1
|
González-Cota AL, Martínez-Flores D, Rosendo-Pineda MJ, Vaca L. NMDA receptor-mediated Ca 2+ signaling: Impact on cell cycle regulation and the development of neurodegenerative diseases and cancer. Cell Calcium 2024; 119:102856. [PMID: 38408411 DOI: 10.1016/j.ceca.2024.102856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/08/2024] [Accepted: 02/07/2024] [Indexed: 02/28/2024]
Abstract
NMDA receptors are Ca2+-permeable ligand-gated ion channels that mediate fast excitatory transmission in the central nervous system. NMDA receptors regulate the proliferation and differentiation of neural progenitor cells and also play critical roles in neural plasticity, memory, and learning. In addition to their physiological role, NMDA receptors are also involved in glutamate-mediated excitotoxicity, which results from excessive glutamate stimulation, leading to Ca2+ overload, and ultimately to neuronal death. Thus, NMDA receptor-mediated excitotoxicity has been linked to several neurodegenerative diseases such as Alzheimer's, Parkinson's, Huntington's, dementia, and stroke. Interestingly, in addition to its effects on cell death, aberrant expression or activation of NMDA receptors is also involved in pathological cellular proliferation, and is implicated in the invasion and proliferation of various types of cancer. These disorders are thought to be related to the contribution of NMDA receptors to cell proliferation and cell death through cell cycle modulation. This review aims to discuss the evidence implicating NMDA receptor activity in cell cycle regulation and the link between aberrant NMDA receptor activity and the development of neurodegenerative diseases and cancer due to cell cycle dysregulation. The information presented here will provide insights into the signaling pathways and the contribution of NMDA receptors to these diseases, and suggests that NMDA receptors are promising targets for the prevention and treatment of these diseases, which are leading causes of death and disability worldwide.
Collapse
Affiliation(s)
- Ana L González-Cota
- Instituto de Fisiología Celular, Departamento de Biología Celular y Desarrollo, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, Ciudad de México, 04510, Mexico
| | - Daniel Martínez-Flores
- Instituto de Fisiología Celular, Departamento de Biología Celular y Desarrollo, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, Ciudad de México, 04510, Mexico
| | - Margarita Jacaranda Rosendo-Pineda
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, Ciudad de México, 04510, Mexico
| | - Luis Vaca
- Instituto de Fisiología Celular, Departamento de Biología Celular y Desarrollo, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, Ciudad de México, 04510, Mexico.
| |
Collapse
|
2
|
Xifró X, Rodríguez-Álvarez J. Delineating the factors and cellular mechanisms involved in the survival of cerebellar granule neurons. THE CEREBELLUM 2016; 14:354-9. [PMID: 25596943 DOI: 10.1007/s12311-015-0646-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cerebellar granule neurons (CGNs) constitute the most abundant neuronal population in the mammalian brain. Their postnatal generation and the feasibility to induce their apoptotic death in vitro make them an excellent model to study the effect of several neurotransmitters and neurotrophins. Here, we first review which factors are involved in the generation and proliferation of CGNs in the external granule layer (EGL) and in the regulation of their differentiation and migration to internal granule layer (IGL). Special attention was given to the role of several neurotrophins and the NMDA subtype of glutamate receptor. Then, using the paradigm of potassium deprivation in cultured CGNs, we address several extracellular factors that promote the survival of CGNs, with particular emphasis on the cellular mechanisms. The role of specific protein kinases leading to the regulation of transcription factors and recent data involving the small G protein family is also discussed. Finally, the participation of some members of Bcl-2 family and the inhibition of mitochondria-related apoptotic pathway is also considered. Altogether, these studies evidence that CGNs are a key model to understand the development and the survival of neuronal populations.
Collapse
Affiliation(s)
- Xavier Xifró
- Departament de Ciències Mèdiques, Facultat de Medicina, Universitat de Girona, C/ Emili Grahit, 77, 17071, Girona, Spain,
| | | |
Collapse
|
3
|
Endogenous XIAP, but not other members of the inhibitory apoptosis protein family modulates cerebellar granule neurons survival. Int J Dev Neurosci 2014; 37:26-35. [PMID: 24955869 DOI: 10.1016/j.ijdevneu.2014.06.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 06/15/2014] [Accepted: 06/15/2014] [Indexed: 02/05/2023] Open
Abstract
Programmed cell death plays a critical role during cerebellar development. In particular, it has been shown in vivo and in vitro that developing cerebellar granule neurons (CGN) die apoptotically. Apoptosis involves a series of morphological changes and the activation of caspases. Inhibitor of apoptosis proteins (IAPs) is implicated in negative regulation of caspase activation and apoptotic cell death. Although apoptotic death of CGN has been extensively studied, there is no information about the role of IAPs in the developing cerebellum. Here, we studied the participation of some members of IAPs in the survival of the developing rat CGN in culture and under physiological conditions. Under these conditions, we found a differential expression pattern of cIAP-1, cIAP-2, XIAP and survivin during cerebellar development in an age-dependent manner, highlighting the significant increase of XIAP levels. We also detected an interaction between XIAP and caspase 3 at postnatal day (P) 12 and 16. On the other hand, we found a significant decrease of XIAP levels in cultured CGN maintained in chronic potassium deprivation, an apoptotic condition, suggesting a possible relationship between XIAP levels and neuronal viability. Under these conditions, we also detected the interaction of XIAP with active caspase-3. The down-regulation of XIAP in CGN cultured under survival conditions (chronic potassium depolarization) induced a reduction of cell viability and an increment of apoptotic cells. These findings support the idea that IAPs could be involved in the survival of CGN and that XIAP might be critical for neuronal survival in cerebellar development and during chronic depolarization in cultured CGN through a mechanism involving caspase inhibition.
