 deletion mutant of the resistant strain N315. The crystal structure of MecR2 reveals an N-terminal DNA-binding domain, an intermediate scaffold domain, and a C-terminal dimerization domain that contributes to oligomerization. The protein shows structural similarity to ROK (repressors, open reading frames, and kinases) family proteins, which bind DNA and/or sugar molecules. We found that functional cell-based assays of three point mutants affecting residues participating in sugar binding in ROK proteins had no effect on the resistance phenotype. By contrast, MecR2 bound short double-stranded DNA oligonucleotides nonspecifically, and a deletion mutant affecting the N-terminal DNA-binding domain showed a certain effect on activity, thus contributing to resistance less than the wild-type protein. Similarly, a deletion mutant, in which a flexible segment of intermediate scaffold domain had been replaced by four glycines, significantly reduced MecR2 function, thus indicating that this domain may likewise be required for activity. Taken together, these results provide the structural basis for the activity of a methicillin antirepressor, MecR2, which would sequester MecI away from its cognate promoter region and facilitate its degradation.
Collapse
Affiliation(s)
- Pedro Arêde
- the Center for Microbiological Resources, Department of Life Sciences, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, P-2829-516 Caparica, Portugal, and
| | - Tiago Botelho
- From the Proteolysis Lab, Department of Structural Biology, Molecular Biology Institute of Barcelona, CSIC, E-08028 Barcelona, Catalonia, Spain
| | - Tibisay Guevara
- From the Proteolysis Lab, Department of Structural Biology, Molecular Biology Institute of Barcelona, CSIC, E-08028 Barcelona, Catalonia, Spain
| | - Isabel Usón
- the Institució Catalana de Recerca i Estudis Avançats, Molecular Biology Institute of Barcelona, CSIC, Barcelona Science Park, E-08028 Barcelona, Catalonia, Spain
| | - Duarte C Oliveira
- the Center for Microbiological Resources, Department of Life Sciences, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, P-2829-516 Caparica, Portugal, and
| | - F Xavier Gomis-Rüth
- From the Proteolysis Lab, Department of Structural Biology, Molecular Biology Institute of Barcelona, CSIC, E-08028 Barcelona, Catalonia, Spain,.
| |
Collapse
|
15
|
Miller CL, Karna SLR, Seshu J. Borrelia host adaptation Regulator (BadR) regulates rpoS to modulate host adaptation and virulence factors in Borrelia burgdorferi. Mol Microbiol 2013; 88:105-24. [PMID: 23387366 DOI: 10.1111/mmi.12171] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2013] [Indexed: 11/27/2022]
Abstract
The RpoS transcription factor of Borrelia burgdorferi is a 'gatekeeper' because it activates genes required for spirochaetes to transition from tick to vertebrate hosts. However, it remains unknown how RpoS becomes repressed to allow the spirochaetes to transition back from the vertebrate host to the tick vector. Here we show that a putative carbohydrate-responsive regulatory protein, designated BadR (Borrelia host adaptation Regulator), is a transcriptional repressor of rpoS. BadR levels are elevated in B. burgdorferi cultures grown under in vitro conditions mimicking unfed-ticks and badR-deficient strains are defective for growth under these same conditions. Microarray and immunoblot analyses of badR-deficient strains showed upregulation of rpoS and other factors important for virulence in vertebrate hosts, as well as downregulation of putative tick-specific determinants (e.g. linear plasmid 28-4 genes). DNA-binding assays revealed BadR binds to upstream regions of rpoS. Site-directed mutations in BadR and the presence of phosphorylated sugars affected BadR's binding to the rpoS promoters. badR-deficient B. burgdorferi were unable to colonize mice. Several putative tick-specific targets have been identified. Our study identified a novel regulator, BadR, and provides a link between nutritional environmental cues utilized by spirochaetes to adaptation to disparate conditions found in the tick and vertebrate hosts.
Collapse
Affiliation(s)
- Christine L Miller
- South Texas Center for Emerging Infectious Diseases, Center for Excellence in Infection Genomics and Department of Biology, The University of Texas at San Antonio, San Antonio, Texas, USA
| | | | | |
Collapse
|
16
|
Mlc is a transcriptional activator with a key role in integrating cyclic AMP receptor protein and integration host factor regulation of leukotoxin RNA synthesis in Aggregatibacter actinomycetemcomitans. J Bacteriol 2013; 195:2284-97. [PMID: 23475968 DOI: 10.1128/jb.02144-12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Aggregatibacter actinomycetemcomitans, a periodontal pathogen, synthesizes leukotoxin (LtxA), a protein that helps the bacterium evade the host immune response. Transcription of the ltxA operon is induced during anaerobic growth. The cyclic AMP (cAMP) receptor protein (CRP) indirectly increases ltxA expression, but the intermediary regulator is unknown. Integration host factor (IHF) binds to and represses the leukotoxin promoter, but neither CRP nor IHF is responsible for the anaerobic induction of ltxA RNA synthesis. Thus, we have undertaken studies to identify other regulators of leukotoxin transcription and to demonstrate how these proteins work together to modulate leukotoxin synthesis. First, analyses of ltxA RNA expression from defined leukotoxin promoter mutations in the chromosome identify positions -69 to -35 as the key control region and indicate that an activator protein modulates leukotoxin transcription. We show that Mlc, which is a repressor in Escherichia coli, functions as a direct transcriptional activator in A. actinomycetemcomitans; an mlc deletion mutant reduces leukotoxin RNA synthesis, and recombinant Mlc protein binds specifically at the -68 to -40 region of the leukotoxin promoter. Furthermore, we show that CRP activates ltxA expression indirectly by increasing the levels of Mlc. Analyses of Δmlc, Δihf, and Δihf Δmlc strains demonstrate that Mlc can increase RNA polymerase (RNAP) activity directly and that IHF represses ltxA RNA synthesis mainly by blocking Mlc binding. Finally, a Δihf Δmlc mutant still induces ltxA during anaerobic growth, indicating that there are additional factors involved in leukotoxin transcriptional regulation. A model for the coordinated regulation of leukotoxin transcription is presented.
