1
|
Lu Y, Zhang CX, Rodrigues P, Yang L, Shafer A, Rankovic Z, Fazio F. Development and Validation of a Liquid Chromatography-Tandem Mass Spectrometry Method for Sensitive Analysis of Residual Protein Tat Bh1-101 in Lentiviral Vectors for Gene Therapy. Hum Gene Ther 2023; 34:1162-1171. [PMID: 37672543 DOI: 10.1089/hum.2023.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023] Open
Abstract
Lentiviral (LV) vector-based gene therapy is gaining popularity for treating a wide range of diseases. Various LV vectors are being developed for transducing cells in cellular gene therapy at St. Jude. Some LV vectors are produced using stable 293T packaging cell lines, which includes gag-pol-rev-tat and virus-glycoprotein. Transactivating factor (transactivator of transcription [Tat]) is a regulatory protein that drastically increases the efficiency of lentiviral transcription. Residual analysis of Tat is critical for gene vector quality and safety. In this work, we developed a highly sensitive liquid chromatography-tandem mass spectrometry method for analysis of residual Tat in Lentivirus as an alternative to enzyme-linked immunosorbent assay. Residual Tat in LV can be accurately quantified with high specificity with a limit of detection of 0.3 ng/mL.
Collapse
Affiliation(s)
- Yan Lu
- Therapeutics Prod & Quality, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Chao-Xuan Zhang
- Therapeutics Prod & Quality, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Patrick Rodrigues
- Hartwell Center, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Lei Yang
- Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Aaron Shafer
- Therapeutics Prod & Quality, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Zoran Rankovic
- Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Frank Fazio
- Therapeutics Prod & Quality, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
2
|
Campbell GR, Rawat P, To RK, Spector SA. HIV-1 Tat Upregulates TREM1 Expression in Human Microglia. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:429-442. [PMID: 37326481 PMCID: PMC10352590 DOI: 10.4049/jimmunol.2300152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/30/2023] [Indexed: 06/17/2023]
Abstract
Because microglia are a reservoir for HIV and are resistant to the cytopathic effects of HIV infection, they are a roadblock for any HIV cure strategy. We have previously identified that triggering receptor expressed on myeloid cells 1 (TREM1) plays a key role in human macrophage resistance to HIV-mediated cytopathogenesis. In this article, we show that HIV-infected human microglia express increased levels of TREM1 and are resistant to HIV-induced apoptosis. Moreover, upon genetic inhibition of TREM1, HIV-infected microglia undergo cell death in the absence of increased viral or proinflammatory cytokine expression or the targeting of uninfected cells. We also show that the expression of TREM1 is mediated by HIV Tat through a TLR4, TICAM1, PG-endoperoxide synthase 2, PGE synthase, and PGE2-dependent manner. These findings highlight the potential of TREM1 as a therapeutic target to eradicate HIV-infected microglia without inducing a proinflammatory response.
Collapse
Affiliation(s)
- Grant R. Campbell
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD
| | - Pratima Rawat
- Division of Infectious Diseases, Department of Pediatrics, University of California San Diego, La Jolla, CA
| | - Rachel K. To
- Division of Infectious Diseases, Department of Pediatrics, University of California San Diego, La Jolla, CA
| | - Stephen A. Spector
- Division of Infectious Diseases, Department of Pediatrics, University of California San Diego, La Jolla, CA
- Rady Children’s Hospital, San Diego, CA
| |
Collapse
|
3
|
Role of Apoptosis in HIV Pathogenesis. Adv Virol 2022; 2022:8148119. [PMID: 35462964 PMCID: PMC9023228 DOI: 10.1155/2022/8148119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/08/2022] [Accepted: 03/28/2022] [Indexed: 11/18/2022] Open
Abstract
The apoptotic pathway is an important cell death pathway that contributes to the maintenance of homeostasis in living systems. However, variations in apoptosis have been linked to many diseases such as cancers and chronic infections. The HIV infection has contributed to increase mortality and morbidity worldwide, predominantly through the induction of gradual depletion of CD4+ T cells. The induction and mediation of both the intrinsic and extrinsic apoptotic pathways are crucial in HIV pathogenesis and intracellular survival. Consequently, a deep molecular understanding of how apoptosis is induced and modulated in HIV-mediated CD4+ T cell depletion is paramount, as this can lead to new portals of therapeutic intervention and control.