Collapse
|
4
|
Canu N, Ciotti MT, Pollegioni L. Serine racemase: a key player in apoptosis and necrosis. Front Synaptic Neurosci 2014; 6:9. [PMID: 24795622 PMCID: PMC4000995 DOI: 10.3389/fnsyn.2014.00009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 03/28/2014] [Indexed: 12/14/2022] Open
Abstract
A fine balance between cell survival and cell death is required to sculpt the nervous system during development. However, an excess of cell death can occur following trauma, exposure to neurotoxins or alcohol, and some developmental and neurodegenerative diseases, such as Alzheimer's disease (AD). N-Methyl-D-aspartate receptors (NMDARs) support synaptic plasticity and survival of many neuronal populations whereas inappropriate activation may promote various forms of cell death, apoptosis, and necrosis representing the two extremes of a continuum of cell death processes both “in vitro” and “in vivo.” Hence, by identifying the switches controlling pro-survival vs. apoptosis and apoptosis vs. pro-excitotoxic outcome of NMDAR stimulation, NMDAR modulators could be developed that selectively block the cell death enhancing pro-survival signaling or synaptic plasticity mediated by NMDAR. Among these modulators, a role is emerging for the enzyme serine racemase (SR) that synthesizes D-serine, a key co-agonist with glutamate at NMDAR. This review summarizes the experimental evidence from “in vitro” neuronal cultures—with special emphasis on cerebellar granule neurons (CGNs)—and “in vivo” models of neurodegeneration, where the dual role of the SR/D-serine pathway as a master regulator of apoptosis and the apoptosis-necrosis shift will be discussed.
Collapse
Affiliation(s)
- Nadia Canu
- Dipartimento di Medicina dei Sistemi, Università degli Studi di Roma Roma, Italy ; Istituto di Biologia Cellulare e Neurobiologia, Consiglio Nazionale delle Ricerche Roma, Italy
| | - Maria Teresa Ciotti
- Istituto di Biologia Cellulare e Neurobiologia, Consiglio Nazionale delle Ricerche Roma, Italy
| | - Loredano Pollegioni
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell'Insubria Varese, Italy ; Centro Interuniversitario di Ricerca in Biotecnologie Proteiche "The Protein Factory," Politecnico di Milano, ICRM-CNR Milano and Università degli studi dell'Insubria Milano, Italy
| |
Collapse
|
5
|
Xifró X, Miñano-Molina AJ, Saura CA, Rodríguez-Álvarez J. Ras protein activation is a key event in activity-dependent survival of cerebellar granule neurons. J Biol Chem 2014; 289:8462-72. [PMID: 24523415 DOI: 10.1074/jbc.m113.536375] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Neuronal activity promotes the survival of cerebellar granule neurons (CGNs) during the postnatal development of cerebellum. CGNs that fail to receive excitatory inputs will die by apoptosis. This process could be mimicked in culture by exposing CGNs to either a physiological concentration of KCl (5 mm or K5) plus N-methyl-d-aspartate (NMDA) or to 25 mm KCl (K25). We have previously described that a 24-h exposure to NMDA (100 μm) or K25 at 2 days in vitro induced long term survival of CGNs in K5 conditions. Here we have studied the molecular mechanisms activated at 2 days in vitro in these conditions. First we showed that NMDA or K25 addition promoted a rapid stimulation of PI3K and a biphasic phosphorylation on Ser-473 of Akt, a PI3K substrate. Interestingly, we demonstrated that only the first wave of Akt phosphorylation is necessary for the NMDA- and K25-mediated survival. Additionally, we detected that both NMDA and K25 increased ERK activity with a similar time-course. Moreover, our results showed that NMDA-mediated activation of the small G-protein Ras is necessary for PI3K/Akt pathway activation, whereas Rap1 was involved in NMDA phosphorylation of ERK. On the other hand, Ras, but not Rap1, mediates K25 activation of PI3K/Akt and MEK/ERK pathways. Because neuroprotection by NMDA or K25 is mediated by Ras (and not by Rap1) activation, we propose that Ras stimulation is a crucial event in NMDA- and K25-mediated survival of CGNs through the activation of PI3K/Akt and MEK/ERK pathways.
