1
|
He R, Liu Y, Fu W, He X, Liu S, Xiao D, Tao Y. Mechanisms and cross-talk of regulated cell death and their epigenetic modifications in tumor progression. Mol Cancer 2024; 23:267. [PMID: 39614268 PMCID: PMC11606237 DOI: 10.1186/s12943-024-02172-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/07/2024] [Indexed: 12/01/2024] Open
Abstract
Cell death is a fundamental part of life for metazoans. To maintain the balance between cell proliferation and metabolism of human bodies, a certain number of cells need to be removed regularly. Hence, the mechanisms of cell death have been preserved during the evolution of multicellular organisms. Tumorigenesis is closely related with exceptional inhibition of cell death. Mutations or defects in cell death-related genes block the elimination of abnormal cells and enhance the resistance of malignant cells to chemotherapy. Therefore, the investigation of cell death mechanisms enables the development of drugs that directly induce tumor cell death. In the guidelines updated by the Cell Death Nomenclature Committee (NCCD) in 2018, cell death was classified into 12 types according to morphological, biochemical and functional classification, including intrinsic apoptosis, extrinsic apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, pyroptosis, PARP-1 parthanatos, entotic cell death, NETotic cell death, lysosome-dependent cell death, autophagy-dependent cell death, immunogenic cell death, cellular senescence and mitotic catastrophe. The mechanistic relationships between epigenetic controls and cell death in cancer progression were previously unclear. In this review, we will summarize the mechanisms of cell death pathways and corresponding epigenetic regulations. Also, we will explore the extensive interactions between these pathways and discuss the mechanisms of cell death in epigenetics which bring benefits to tumor therapy.
Collapse
Affiliation(s)
- Ruimin He
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China
- Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, Hunan, 410078, China
| | - Yifan Liu
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China
- Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, Hunan, 410078, China
| | - Weijie Fu
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China
- Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, Hunan, 410078, China
| | - Xuan He
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China
- Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, Hunan, 410078, China
| | - Shuang Liu
- Department of Oncology, Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Desheng Xiao
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Yongguang Tao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China.
- Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China.
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, Hunan, 410078, China.
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- Department of Thoracic Surgery, Hunan Key Laboratory of Early Diagnosis and Precision Therapy in Lung Cancer, Second Xiangya Hospital, Central South University, Changsha, 410011, China.
- Furong Laboratory, Xiangya School of Medicine, Central South University, Hunan, 410078, China.
| |
Collapse
|
2
|
Zhang W, Young JI, Gomez L, Schmidt MA, Lukacsovich D, Varma A, Chen XS, Martin ER, Wang L. Distinct CSF biomarker-associated DNA methylation in Alzheimer's disease and cognitively normal subjects. Alzheimers Res Ther 2023; 15:78. [PMID: 37038196 PMCID: PMC10088180 DOI: 10.1186/s13195-023-01216-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 03/21/2023] [Indexed: 04/12/2023]
Abstract
BACKGROUND Growing evidence has demonstrated that DNA methylation (DNAm) plays an important role in Alzheimer's disease (AD) and that DNAm differences can be detected in the blood of AD subjects. Most studies have correlated blood DNAm with the clinical diagnosis of AD in living individuals. However, as the pathophysiological process of AD can begin many years before the onset of clinical symptoms, there is often disagreement between neuropathology in the brain and clinical phenotypes. Therefore, blood DNAm associated with AD neuropathology, rather than with clinical data, would provide more relevant information on AD pathogenesis. METHODS We performed a comprehensive analysis to identify blood DNAm associated with cerebrospinal fluid (CSF) pathological biomarkers for AD. Our study included matched samples of whole blood DNA methylation, CSF Aβ42, phosphorylated tau181 (pTau181), and total tau (tTau) biomarkers data, measured on the same subjects and at the same clinical visits from a total of 202 subjects (123 CN or cognitively normal, 79 AD) in the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort. To validate our findings, we also examined the association between premortem blood DNAm and postmortem brain neuropathology measured on a group of 69 subjects in the London dataset. RESULTS We identified a number of novel associations between blood DNAm and CSF biomarkers, demonstrating that changes in pathological processes in the CSF are reflected in the blood epigenome. Overall, the CSF biomarker-associated DNAm is relatively distinct in CN and AD subjects, highlighting the importance of analyzing omics data measured on cognitively normal subjects (which includes preclinical AD subjects) to identify diagnostic biomarkers, and considering disease stages in the development and testing of AD treatment strategies. Moreover, our analysis revealed biological processes associated with early brain impairment relevant to AD are marked by DNAm in the blood, and blood DNAm at several CpGs in the DMR on HOXA5 gene are associated with pTau181 in the CSF, as well as tau-pathology and DNAm in the brain, nominating DNAm at this locus as a promising candidate AD biomarker. CONCLUSIONS Our study provides a valuable resource for future mechanistic and biomarker studies of DNAm in AD.
Collapse
Affiliation(s)
- Wei Zhang
- Division of Biostatistics, Department of Public Health Sciences, University of Miami Miller School of Medicine, 1120 NW 14Th Street, Miami, FL, 33136, USA
| | - Juan I Young
- Dr. John T Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Lissette Gomez
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Michael A Schmidt
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - David Lukacsovich
- Division of Biostatistics, Department of Public Health Sciences, University of Miami Miller School of Medicine, 1120 NW 14Th Street, Miami, FL, 33136, USA
| | - Achintya Varma
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - X Steven Chen
- Division of Biostatistics, Department of Public Health Sciences, University of Miami Miller School of Medicine, 1120 NW 14Th Street, Miami, FL, 33136, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Eden R Martin
- Dr. John T Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Lily Wang
- Division of Biostatistics, Department of Public Health Sciences, University of Miami Miller School of Medicine, 1120 NW 14Th Street, Miami, FL, 33136, USA.
- Dr. John T Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
| |
Collapse
|
3
|
Zhang W, Young JI, Gomez L, Schmidt MA, Lukacsovich D, Varma A, Chen XS, Martin ER, Wang L. Distinct CSF biomarker-associated DNA methylation in Alzheimer's disease and cognitively normal subjects. RESEARCH SQUARE 2023:rs.3.rs-2391364. [PMID: 36865230 PMCID: PMC9980279 DOI: 10.21203/rs.3.rs-2391364/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Background Growing evidence has demonstrated that DNA methylation (DNAm) plays an important role in Alzheimer's disease (AD) and that DNAm differences can be detected in the blood of AD subjects. Most studies have correlated blood DNAm with the clinical diagnosis of AD in living individuals. However, as the pathophysiological process of AD can begin many years before the onset of clinical symptoms, there is often disagreement between neuropathology in the brain and clinical phenotypes. Therefore, blood DNAm associated with AD neuropathology, rather than with clinical data, would provide more relevant information on AD pathogenesis. Methods We performed a comprehensive analysis to identify blood DNAm associated with cerebrospinal fluid (CSF) pathological biomarkers for AD. Our study included matched samples of whole blood DNA methylation, CSF Aβ 42 , phosphorylated tau 181 (pTau 181 ), and total tau (tTau) biomarkers data, measured on the same subjects and at the same clinical visits from a total of 202 subjects (123 CN or cognitively normal, 79 AD) in the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort. To validate our findings, we also examined the association between premortem blood DNAm and postmortem brain neuropathology measured on a group of 69 subjects in the London dataset. Results We identified a number of novel associations between blood DNAm and CSF biomarkers, demonstrating that changes in pathological processes in the CSF are reflected in the blood epigenome. Overall, the CSF biomarker-associated DNAm is relatively distinct in CN and AD subjects, highlighting the importance of analyzing omics data measured on cognitively normal subjects (which includes preclinical AD subjects) to identify diagnostic biomarkers, and considering disease stages in the development and testing of AD treatment strategies. Moreover, our analysis revealed biological processes associated with early brain impairment relevant to AD are marked by DNAm in the blood, and blood DNAm at several CpGs in the DMR on HOXA5 gene are associated with pTau 181 in the CSF, as well as tau-pathology and DNAm in the brain, nominating DNAm at this locus as a promising candidate AD biomarker. Conclusions Our study provides a valuable resource for future mechanistic and biomarker studies of DNAm in AD.