Collapse
|
4
|
Ali A, Mishra R, Kaur H, Chandra Banerjea A. HIV-1 Tat: An update on transcriptional and non-transcriptional functions. Biochimie 2021; 190:24-35. [PMID: 34242726 DOI: 10.1016/j.biochi.2021.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 06/24/2021] [Accepted: 07/01/2021] [Indexed: 01/05/2023]
Abstract
Over the past decades, much have been learned about HIV-1 virus and its molecular strategies for pathogenesis. However, HIV-1 still remains an enigmatic virus, particularly because of its unique proteins. Establishment of latency and reactivation is still a puzzling question and various temporal and spatial dynamics between HIV-1 proteins itself have given us new way of thinking about its pathogenesis. HIV-1 replication depends on Tat which is a small unstructured protein and subjected to various post-translational modifications for its myriad of functions. HIV-1 Tat protein modulates the functions of various strategic cellular pathways like proteasomal machinery and inflammatory pathways to aid in HIV-1 pathogenesis. Many of the recent findings have shown that Tat is associated with exosomes, cleared from HIV-1 infected cells through its degradation by diverse routes ranging from lysosomal to proteasomal pathways. HIV-1 Tat was also found to be associated with other HIV-1 proteins including Vpr, Nef, Nucleocapsid (NC) and Rev. Interaction of Tat with Vpr and Nef increases its transactivation function, whereas, interaction of Tat with NC or Rev leads to Tat protein degradation and hence suppression of Tat functions. Research in the recent years has established that Tat is not only important for HIV-1 promoter transactivation and virus replication but also modulating multiple cellular and molecular functions leading to HIV-1 pathogenicity. In this review we discussed various transcriptional and non-transcriptional HIV-1 Tat functions which modulate host cell metabolism during HIV-1 pathogenesis.
Collapse
Affiliation(s)
- Amjad Ali
- Virology Lab, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India; Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, 01605, USA.
| | - Ritu Mishra
- Virology Lab, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| | - Harsimrut Kaur
- Department of Chemistry and Biochemistry, School of Basic Sciences and Research, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh, 201310, India.
| | - Akhil Chandra Banerjea
- Virology Lab, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
5
|
TREM-1 Protects HIV-1-Infected Macrophages from Apoptosis through Maintenance of Mitochondrial Function. mBio 2019; 10:mBio.02638-19. [PMID: 31719184 PMCID: PMC6851287 DOI: 10.1128/mbio.02638-19] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The major challenge to human immunodeficiency virus (HIV) treatment is the development of strategies that lead to viral eradication. A roadblock to accomplishing this goal is the lack of an approach that would safely eliminate HIV from all resting/latent reservoirs, including macrophages. Macrophages are a key part of the innate immune system and are responsible for recognizing invading microbes and sending appropriate signals to other immune cells. Here, we found that HIV induces the upregulation of the protein TREM1 (triggering receptor expressed on myeloid cells 1), which signals an increase in the expression of antiapoptotic proteins, thus promoting survival of HIV-infected macrophages. Macrophages are a reservoir for latent human immunodeficiency type 1 (HIV) infection and a barrier to HIV eradication. In contrast to CD4+ T cells, macrophages are resistant to the cytopathic effects of acute HIV infection. Emerging data suggest a role for TREM1 (triggering receptor expressed on myeloid cells 1) in this resistance to HIV-mediated cytopathogenesis. Here, we show that upon HIV infection, macrophages increase the expression of BCL2, BCLXL, TREM1, mitofusin 1 (MFN1), and MFN2 and the translocation of BCL2L11 (BIM) to the mitochondria and decrease the expression of BCL2-associated agonist of cell death (BAD) and BAX while maintaining a 95% survival rate over 28 days. The HIV proteins Tat and gp120 and the GU-rich single-stranded RNA (ssRNA) (RNA40) from the HIV long terminal repeat region (and a natural Toll-like receptor 8 [TLR8] agonist) induced similar effects. TREM1 silencing in HIV-infected macrophages led to decreased expression of BCL2, BCLXL, MFN1, and MFN2 and increased expression of BAD and BAX. This correlated with a significant increase in apoptosis mediated by a disruption of the mitochondrial membrane potential (Δψm), leading to the release of cytochrome c and caspase 9 cleavage. Exposure of TREM1-silenced macrophages to Tat, gp120, or RNA40 similarly resulted in the disruption of Δψm, cytochrome c release, caspase 9 cleavage, and apoptosis. Thus, our findings identify a mechanism whereby HIV promotes macrophage survival through TREM1-dependent upregulation of BCL2 family proteins and mitofusins that inhibits BCL2L11-mediated disruption of Δψm and subsequent apoptosis. These findings indicate that TREM1 can be a useful target for elimination of the HIV reservoir in macrophages.