Collapse
Affiliation(s)
- Xavier Xifró
- From the Institut de Neurociencies and Department of Bioquímica i Biología Molecular, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | | | | | | |
Collapse
|
6
|
Bahrami F, Hashemi M, Khalili F, Hashemi J, Asgari A. Stimulation of CB1 Cannabinoid and NMDA Receptors Increases Neuroprotective Effect against Diazinon-Induced Neurotoxicity. NEUROPHYSIOLOGY+ 2013. [DOI: 10.1007/s11062-013-9390-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
7
|
Mechanisms of penitrem-induced cerebellar granule neuron death in vitro: Possible involvement of GABAA receptors and oxidative processes. Neurotoxicology 2013; 35:129-36. [DOI: 10.1016/j.neuro.2013.01.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 12/27/2012] [Accepted: 01/06/2013] [Indexed: 11/17/2022]
|
8
|
Kysenius K, Muggalla P, Mätlik K, Arumäe U, Huttunen HJ. PCSK9 regulates neuronal apoptosis by adjusting ApoER2 levels and signaling. Cell Mol Life Sci 2012; 69:1903-16. [PMID: 22481440 PMCID: PMC11114498 DOI: 10.1007/s00018-012-0977-6] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 03/05/2012] [Accepted: 03/22/2012] [Indexed: 12/30/2022]
Abstract
The secreted protease proprotein convertase subtilisin/kexin type 9 (PCSK9) binds to low-density lipid (LDL) receptor family members LDLR, very low density lipoprotein receptor (VLDLR) and apolipoprotein receptor 2 (ApoER2), and promotes their degradation in intracellular acidic compartments. In the liver, LDLR is a major controller of blood LDL levels, whereas VLDLR and ApoER2 in the brain mediate Reelin signaling, a critical pathway for proper development of the nervous system. Expression level of PCSK9 in the brain is highest in the cerebellum during perinatal development, but is also increased in the adult brain after ischemia. The mechanism of PCSK9 function and its involvement in neuronal apoptosis is poorly understood. We show here that RNAi-mediated knockdown of PCSK9 significantly reduced the death of potassium-deprived cerebellar granule neurons (CGN), as shown by reduced levels of nuclear phosphorylated c-Jun and activated caspase-3, as well as condensed apoptotic nuclei. ApoER2 protein levels were increased in PCSK9 RNAi cells. Knockdown of ApoER2 but not of VLDLR was sufficient to reverse the protection provided by PCSK9 RNAi, suggesting that proapoptotic signaling of PCSK9 is mediated by altered ApoER2 function. Pharmacological inhibition of signaling pathways associated with lipoprotein receptors suggested that PCSK9 regulates neuronal apoptosis independently of NMDA receptor function but in concert with ERK and JNK signaling pathways. PCSK9 RNAi also reduced staurosporine-induced CGN apoptosis and axonal degeneration in the nerve growth factor-deprived dorsal root ganglion neurons. We conclude that PCSK9 potentiates neuronal apoptosis via modulation of ApoER2 levels and related anti-apoptotic signaling pathways.
Collapse
Affiliation(s)
- Kai Kysenius
- Neuroscience Center, University of Helsinki, Viikinkaari 4, P.O. Box 56, 00014 Helsinki, Finland
| | - Pranuthi Muggalla
- Neuroscience Center, University of Helsinki, Viikinkaari 4, P.O. Box 56, 00014 Helsinki, Finland
| | - Kert Mätlik
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Urmas Arumäe
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Henri J. Huttunen
- Neuroscience Center, University of Helsinki, Viikinkaari 4, P.O. Box 56, 00014 Helsinki, Finland
| |
Collapse
|
9
|
Doi N, Hoshi Y, Itokawa M, Yoshikawa T, Ichikawa T, Arai M, Usui C, Tachikawa H. Paradox of schizophrenia genetics: is a paradigm shift occurring? BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2012; 8:28. [PMID: 22650965 PMCID: PMC3487746 DOI: 10.1186/1744-9081-8-28] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 04/27/2012] [Indexed: 11/10/2022]
Abstract
BACKGROUND Genetic research of schizophrenia (SCZ) based on the nuclear genome model (NGM) has been one of the most active areas in psychiatry for the past two decades. Although this effort is ongoing, the current situation of the molecular genetics of SCZ seems disappointing or rather perplexing. Furthermore, a prominent discrepancy between persistence of the disease at a relatively high prevalence and a low reproductive fitness of patients creates a paradox. Heterozygote advantage works to sustain the frequency of a putative susceptibility gene in the mitochondrial genome model (MGM) but not in the NGM. METHODS We deduced a criterion that every nuclear susceptibility gene for SCZ should fulfill for the persistence of the disease under general assumptions of the multifactorial threshold model. SCZ-associated variants listed in the top 45 in the SZGene Database (the version of the 23rd December, 2011) were selected, and the distribution of the genes that could meet or do not meet the criterion was surveyed. RESULTS 19 SCZ-associated variants that do not meet the criterion are located outside the regions where the SCZ-associated variants that could meet the criterion are located. Since a SCZ-associated variant that does not meet the criterion cannot be a susceptibility gene, but instead must be a protective gene, it should be linked to a susceptibility gene in the NGM, which is contrary to these results. On the other hand, every protective gene on any chromosome can be associated with SCZ in the MGM. Based on the MGM we propose a new hypothesis that assumes brain-specific antioxidant defenses in which trans-synaptic activations of dopamine- and N-methyl-d-aspartate-receptors are involved. Most of the ten predictions of this hypothesis seem to accord with the major epidemiological facts and the results of association studies to date. CONCLUSION The central paradox of SCZ genetics and the results of association studies to date argue against the NGM, and in its place the MGM is emerging as a viable option to account for genomic and pathophysiological research findings involving SCZ.