Collapse
Affiliation(s)
- Wei Zhang
- University of Miami, Miller School of Medicine
| | - Juan I Young
- Dr. John T Macdonald Foundation, University of Miami, Miller School of Medicine
| | | | - Michael A Schmidt
- Dr. John T Macdonald Foundation, University of Miami, Miller School of Medicine
| | | | | | | | - Eden R Martin
- Dr. John T Macdonald Foundation, University of Miami, Miller School of Medicine
| | - Lily Wang
- University of Miami, Miller School of Medicine
| |
Collapse
|
4
|
Xie J, Xie L, Wei H, Li XJ, Lin L. Dynamic Regulation of DNA Methylation and Brain Functions. BIOLOGY 2023; 12:152. [PMID: 36829430 PMCID: PMC9952911 DOI: 10.3390/biology12020152] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/10/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023]
Abstract
DNA cytosine methylation is a principal epigenetic mechanism underlying transcription during development and aging. Growing evidence suggests that DNA methylation plays a critical role in brain function, including neurogenesis, neuronal differentiation, synaptogenesis, learning, and memory. However, the mechanisms underlying aberrant DNA methylation in neurodegenerative diseases remain unclear. In this review, we provide an overview of the contribution of 5-methycytosine (5mC) and 5-hydroxylcytosine (5hmC) to brain development and aging, with a focus on the roles of dynamic 5mC and 5hmC changes in the pathogenesis of neurodegenerative diseases, particularly Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD). Identification of aberrant DNA methylation sites could provide potential candidates for epigenetic-based diagnostic and therapeutic strategies for neurodegenerative diseases.
Collapse
Affiliation(s)
| | | | | | - Xiao-Jiang Li
- Guangdong Key Laboratory of Non-Human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China
| | - Li Lin
- Guangdong Key Laboratory of Non-Human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China
| |
Collapse
|
5
|
Bai L, Yang G, Qin Z, Lyu J, Wang Y, Feng J, Liu M, Gong T, Li X, Li Z, Li J, Qin J, Yang W, Ding C. Proteome-Wide Profiling of Readers for DNA Modification. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101426. [PMID: 34351703 PMCID: PMC8498917 DOI: 10.1002/advs.202101426] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/02/2021] [Indexed: 05/13/2023]
Abstract
DNA modifications, represented by 5-methylcytosine (5mC), 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC), play important roles in epigenetic regulation of biological processes. The specific recognition of DNA modifications by the transcriptional protein machinery is thought to be a potential mechanism for epigenetic-driven gene regulation, and many modified DNA-specific binding proteins have been uncovered. However, the panoramic view of the roles of DNA modification readers at the proteome level remains largely unclear. Here, a recently developed concatenated tandem array of consensus transcription factor (TF) response elements (catTFREs) approach is employed to profile the binding activity of TFs at DNA modifications. Modified DNA-binding activity is quantified for 1039 TFs, representing 70% of the TFs in the human genome. Additionally, the modified DNA-binding activity of 600 TFs is monitored during the mouse brain development from the embryo to the adult stages. Readers of these DNA modifications are predicted, and the hierarchical networks between the transcriptional protein machinery and modified DNA are described. It is further demonstrated that ZNF24 and ZSCAN21 are potential readers of 5fC-modified DNA. This study provides a landscape of TF-DNA modification interactions that can be used to elucidate the epigenetic-related transcriptional regulation mechanisms under physiological conditions.
Collapse
Affiliation(s)
- Lin Bai
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and DevelopmentSchool of Life SciencesInstitute of Biomedical SciencesHuman Phenome InstituteZhongshan HospitalFudan UniversityShanghai200433China
| | - Guojian Yang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and DevelopmentSchool of Life SciencesInstitute of Biomedical SciencesHuman Phenome InstituteZhongshan HospitalFudan UniversityShanghai200433China
| | - Zhaoyu Qin
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and DevelopmentSchool of Life SciencesInstitute of Biomedical SciencesHuman Phenome InstituteZhongshan HospitalFudan UniversityShanghai200433China
| | - Jiacheng Lyu
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and DevelopmentSchool of Life SciencesInstitute of Biomedical SciencesHuman Phenome InstituteZhongshan HospitalFudan UniversityShanghai200433China
| | - Yunzhi Wang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and DevelopmentSchool of Life SciencesInstitute of Biomedical SciencesHuman Phenome InstituteZhongshan HospitalFudan UniversityShanghai200433China
| | - Jinwen Feng
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and DevelopmentSchool of Life SciencesInstitute of Biomedical SciencesHuman Phenome InstituteZhongshan HospitalFudan UniversityShanghai200433China
| | - Mingwei Liu
- State Key Laboratory of ProteomicsBeijing Proteome Research CenterNational Center for Protein Sciences (The PHOENIX Center, Beijing)Institute of LifeomicsBeijing102206China
| | - Tongqing Gong
- State Key Laboratory of ProteomicsBeijing Proteome Research CenterNational Center for Protein Sciences (The PHOENIX Center, Beijing)Institute of LifeomicsBeijing102206China
| | - Xianju Li
- State Key Laboratory of ProteomicsBeijing Proteome Research CenterNational Center for Protein Sciences (The PHOENIX Center, Beijing)Institute of LifeomicsBeijing102206China
| | - Zhengyang Li
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and DevelopmentSchool of Life SciencesInstitute of Biomedical SciencesHuman Phenome InstituteZhongshan HospitalFudan UniversityShanghai200433China
| | - Jixi Li
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and DevelopmentSchool of Life SciencesInstitute of Biomedical SciencesHuman Phenome InstituteZhongshan HospitalFudan UniversityShanghai200433China
| | - Jun Qin
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and DevelopmentSchool of Life SciencesInstitute of Biomedical SciencesHuman Phenome InstituteZhongshan HospitalFudan UniversityShanghai200433China
- State Key Laboratory of ProteomicsBeijing Proteome Research CenterNational Center for Protein Sciences (The PHOENIX Center, Beijing)Institute of LifeomicsBeijing102206China
| | - Wenjun Yang
- Department of Pediatric OrthopedicsXin Hua Hospital AffiliatedShanghai Jiao Tong University School of MedicineShanghai200092China
| | - Chen Ding
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and DevelopmentSchool of Life SciencesInstitute of Biomedical SciencesHuman Phenome InstituteZhongshan HospitalFudan UniversityShanghai200433China
| |
Collapse
|
6
|
Silencing of CEBPB-AS1 modulates CEBPB expression and resensitizes BRAF-inhibitor resistant melanoma cells to vemurafenib. Melanoma Res 2021; 30:443-454. [PMID: 32467529 PMCID: PMC7469874 DOI: 10.1097/cmr.0000000000000675] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Supplemental Digital Content is available in the text. Introduction of targeted therapy in the treatment of metastatic cutaneous malignant melanoma (CMM) has improved clinical outcome during the last years. However, only in a subset of the CMM patients, this will lead to long-term effects. CEBPB is a transcription factor that has been implicated in various physiological and pathological processes, including cancer development. We have investigated its prognostic impact on CMM and unexpectedly found that higher CEBPB mRNA levels correlated with a longer overall survival. Furthermore, in a small cohort of patients with metastatic CMM treated with BRAF-inhibitors, higher levels of CEBPB mRNA expression in the tumor cells prior treatment correlated to a longer progression-free survival. We have characterized an overlapping antisense transcript, CEBPB-AS1, with the aim to investigate the regulation of CEBPB expression in CMM and its impact on BRAF-inhibitor sensitivity. We demonstrated that silencing of CEBPB-AS1 resulted in epigenetic modifications in the CEBPB promoter and in increased CEBPB mRNA and protein levels, inhibited proliferation and partially resensitized BRAF-inhibitor resistant CMM cells to this drug-induced apoptosis. Our data suggest that targeting CEBPB-AS1 may represent a valuable tool to sensitize CMM cells to the BRAF-inhibitor-based therapies.