Collapse
|
17
|
The ROK family regulator Rok7B7 pleiotropically affects xylose utilization, carbon catabolite repression, and antibiotic production in streptomyces coelicolor. J Bacteriol 2013; 195:1236-48. [PMID: 23292782 DOI: 10.1128/jb.02191-12] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Members of the ROK family of proteins are mostly transcriptional regulators and kinases that generally relate to the control of primary metabolism, whereby its member glucose kinase acts as the central control protein in carbon control in Streptomyces. Here, we show that deletion of SCO6008 (rok7B7) strongly affects carbon catabolite repression (CCR), growth, and antibiotic production in Streptomyces coelicolor. Deletion of SCO7543 also affected antibiotic production, while no major changes were observed after deletion of the rok family genes SCO0794, SCO1060, SCO2846, SCO6566, or SCO6600. Global expression profiling of the rok7B7 mutant by proteomics and microarray analysis revealed strong upregulation of the xylose transporter operon xylFGH, which lies immediately downstream of rok7B7, consistent with the improved growth and delayed development of the mutant on xylose. The enhanced CCR, which was especially obvious on rich or xylose-containing media, correlated with elevated expression of glucose kinase and of the glucose transporter GlcP. In liquid-grown cultures, expression of the biosynthetic enzymes for production of prodigionines, siderophores, and calcium-dependent antibiotic (CDA) was enhanced in the mutant, and overproduction of prodigionines was corroborated by matrix-assisted laser desorption ionization-time-of-flight analysis. These data present Rok7B7 as a pleiotropic regulator of growth, CCR, and antibiotic production in Streptomyces.
Collapse
|
18
|
Bréchemier-Baey D, Domínguez-Ramírez L, Plumbridge J. The linker sequence, joining the DNA-binding domain of the homologous transcription factors, Mlc and NagC, to the rest of the protein, determines the specificity of their DNA target recognition inEscherichia coli. Mol Microbiol 2012; 85:1007-19. [DOI: 10.1111/j.1365-2958.2012.08158.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
19
|
Martinez J, Nguyen LD, Hinderlich S, Zimmer R, Tauberger E, Reutter W, Saenger W, Fan H, Moniot S. Crystal structures of N-acetylmannosamine kinase provide insights into enzyme activity and inhibition. J Biol Chem 2012; 287:13656-65. [PMID: 22343627 DOI: 10.1074/jbc.m111.318170] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Sialic acids are essential components of membrane glycoconjugates. They are responsible for the interaction, structure, and functionality of all deuterostome cells and have major functions in cellular processes in health and diseases. The key enzyme of the biosynthesis of sialic acid is the bifunctional UDP-N-acetylglucosamine-2-epimerase/N-acetylmannosamine kinase that transforms UDP-N-acetylglucosamine to N-acetylmannosamine (ManNAc) followed by its phosphorylation to ManNAc 6-phosphate and has a direct impact on the sialylation of cell surface components. Here, we present the crystal structures of the human N-acetylmannosamine kinase (MNK) domain of UDP-N-acetylglucosamine-2-epimerase/N-acetylmannosamine kinase in complexes with ManNAc at 1.64 Å resolution, MNK·ManNAc·ADP (1.82 Å) and MNK·ManNAc 6-phosphate · ADP (2.10 Å). Our findings offer detailed insights in the active center of MNK and serve as a structural basis to design inhibitors. We synthesized a novel inhibitor, 6-O-acetyl-ManNAc, which is more potent than those previously tested. Specific inhibitors of sialic acid biosynthesis may serve to further study biological functions of sialic acid.