Collapse
Affiliation(s)
- Nagafumi Doi
- Ibaraki Prefectural Medical Center of Psychiatry, 654Asahi-machi, Kasama-shi, Ibaraki, 309-1717, Japan
| | - Yoko Hoshi
- Integrated Neuroscience Research Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya, Tokyo, 156-8506, Japan
| | - Masanari Itokawa
- Project for Schizophrenia and Affective Disorders Research, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya, Tokyo, 156-8506, Japan
| | - Takeo Yoshikawa
- Laboratory for Molecular Psychiatry, RIKEN Brain Science Institute, 2-1Hirosawa, Wako-shi, Saitama, 351-0198, Japan
| | - Tomoe Ichikawa
- Project for Schizophrenia and Affective Disorders Research, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya, Tokyo, 156-8506, Japan
| | - Makoto Arai
- Project for Schizophrenia and Affective Disorders Research, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya, Tokyo, 156-8506, Japan
| | - Chie Usui
- Department of Psychiatry, Juntendo University Nerima Hospital, 3-1-10 Takanodai, Nerima-ku, Tokyo, 177-8521, Japan
| | - Hirokazu Tachikawa
- Department of Psychiatry, Graduate School of Comprehensive Human Science, Tsukuba University, Tsukuba-shi, Ibaraki, Japan
| |
Collapse
|
10
|
Molecular Alterations Associated with the NMDA Preconditioning-Induced Neuroprotective Mechanism Against Glutamate Cytotoxicity. J Mol Neurosci 2011; 47:519-32. [DOI: 10.1007/s12031-011-9668-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Accepted: 10/24/2011] [Indexed: 12/13/2022]
|
11
|
Raoult E, Roussel BD, Bénard M, Lefebvre T, Ravni A, Ali C, Vivien D, Komuro H, Fournier A, Vaudry H, Vaudry D, Galas L. Pituitary adenylate cyclase-activating polypeptide (PACAP) stimulates the expression and the release of tissue plasminogen activator (tPA) in neuronal cells: involvement of tPA in the neuroprotective effect of PACAP. J Neurochem 2011; 119:920-31. [DOI: 10.1111/j.1471-4159.2011.07486.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
12
|
Abstract
The proapoptotic BH3-only protein Bim is a crucial regulator of neuronal apoptosis. Previous studies have indicated the involvement of the c-Jun, FOXO1/3a, and B/C-Myb transcription factors in the regulation of Bim during neuronal apoptosis. However, the mechanism underlying the transcriptional regulation of Bim in activity deprivation-induced neuronal apoptosis has remained unclear. The present study demonstrates that early growth response 1 (Egr-1), rather than c-Jun, FOXO1/3a, or B/C-Myb, directly transactivates Bim gene expression to mediate apoptosis of rat cerebellar granule neurons. We showed that Egr-1 was sufficient and necessary for neuronal apoptosis. Suppression of Egr-1 activity using dominant-negative mutant or knockdown of Egr-1 using small interfering RNAs led to a decrease in Bim expression, whereas overexpression of Egr-1 resulted in induction of Bim. Deletion and site-directed mutagenesis of the Bim promoter revealed that Bim transcriptional activation depends primarily on a putative Egr-binding sequence between nucleotides -56 and -47 upstream of the start site. We also showed that Egr-1 binding to this sequence increased in response to activity deprivation in vitro and in vivo. Moreover, inhibition of Egr-1 binding to the Bim promoter, by mithramycin A and chromomycin A3, reduced the activity deprivation-induced increases in Bim promoter activity and mRNA and protein levels and protected neurons from apoptosis, further supporting the Egr-1-mediated transactivation of Bim. Additionally, Bim overcame the Egr-1 knockdown-mediated inhibition of apoptosis, whereas Bim knockdown impaired the increase in apoptosis induced by Egr-1. These findings establish Bim as an Egr-1 target gene in neurons, uncovering a novel Egr-1/Bim pathway by which activity deprivation induces neuronal apoptosis.