Collapse
|
6
|
Spector C, Mele AR, Wigdahl B, Nonnemacher MR. Genetic variation and function of the HIV-1 Tat protein. Med Microbiol Immunol 2019; 208:131-169. [PMID: 30834965 DOI: 10.1007/s00430-019-00583-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 02/11/2019] [Indexed: 12/14/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1) encodes a transactivator of transcription (Tat) protein, which has several functions that promote viral replication, pathogenesis, and disease. Amino acid variation within Tat has been observed to alter the functional properties of Tat and, depending on the HIV-1 subtype, may produce Tat phenotypes differing from viruses' representative of each subtype and commonly used in in vivo and in vitro experimentation. The molecular properties of Tat allow for distinctive functional activities to be determined such as the subcellular localization and other intracellular and extracellular functional aspects of this important viral protein influenced by variation within the Tat sequence. Once Tat has been transported into the nucleus and becomes engaged in transactivation of the long terminal repeat (LTR), various Tat variants may differ in their capacity to activate viral transcription. Post-translational modification patterns based on these amino acid variations may alter interactions between Tat and host factors, which may positively or negatively affect this process. In addition, the ability of HIV-1 to utilize or not utilize the transactivation response (TAR) element within the LTR, based on genetic variation and cellular phenotype, adds a layer of complexity to the processes that govern Tat-mediated proviral DNA-driven transcription and replication. In contrast, cytoplasmic or extracellular localization of Tat may cause pathogenic effects in the form of altered cell activation, apoptosis, or neurotoxicity. Tat variants have been shown to differentially induce these processes, which may have implications for long-term HIV-1-infected patient care in the antiretroviral therapy era. Future studies concerning genetic variation of Tat with respect to function should focus on variants derived from HIV-1-infected individuals to efficiently guide Tat-targeted therapies and elucidate mechanisms of pathogenesis within the global patient population.
Collapse
Affiliation(s)
- Cassandra Spector
- Department of Microbiology and Immunology, Drexel University College of Medicine, 245 N 15th St, Philadelphia, PA, 19102, USA
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Anthony R Mele
- Department of Microbiology and Immunology, Drexel University College of Medicine, 245 N 15th St, Philadelphia, PA, 19102, USA
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Brian Wigdahl
- Department of Microbiology and Immunology, Drexel University College of Medicine, 245 N 15th St, Philadelphia, PA, 19102, USA
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Michael R Nonnemacher
- Department of Microbiology and Immunology, Drexel University College of Medicine, 245 N 15th St, Philadelphia, PA, 19102, USA.
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA.