Collapse
Affiliation(s)
- Jacobo Martinez
- From the Institut für Chemie und Biochemie-Kristallographie, Freie Universität Berlin, Takustrasse 6, 14195 Berlin
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Expression of the Lactobacillus plantarum malE gene is regulated by CcpA and a MalR-like protein. J Microbiol 2011; 49:950-5. [DOI: 10.1007/s12275-011-0495-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Accepted: 07/15/2011] [Indexed: 12/21/2022]
|
21
|
Characterization of MtfA, a novel regulatory output signal protein of the glucose-phosphotransferase system in Escherichia coli K-12. J Bacteriol 2011; 194:1024-35. [PMID: 22178967 DOI: 10.1128/jb.06387-11] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The glucose-phosphotransferase system (PTS) in Escherichia coli K-12 is a complex sensory and regulatory system. In addition to its central role in glucose uptake, it informs other global regulatory networks about carbohydrate availability and the physiological status of the cell. The expression of the ptsG gene encoding the glucose-PTS transporter EIICB(Glc) is primarily regulated via the repressor Mlc, whose inactivation is glucose dependent. During transport of glucose and dephosphorylation of EIICB(Glc), Mlc binds to the B domain of the transporter, resulting in derepression of several Mlc-regulated genes. In addition, Mlc can also be inactivated by the cytoplasmic protein MtfA in a direct protein-protein interaction. In this study, we identified the binding site for Mlc in the carboxy-terminal region of MtfA by measuring the effect of mutated MtfAs on ptsG expression. In addition, we demonstrated the ability of MtfA to inactivate an Mlc super-repressor, which cannot be inactivated by EIICB(Glc), by using in vivo titration and gel shift assays. Finally, we characterized the proteolytic activity of purified MtfA by monitoring cleavage of amino 4-nitroanilide substrates and show Mlc's ability to enhance this activity. Based on our findings, we propose a model of MtfA as a glucose-regulated peptidase activated by cytoplasmic Mlc. Its activity may be necessary during the growth of cultures as they enter the stationary phase. This proteolytic activity of MtfA modulated by Mlc constitutes a newly identified PTS output signal that responds to changes in environmental conditions.
Collapse
|
22
|
Substrate recognition mechanism and substrate-dependent conformational changes of an ROK family glucokinase from Streptomyces griseus. J Bacteriol 2011; 194:607-16. [PMID: 22101842 DOI: 10.1128/jb.06173-11] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Carbon catabolite repression (CCR) is a widespread phenomenon in many bacteria that is defined as the repression of catabolic enzyme activities for an unfavorable carbon source by the presence of a preferable carbon source. In Streptomyces, secondary metabolite production often is negatively affected by the carbon source, indicating the involvement of CCR in secondary metabolism. Although the CCR mechanism in Streptomyces still is unclear, glucokinase is presumably a central player in CCR. SgGlkA, a glucokinase from S. griseus, belongs to the ROK family glucokinases, which have two consensus sequence motifs (1 and 2). Here, we report the crystal structures of apo-SgGlkA, SgGlkA in complex with glucose, and SgGlkA in complex with glucose and adenylyl imidodiphosphate (AMPPNP), which are the first structures of an ROK family glucokinase. SgGlkA is divided into a small α/β domain and a large α+β domain, and it forms a dimer-of-dimer tetrameric configuration. SgGlkA binds a β-anomer of glucose between the two domains, and His157 in consensus sequence 1 plays an important role in the glucose-binding mechanism and anomer specificity of SgGlkA. In the structures of SgGlkA, His157 forms an HC3-type zinc finger motif with three cysteine residues in consensus sequence 2 to bind a zinc ion, and it forms two hydrogen bonds with the C1 and C2 hydroxyls of glucose. When the three structures are compared, the structure of SgGlkA is found to be modified by the binding of substrates. The substrate-dependent conformational changes of SgGlkA may be related to the CCR mechanism in Streptomyces.
Collapse
|
23
|
Nocek B, Stein AJ, Jedrzejczak R, Cuff ME, Li H, Volkart L, Joachimiak A. Structural studies of ROK fructokinase YdhR from Bacillus subtilis: insights into substrate binding and fructose specificity. J Mol Biol 2010; 406:325-42. [PMID: 21185308 DOI: 10.1016/j.jmb.2010.12.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 11/29/2010] [Accepted: 12/14/2010] [Indexed: 11/30/2022]
Abstract
The main pathway of bacterial sugar phosphorylation utilizes specific phosphoenolpyruvate phosphotransferase system (PTS) enzymes. In addition to the classic PTS system, a PTS-independent secondary system has been described in which nucleotide-dependent sugar kinases are used for monosaccharide phosphorylation. Fructokinase (FK), which phosphorylates d-fructose with ATP as a cofactor, has been shown to be a member of this secondary system. Bioinformatic analysis has shown that FK is a member of the "ROK" (bacterial Repressors, uncharacterized Open reading frames, and sugar Kinases) sequence family. In this study, we report the crystal structures of ROK FK from Bacillus subtilis (YdhR) (a) apo and in the presence of (b) ADP and (c) ADP/d-fructose. All structures show that YdhR is a homodimer with a monomer composed of two similar α/β domains forming a large cleft between domains that bind ADP and D-fructose. Enzymatic activity assays support YdhR function as an ATP-dependent fructose kinase.