Collapse
|
13
|
Navon H, Bromberg Y, Sperling O, Shani E. Neuroprotection by NMDA Preconditioning Against Glutamate Cytotoxicity is Mediated Through Activation of ERK 1/2, Inactivation of JNK, and by Prevention of Glutamate-Induced CREB Inactivation. J Mol Neurosci 2011; 46:100-8. [DOI: 10.1007/s12031-011-9532-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 04/25/2011] [Indexed: 02/05/2023]
|
14
|
Koshimizu H, Hazama S, Hara T, Ogura A, Kojima M. Distinct signaling pathways of precursor BDNF and mature BDNF in cultured cerebellar granule neurons. Neurosci Lett 2010; 473:229-32. [PMID: 20219632 DOI: 10.1016/j.neulet.2010.02.055] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Revised: 02/18/2010] [Accepted: 02/20/2010] [Indexed: 10/19/2022]
Abstract
Recent studies have focused on a distinctive contrast between bioactivities of precursor brain-derived neurotrophic factor (proBDNF) and mature BDNF (matBDNF). In this study, using a proteolytic cleavage-resistant proBDNF mutant (CR-proBDNF), signaling mechanisms underlying the proapoptotic effect of proBDNF and antiapoptotic effect of matBDNF on the low potassium (LK)-inducing cell death of cultured cerebellar granule neurons (CGNs) were analyzed. A time course study demonstrated that unlike matBDNF, CR-proBDNF failed to induce TrkB phosphorylation for up to 360 min. CR-proBDNF did not activate ERK-1, ERK-2 and Akt, which are involved in TrkB-induced cell survival signaling, while matBDNF activated these kinases. On the other hand treatment of CGNs with CR-proBDNF led to a rapid activation of Rac-GTPase and phosphorylation of JNK which are involved in p75(NTR)-induced apoptosis. In addition, a JNK-specific inhibitor, SP600125, inhibited the CR-proBDNF-induced apoptosis but did not affect the antiapoptotic effect of matBDNF. CR-proBDNF treatment led to an earlier appearance of active caspase-3. In contrast, matBDNF dramatically postponed the appearance of active caspase-3. Not like other signaling molecules, activation of caspase-3 was conversely regulated by both CR-proBDNF and matBDNF. These results thus suggest that in CGNs proBDNF elicits apoptosis via activation of p75(NTR), Rac-GTPase, JNK, and caspase-3, while matBDNF signals cell survival via activation of TrkB, ERKs and Akt, and deactivation of caspase-3.
Collapse
Affiliation(s)
- Hisatsugu Koshimizu
- Research Institute for Cell Engineering, National Institute of Advanced Industrial Science and Technology, Ikeda 563-8577, Japan
| | | | | | | | | |
Collapse
|
15
|
Barneda-Zahonero B, Miñano-Molina A, Badiola N, Fadó R, Xifró X, Saura CA, Rodríguez-Alvarez J. Bone morphogenetic protein-6 promotes cerebellar granule neurons survival by activation of the MEK/ERK/CREB pathway. Mol Biol Cell 2010; 20:5051-63. [PMID: 19846661 DOI: 10.1091/mbc.e09-05-0424] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) have been implicated in the generation and postnatal differentiation of cerebellar granule cells (CGCs). Here, we examined the eventual role of BMPs on the survival of these neurons. Lack of depolarization causes CGC death by apoptosis in vivo, a phenomenon that is mimicked in vitro by deprivation of high potassium in cultured CGCs. We have found that BMP-6, but not BMP-7, is able to block low potassium-mediated apoptosis in CGCs. The neuroprotective effect of BMP-6 is not accompanied by an increase of Smad translocation to the nucleus, suggesting that the canonical pathway is not involved. By contrast, activation of the MEK/ERK/CREB pathway by BMP-6 is necessary for its neuroprotective effect, which involves inhibition of caspase activity and an increase in Bcl-2 protein levels. Other pathways involved in the regulation of CGC survival, such as the c-Jun terminal kinase and the phosphatidylinositol 3-kinase (PI3K)-Akt/PKB, were not affected by BMP-6. Moreover, failure of BMP-7 to activate the MEK/ERK/CREB pathway could explain its inability to protect CGCs from low potassium-mediated apoptosis. Thus, this study demonstrates that BMP-6 acting through the noncanonical MEK/ERK/CREB pathway plays a crucial role on CGC survival.