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
7
|
Dearborn AD, Eren E, Watts NR, Palmer IW, Kaufman JD, Steven AC, Wingfield PT. Structure of an RNA Aptamer that Can Inhibit HIV-1 by Blocking Rev-Cognate RNA (RRE) Binding and Rev-Rev Association. Structure 2018; 26:1187-1195.e4. [PMID: 30017564 DOI: 10.1016/j.str.2018.06.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 04/24/2018] [Accepted: 05/31/2018] [Indexed: 12/30/2022]
Abstract
HIV-1 Rev protein mediates nuclear export of unspliced and partially spliced viral RNAs for production of viral genomes and structural proteins. Rev assembles on a 351-nt Rev response element (RRE) within viral transcripts and recruits host export machinery. Small (<40-nt) RNA aptamers that compete with the RRE for Rev binding inhibit HIV-1 viral replication. We determined the X-ray crystal structure of a potential anti-HIV-1 aptamer that binds Rev with high affinity (Kd = 5.9 nM). The aptamer is structurally similar to the RRE high-affinity site but forms additional contacts with Rev unique to its sequence. Exposed bases of the aptamer interleave with the guanidinium groups of two arginines of Rev, forming stacking interactions and hydrogen bonds. The aptamer also obstructs an oligomerization interface of Rev, blocking Rev self-assembly. We propose that this aptamer can inhibit HIV-1 replication by interfering with Rev-RRE, Rev-Rev, and possibly Rev-host protein interactions.
Collapse
Affiliation(s)
- Altaira D Dearborn
- The Protein Expression Laboratory, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD 20892, USA
| | - Elif Eren
- The Laboratory of Structural Biology Research, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD 20892, USA
| | - Norman R Watts
- The Protein Expression Laboratory, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD 20892, USA
| | - Ira W Palmer
- The Protein Expression Laboratory, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD 20892, USA
| | - Joshua D Kaufman
- The Protein Expression Laboratory, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD 20892, USA
| | - Alasdair C Steven
- The Laboratory of Structural Biology Research, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD 20892, USA
| | - Paul T Wingfield
- The Protein Expression Laboratory, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD 20892, USA.
| |
Collapse
|
8
|
van der Kuyl AC, Vink M, Zorgdrager F, Bakker M, Wymant C, Hall M, Gall A, Blanquart F, Berkhout B, Fraser C, Cornelissen M. The evolution of subtype B HIV-1 tat in the Netherlands during 1985-2012. Virus Res 2018; 250:51-64. [PMID: 29654800 DOI: 10.1016/j.virusres.2018.04.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 04/05/2018] [Accepted: 04/05/2018] [Indexed: 12/18/2022]
Abstract
For the production of viral genomic RNA, HIV-1 is dependent on an early viral protein, Tat, which is required for high-level transcription. The quantity of viral RNA detectable in blood of HIV-1 infected individuals varies dramatically, and a factor involved could be the efficiency of Tat protein variants to stimulate RNA transcription. HIV-1 virulence, measured by set-point viral load, has been observed to increase over time in the Netherlands and elsewhere. Investigation of tat gene evolution in clinical isolates could discover a role of Tat in this changing virulence. A dataset of 291 Dutch HIV-1 subtype B tat genes, derived from full-length HIV-1 genome sequences from samples obtained between 1985-2012, was used to analyse the evolution of Tat. Twenty-two patient-derived tat genes, and the control TatHXB2 were analysed for their capacity to stimulate expression of an LTR-luciferase reporter gene construct in diverse cell lines, as well as for their ability to complement a tat-defective HIV-1LAI clone. Analysis of 291 historical tat sequences from the Netherlands showed ample amino acid (aa) variation between isolates, although no specific mutations were selected for over time. Of note, however, the encoded protein varied its length over the years through the loss or gain of stop codons in the second exon. In transmission clusters, a selection against the shorter Tat86 ORF was apparent in favour of the more common Tat101 version, likely due to negative selection against Tat86 itself, although random drift, transmission bottlenecks, or linkage to other variants could also explain the observation. There was no correlation between Tat length and set-point viral load; however, the number of non-intermediate variants in our study was small. In addition, variation in the length of Tat did not significantly change its capacity to stimulate transcription. From 1985 till 2012, variation in the length of the HIV-1 subtype B tat gene is increasingly found in the Dutch epidemic. However, as Tat proteins did not differ significantly in their capacity to stimulate transcription elongation in vitro, the increased HIV-1 virulence seen in recent years could not be linked to an evolving viral Tat protein.