Collapse
|
7
|
Liao AH, Liu H. The epigenetic regulation of the immune system during pregnancy. REPRODUCTIVE IMMUNOLOGY 2021:365-385. [DOI: 10.1016/b978-0-12-818508-7.00005-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
8
|
Buenahora MR, Lafaurie GI, Perdomo SJ. Identification of HPV16-p16 INK4a mediated methylation in oral potentially malignant disorder. Epigenetics 2020; 16:1016-1030. [PMID: 33164635 DOI: 10.1080/15592294.2020.1834923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
To evaluate the possible involvement of epigenetic modulation by HPV16-p16INK4a in oral potentially malignant disorder (OPMD). We generated DNA-methylation profiles, according to p16INK4a expression and HPV16 genotype (positive or negative), of OPMD samples and p16INK4a-HPV16 negative samples (used as control), using reduced-representation bisulphite sequencing (RRBS-Seq- Illumina) technology. Twelve samples, four for each group, as follows: 1) p16INK4a+ HPV16+; 2) p16INK4a+ HPV16-; 3) p16INK4a- HPV16-, were analysed in triplicate for DNA-methylation profiles. Fifty-four per cent of DMRs were hypermethylated and 46% were hypomethylated. An increase in methylation of loci in OPMD was independent of the presence of HPV. The hypermethylated genes in HPV+ samples were associated with signalling pathways such as NICD traffics to nucleus, signalling by NOTCH1 (p = 0.008), Interferon-gamma (p = 0.008) and Interleukin-6 signalling (p = 0.027). The hypomethylated genes in HPV infection were associated with TRAF3-dependent IRF activation pathway (p = 0.002), RIG-I/MDA5 mediated induction of IFN-alpha/beta pathways (p = 0.005), TRAF6 mediated IRF7 activation (p = 0.009), TRIF-mediated TLR3/TLR4 signalling (p = 0.011) and MyD88-independent cascade release of apoptotic factors (p = 0.011). Protein association analysis of DMRs in OPMD revealed 19 genes involved in the cell cycle regulation, immune system, and focal adhesion. Aberrantly methylated loci in OPMD were observed in p16INK4a positive samples which suggests that a shift in global methylation status may be important for cancer progression. The results suggest that HPV infection in OPMD induces modulation of genes related to the immune system and regulation of the cellular cycle.
Collapse
Affiliation(s)
- Maria Rosa Buenahora
- Unit of Oral Clinical Epidemiology, School of Dentistry, El Bosque University, Bogotá, Colombia
| | - Gloria Inés Lafaurie
- Unit of Basic Oral Investigation, School of Dentistry, El Bosque University, Bogotá, Colombia
| | - Sandra J Perdomo
- Cellular and Molecular Immunology Research Group, Universidad El Bosque, Bogotá, Colombia
| |
Collapse
|
9
|
Ray S, Tillo D, Ufot A, Assad N, Durell S, Vinson C. bZIP Dimers CREB1, ATF2, Zta, ATF3|cJun, and cFos|cJun Prefer to Bind to Some Double-Stranded DNA Sequences Containing 5-Formylcytosine and 5-Carboxylcytosine. Biochemistry 2020; 59:3529-3540. [PMID: 32902247 DOI: 10.1021/acs.biochem.0c00475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In mammalian cells, 5-methylcytosine (5mC) occurs in genomic double-stranded DNA (dsDNA) and is enzymatically oxidized to 5-hydroxymethylcytosine (5hmC), then to 5-formylcytosine (5fC), and finally to 5-carboxylcytosine (5caC). These cytosine modifications are enriched in regulatory regions of the genome. The effect of these oxidative products on five bZIP dimers (CREB1, ATF2, Zta, ATF3|cJun, and cFos|cJun) binding to five types of dsDNA was measured using protein binding microarrays. The five dsDNAs contain either cytosine in both DNA strands or cytosine in one strand and either 5mC, 5hmC, 5fC, or 5caC in the second strand. Some sequences containing the CEBP half-site GCAA are bound more strongly by all five bZIP domains when dsDNA contains 5mC, 5hmC, or 5fC. dsDNA containing 5caC in some TRE (AP-1)-like sequences, e.g., TGACTAA, is better bound by Zta, ATF3|cJun, and cFos|cJun.
Collapse
|
10
|
Perez E, Capper D. Invited Review: DNA methylation-based classification of paediatric brain tumours. Neuropathol Appl Neurobiol 2020; 46:28-47. [PMID: 31955441 DOI: 10.1111/nan.12598] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 01/13/2020] [Indexed: 12/18/2022]
Abstract
DNA methylation-based machine learning algorithms represent powerful diagnostic tools that are currently emerging for several fields of tumour classification. For various reasons, paediatric brain tumours have been the main driving forces behind this rapid development and brain tumour classification tools are likely further advanced than in any other field of cancer diagnostics. In this review, we will discuss the main characteristics that were important for this rapid advance, namely the high clinical need for improvement of paediatric brain tumour diagnostics, the robustness of methylated DNA and the consequential possibility to generate high-quality molecular data from archival formalin-fixed paraffin-embedded pathology specimens, the implementation of a single array platform by most laboratories allowing data exchange and data pooling to an unprecedented extent, as well as the high suitability of the data format for machine learning. We will further discuss the four most central output qualities of DNA methylation profiling in a diagnostic setting (tumour classification, tumour sub-classification, copy number analysis and guidance for additional molecular testing) individually for the most frequent types of paediatric brain tumours. Lastly, we will discuss DNA methylation profiling as a tool for the detection of new paediatric brain tumour classes and will give an overview of the rapidly growing family of new tumours identified with the aid of this technique.
Collapse
Affiliation(s)
- E Perez
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany
| | - D Capper
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,German Cancer Consortium (DKTK), Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
11
|
Khadka J, Yadav NS, Guy M, Grafi G, Golan-Goldhirsh A. Epigenetic aspects of floral homeotic genes in relation to sexual dimorphism in the dioecious plant Mercurialis annua. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:6245-6259. [PMID: 31504768 PMCID: PMC6859717 DOI: 10.1093/jxb/erz379] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 08/08/2019] [Indexed: 05/26/2023]
Abstract
In plants, dioecy characterizes species that carry male and female flowers on separate plants and it occurs in about 6% of angiosperms; however, the molecular mechanisms that underlie dioecy are essentially unknown. The ability for sex-reversal by hormone application raises the hypothesis that the genes required for the expression of both sexes are potentially functional but are regulated by epigenetic means. In this study, proteomic analysis of nuclear proteins isolated from flower buds of females, males, and feminized males of the dioecious plant Mercurialis annua revealed differential expression of nuclear proteins that are implicated in chromatin structure and function, including floral homeotic proteins. Focusing on floral genes, we found that class B genes were mainly expressed in male flowers, while class D genes, as well as SUPERMAN-like genes, were mainly expressed in female flowers. Cytokinin-induced feminization of male plants was associated with down-regulation of male-specific genes concomitantly with up-regulation of female-specific genes. No correlation was found between the expression of class B and D genes and the changes in DNA methylation or chromatin conformation of these genes. Thus, we could not confirm DNA methylation or chromatin conformation of floral genes to be the major determinant regulating sexual dimorphisms. Instead, determination of sex in M. annua might be controlled upstream of floral genes by one or more sex-specific factors that affect hormonal homeostasis. A comprehensive model is proposed for sex-determination in M. annua.
Collapse
Affiliation(s)
- Janardan Khadka
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion, Israel
| | | | - Micha Guy
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion, Israel
| | | | | |
Collapse
|
12
|
Wang X, Kadarmideen HN. Genome-wide DNA methylation analysis using next-generation sequencing to reveal candidate genes responsible for boar taint in pigs. Anim Genet 2019; 50:644-659. [PMID: 31515844 DOI: 10.1111/age.12842] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2019] [Indexed: 01/23/2023]
Abstract
Boar taint (BT) is an offensive flavor observed in non-castrated male pigs that reduces the carcass price. Surgical castration effectively avoids the taint but is associated with animal welfare concerns. The functional annotation of farm animal genomes for understanding the biology of complex traits can be used in the selection of breeding animals to achieve favorable phenotypic outcomes. The characterization of pig epigenomes/methylation changes between animals with high and low BT and genome-wide epigenetic markers that can predict BT are lacking. Reduced representation bisulfite sequencing of DNA methylation patterns based on next-generation sequencing is an efficient technology to identify candidate epigenetic biomarkers associated with BT. Three different BT levels were analyzed using reduced representation bisulfite sequencing data to calculate the methylation levels of cytosine and guanine dinucleotide (CpG) sites. The co-analysis of differentially methylated CpG sites identified by this study and differentially expressed genes identified by a previous study found 32 significant co-located genes. The joint analysis of GO terms and pathways revealed that methylation and gene expression of seven candidate genes were associated with BT; in particular, FASN plays a key role in fatty acid biosynthesis, and PEMT might be involved in estrogen regulation and the development of BT. This study is the first to report the genome-wide DNA methylation profiles of BT in pigs using next-generation sequencing and summarize candidate genes associated with epigenetic markers of BT, which could contribute to the understanding of the functional biology of BT traits and selective breeding of pigs against BT based on epigenetic biomarkers.