Collapse
Affiliation(s)
- Bruna Barneda-Zahonero
- Institut de Neurociencies and Departament de Bioquímica i Biología Molecular, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Valles, Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
16
|
Ramiro-Cortés Y, Morán J. Role of oxidative stress and JNK pathway in apoptotic death induced by potassium deprivation and staurosporine in cerebellar granule neurons. Neurochem Int 2009; 55:581-92. [DOI: 10.1016/j.neuint.2009.05.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Revised: 05/01/2009] [Accepted: 05/21/2009] [Indexed: 02/07/2023]
|
17
|
Different mechanisms of NMDA-mediated protection against neuronal apoptosis: a stimuli-dependent effect. Neurochem Res 2009; 34:2040-54. [PMID: 19462233 DOI: 10.1007/s11064-009-9991-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Accepted: 05/06/2009] [Indexed: 01/11/2023]
Abstract
The mechanisms of protective effect of N-methyl-D-aspartate (NMDA) receptor stimulation on apoptosis of neurons at their early stage of development are poorly understood. In the present study, we investigated the effects of NMDA on staurosporine (St)- and low-potassium (LP)-evoked apoptotic cell death in primary cerebellar granule cell (CGC) cultures at 7 days in vitro (DIV). We found that NMDA (200 microM) attenuated the St (0.5 microM)- and LP (5 mM KCl)-induced neuronal cell death in 7 but not 12 DIV CGC as confirmed by LDH release and MTT reduction assays. Moreover, NMDA attenuated St-and LP-evoked DNA fragmentation and cytosolic apoptosis inducing factor (AIF) protein level but not caspase-3 activation induced by both pro-apoptotic factors. Neuroprotective effects of NMDA on St-induced apoptosis in CGC were attenuated by inhibitors of ERK/MAPK-signaling, PD 98059 and U0126 but not by NMDA receptor antagonists, AP-5 (100 microM) and MK-801 (1 microM) or by inhibitors of PI3-K/Akt pathway (LY 294002 and wortmannin). In contrast to staurosporine model of apoptosis, AP-5 and MK-801 but not inhibitors of PI3-K/Akt and MAPK/ERK1/2 prevented the NMDA-mediated neuroprotection in LP-induced apoptosis of CGC. In separate experiments, we observed also the anti-apoptotic action of NMDA on St (0.5 microM)- and salsolinol (250 microM)-evoked cell death in human neuroblastoma SH-SY5Y cells without its influence on caspase-3 activity, induced by these pro-apoptotic factors. These data indicate that neuroprotection evoked by NMDA in CGC strongly depends on used pro-apoptotic agent and could engage NMDA channel function or be connected with the activation of pro-survival MAPK/ERK1/2 pathway. It is also suggested that anti-apoptotic effects of NMDA is connected with inhibition of fragmentation of DNA via caspase-3-independent mechanism.
Collapse
|
18
|
Yeste-Velasco M, Folch J, Casadesús G, Smith M, Pallàs M, Camins A. Neuroprotection by c-Jun NH2-terminal kinase inhibitor SP600125 against potassium deprivation–induced apoptosis involves the Akt pathway and inhibition of cell cycle reentry. Neuroscience 2009; 159:1135-47. [DOI: 10.1016/j.neuroscience.2009.01.035] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2008] [Revised: 01/12/2009] [Accepted: 01/17/2009] [Indexed: 11/26/2022]
|
19
|
Xie P, Guo S, Fan Y, Zhang H, Gu D, Li H. Atrogin-1/MAFbx enhances simulated ischemia/reperfusion-induced apoptosis in cardiomyocytes through degradation of MAPK phosphatase-1 and sustained JNK activation. J Biol Chem 2008; 284:5488-96. [PMID: 19117950 DOI: 10.1074/jbc.m806487200] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Atrogin-1/MAFbx is a major atrophy-related E3 ubiquitin ligase that is expressed specifically in striated muscle. Although the contribution of atrogin-1 to cardiac and muscle hypertrophy/atrophy has been examined extensively, it remains unclear whether atrogin-1 plays an essential role in the simulated ischemia/reperfusion-induced apoptosis of primary cardiomyocytes. Here we showed that atrogin-1 markedly enhanced ischemia/reperfusion-induced apoptosis in cardiomyocytes via activation of JNK signaling. Overexpression of atrogin-1 increased phosphorylation of JNK and c-Jun and decreased phosphorylation of Foxo3a. In addition, atrogin-1 decreased Bcl-2, increased Bax, and enhanced the activation of caspases. Furthermore, JNK inhibitor SP600125 markedly blocked the effect of atrogin-1 on cell apoptosis and the expression of apoptotic-related proteins and caspases. Importantly, atrogin-1 induced sustained activation of JNK through a mechanism that involved degradation of MAPK phosphatase-1 (MKP-1) protein. Atrogin-1 interacted with and triggered MKP-1 for ubiquitin-mediated degradation. In contrast, proteasome inhibitors markedly blocked the degradation of MKP-1. Taken together, these results demonstrate that atrogin-1 promotes degradation of MKP-1 through the ubiquitin-proteasome pathway, thereby leading to persistent activation of JNK signaling and further cardiomyocyte apoptosis following ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Ping Xie
- Department of Pathology and National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Beijing, China
| | | | | | | | | | | |
Collapse
|
20
|
Maycotte P, Blancas S, Morán J. Role of Inhibitor of Apoptosis Proteins and Smac/DIABLO in Staurosporine-induced Cerebellar Granule Neurons Death. Neurochem Res 2008; 33:1534-40. [DOI: 10.1007/s11064-008-9637-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2007] [Accepted: 02/20/2008] [Indexed: 12/01/2022]
|
21
|