Collapse
Affiliation(s)
- Antoinette C van der Kuyl
- Laboratory of Experimental Virology, Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ, Amsterdam, The Netherlands.
| | - Monique Vink
- Laboratory of Experimental Virology, Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ, Amsterdam, The Netherlands
| | - Fokla Zorgdrager
- Laboratory of Experimental Virology, Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ, Amsterdam, The Netherlands
| | - Margreet Bakker
- Laboratory of Experimental Virology, Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ, Amsterdam, The Netherlands
| | - Chris Wymant
- Medical Research Council Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, W21PG, United Kingdom; Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Matthew Hall
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Astrid Gall
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - François Blanquart
- Medical Research Council Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, W21PG, United Kingdom; Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ, Amsterdam, The Netherlands
| | - Christophe Fraser
- Medical Research Council Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, W21PG, United Kingdom; Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Marion Cornelissen
- Laboratory of Experimental Virology, Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ, Amsterdam, The Netherlands
| | | |
Collapse
|
9
|
Gaskill PJ, Miller DR, Gamble-George J, Yano H, Khoshbouei H. HIV, Tat and dopamine transmission. Neurobiol Dis 2017; 105:51-73. [PMID: 28457951 PMCID: PMC5541386 DOI: 10.1016/j.nbd.2017.04.015] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 04/04/2017] [Accepted: 04/16/2017] [Indexed: 01/02/2023] Open
Abstract
Human Immunodeficiency Virus (HIV) is a progressive infection that targets the immune system, affecting more than 37 million people around the world. While combinatorial antiretroviral therapy (cART) has lowered mortality rates and improved quality of life in infected individuals, the prevalence of HIV associated neurocognitive disorders is increasing and HIV associated cognitive decline remains prevalent. Recent research has suggested that HIV accessory proteins may be involved in this decline, and several studies have indicated that the HIV protein transactivator of transcription (Tat) can disrupt normal neuronal and glial function. Specifically, data indicate that Tat may directly impact dopaminergic neurotransmission, by modulating the function of the dopamine transporter and specifically damaging dopamine-rich regions of the CNS. HIV infection of the CNS has long been associated with dopaminergic dysfunction, but the mechanisms remain undefined. The specific effect(s) of Tat on dopaminergic neurotransmission may be, at least partially, a mechanism by which HIV infection directly or indirectly induces dopaminergic dysfunction. Therefore, precisely defining the specific effects of Tat on the dopaminergic system will help to elucidate the mechanisms by which HIV infection of the CNS induces neuropsychiatric, neurocognitive and neurological disorders that involve dopaminergic neurotransmission. Further, this will provide a discussion of the experiments needed to further these investigations, and may help to identify or develop new therapeutic approaches for the prevention or treatment of these disorders in HIV-infected individuals.
Collapse
Affiliation(s)
- Peter J Gaskill
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, United States.
| | - Douglas R Miller
- Department of Neuroscience, University of Florida, Gainesville, FL 32611, United States
| | - Joyonna Gamble-George
- Department of Neuroscience, University of Florida, Gainesville, FL 32611, United States
| | - Hideaki Yano
- National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, United States
| | - Habibeh Khoshbouei
- Department of Neuroscience, University of Florida, Gainesville, FL 32611, United States.