Collapse
Affiliation(s)
- B Nocek
- Midwest Center for Structural Genomics and Structural Biology Center, Biosciences, Argonne National Laboratory, 9700 South Cass Avenue, Building 202, Argonne, IL 60439, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Conejo MS, Thompson SM, Miller BG. Evolutionary bases of carbohydrate recognition and substrate discrimination in the ROK protein family. J Mol Evol 2010; 70:545-56. [PMID: 20512568 DOI: 10.1007/s00239-010-9351-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Accepted: 05/03/2010] [Indexed: 11/29/2022]
Abstract
The ROK (repressor, open reading frame, kinase) protein family (Pfam 00480) is a large collection of bacterial polypeptides that includes sugar kinases, carbohydrate responsive transcriptional repressors, and many functionally uncharacterized gene products. ROK family sugar kinases phosphorylate a range of structurally distinct hexoses including the key carbon source D: -glucose, various glucose epimers, and several acetylated hexosamines. The primary sequence elements responsible for carbohydrate recognition within different functional categories of ROK polypeptides are largely unknown due to a limited structural characterization of this protein family. In order to identify the structural bases for substrate discrimination in individual ROK proteins, and to better understand the evolutionary processes that led to the divergent evolution of function in this family, we constructed an inclusive alignment of 227 representative ROK polypeptides. Phylogenetic analyses and ancestral sequence reconstructions of the resulting tree reveal a discrete collection of active site residues that dictate substrate specificity. The results also suggest a series of mutational events within the carbohydrate-binding sites of ROK proteins that facilitated the expansion of substrate specificity within this family. This study provides new insight into the evolutionary relationship of ROK glucokinases and non-ROK glucokinases (Pfam 02685), revealing the primary sequence elements shared between these two protein families, which diverged from a common ancestor in ancient times.
Collapse
Affiliation(s)
- Maria S Conejo
- Department of Chemistry and Biochemistry, Florida State University, 217 Dittmer Laboratory of Chemistry, Tallahassee, FL 32306-4390, USA.
| | | | | |
Collapse
|
25
|
Kurochkina N, Yardeni T, Huizing M. Molecular modeling of the bifunctional enzyme UDP-GlcNAc 2-epimerase/ManNAc kinase and predictions of structural effects of mutations associated with HIBM and sialuria. Glycobiology 2010; 20:322-37. [PMID: 19917666 PMCID: PMC2815652 DOI: 10.1093/glycob/cwp176] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Revised: 11/03/2009] [Accepted: 11/04/2009] [Indexed: 12/18/2022] Open
Abstract
The bifunctional enzyme UDP-GlcNAc 2-epimerase/ ManNAc kinase (GNE/MNK), encoded by the GNE gene, catalyzes the first two committed, rate-limiting steps in the biosynthesis of N-acetylneuraminic acid (sialic acid). GNE/MNK is feedback inhibited by binding of the downstream product, CMP-sialic acid in its allosteric site. GNE mutations can result in two human disorders, hereditary inclusion body myopathy (HIBM) or sialuria. So far, no active site geometry predictions or conformational transitions involved with function are available for mammalian GNE/MNK. The N-terminal GNE domain is homologous to various prokaryotic 2-epimerases, some of which have solved crystallographic structures. The C-terminal MNK domain belongs to the sugar kinases superfamily; its crystallographic structure is solved at 2.84 A and three-dimensional structures have also been reported for several other kinases. In this work, we employed available structural data of GNE/MNK homologs to model the active sites of human GNE/MNK and identify critical amino acid residues responsible for interactions with substrates. In addition, we modeled effects of GNE/MNK missense mutations associated with HIBM or sialuria on helix arrangement, substrate binding, and enzyme action. We found that all reported mutations are associated with the active sites or secondary structure interfaces of GNE/MNK. The Persian-Jewish HIBM founder mutation p.M712T is located at the interface alpha4alpha10 and likely affects GlcNAc, Mg2+, and ATP binding. This work contributes to further understanding of GNE/MNK function and ligand binding, which may assist future studies for therapeutic options that target misfolded GNE/MNK in HIBM and/or sialuria.
Collapse
Affiliation(s)
- Natalya Kurochkina
- Department of Biophysics, The School of Theoretical Modeling, Chevy Chase, MD 20825, USA.
| | | | | |
Collapse
|
26
|
Tong Y, Tempel W, Nedyalkova L, MacKenzie F, Park HW. Crystal structure of the N-acetylmannosamine kinase domain of GNE. PLoS One 2009; 4:e7165. [PMID: 19841673 PMCID: PMC2742894 DOI: 10.1371/journal.pone.0007165] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Accepted: 09/01/2009] [Indexed: 12/15/2022] Open
Abstract
Background UDP-GlcNAc 2-epimerase/ManNAc 6-kinase, GNE, is a bi-functional enzyme that plays a key role in sialic acid biosynthesis. Mutations of the GNE protein cause sialurea or autosomal recessive inclusion body myopathy/Nonaka myopathy. GNE is the only human protein that contains a kinase domain belonging to the ROK (repressor, ORF, kinase) family. Principal Findings We solved the structure of the GNE kinase domain in the ligand-free state. The protein exists predominantly as a dimer in solution, with small populations of monomer and higher-order oligomer in equilibrium with the dimer. Crystal packing analysis reveals the existence of a crystallographic hexamer, and that the kinase domain dimerizes through the C-lobe subdomain. Mapping of disease-related missense mutations onto the kinase domain structure revealed that the mutation sites could be classified into four different groups based on the location – dimer interface, interlobar helices, protein surface, or within other secondary structural elements. Conclusions The crystal structure of the kinase domain of GNE provides a structural basis for understanding disease-causing mutations and a model of hexameric wild type full length enzyme. Enhanced Version This article can also be viewed as an enhanced version in which the text of the article is integrated with interactive 3D representations and animated transitions. Please note that a web plugin is required to access this enhanced functionality. Instructions for the installation and use of the web plugin are available in Text S1.