Alam SA, Robinson BK, Huang J, Green SH. Prosurvival and proapoptotic intracellular signaling in rat spiral ganglion neurons in vivo after the loss of hair cells. J Comp Neurol 2007; 503:832-52. [PMID: 17570507 DOI: 10.1002/cne.21430] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Neurons depend on afferent input for survival. Rats were given daily kanamycin injections from P8 to P16 to destroy hair cells, the sole afferent input to spiral ganglion neurons (SGNs). Most SGNs die over an approximately 14-week period after deafferentation. During this period, the SGN population is heterogeneous. At any given time, some SGNs exhibit apoptotic markers--TUNEL and cytochrome c loss--whereas others appear nonapoptotic. We asked whether differences among SGNs in intracellular signaling relevant to apoptotic regulation could account for this heterogeneity. cAMP response element binding protein (CREB) phosphorylation, which reflects neurotrophic signaling, is reduced in many SGNs at P16, P23, and P32, when SGNs begin to die. In particular, nearly all apoptotic SGNs exhibit reduced phospho-CREB, implying that apoptosis is due to insufficient neurotrophic support. However, >32% of SGNs maintain high phospho-CREB levels, implying access to neurotrophic support. By P60, when approximately 50% of the SGNs have died, phospho-CREB levels in surviving neurons are not reduced, and SGN death is no longer correlated with reduced phospho-CREB. Activity in the proapoptotic Jun N-terminal kinase (JNK)-Jun signaling pathway is elevated in SGNs during the cell death period. This too is heterogeneous: <42% of the SGNs exhibited high phospho-Jun levels, but nearly all SGNs undergoing apoptosis exhibited elevated phospho-Jun. Thus, heterogeneity among SGNs in prosurvival and proapoptotic signaling is correlated with apoptosis. SGN death following deafferentation has an early phase in which apoptosis is correlated with reduced phospho-CREB and a later phase in which it is not. Proapoptotic JNK-Jun signaling is tightly correlated with SGN apoptosis.
Collapse
Affiliation(s)
- Shaheen A Alam
- Department of Biology, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | |
Collapse
|
22
|
Xu J, Zhang QG, Li C, Zhang GY. Subtoxic N-methyl-D-aspartate delayed neuronal death in ischemic brain injury through TrkB receptor- and calmodulin-mediated PI-3K/Akt pathway activation. Hippocampus 2007; 17:525-37. [PMID: 17492691 DOI: 10.1002/hipo.20289] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Previous studies have shown that subtoxic NMDA moderated the neuronal survival in vitro and vivo. We performed this experiment to clarify the precise mechanism underlie subtoxic NMDA delayed neuronal death in ischemic brain injury. We found that pretreatment of NMDA (100 mg/kg) increased the number of the surviving CA1 pyramidal cells of hippocampus at 5 days of reperfusion. This dose of NMDA could also enhance Akt activation after ischemia/reperfusion (I/R). Here, we examined the possible mechanism that NMDA induced Akt activation. On the one hand, we found NMDA receptor-mediated Akt activation was associated with increased expression of BDNF (brain-derived neurotrophic factor) and activation of its high-affinity receptor TrkB after I/R in the hippocampus CA1 region, which could be held down by TrkB receptor antagonist K252a. On the other hand, we found that NMDA enhanced the binding of Ca2+-dependent calmodulin (CaM) to p85 (the regulation subunit of PI-3K), which led to the activation of Akt. W-13, an active CaM inhibitor, prevented the combination of CaM and p85 and subsequent Akt activation. Furthermore, NMDA receptor-mediated Akt activation was reversed by combined treatment with LY294002, the specific blockade of PI-3K. Taken together, our results suggested that subtoxic NMDA exerts the neuroprotective effect via activation of prosurvival PI-3K/Akt pathway against ischemic brain injury, and BDNF-TrkB signaling and Ca2+-dependent CaM cascade might contribute to NMDA induced activation of PI-3K/Akt pathway.
Collapse
Affiliation(s)
- Jing Xu
- Research Center for Biochemistry and Molecular Biology, The Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical College, Jiangsu, People's Republic of China
| | | | | | | |
Collapse
|
23
|
Bevilaqua LRM, Rossato JI, Clarke JHR, Medina JH, Izquierdo I, Cammarota M. Inhibition of c-Jun N-terminal kinase in the CA1 region of the dorsal hippocampus blocks extinction of inhibitory avoidance memory. Behav Pharmacol 2007; 18:483-9. [PMID: 17762516 DOI: 10.1097/fbp.0b013e3282ee7436] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Step-down inhibitory avoidance (IA) memory formation involves association of stepping-down from a platform present in a training box (conditioned stimulus) with a footshock (unconditioned stimulus). A single short training session is enough to induce a lasting and strong memory trace expressed as an increase in step-down latency. Repeated nonreinforced retrieval, however, induces extinction of the IA response, a process involving a new learning that overrules the original one to indicate that the conditioned stimulus no longer predicts the unconditioned stimulus. Although the molecular requirements of IA memory consolidation are well understood, comparatively less is known about the signaling pathways involved in its extinction. Here we report that, when given into dorsal CA1 immediately but not 180 min after daily nonreinforced retrieval sessions, SP60015, a specific inhibitor of the mitogen-activated protein kinase, c-Jun N-terminal kinase, impaired IA memory extinction in a dose-dependent manner without producing any motor or perceptual impairment or damaging the hippocampal formation. Our results suggest that, as happens during consolidation, extinction of IA long-term memory also requires c-Jun N-terminal kinase activity in the CA1 region of the dorsal hippocampus.