| |
Collapse
|
10
|
Ensoli B, Nchabeleng M, Ensoli F, Tripiciano A, Bellino S, Picconi O, Sgadari C, Longo O, Tavoschi L, Joffe D, Cafaro A, Francavilla V, Moretti S, Pavone Cossut MR, Collacchi B, Arancio A, Paniccia G, Casabianca A, Magnani M, Buttò S, Levendal E, Ndimande JV, Asia B, Pillay Y, Garaci E, Monini P. HIV-Tat immunization induces cross-clade neutralizing antibodies and CD4(+) T cell increases in antiretroviral-treated South African volunteers: a randomized phase II clinical trial. Retrovirology 2016; 13:34. [PMID: 27277839 PMCID: PMC4899930 DOI: 10.1186/s12977-016-0261-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 04/14/2016] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Although combined antiretroviral therapy (cART) has saved millions of lives, it is incapable of full immune reconstitution and virus eradication. The transactivator of transcription (Tat) protein is a key human immunodeficiency virus (HIV) virulence factor required for virus replication and transmission. Tat is expressed and released extracellularly by infected cells also under cART and in this form induces immune dysregulation, and promotes virus reactivation, entry and spreading. Of note, anti-Tat antibodies are rare in natural infection and, when present, correlate with asymptomatic state and reduced disease progression. This suggested that induction of anti-Tat antibodies represents a pathogenesis-driven intervention to block progression and to intensify cART. Indeed Tat-based vaccination was safe, immunogenic and capable of immune restoration in an open-label, randomized phase II clinical trial conducted in 168 cART-treated volunteers in Italy. To assess whether B-clade Tat immunization would be effective also in patients with different genetic background and infecting virus, a phase II trial was conducted in South Africa. METHODS The ISS T-003 was a 48-week randomised, double-blinded, placebo-controlled trial to evaluate immunogenicity (primary endpoint) and safety (secondary endpoint) of B-clade Tat (30 μg) given intradermally, three times at 4-week intervals, in 200 HIV-infected adults on effective cART (randomised 1:1) with CD4(+) T-cell counts ≥200 cells/µL. Study outcomes also included cross-clade anti-Tat antibodies, neutralization, CD4(+) T-cell counts and therapy compliance. RESULTS Immunization was safe and well-tolerated and induced durable, high titers anti-Tat B-clade antibodies in 97 % vaccinees. Anti-Tat antibodies were cross-clade (all vaccinees tested) and neutralized Tat-mediated entry of oligomeric B-clade and C-clade envelope in dendritic cells (24 participants tested). Anti-Tat antibody titers correlated positively with neutralization. Tat vaccination increased CD4(+) T-cell numbers (all participants tested), particularly when baseline levels were still low after years of therapy, and this had a positive correlation with HIV neutralization. Finally, in cART non-compliant patients (24 participants), vaccination contained viral load rebound and maintained CD4(+) T-cell numbers over study entry levels as compared to placebo. CONCLUSIONS The data indicate that Tat vaccination can restore the immune system and induces cross-clade neutralizing anti-Tat antibodies in patients with different genetic backgrounds and infecting viruses, supporting the conduct of phase III studies in South Africa. Trial registration ClinicalTrials.gov NCT01513135, 01/23/2012.
Collapse
Affiliation(s)
- Barbara Ensoli
- National AIDS Center, Istituto Superiore di Sanità, Rome, Italy.
| | | | - Fabrizio Ensoli
- Laboratory of Clinical Pathology and Microbiology, San Gallicano Institute, Istituti Fisioterapici Ospitalieri, Rome, Italy
| | - Antonella Tripiciano
- National AIDS Center, Istituto Superiore di Sanità, Rome, Italy.,Laboratory of Clinical Pathology and Microbiology, San Gallicano Institute, Istituti Fisioterapici Ospitalieri, Rome, Italy
| | - Stefania Bellino
- National AIDS Center, Istituto Superiore di Sanità, Rome, Italy.,National Center for Epidemiology, Surveillance and Health Promotion, Istituto Superiore di Sanità, Rome, Italy
| | - Orietta Picconi
- National AIDS Center, Istituto Superiore di Sanità, Rome, Italy
| | - Cecilia Sgadari
- National AIDS Center, Istituto Superiore di Sanità, Rome, Italy
| | - Olimpia Longo
- National AIDS Center, Istituto Superiore di Sanità, Rome, Italy.,Italian Medicines Agency, Rome, Italy
| | - Lara Tavoschi
- Head Office, National AIDS Center, Istituto Superiore di Sanità, Cape Town, South Africa.,European Center for Disease Prevention and Control, Stockholm, Sweden
| | - Daniel Joffe
- Head Office, National AIDS Center, Istituto Superiore di Sanità, Cape Town, South Africa
| | - Aurelio Cafaro
- National AIDS Center, Istituto Superiore di Sanità, Rome, Italy
| | - Vittorio Francavilla
- National AIDS Center, Istituto Superiore di Sanità, Rome, Italy.,Laboratory of Clinical Pathology and Microbiology, San Gallicano Institute, Istituti Fisioterapici Ospitalieri, Rome, Italy
| | - Sonia Moretti
- National AIDS Center, Istituto Superiore di Sanità, Rome, Italy
| | | | | | - Angela Arancio