Collapse
Affiliation(s)
- Yufeng Tong
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Wolfram Tempel
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Lyudmila Nedyalkova
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Farrell MacKenzie
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Hee-Won Park
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
- Department of Pharmacology, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
27
|
Retraction: Open and closed conformations reveal induced fit movements in butyrate kinase 2 activation. J. Diao, Y. D. Ma, and M. S. Hasson. Proteins 2009; 80:1712. [DOI: 10.1002/prot.22610] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Revised: 08/22/2009] [Accepted: 08/26/2009] [Indexed: 11/08/2022]
|
28
|
Abstract
MalT is the central transcriptional activator of all mal genes in Escherichia coli. Its activity is controlled by the inducer maltotriose. It can be inhibited by the interaction with certain proteins, and its expression can be controlled. We report here a novel aspect of mal gene regulation: the effect of cytoplasmic glucose and glucokinase (Glk) on the activity and the expression of MalT. Amylomaltase (MalQ) is essential for the metabolism of maltose. It forms maltodextrins and glucose from maltose or maltodextrins. We found that glucose above a concentration of 0.1 mM blocked the activity of the enzyme. malQ mutants when grown in the absence of maltodextrins are endogenously induced by maltotriose that is derived from the degradation of glycogen. Therefore, the fact that glk malQ(+) mutants showed elevated mal gene expression finds its explanation in the reduced ability to remove glucose from MalQ-catalyzed maltodextrin formation and is caused by a metabolically induced MalQ(-) phenotype. However, even in mutants lacking glycogen, Glk controls endogenous induction. We found that overexpressed Glk due to its structural similarity with Mlc, the repressor of malT, binds to the glucose transporter (PtsG), releasing Mlc and thus increasing malT repression. In addition, even in mutants lacking Mlc (and glycogen), the overexpression of glk leads to a reduction in mal gene expression. We interpret this repression by a direct interaction of Glk with MalT concomitant with MalT inhibition. This repression was dependent on the presence of either maltodextrin phosphorylase or amylomaltase and led to the inactivation of MalT.
Collapse
|
29
|
How bacteria consume their own exoskeletons (turnover and recycling of cell wall peptidoglycan). Microbiol Mol Biol Rev 2008; 72:211-27, table of contents. [PMID: 18535144 DOI: 10.1128/mmbr.00027-07] [Citation(s) in RCA: 309] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
SUMMARY The phenomenon of peptidoglycan recycling is reviewed. Gram-negative bacteria such as Escherichia coli break down and reuse over 60% of the peptidoglycan of their side wall each generation. Recycling of newly made peptidoglycan during septum synthesis occurs at an even faster rate. Nine enzymes, one permease, and one periplasmic binding protein in E. coli that appear to have as their sole function the recovery of degradation products from peptidoglycan, thereby making them available for the cell to resynthesize more peptidoglycan or to use as an energy source, have been identified. It is shown that all of the amino acids and amino sugars of peptidoglycan are recycled. The discovery and properties of the individual proteins and the pathways involved are presented. In addition, the possible role of various peptidoglycan degradation products in the induction of beta-lactamase is discussed.
Collapse
|
30
|
Switching control of expression of ptsG from the Mlc regulon to the NagC regulon. J Bacteriol 2008; 190:4677-86. [PMID: 18469102 DOI: 10.1128/jb.00315-08] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Mlc and NagC transcriptional repressors bind to similar 23-bp operators. The sequences are weakly palindromic, with just four positions totally conserved. There is no cross regulation observed between the repressors in vivo, but there are no obvious bases which could be responsible for operator site discrimination. To investigate the basis for operator recognition and to try to understand what differentiates NagC sites from Mlc sites, we have undertaken mutagenesis experiments to convert ptsG from a gene regulated by Mlc into a gene regulated by NagC. There are two Mlc operators upstream of ptsG, and to switch ptsG to the NagC regulon, it was necessary to change two different characteristics of both operators. Firstly, we replaced the AT base pair at position +/-11 from the center of symmetry of the operators with a GC base pair. Secondly, we changed the sequence of the CG base pairs in the central region of the operator (positions -4 to +4 around the center of symmetry). Our results show that changes at either of these locations are sufficient to lose regulation by Mlc but that both types of changes in both operators are necessary to convert ptsG to a gene regulated by NagC. In addition, these experiments confirmed that two operators are necessary for regulation by NagC. We also show that regulation of ptsG by Mlc involves some cooperative binding of Mlc to the two operators.