Collapse
Affiliation(s)
- X Wang
- Quantitative Genomics, Bioinformatics and Computational Biology Group, Department of Applied Mathematics and Computer Science, Technical University of Denmark, Richard Petersens Plads, Building 324, Kongens Lyngby, 2800, Denmark
| | - H N Kadarmideen
- Quantitative Genomics, Bioinformatics and Computational Biology Group, Department of Applied Mathematics and Computer Science, Technical University of Denmark, Richard Petersens Plads, Building 324, Kongens Lyngby, 2800, Denmark
| |
Collapse
|
13
|
Wang X, Kadarmideen HN. An Epigenome-Wide DNA Methylation Map of Testis in Pigs for Study of Complex Traits. Front Genet 2019; 10:405. [PMID: 31114612 PMCID: PMC6502962 DOI: 10.3389/fgene.2019.00405] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 04/12/2019] [Indexed: 12/17/2022] Open
Abstract
Epigenetic changes are important for understanding complex trait variation and inheritance in pigs that are also a valuable biomedical model for human health research. Testis is the main organ for reproduction and boar taint in pigs; however, there have been no studies to-date on adult pig testis epigenome. The main objective of this study was to establish a genome-wide DNA methylation map of pig testis that would help identify candidate epigenetic biomarkers and methylated genes for complex traits such as male reproduction, fertility or boar taint. Reduced Representation Bisulfite Sequencing (RRBS) was used to study methylation levels of cytosine in nine pig testis samples. The results showed that genome-wide methylation status of nine samples overlapped greatly and their variation among pigs were low. The methylation levels of promoter, exon, intron, cytosine and guanine dinucleotide (CpG) islands and CpG island shores regions were 0.15, 0.47, 0.55, 0.39, and 0.53, respectively. Cytosines binding to CpG islands showed different methylation levels between exon and intron regions. All methylation levels of CpG islands were lower than CpG island shores in different genic features. The distribution of 12,738 differentially methylated cytosines (DMCs) within CpG islands, CpG island shores and other regions was 36.86, 21.65, and 41.49%, respectively, and was 0.33, 1.71, 5.95, and 92.01% in promoter, exon, intron and intergenic regions, respectively. Methylation levels of DMCs in promoter, exon and intron regions were significantly different between CpG islands and CpG island shores (P < 0.05). A total of 898 genes with 2089 DMCs were enriched in 112 Gene Ontology (GO) terms. Fifteen methylated genes from our study were associated with fertility or boar taint traits. Our analysis revealed the methylation patterns in different genic features and CpG island regions of testis in pigs, and summarized several candidate genes associated with DMCs and the involved GO terms. These findings are helpful to understand the relationship between DNA methylation and genic CpG islands, to provide candidate epigenetic regions or biomarkers for pig production and welfare and for translational epigenomic studies that use pigs as an animal model for human research.
Collapse
Affiliation(s)
- Xiao Wang
- Quantitative Genomics, Bioinformatics and Computational Biology Group, Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Haja N Kadarmideen
- Quantitative Genomics, Bioinformatics and Computational Biology Group, Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
14
|
Bhatia H, Khemka N, Jain M, Garg R. Genome-wide bisulphite-sequencing reveals organ-specific methylation patterns in chickpea. Sci Rep 2018; 8:9704. [PMID: 29946142 PMCID: PMC6018830 DOI: 10.1038/s41598-018-27979-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 05/30/2018] [Indexed: 12/31/2022] Open
Abstract
DNA methylation is widely known to regulate gene expression in eukaryotes. Here, we unraveled DNA methylation patterns in cultivated chickpea to understand the regulation of gene expression in different organs. We analyzed the methylation pattern in leaf tissue of wild chickpea too, and compared it with cultivated chickpea. Our analysis indicated abundant CG methylation within gene-body and CHH methylation in intergenic regions of the chickpea genome in all the organs examined. Analysis of differentially methylated regions (DMRs) demonstrated a higher number of CG context DMRs in wild chickpea and CHH context DMRs in cultivated chickpea. We observed increased preponderance of hypermethylated DMRs in the promoter regions and hypomethylated DMRs in the genic regions in cultivated chickpea. Genomic location and context of the DMRs correlated well with expression of proximal genes. Our results put forth a positive correlation of promoter hypermethylation with increased transcript abundance via identification of DMR-associated genes involved in flower development in cultivated chickpea. The atypical correlation observed between promoter hypermethylation and increased transcript abundance might be dependent on 24-nt small RNAs and transcription factors binding to the promoter region. This study provides novel insights into DNA methylation patterns in chickpea and their role in regulation of gene expression.
Collapse
Affiliation(s)
- Himanshi Bhatia
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Niraj Khemka
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Mukesh Jain
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.,National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Rohini Garg
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Gautam Buddha Nagar, Uttar Pradesh, 201314, India.
| |
Collapse
|
15
|
Stricker SH, Götz M. DNA-Methylation: Master or Slave of Neural Fate Decisions? Front Neurosci 2018; 12:5. [PMID: 29449798 PMCID: PMC5799221 DOI: 10.3389/fnins.2018.00005] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 01/04/2018] [Indexed: 01/05/2023] Open
Abstract
The pristine formation of complex organs depends on sharp temporal and spatial control of gene expression. Therefore, epigenetic mechanisms have been frequently attributed a central role in controlling cell fate determination. A prime example for this is the first discovered and still most studied epigenetic mark, DNA methylation, and the development of the most complex mammalian organ, the brain. Recently, the field of epigenetics has advanced significantly: new DNA modifications were discovered, epigenomic profiling became widely accessible, and methods for targeted epigenomic manipulation have been developed. Thus, it is time to challenge established models of epigenetic gene regulation. Here, we review the current state of knowledge about DNA modifications, their epigenomic distribution, and their regulatory role. We will summarize the evidence suggesting they possess crucial roles in neurogenesis and discuss whether this likely includes lineage choice regulation or rather effects on differentiation. Finally, we will attempt an outlook on how questions, which remain unresolved, could be answered soon.
Collapse
Affiliation(s)
- Stefan H Stricker
- MCN Junior Research Group, Munich Center for Neurosciences, Ludwig-Maximilian-Universität, Munich, Germany.,Physiological Genomics, BioMedical Center, Munich, Germany.,German Research Center for Environmental Health, Ingolstädter Landstrasse 1, Germany and Biomedical Center, Institute of Stem Cell Research, Helmholtz Zentrum, Ludwig-Maximilian-Universität, Munich, Germany
| | - Magdalena Götz
- Physiological Genomics, BioMedical Center, Munich, Germany.,German Research Center for Environmental Health, Ingolstädter Landstrasse 1, Germany and Biomedical Center, Institute of Stem Cell Research, Helmholtz Zentrum, Ludwig-Maximilian-Universität, Munich, Germany.,German Excellence Cluster of Systems Neurology, Munich, Germany
| |
Collapse
|
16
|
Abstract
Recent technological advances have made it possible to decode DNA methylomes at single-base-pair resolution under various physiological conditions. Many aberrant or differentially methylated sites have been discovered, but the mechanisms by which changes in DNA methylation lead to observed phenotypes, such as cancer, remain elusive. The classical view of methylation-mediated protein-DNA interactions is that only proteins with a methyl-CpG binding domain (MBD) can interact with methylated DNA. However, evidence is emerging to suggest that transcription factors lacking a MBD can also interact with methylated DNA. The identification of these proteins and the elucidation of their characteristics and the biological consequences of methylation-dependent transcription factor-DNA interactions are important stepping stones towards a mechanistic understanding of methylation-mediated biological processes, which have crucial implications for human development and disease.
Collapse
|
17
|
Conti A, Rota F, Ragni E, Favero C, Motta V, Lazzari L, Bollati V, Fustinoni S, Dieci G. Hydroquinone induces DNA hypomethylation-independent overexpression of retroelements in human leukemia and hematopoietic stem cells. Biochem Biophys Res Commun 2016; 474:691-695. [DOI: 10.1016/j.bbrc.2016.05.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 05/02/2016] [Indexed: 10/21/2022]
|
18
|
Kohan-Ghadr HR, Kadam L, Jain C, Armant DR, Drewlo S. Potential role of epigenetic mechanisms in regulation of trophoblast differentiation, migration, and invasion in the human placenta. Cell Adh Migr 2016; 10:126-35. [PMID: 26745760 PMCID: PMC4853046 DOI: 10.1080/19336918.2015.1098800] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The proper establishment and organogenesis of the placenta is crucial for intrauterine fetal growth and development. Endometrial invasion by the extravillous trophoblast cells, as well as formation of the syncytiotrophoblast (STB), are of vital importance for placental function. Trophoblast migration and invasion is often compared to tumor metastasis, which uses many of the same molecular mechanisms. However, unlike cancer cells, both initiation and the extent of trophoblast invasion are tightly regulated by feto-maternal cross-talk, which when perturbed, results in a wide range of abnormalities. Multiple factors control the trophoblast, including cytokines and hormones, which are subject to transcriptional regulatory networks. The relevance of epigenetics in transcriptional regulation of trophoblast differentiation and invasion, as well as in the onset of placenta-related pregnancy disorders, became recognized decades ago. Although, there has been tremendous progress in uncovering the molecular foundation of placental development, there is still much to be learned about the epigenetic machinery, and its role in trophoblast differentiation and invasion. This review will provide an overview of the epigenetic control of trophoblast differentiation and invasion. It will also highlight the major epigenetic mechanisms involved in pregnancy complications related to placental deficiencies.