- National AIDS Center, Istituto Superiore di Sanità, Rome, Italy.,Laboratory of Clinical Pathology and Microbiology, San Gallicano Institute, Istituti Fisioterapici Ospitalieri, Rome, Italy
| | - Giovanni Paniccia
- National AIDS Center, Istituto Superiore di Sanità, Rome, Italy.,Laboratory of Clinical Pathology and Microbiology, San Gallicano Institute, Istituti Fisioterapici Ospitalieri, Rome, Italy
| | - Anna Casabianca
- Department of Biomolecular Science, University of Urbino, Urbino, Italy
| | - Mauro Magnani
- Department of Biomolecular Science, University of Urbino, Urbino, Italy
| | - Stefano Buttò
- National AIDS Center, Istituto Superiore di Sanità, Rome, Italy
| | - Elise Levendal
- South African Medical Research Council, Cape Town, South Africa.,Health Systems Trust, Cape Town, South Africa
| | | | - Bennett Asia
- National Department of Health, Pretoria, South Africa
| | - Yogan Pillay
- National Department of Health, Pretoria, South Africa
| | - Enrico Garaci
- Istituto Superiore di Sanità, Rome, Italy.,University of Tor Vergata, Rome, Italy
| | - Paolo Monini
- Head Office, National AIDS Center, Istituto Superiore di Sanità, Cape Town, South Africa
| | | |
Collapse
|
11
|
Zhao X, Qian L, Zhou D, Qi D, Liu C, Kong X. Stability of HIV-1 subtype B and C Tat is associated with variation in the carboxyl-terminal region. Virol Sin 2016; 31:199-206. [PMID: 27007880 DOI: 10.1007/s12250-016-3681-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 03/01/2016] [Indexed: 12/14/2022] Open
Abstract
The multifunctional trans-activator Tat is an essential regulatory protein for HIV-1 replication and is characterized by high sequence diversity. Numerous experimental studies have examined Tat in HIV-1 subtype B, but research on subtype C Tat is lacking, despite the high prevalence of infections caused by subtype C worldwide. We hypothesized that amino acid differences contribute to functional differences among Tat proteins. In the present study, we found that subtype B NL4-3 Tat and subtype C isolate HIV1084i Tat exhibited differences in stability by overexpressing the fusion protein Tat-Flag. In addition, 1084i Tat can activate LTR and NF-κB more efficiently than NL4-3 Tat. In analyses of the activities of the truncated forms of Tat, we found that the carboxyl-terminal region of Tat regulates its stability and transactivity. According to our results, we speculated that the differences in stability between B-Tat and C-Tat result in differences in transactivation ability.
Collapse
Affiliation(s)
- Xuechao Zhao
- Laboratory of Medical Molecular Virology, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Lingyu Qian
- Laboratory of Medical Molecular Virology, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Deyu Zhou
- Laboratory of Medical Molecular Virology, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Di Qi
- Laboratory of Medical Molecular Virology, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Chang Liu
- Laboratory of Medical Molecular Virology, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Xiaohong Kong
- Laboratory of Medical Molecular Virology, School of Medicine, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
12
|
Ipp H, Nkambule BB, Reid TD, de Swardt D, Bekker LG, Glashoff RH. CD4+ T cells in HIV infection show increased levels of expression of a receptor for vasoactive intestinal peptide, VPAC2. Immunol Res 2015; 60:11-5. [PMID: 24469917 DOI: 10.1007/s12026-014-8487-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Immune activation is a strong predictor of disease outcome in HIV infection and promotes the loss of CD4+ T cells. The neuropeptide, vasoactive intestinal peptide (VIP), has immune-modulating properties with specific receptors identified on lymphocytes; VPAC1 and VPAC2. Studies have shown that VIP limits immune activation and apoptosis in T cells by decreasing the expression of the apoptosis signaling molecule Fas ligand (FasL). VIP receptor surface expression has not been investigated by flow cytometry in the context of HIV infection and may represent a novel target for immune-modulating therapy. Eighty-seven untreated HIV-infected individuals with CD4 counts >200 and 57 uninfected controls were recruited from a primary health clinic in Cape Town, South Africa. Flow cytometry was used to determine levels of expression of VPAC1 and VPAC2, as well as FasL on CD4+ T cells, and these results were correlated with the immune activation phenotype %CD38+CD8+ T cells. VPAC2 expression was significantly increased in the HIV group (mean %VPAC2+CD4+ cells 19.25 vs. control 12.56; p ≤ 0.0001), but no difference in VPAC1 expression was observed. VPAC2 correlated positively with FasL (r = 0.310; p = 0.001), and there was a significant inverse correlation between FasL and the CD4 count (r = -0.211; p = 0.013) and a direct correlation with %CD38+CD8+ T cells (r = 0.39; p ≤ 0.0001). Thus, higher levels of immune activation correlated with higher levels of the death-signaling FasL and lower CD4 counts. VPAC2 may provide a novel target for the selective limitation of CD4+ T-cell death in HIV infection.