Collapse
|
31
|
Analyses of Mlc-IIBGlc interaction and a plausible molecular mechanism of Mlc inactivation by membrane sequestration. Proc Natl Acad Sci U S A 2008; 105:3751-6. [PMID: 18319344 DOI: 10.1073/pnas.0709295105] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In Escherichia coli, glucose-dependent transcriptional induction of genes encoding a variety of sugar-metabolizing enzymes and transport systems is mediated by the phosphorylation state-dependent interaction of membrane-bound enzyme IICB(Glc) (EIICB(Glc)) with the global repressor Mlc. Here we report the crystal structure of a tetrameric Mlc in a complex with four molecules of enzyme IIB(Glc) (EIIB), the cytoplasmic domain of EIICB(Glc). Each monomer of Mlc has one bound EIIB molecule, indicating the 1:1 stoichiometry. The detailed view of the interface, along with the high-resolution structure of EIIB containing a sulfate ion at the phosphorylation site, suggests that the phosphorylation-induced steric hindrance and disturbance of polar intermolecular interactions impede complex formation. Furthermore, we reveal that Mlc possesses a built-in flexibility for the structural adaptation to its target DNA and that interaction of Mlc with EIIB fused only to dimeric proteins resulted in the loss of its DNA binding ability, suggesting that flexibility of the Mlc structure is indispensable for its DNA binding.
Collapse
|
32
|
Pennetier C, Domínguez-Ramírez L, Plumbridge J. Different regions of Mlc and NagC, homologous transcriptional repressors controlling expression of the glucose and N-acetylglucosamine phosphotransferase systems in Escherichia coli, are required for inducer signal recognition. Mol Microbiol 2007; 67:364-77. [PMID: 18067539 DOI: 10.1111/j.1365-2958.2007.06041.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Mlc and NagC are two homologous transcription factors which bind to similar DNA targets but for which the inducing signals and mechanisms of activation are very different. Displacing Mlc from its DNA binding sites necessitates its sequestration to the inner membrane via an interaction with PtsG (EIICB(Glc)), while NagC is displaced from its DNA targets by interacting with GlcNAc6P. We have isolated mutations in both proteins which prevent the inactivation of the repressors by growth on glucose or GlcNAc. These mutations are located in different and specific regions of each protein. For Mlc changes at the C-terminal make it a constitutive repressor and also prevent it from binding to EIIB(Glc). Mutations in NagC, at positions which form a structural motif resembling a glucose binding site in Mlc, produce permanently repressing forms of NagC, suggesting that this motif forms a GlcNAc6P binding site in NagC. The pattern of repression by chimeric proteins of NagC and Mlc confirms the importance of the C-terminal region of Mlc for both repression and inducer binding and demonstrate that the helix-turn-helix DNA-binding motif is not sufficient to determine the specificity of interaction of the repressor with DNA.
Collapse
Affiliation(s)
- Carole Pennetier
- Institut de Biologie Physico-Chimique (UPR9073-CNRS), 13 rue Pierre et Marie Curie, 75005 Paris, France
| | | | | |
Collapse
|
33
|
Larion M, Moore LB, Thompson SM, Miller BG. Divergent evolution of function in the ROK sugar kinase superfamily: role of enzyme loops in substrate specificity. Biochemistry 2007; 46:13564-72. [PMID: 17979299 DOI: 10.1021/bi700924d] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The d-allose and N-acetyl-d-mannosamine kinases of Escherichia coli K-12 are divergent members of the functionally diverse ROK (repressor, open reading frame, kinase) superfamily. Previous work in our laboratory has demonstrated that AlsK and NanK possess weak phosphoryl transfer activity toward the alternate substrate d-glucose. To gain insight into the evolutionary mechanisms that fuel the specialization of individual enzyme function, experimental laboratory evolution was conducted to improve the glucokinase activities of AlsK and NanK. Error-prone PCR was combined with in vivo functional selection in a glucokinase-deficient bacterium to identify four independent single nucleotide substitutions in the alsK and nanK genes that improve the glucokinase activity of each enzyme. The most advantageous substitutions, L84P in NanK and A73G in AlsK, enhance the kcat/Km values for phosphoryl transfer to glucose by 12-fold and 60-fold, respectively. Both substitutions co-localize to a variable loop region located between the fourth beta-sheet and the second alpha-helix of the ROK scaffold. A multiple sequence alignment of diverse ROK family members reveals that the A73G substitution in AlsK recapitulates a conserved glycine residue present in many ROK proteins, including some transcriptional repressors. Steady-state kinetic analyses of the selected AlsK and NanK variants demonstrate that their native activities toward d-allose and N-acetyl-d-mannosamine are largely unaffected by the glucokinase-enhancing substitutions. Substrate specificity profiling reveals that the A73G AlsK and L84P NanK variants display systematic improvements in the kcat/Km values for a variety of nonnative carbohydrates. This finding is consistent with an evolutionary process that includes the formation of intermediates possessing relaxed substrate specificities during the initial steps of enzyme functional divergence.