Collapse
Affiliation(s)
- Hamid-Reza Kohan-Ghadr
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Leena Kadam
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Chandni Jain
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - D. Randall Armant
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Sascha Drewlo
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
19
|
Vincent ZL, Mitchell MD, Ponnampalam AP. Regulation of TIMP-1 in Human Placenta and Fetal Membranes by lipopolysaccharide and demethylating agent 5-aza-2'-deoxycytidine. Reprod Biol Endocrinol 2015; 13:136. [PMID: 26691525 PMCID: PMC4687108 DOI: 10.1186/s12958-015-0132-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 12/09/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND An appropriate transcriptional profile in the placenta and fetal membranes is required for successful pregnancy; any variations may lead to inappropriate timing of birth. Epigenetic regulation through reversible modification of chromatin has emerged as a fundamental mechanism for the control of gene expression in a range of biological systems and can be modified by pharmacological intervention, thus providing novel therapeutic avenues. TIMP-1 is an endogenous inhibitor of MMPs, and hence is intimately involved in maintaining the integrity of the fetal membranes until labor. OBJECTIVE AND METHODS To determine if TIMP-1 is regulated by DNA methylation in gestational tissues we employed an in vitro model in which gestational tissue explants were treated with demethylating agent 5-aza-2'-deoxycytidine (AZA) and lipopolysaccharide (LPS). RESULTS Quantitative Real-Time PCR (qRT-PCR) revealed that TIMP-1 transcription was significantly increased by combined treatment of AZA and LPS, but not LPS alone, in villous, amnion and choriodecidua explants after 24 and 48 hrs, whilst western blotting showed protein production was stimulated after 24 hrs only. Upon interrogation of the TIMP-1 promoter using Sequenom EpiTyper MassARRAY, we discovered sex-specific differential methylation, in part explained by x-linked methylation in females. Increased TIMP-1 in the presence of LPS was potentiated by AZA treatment, signifying that a change in chromatin structure, but not in DNA methylation at the promoter region, is required for transcriptional activators to access the promoter region of TIMP-1. CONCLUSIONS Collectively, these observations support a potential role for pharmacological agents that modify chromatin structure to be utilized in the therapeutic targeting of TIMP-1 to prevent premature rupture of the fetal membranes in an infectious setting.
Collapse
Affiliation(s)
- Zoë L Vincent
- Liggins Institute, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
- Gravida: National Centre for Growth and Development, Palmerston North, New Zealand
| | - Murray D Mitchell
- Liggins Institute, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
- University of Queensland Centre for Clinical Research, Brisbane, Australia
| | - Anna P Ponnampalam
- Liggins Institute, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand.
- Gravida: National Centre for Growth and Development, Palmerston North, New Zealand.
- The Heart Foundation, Auckland, New Zealand.
| |
Collapse
|
20
|
Lizio M, Ishizu Y, Itoh M, Lassmann T, Hasegawa A, Kubosaki A, Severin J, Kawaji H, Nakamura Y, Suzuki H, Hayashizaki Y, Carninci P, Forrest ARR. Mapping Mammalian Cell-type-specific Transcriptional Regulatory Networks Using KD-CAGE and ChIP-seq Data in the TC-YIK Cell Line. Front Genet 2015; 6:331. [PMID: 26635867 PMCID: PMC4650373 DOI: 10.3389/fgene.2015.00331] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 10/30/2015] [Indexed: 12/22/2022] Open
Abstract
Mammals are composed of hundreds of different cell types with specialized functions. Each of these cellular phenotypes are controlled by different combinations of transcription factors. Using a human non islet cell insulinoma cell line (TC-YIK) which expresses insulin and the majority of known pancreatic beta cell specific genes as an example, we describe a general approach to identify key cell-type-specific transcription factors (TFs) and their direct and indirect targets. By ranking all human TFs by their level of enriched expression in TC-YIK relative to a broad collection of samples (FANTOM5), we confirmed known key regulators of pancreatic function and development. Systematic siRNA mediated perturbation of these TFs followed by qRT-PCR revealed their interconnections with NEUROD1 at the top of the regulation hierarchy and its depletion drastically reducing insulin levels. For 15 of the TF knock-downs (KD), we then used Cap Analysis of Gene Expression (CAGE) to identify thousands of their targets genome-wide (KD-CAGE). The data confirm NEUROD1 as a key positive regulator in the transcriptional regulatory network (TRN), and ISL1, and PROX1 as antagonists. As a complimentary approach we used ChIP-seq on four of these factors to identify NEUROD1, LMX1A, PAX6, and RFX6 binding sites in the human genome. Examining the overlap between genes perturbed in the KD-CAGE experiments and genes with a ChIP-seq peak within 50 kb of their promoter, we identified direct transcriptional targets of these TFs. Integration of KD-CAGE and ChIP-seq data shows that both NEUROD1 and LMX1A work as the main transcriptional activators. In the core TRN (i.e., TF-TF only), NEUROD1 directly transcriptionally activates the pancreatic TFs HSF4, INSM1, MLXIPL, MYT1, NKX6-3, ONECUT2, PAX4, PROX1, RFX6, ST18, DACH1, and SHOX2, while LMX1A directly transcriptionally activates DACH1, SHOX2, PAX6, and PDX1. Analysis of these complementary datasets suggests the need for caution in interpreting ChIP-seq datasets. (1) A large fraction of binding sites are at distal enhancer sites and cannot be directly associated to their targets, without chromatin conformation data. (2) Many peaks may be non-functional: even when there is a peak at a promoter, the expression of the gene may not be affected in the matching perturbation experiment.
Collapse
Affiliation(s)
- Marina Lizio
- RIKEN Center for Life Science Technologies Yokohama, Japan ; Division of Genomic Technologies, RIKEN Center for Life Science Technologies Yokohama, Japan
| | - Yuri Ishizu
- RIKEN Center for Life Science Technologies Yokohama, Japan ; Division of Genomic Technologies, RIKEN Center for Life Science Technologies Yokohama, Japan
| | - Masayoshi Itoh
- RIKEN Center for Life Science Technologies Yokohama, Japan ; Division of Genomic Technologies, RIKEN Center for Life Science Technologies Yokohama, Japan ; RIKEN Preventive Medicine and Diagnosis Innovation Program Yokohama, Japan
| | - Timo Lassmann
- RIKEN Center for Life Science Technologies Yokohama, Japan ; Division of Genomic Technologies, RIKEN Center for Life Science Technologies Yokohama, Japan ; Telethon Kids Institute, The University of Western Australia Subiaco, WA, Australia
| | - Akira Hasegawa
- RIKEN Center for Life Science Technologies Yokohama, Japan ; Division of Genomic Technologies, RIKEN Center for Life Science Technologies Yokohama, Japan
| | | | - Jessica Severin
- RIKEN Center for Life Science Technologies Yokohama, Japan ; Division of Genomic Technologies, RIKEN Center for Life Science Technologies Yokohama, Japan
| | - Hideya Kawaji
- RIKEN Center for Life Science Technologies Yokohama, Japan ; Division of Genomic Technologies, RIKEN Center for Life Science Technologies Yokohama, Japan ; RIKEN Preventive Medicine and Diagnosis Innovation Program Yokohama, Japan
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Center Ibaraki, Japan
| | | | - Harukazu Suzuki
- RIKEN Center for Life Science Technologies Yokohama, Japan ; Division of Genomic Technologies, RIKEN Center for Life Science Technologies Yokohama, Japan
| | - Yoshihide Hayashizaki
- RIKEN Center for Life Science Technologies Yokohama, Japan ; RIKEN Preventive Medicine and Diagnosis Innovation Program Yokohama, Japan
| | - Piero Carninci
- RIKEN Center for Life Science Technologies Yokohama, Japan ; Division of Genomic Technologies, RIKEN Center for Life Science Technologies Yokohama, Japan
| | - Alistair R R Forrest
- RIKEN Center for Life Science Technologies Yokohama, Japan ; Division of Genomic Technologies, RIKEN Center for Life Science Technologies Yokohama, Japan ; QEII Medical Centre and Centre for Medical Research, Harry Perkins Institute of Medical Research, The University of Western Australia Nedlands, WA, Australia
| |
Collapse
|
21
|
Klengel T, Binder EB. Epigenetics of Stress-Related Psychiatric Disorders and Gene × Environment Interactions. Neuron 2015; 86:1343-57. [PMID: 26087162 DOI: 10.1016/j.neuron.2015.05.036] [Citation(s) in RCA: 220] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A deeper understanding of the pathomechanisms leading to stress-related psychiatric disorders is important for the development of more efficient preventive and therapeutic strategies. Epidemiological studies indicate a combined contribution of genetic and environmental factors in the risk for disease. The environment, particularly early life severe stress or trauma, can lead to lifelong molecular changes in the form of epigenetic modifications that can set the organism off on trajectories to health or disease. Epigenetic modifications are capable of shaping and storing the molecular response of a cell to its environment as a function of genetic predisposition. This provides a potential mechanism for gene-environment interactions. Here, we review epigenetic mechanisms associated with the response to stress and trauma exposure and the development of stress-related psychiatric disorders. We also look at how they may contribute to our understanding of the combined effects of genetic and environmental factors in shaping disease risk.