Collapse
Affiliation(s)
- Lia R M Bevilaqua
- Center for Memory Research, Biomedical Research Institute, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | | | | | | | | | | |
Collapse
|
24
|
Basille M, Falluel-Morel A, Vaudry D, Aubert N, Fournier A, Fréger P, Gallo-Payet N, Vaudry H, Gonzalez B. Ontogeny of PACAP receptors in the human cerebellum: Perspectives of therapeutic applications. ACTA ACUST UNITED AC 2006; 137:27-33. [PMID: 16963135 DOI: 10.1016/j.regpep.2006.03.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2006] [Revised: 03/15/2006] [Accepted: 03/26/2006] [Indexed: 11/16/2022]
Abstract
It is now well established that pituitary adenylate cyclase-activating polypeptide (PACAP) exerts anti-apoptotic and pro-differentiating actions during development of the rodent cerebellum. Cell signaling involved in the neurotrophic effects of PACAP has been precisely investigated. In particular, PACAP is a potent inhibitor of the mitochondrial apoptotic pathway through an ERK- and PKA-dependent mechanism. However, transposition of the neurodevelopmental activities of PACAP to the human cerebellum remains speculative, essentially because of the lack of data concerning the PACAP-ergic system. The present review is based on recent results that provide the first molecular, pharmacological and anatomical characterizations of PACAP receptors in the developing human cerebellum. It is now clearly established that the distribution pattern of PAC1-R and VPAC1-R mRNA in the human cerebellum is very similar to that already described in rodents. [(125)I]PACAP27 binding sites are closely associated with germinative neuroepithelia in fetal stages and with mature granule cells in infants and adults. Pharmacological characterization revealed that, in fetuses, PACAP binding sites exhibit a PAC1-R profile while, in adult patients, they correspond to a heterogeneous population of PAC1-R and VPAC(1/2)-R. Altogether, these data provide the first evidence that PACAP may exert neurodevelopmental functions in the human cerebellum.
Collapse
Affiliation(s)
- Magali Basille
- INSERM U413, IFRMP 23, University of Rouen, 76821 Mont Saint Aignan, France
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Aubert N, Falluel-Morel A, Vaudry D, Xifro X, Rodriguez-Alvarez J, Fisch C, de Jouffrey S, Lebigot JF, Fournier A, Vaudry H, Gonzalez BJ. PACAP and C2-ceramide generate different AP-1 complexes through a MAP-kinase-dependent pathway: involvement of c-Fos in PACAP-induced Bcl-2 expression. J Neurochem 2006; 99:1237-50. [PMID: 17026529 DOI: 10.1111/j.1471-4159.2006.04148.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) inhibits C2-ceramide-induced cell death through blockade of the mitochondrial apoptotic pathway in rat cerebellar granule neurones. However, the gene induction processes and transcription factors involved in the anti-apoptotic effect of PACAP remain unknown. Here, we show that PACAP and C2-ceramide activate activator protein-1 (AP-1) DNA binding in a dose- and time-dependent manner, but generate different AP-1 dimers. Thus, PACAP increased the proportion of c-Fos and Jun D while C2-ceramide increased c-Jun and reduced c-Fos in AP-1 complexes. In addition, PACAP strongly activated c-Fos gene expression while C2-ceramide markedly increased c-Jun phosphorylation. The effect of PACAP on c-Fos expression was blocked by the mitogen-activated protein kinase/extracellular signal-regulated kinase (MEK) inhibitor, U0126, while phosphorylation of c-Jun induced by C2-ceramide was abrogated by the protein phosphatase 2A (PP2A) inhibitor, okadaic acid. Transfection of immature granule cells with c-Fos siRNA, which strongly reduced basal and PACAP-stimulated levels of the protein, totally prevented the stimulatory effect of PACAP on Bcl-2 expression. The present study demonstrates that AP-1 complexes containing c-Fos mediate the effect of PACAP on Bcl-2 gene expression in cerebellar granule neurones. Our data also indicate that different AP-1 dimers are associated with the pro-apoptotic effect of C2-ceramide and the anti-apoptotic effect of PACAP.
Collapse
Affiliation(s)
- Nicolas Aubert
- INSERM U413, Laboratory of Cellular and Molecular Neuroendocrinology, European Institute for Peptide Research, University of Rouen, Mont-Saint-Aignan, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|