Collapse
Affiliation(s)
- Mioara Larion
- Department of Chemistry and Biochemistry, The Florida State University, Tallahassee, Florida 32306-4390, USA
| | | | | | | |
Collapse
|
34
|
Pimentel-Schmitt EF, Thomae AW, Amon J, Klieber MA, Roth HM, Muller YA, Jahreis K, Burkovski A, Titgemeyer F. A glucose kinase from Mycobacterium smegmatis. J Mol Microbiol Biotechnol 2007; 12:75-81. [PMID: 17183214 DOI: 10.1159/000096462] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Carbon metabolism and regulation is poorly understood in mycobacteria, a genus that includes some major pathogenic species like Mycobacterium tuberculosis and Mycobacterium leprae. Here, we report the identification of a glucose kinase from Mycobacterium smegmatis. This enzyme serves in glucose metabolism and global carbon catabolite repression in the related actinomycete Streptomyces coelicolor. The gene, msmeg1356 (glkA), was found by means of in silico screening. It was shown that it occurs in the same genetic context in all so far sequenced mycobacterial species, where it is located in a putative tricistronic operon together with a glycosyl hydrolase and a putative malonyl-CoA transacylase. Heterologous expression of glkA in an Escherichia coli glucose kinase mutant led to the restoration of glucose growth, which provided in vivo evidence for glucose kinase function. GlkA(Msm) was subsequently overproduced in order to study its enzymatic features. We found that it can form a dimer and that it efficiently phosphorylates glucose at the expense of ATP. The affinity constant for glucose was with 9 mM about eight times higher and the velocity was about tenfold slower when compared to the parallel measured glucose kinase of S. coelicolor. Both enzymes showed similar substrate specificity, which consists in an ATP-dependent phosphorylation of glucose and no, or very inefficient, phosphorylation of the glucose analogues 2-deoxyglucose and methyl alpha-glucoside. Hence, our data provide a basis for studying the role of mycobacterial glucose kinase in vivo to unravel possible catalytic and regulatory functions.
Collapse
|
35
|
Deutscher J, Francke C, Postma PW. How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. Microbiol Mol Biol Rev 2007; 70:939-1031. [PMID: 17158705 PMCID: PMC1698508 DOI: 10.1128/mmbr.00024-06] [Citation(s) in RCA: 998] [Impact Index Per Article: 58.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The phosphoenolpyruvate(PEP):carbohydrate phosphotransferase system (PTS) is found only in bacteria, where it catalyzes the transport and phosphorylation of numerous monosaccharides, disaccharides, amino sugars, polyols, and other sugar derivatives. To carry out its catalytic function in sugar transport and phosphorylation, the PTS uses PEP as an energy source and phosphoryl donor. The phosphoryl group of PEP is usually transferred via four distinct proteins (domains) to the transported sugar bound to the respective membrane component(s) (EIIC and EIID) of the PTS. The organization of the PTS as a four-step phosphoryl transfer system, in which all P derivatives exhibit similar energy (phosphorylation occurs at histidyl or cysteyl residues), is surprising, as a single protein (or domain) coupling energy transfer and sugar phosphorylation would be sufficient for PTS function. A possible explanation for the complexity of the PTS was provided by the discovery that the PTS also carries out numerous regulatory functions. Depending on their phosphorylation state, the four proteins (domains) forming the PTS phosphorylation cascade (EI, HPr, EIIA, and EIIB) can phosphorylate or interact with numerous non-PTS proteins and thereby regulate their activity. In addition, in certain bacteria, one of the PTS components (HPr) is phosphorylated by ATP at a seryl residue, which increases the complexity of PTS-mediated regulation. In this review, we try to summarize the known protein phosphorylation-related regulatory functions of the PTS. As we shall see, the PTS regulation network not only controls carbohydrate uptake and metabolism but also interferes with the utilization of nitrogen and phosphorus and the virulence of certain pathogens.
Collapse
Affiliation(s)
- Josef Deutscher
- Microbiologie et Génétique Moléculaire, INRA-CNRS-INA PG UMR 2585, Thiverval-Grignon, France.
| | | | | |
Collapse
|
36
|
Chevance FFV, Erhardt M, Lengsfeld C, Lee SJ, Boos W. Mlc of Thermus thermophilus: a glucose-specific regulator for a glucose/mannose ABC transporter in the absence of the phosphotransferase system. J Bacteriol 2006; 188:6561-71. [PMID: 16952948 PMCID: PMC1595481 DOI: 10.1128/jb.00715-06] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report the presence of Mlc in a thermophilic bacterium. Mlc is known as a global regulator of sugar metabolism in gram-negative enteric bacteria that is controlled by sequestration to a glucose-transporting EII(Glc) of the phosphotransferase system (PTS). Since thermophilic bacteria do not possess PTS, Mlc in Thermus thermophilus must be differently controlled. DNA sequence alignments between Mlc from T. thermophilus (Mlc(Tth)) and Mlc from E. coli (Mlc(Eco)) revealed that Mlc(Tth) conserved five residues of the glucose-binding motif of glucokinases. Here we show that Mlc(Tth) is not a glucokinase but is indeed able to bind glucose (K(D) = 20 microM), unlike Mlc(Eco). We found that mlc of T. thermophilus is the first gene within an operon encoding an ABC transporter for glucose and mannose, including a glucose/mannose-binding protein and two permeases. malK1, encoding the cognate ATP-hydrolyzing subunit, is located elsewhere on the chromosome. The system transports glucose at 70 degrees C with a K(m) of 0.15 microM and a V(max) of 4.22 nmol per min per ml at an optical density (OD) of 1. Mlc(Tth) negatively regulates itself and the entire glucose/mannose ABC transport system operon but not malK1, with glucose acting as an inducer. MalK1 is shared with the ABC transporter for trehalose, maltose, sucrose, and palatinose (TMSP). Mutants lacking malK1 do not transport either glucose or maltose. The TMSP transporter is also able to transport glucose with a K(m) of 1.4 microM and a V(max) of 7.6 nmol per min per ml at an OD of 1, but it does not transport mannose.