Collapse
Affiliation(s)
- Torsten Klengel
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich 80804, Germany; Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Elisabeth B Binder
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich 80804, Germany; Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
22
|
Yoo S, Takikawa S, Geraghty P, Argmann C, Campbell J, Lin L, Huang T, Tu Z, Feronjy R, Spira A, Schadt EE, Powell CA, Zhu J. Integrative analysis of DNA methylation and gene expression data identifies EPAS1 as a key regulator of COPD. PLoS Genet 2015; 11:e1004898. [PMID: 25569234 PMCID: PMC4287352 DOI: 10.1371/journal.pgen.1004898] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 11/17/2014] [Indexed: 01/11/2023] Open
Abstract
Chronic Obstructive Pulmonary Disease (COPD) is a complex disease. Genetic, epigenetic, and environmental factors are known to contribute to COPD risk and disease progression. Therefore we developed a systematic approach to identify key regulators of COPD that integrates genome-wide DNA methylation, gene expression, and phenotype data in lung tissue from COPD and control samples. Our integrative analysis identified 126 key regulators of COPD. We identified EPAS1 as the only key regulator whose downstream genes significantly overlapped with multiple genes sets associated with COPD disease severity. EPAS1 is distinct in comparison with other key regulators in terms of methylation profile and downstream target genes. Genes predicted to be regulated by EPAS1 were enriched for biological processes including signaling, cell communications, and system development. We confirmed that EPAS1 protein levels are lower in human COPD lung tissue compared to non-disease controls and that Epas1 gene expression is reduced in mice chronically exposed to cigarette smoke. As EPAS1 downstream genes were significantly enriched for hypoxia responsive genes in endothelial cells, we tested EPAS1 function in human endothelial cells. EPAS1 knockdown by siRNA in endothelial cells impacted genes that significantly overlapped with EPAS1 downstream genes in lung tissue including hypoxia responsive genes, and genes associated with emphysema severity. Our first integrative analysis of genome-wide DNA methylation and gene expression profiles illustrates that not only does DNA methylation play a ‘causal’ role in the molecular pathophysiology of COPD, but it can be leveraged to directly identify novel key mediators of this pathophysiology. Chronic Obstructive Pulmonary Disease (COPD) is a common lung disease. It is the fourth leading cause of death in the world and is expected to be the third by 2020. COPD is a heterogeneous and complex disease consisting of obstruction in the small airways, emphysema, and chronic bronchitis. COPD is generally caused by exposure to noxious particles or gases, most commonly from cigarette smoking. However, only 20–25% of smokers develop clinically significant airflow obstruction. Smoking is known to cause epigenetic changes in lung tissues. Thus, genetics, epigenetic, and their interaction with environmental factors play an important role in COPD pathogenesis and progression. Currently, there are no therapeutics that can reverse COPD progression. In order to identify new targets that may lead to the development of therapeutics for curing COPD, we developed a systematic approach to identify key regulators of COPD that integrates genome-wide DNA methylation, gene expression, and phenotype data in lung tissue from COPD and control samples. Our integrative analysis identified 126 key regulators of COPD. We identified EPAS1 as the only key regulator whose downstream genes significantly overlapped with multiple genes sets associated with COPD disease severity.
Collapse
Affiliation(s)
- Seungyeul Yoo
- Institute of Genomics and Multiscale Biology, Mount Sinai School of Medicine, New York, New York, United States of America
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Sachiko Takikawa
- Division of Pulmonary, Critical Care and Sleep Medicine, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Patrick Geraghty
- Department of Medicine, St. Luke's Roosevelt Medical Center, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Carmen Argmann
- Institute of Genomics and Multiscale Biology, Mount Sinai School of Medicine, New York, New York, United States of America
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Joshua Campbell
- Division of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Luan Lin
- Institute of Genomics and Multiscale Biology, Mount Sinai School of Medicine, New York, New York, United States of America
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Tao Huang
- Institute of Genomics and Multiscale Biology, Mount Sinai School of Medicine, New York, New York, United States of America
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Zhidong Tu
- Institute of Genomics and Multiscale Biology, Mount Sinai School of Medicine, New York, New York, United States of America
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Robert Feronjy
- Department of Medicine, St. Luke's Roosevelt Medical Center, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Avrum Spira
- Division of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Eric E. Schadt
- Institute of Genomics and Multiscale Biology, Mount Sinai School of Medicine, New York, New York, United States of America
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Charles A. Powell
- Division of Pulmonary, Critical Care and Sleep Medicine, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Jun Zhu
- Institute of Genomics and Multiscale Biology, Mount Sinai School of Medicine, New York, New York, United States of America
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
23
|
Sadakierska-Chudy A, Kostrzewa RM, Filip M. A comprehensive view of the epigenetic landscape part I: DNA methylation, passive and active DNA demethylation pathways and histone variants. Neurotox Res 2014; 27:84-97. [PMID: 25362550 PMCID: PMC4286137 DOI: 10.1007/s12640-014-9497-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 10/07/2014] [Accepted: 10/16/2014] [Indexed: 12/31/2022]
Abstract
In multicellular organisms, all the cells are genetically identical but turn genes on or off at the right time to promote differentiation into specific cell types. The regulation of higher-order chromatin structure is essential for genome-wide reprogramming and for tissue-specific patterns of gene expression. The complexity of the genome is regulated by epigenetic mechanisms, which act at the level of DNA, histones, and nucleosomes. Epigenetic machinery is involved in many biological processes, including genomic imprinting, X-chromosome inactivation, heterochromatin formation, and transcriptional regulation, as well as DNA damage repair. In this review, we summarize the recent understanding of DNA methylation, cytosine derivatives, active and passive demethylation pathways as well as histone variants. DNA methylation is one of the well-characterized epigenetic signaling tools. Cytosine methylation of promoter regions usually represses transcription but methylation in the gene body may have a positive correlation with gene expression. The attachment of a methyl group to cytosine residue in the DNA sequence is catalyzed by enzymes of the DNA methyltransferase family. Recent studies have shown that the Ten-Eleven translocation family enzymes are involved in stepwise oxidation of 5-methylcytosine, creating new cytosine derivatives including 5-hydroxymethylcytosine, 5-formylcytosine, and 5-carboxylcytosine. Additionally, histone variants into nucleosomes create another strategy to regulate the structure and function of chromatin. The replacement of canonical histones with specialized histone variants regulates accessibility of DNA, and thus may affect multiple biological processes, such as replication, transcription, DNA repair, and play a role in various disorders such as cancer.