Collapse
|
37
|
Weihofen WA, Berger M, Chen H, Saenger W, Hinderlich S. Structures of human N-Acetylglucosamine kinase in two complexes with N-Acetylglucosamine and with ADP/glucose: insights into substrate specificity and regulation. J Mol Biol 2006; 364:388-99. [PMID: 17010375 DOI: 10.1016/j.jmb.2006.08.085] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2006] [Revised: 08/29/2006] [Accepted: 08/30/2006] [Indexed: 11/15/2022]
Abstract
N-Acetylglucosamine (GlcNAc), a major component of complex carbohydrates, is synthesized de novo or salvaged from lysosomally degraded glycoconjugates and from nutritional sources. The salvage pathway requires that GlcNAc kinase converts GlcNAc to GlcNAc-6-phosphate, a component utilized in UDP-GlcNAc biosynthesis or energy metabolism. GlcNAc kinase belongs to the sugar kinase/Hsp70/actin superfamily that catalyze phosphoryl transfer from ATP to their respective substrates, and in most cases catalysis is associated with a large conformational change in which the N-terminal small and C-terminal large domains enclose the substrates. Here we report two crystal structures of homodimeric human GlcNAc kinase, one in complex with GlcNAc and the other in complex with ADP and glucose. The active site of GlcNAc kinase is located in a deep cleft between the two domains of the V-shaped monomer. The enzyme adopts a "closed" configuration in the GlcNAc-bound complex and GlcNAc interacts with residues of both domains. In addition, the N-acetyl methyl group contacts residues of the other monomer in the homodimer, a unique feature compared to other members of the sugar kinase/Hsp70/actin superfamily. This contrasts an "open" configuration in the ADP/glucose-bound structure, where glucose cannot form these interactions, explaining its low binding affinity for GlcNAc kinase. Our results support functional implications derived from apo crystal structures of GlcNAc kinases from Chromobacter violaceum and Porphyromonas gingivalis and show that Tyr205, which is phosphorylated in thrombin-activated platelets, lines the GlcNAc binding pocket. This suggests that phosphorylation of Tyr205 may modulate GlcNAc kinase activity and/or specificity.
Collapse
Affiliation(s)
- Wilhelm A Weihofen
- Freie Universität Berlin, Institut für Chemie und Biochemie-Kristallographie, Takustrasse 6, 14195 Berlin-Dahlem, Germany
| | | | | | | | | |
Collapse
|
38
|
Becker AK, Zeppenfeld T, Staab A, Seitz S, Boos W, Morita T, Aiba H, Mahr K, Titgemeyer F, Jahreis K. YeeI, a novel protein involved in modulation of the activity of the glucose-phosphotransferase system in Escherichia coli K-12. J Bacteriol 2006; 188:5439-49. [PMID: 16855233 PMCID: PMC1540043 DOI: 10.1128/jb.00219-06] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The membrane-bound protein EIICB(Glc) encoded by the ptsG gene is the major glucose transporter in Escherichia coli. This protein is part of the phosphoenolpyruvate:glucose-phosphotransferase system, a very important transport and signal transduction system in bacteria. The regulation of ptsG expression is very complex. Among others, two major regulators, the repressor Mlc and the cyclic AMP-cyclic AMP receptor protein activator complex, have been identified. Here we report identification of a novel protein, YeeI, that is involved in the regulation of ptsG by interacting with Mlc. Mutants with reduced activity of the glucose-phosphotransferase system were isolated by transposon mutagenesis. One class of mutations was located in the open reading frame yeeI at 44.1 min on the E. coli K-12 chromosome. The yeeI mutants exhibited increased generation times during growth on glucose, reduced transport of methyl-alpha-d-glucopyranoside, a substrate of EIICB(Glc), reduced induction of a ptsG-lacZ operon fusion, and reduced catabolite repression in lactose/glucose diauxic growth experiments. These observations were the result of decreased ptsG expression and a decrease in the amount of EIICB(Glc). In contrast, overexpression of yeeI resulted in higher expression of ptsG, of a ptsG-lacZ operon fusion, and of the autoregulated dgsA gene. The effect of a yeeI mutation could be suppressed by introducing a dgsA deletion, implying that the two proteins belong to the same signal transduction pathway and that Mlc is epistatic to YeeI. By measuring the surface plasmon resonance, we found that YeeI (proposed gene designation, mtfA) directly interacts with Mlc with high affinity.
Collapse
Affiliation(s)
- Ann-Katrin Becker
- Department of Biology and Chemistry, University of Osnabrück, D-49069 Osnabrück, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|