Collapse
Affiliation(s)
- Anna Sadakierska-Chudy
- Laboratory of Drug Addiction Pharmacology, Institute of Pharmacology Polish Academy of Sciences, Smetna Street 12, 31-343, Kraków, Poland,
| | | | | |
Collapse
|
24
|
Bahar Halpern K, Vana T, Walker MD. Paradoxical role of DNA methylation in activation of FoxA2 gene expression during endoderm development. J Biol Chem 2014; 289:23882-92. [PMID: 25016019 DOI: 10.1074/jbc.m114.573469] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The transcription factor FoxA2 is a master regulator of endoderm development and pancreatic beta cell gene expression. To elucidate the mechanisms underlying the activation of the FoxA2 gene during differentiation, we have compared the epigenetic status of undifferentiated human embryonic stem cells (hESCs), hESC-derived early endoderm stage cells (CXCR4+ cells), and pancreatic islet cells. Unexpectedly, a CpG island in the promoter region of the FoxA2 gene displayed paradoxically high levels of DNA methylation in expressing tissues (CXCR4+, islets) and low levels in nonexpressing tissues. This CpG island region was found to repress reporter gene expression and bind the Polycomb group protein SUZ12 and the DNA methyltransferase (DNMT)3b preferentially in undifferentiated hESCs as compared with CXCR4+ or islets cells. Consistent with this, activation of FoxA2 gene expression, but not CXCR4 or SOX17, was strongly inhibited by 5-aza-2'-deoxycytidine and by knockdown of DNMT3b. We hypothesize that in nonexpressing tissues, the lack of DNA methylation allows the binding of DNA methyltransferases and repressing proteins, such as Polycomb group proteins; upon differentiation, DNMT activation leads to CpG island methylation, causing loss of repressor protein binding. These results suggest a novel and unexpected role for DNA methylation in the activation of FoxA2 gene expression during differentiation.
Collapse
Affiliation(s)
- Keren Bahar Halpern
- From the Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Tal Vana
- From the Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Michael D Walker
- From the Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
25
|
Gustems M, Woellmer A, Rothbauer U, Eck SH, Wieland T, Lutter D, Hammerschmidt W. c-Jun/c-Fos heterodimers regulate cellular genes via a newly identified class of methylated DNA sequence motifs. Nucleic Acids Res 2013; 42:3059-72. [PMID: 24371273 PMCID: PMC3950711 DOI: 10.1093/nar/gkt1323] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
CpG methylation in mammalian DNA is known to interfere with gene expression by inhibiting the binding of transactivators to their cognate sequence motifs or recruiting proteins involved in gene repression. An Epstein–Barr virus-encoded transcription factor, Zta, was the first example of a sequence-specific transcription factor that preferentially recognizes and selectively binds DNA sequence motifs with methylated CpG residues, reverses epigenetic silencing and activates gene transcription. The DNA binding domain of Zta is homologous to c-Fos, a member of the cellular AP-1 (activator protein 1) transcription factor family, which regulates cell proliferation and survival, apoptosis, transformation and oncogenesis. We have identified a novel AP-1 binding site termed meAP-1, which contains a CpG dinucleotide. If methylated, meAP-1 sites are preferentially bound by the AP-1 heterodimer c-Jun/c-Fos in vitro and in cellular chromatin in vivo. In activated human primary B cells, c-Jun/c-Fos locates to these methylated elements in promoter regions of transcriptionally activated genes. Reminiscent of the viral Zta protein, c-Jun/c-Fos is the first identified cellular member of the AP-1 family of transactivators that can induce expression of genes with methylated, hence repressed promoters, reversing epigenetic silencing.
Collapse
Affiliation(s)
- Montse Gustems
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health and German Centre for Infection Research (DZIF), Munich, D-81377, Germany, Biocenter at the Department of Biology II, Ludwig-Maximilians University Munich, Martinsried D-82152, Germany, Institute of Human Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg D-85764, Germany and Institute of Diabetes and Obesity, Helmholtz Zentrum München, German Research Center for Environmental Health, Garching D-85748, Germany
| | | | | | | | | | | | | |
Collapse
|
26
|
Logan PC, Mitchell MD, Lobie PE. DNA methyltransferases and TETs in the regulation of differentiation and invasiveness of extra-villous trophoblasts. Front Genet 2013; 4:265. [PMID: 24363660 PMCID: PMC3849743 DOI: 10.3389/fgene.2013.00265] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 11/15/2013] [Indexed: 01/21/2023] Open
Abstract
Specialized cell types of trophoblast cells form the placenta in which each cell type has particular properties of proliferation and invasion. The placenta sustains the growth of the fetus throughout pregnancy and any aberrant trophoblast differentiation or invasion potentially affects the future health of the child and adult. Recently, the field of epigenetics has been applied to understand differentiation of trophoblast lineages and embryonic stem cells (ESC), from fertilization of the oocyte onward. Each trophoblast cell-type has a distinctive epigenetic profile and we will concentrate on the epigenetic mechanism of DNA methyltransferases and TETs that regulate DNA methylation. Environmental factors affecting the mother potentially regulate the DNA methyltransferases in trophoblasts, and so do steroid hormones, cell cycle regulators, such as p53, and cytokines, especially interlukin-1β. There are interesting questions of why trophoblast genomes are globally hypomethylated yet specific genes can be suppressed by hypermethylation (in general, tumor suppressor genes, such as E-cadherin) and how invasive cell-types are liable to have condensed chromatin, as in metastatic cancer cells. Future work will attempt to understand the interactive nature of all epigenetic mechanisms together and their effect on the complex biological system of trophoblast differentiation and invasion in normal as well as pathological conditions.
Collapse
Affiliation(s)
- Philip C Logan
- The Liggins Institute, The University of Auckland Auckland, New Zealand
| | - Murray D Mitchell
- University of Queensland Centre for Clinical Research, University of Queensland Brisbane, QLD, Australia
| | - Peter E Lobie
- Cancer Science Institute of Singapore, National University of Singapore Singapore, Singapore
| |
Collapse
|
27
|
Veeranki S, Tyagi SC. Defective homocysteine metabolism: potential implications for skeletal muscle malfunction. Int J Mol Sci 2013; 14:15074-91. [PMID: 23873298 PMCID: PMC3742288 DOI: 10.3390/ijms140715074] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 06/24/2013] [Accepted: 07/11/2013] [Indexed: 12/13/2022] Open
Abstract
Hyperhomocysteinemia (HHcy) is a systemic medical condition and has been attributed to multi-organ pathologies. Genetic, nutritional, hormonal, age and gender differences are involved in abnormal homocysteine (Hcy) metabolism that produces HHcy. Homocysteine is an intermediate for many key processes such as cellular methylation and cellular antioxidant potential and imbalances in Hcy production and/or catabolism impacts gene expression and cell signaling including GPCR signaling. Furthermore, HHcy might damage the vagus nerve and superior cervical ganglion and affects various GPCR functions; therefore it can impair both the parasympathetic and sympathetic regulation in the blood vessels of skeletal muscle and affect long-term muscle function. Understanding cellular targets of Hcy during HHcy in different contexts and its role either as a primary risk factor or as an aggravator of certain disease conditions would provide better interventions. In this review we have provided recent Hcy mediated mechanistic insights into different diseases and presented potential implications in the context of reduced muscle function and integrity. Overall, the impact of HHcy in various skeletal muscle malfunctions is underappreciated; future studies in this area will provide deeper insights and improve our understanding of the association between HHcy and diminished physical function.
Collapse
Affiliation(s)
- Sudhakar Veeranki
- Authors to whom correspondence should be addressed; E-Mails: (S.V.); (S.C.T.); Tel.: +1-973-610-1160 (S.V.); +1-502-852-3381 (S.C.T.); Fax: +1-502-852-6239 (S.C.T.)
| | - Suresh C. Tyagi
- Authors to whom correspondence should be addressed; E-Mails: (S.V.); (S.C.T.); Tel.: +1-973-610-1160 (S.V.); +1-502-852-3381 (S.C.T.); Fax: +1-502-852-6239 (S.C.T.)
| |
Collapse
|
28
|
Song Y, Washington MK, Crawford HC. Loss of FOXA1/2 is essential for the epithelial-to-mesenchymal transition in pancreatic cancer. Cancer Res 2010; 70:2115-25. [PMID: 20160041 DOI: 10.1158/0008-5472.can-09-2979] [Citation(s) in RCA: 206] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
FOXA1 and FOXA2, members of the forkhead transcription factor family, are critical for epithelial differentiation in many endoderm-derived organs, including the pancreas. However, their role in tumor progression is largely unknown. Here, we identified FOXA1 and FOXA2 as important antagonists of the epithelial-to-mesenchymal transition (EMT) in pancreatic ductal adenocarcinoma (PDA) through their positive regulation of E-cadherin and maintenance of the epithelial phenotype. In human PDA samples, FOXA1/2 are expressed in all epithelia from normal to well-differentiated cancer cells, but are lost in undifferentiated cancer cells. In PDA cell lines, FOXA1/2 expression is consistently suppressed in experimental EMT models and RNAi silencing of FOXA1/2 alone is sufficient to induce EMT. Conversely, ectopic FOXA1/2 expression can potently neutralize several EMT-related E-cadherin repressive mechanisms. Finally, ectopic FOXA2 expression could reactivate E-cadherin expression in a PDA cell line with extensive promoter hypermethylation. In fact, demethylation-mediated reactivation of E-cadherin expression in these cells required concurrent reactivation of endogenous FOXA2 expression. We conclude that suppression of FOXA1/2 expression is both necessary and sufficient for EMT during PDA malignant progression.
Collapse
Affiliation(s)
- Yan Song
- Department of Pharmacology, Stony Brook University, Stony Brook, New York 11794-8651, USA
| | | | | |
Collapse
|
29
|
Seguín-Estévez Q, De Palma R, Krawczyk M, Leimgruber E, Villard J, Picard C, Tagliamacco A, Abbate G, Gorski J, Nocera A, Reith W. The transcription factor RFX protects MHC class II genes against epigenetic silencing by DNA methylation. THE JOURNAL OF IMMUNOLOGY 2009; 183:2545-53. [PMID: 19620312 DOI: 10.4049/jimmunol.0900376] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Classical and nonclassical MHC class II (MHCII) genes are coregulated by the transcription factor RFX (regulatory factor X) and the transcriptional coactivator CIITA. RFX coordinates the assembly of a multiprotein "enhanceosome" complex on MHCII promoters. This enhanceosome serves as a docking site for the binding of CIITA. Whereas the role of the enhanceosome in recruiting CIITA is well established, little is known about its CIITA-independent functions. A novel role of the enhanceosome was revealed by the analysis of HLA-DOA expression in human MHCII-negative B cell lines lacking RFX or CIITA. HLA-DOA was found to be reactivated by complementation of CIITA-deficient but not RFX-deficient B cells. Silencing of HLA-DOA was associated with DNA methylation at its promoter, and was relieved by the demethylating agent 5-azacytidine. Surprisingly, DNA methylation was also established at the HLA-DRA and HLA-DQB loci in RFX-deficient cells. This was a direct consequence of the absence of RFX, as it could be reversed by restoring RFX function. DNA methylation at the HLA-DOA, HLA-DRA, and HLA-DQB promoters was observed in RFX-deficient B cells and fibroblasts, but not in CIITA-deficient B cells and fibroblasts, or in wild-type fibroblasts, which lack CIITA expression. These results indicate that RFX and/or enhanceosome assembly plays a key CIITA-independent role in protecting MHCII promoters against DNA methylation. This function is likely to be crucial for retaining MHCII genes in an open chromatin configuration permissive for activation in MHCII-negative cells, such as the precursors of APC and nonprofessional APC before induction with IFN-gamma.
Collapse
|
30
|
Niesen MI, Osborne AR, Lagor WR, Zhang H, Kazemfar K, Ness GC, Blanck G. Technological advances in the study of HLA-DRA promoter regulation: extending the functions of CIITA, Oct-1, Rb, and RFX. Acta Biochim Biophys Sin (Shanghai) 2009; 41:198-205. [PMID: 19280058 DOI: 10.1093/abbs/gmp002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Several advances were established in examining the interaction of transcriptional factors with the HLA-DRA promoter. First, hydrodynamic injection was used to demonstrate the activation of the promoter by class II transactivator in a live mouse. Second, the Oct-1 DNA-binding site in the HLA-DRA promoter is a negative element in many cells, but here we show that Oct-1 activates the promoter independently of the Oct-1-binding site. Third, the retinoblastoma (Rb) protein is required for the induction of the endogenous HLA-DRA gene, due to a poorly understood, pleiotropic effect on the Oct-1 and YY1 repressive functions at the HLA-DRA promoter. There has never been an indication that direct promoter activation, by Rb, is possible. Here, we report that the first HLA-DRA intron has an Rb-responsive element, as indicated by a transient transfection/promoter reporter assay. Finally, RFX activates a methylated version of an HLA-DRA promoter reporter construct, consistent with the role of RFX in rescuing the expression of the methylated, endogenous HLA-DRA gene. Here, we report that this RFX function is not limited to a specific RFX-binding sequence or to the HLA-DRA promoter. These advances provide bases for novel investigations into the function of the major histocompatibility class II promoter.
Collapse
Affiliation(s)
- Melissa I Niesen
- Department of Molecular Medicine, College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Veerla S, Panagopoulos I, Jin Y, Lindgren D, Höglund M. Promoter analysis of epigenetically controlled genes in bladder cancer. Genes Chromosomes Cancer 2008; 47:368-78. [PMID: 18196590 DOI: 10.1002/gcc.20542] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
DNA methylation is an important epigenetic modification that regulates several genes crucial for tumor development. To identify epigenetically regulated genes in bladder cancer, we performed genome wide expression analyses of eight-bladder cancer cell lines treated with the demethylating agents 5-aza-2'-cytidine and zebularine. To identify methylated C-residues, we sequenced cloned DNA fragments from bisulfite-treated genomic DNA. We identified a total of 1092 genes that showed > or =2-fold altered expression in at least one cell line; 710 showed up-regulation and 382 down-regulation. Extensive sequencing of promoters from 25 genes in eight cell lines showed an association between methylation pattern and expression in 13 genes, including both CpG island and non-CpG island genes. Overall, the methylation patterns showed a patchy appearance with short segments showing high level of methylation separated by larger segments with no methylation. This pattern was not associated with MeCP2 binding sites or with evolutionarily conserved sequences. The genes UBXD2, AQP11, and TIMP1 showed particular patchy methylation patterns. We found several high-scoring and evolutionarily conserved transcription factor binding sites affected by methylated C residues. Two of the genes, FGF18 and MMP11, that were down-regulated as response to 5-aza-2'-cytidine and zebularine treatment showed methylation at specific sites in the untreated cells indicating an activating result of methylation. Apart from identifying epigenetically regulated genes, including TGFBR1, NUPR1, FGF18, TIMP1, and MMP11, that may be of importance for bladder cancer development the presented data also highlight the organization of the modified segments in methylated promoters. This article contains supplementary material available via the Internet at http://www.interscience.wiley.com/jpages/1045-2257/suppmat.
Collapse
Affiliation(s)
- Srinivas Veerla
- Department of Clinical Genetics, Lund University Hospital, SE-22185, Lund, Sweden.
| | | | | | | | | |
Collapse
|
32
|
Pogribny IP, Karpf AR, James SR, Melnyk S, Han T, Tryndyak VP. Epigenetic alterations in the brains of Fisher 344 rats induced by long-term administration of folate/methyl-deficient diet. Brain Res 2008; 1237:25-34. [PMID: 18694733 DOI: 10.1016/j.brainres.2008.07.077] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2008] [Revised: 07/15/2008] [Accepted: 07/19/2008] [Indexed: 10/21/2022]
Abstract
The maintenance of the cellular epigenomic landscape, which depends on the status of the one-carbon metabolic pathway, is essential for normal central nervous system development and function. In the present study, we examined the epigenetic alterations in the brains of Fisher 344 rats induced by the long-term administration of a diet lacking of essential one-carbon nutrients, methionine, choline, and folic acid. The results demonstrated that feeding a folate/methyl-deficient diet causes global DNA hypermethylation as indicated by an increase of genomic 5-methyl-2'-deoxycytidine (5mdC) content and more importantly, by an increase of methylation within unmethylated CpG-rich DNA domains. Interestingly, these epigenetic changes were opposite to those observed in the livers of the same folate/methyl-deficient rats. The hypermethylation changes were associated with an increased protein expression of de novo DNA methyltransferase DNMT3a and methyl-CpG-binding protein 2. Additionally, the gene expression profiling identified 33 significantly up- or down-regulated genes (fold change > or =1.5 and p< or =0.05) in the brains of rats fed a folate/methyl-deficient diet for 36 weeks. Interestingly, we detected an up-regulation of regulatory factor X, 3 (Rfx3) gene, a sequence-specific DNA-binding protein, that mediates the transcriptional activation of silenced by methylation genes, which may be an adaptive protective brain response to hypermethylation. Together, these data suggest that the proper maintenance of the epigenomic landscape in normal brain depends on the adequate supply of essential nutrients involved in the metabolism of methyl groups.
Collapse
Affiliation(s)
- Igor P Pogribny
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, AR 72079, USA.
| | | | | | | | | | | |
Collapse
|
33
|
Tshuikina M, Nilsson K, Öberg F. Positive histone marks are associated with active transcription from a methylated ICSBP/IRF8 gene. Gene 2008; 410:259-67. [DOI: 10.1016/j.gene.2007.12.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2007] [Revised: 12/04/2007] [Accepted: 12/13/2007] [Indexed: 12/20/2022]
|