Collapse
Affiliation(s)
- Hayley Ipp
- Division of Haematology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University and National Health Laboratory Service (NHLS), Tygerberg Hospital, 9th Floor Gold Avenue Rm 47, PO Box 19063, Tygerberg, Cape Town, 7505, South Africa,
| | | | | | | | | | | |
Collapse
|
13
|
The grafting of universal T-helper epitopes enhances immunogenicity of HIV-1 Tat concurrently improving its safety profile. PLoS One 2014; 9:e114155. [PMID: 25531437 PMCID: PMC4273983 DOI: 10.1371/journal.pone.0114155] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 11/04/2014] [Indexed: 12/16/2022] Open
Abstract
Extracellular Tat (eTat) plays an important role in HIV-1 pathogenesis. The presence of anti-Tat antibodies is negatively correlated with disease progression, hence making Tat a potential vaccine candidate. The cytotoxicity and moderate immunogenicity of Tat however remain impediments for developing Tat-based vaccines. Here, we report a novel strategy to concurrently enhance the immunogenicity and safety profile of Tat. The grafting of universal helper T-lymphocyte (HTL) epitopes, Pan DR Epitope (PADRE) and Pol711 into the cysteine rich domain (CRD) and the basic domain (BD) abolished the transactivation potential of the Tat protein. The HTL-Tat proteins elicited a significantly higher titer of antibodies as compared to the wild-type Tat in BALB/c mice. While the N-terminal epitope remained immunodominant in HTL-Tat immunizations, an additional epitope in exon-2 was recognized with comparable magnitude suggesting a broader immune recognition. Additionally, the HTL-Tat proteins induced cross-reactive antibodies of high avidity that efficiently neutralized exogenous Tat, thus blocking the activation of a Tat-defective provirus. With advantages such as presentation of multiple B-cell epitopes, enhanced antibody response and importantly, transactivation-deficient Tat protein, this approach has potential application for the generation of Tat-based HIV/AIDS vaccines.
Collapse
|
14
|
Zhang L, Qin J, Li Y, Wang J, He Q, Zhou J, Liu M, Li D. Modulation of the stability and activities of HIV-1 Tat by its ubiquitination and carboxyl-terminal region. Cell Biosci 2014; 4:61. [PMID: 25328666 PMCID: PMC4201738 DOI: 10.1186/2045-3701-4-61] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 09/27/2014] [Indexed: 11/28/2022] Open
Abstract
Background The transactivator of transcription (Tat) protein of human immunodeficiency virus type 1 (HIV-1) is known to undergo ubiquitination. However, the roles of ubiquitination in regulating Tat stability and activities are unclear. In addition, although the 72- and 86-residue forms are commonly used for in vitro studies, the 101-residue form is predominant in the clinical isolates of HIV-1. The influence of the carboxyl-terminal region of Tat on its functions remains unclear. Results In this study, we find that Tat undergoes lysine 48-linked ubiquitination and is targeted to proteasome-dependent degradation. Expression of various ubiquitin mutants modulates Tat activities, including the transactivation of transcription, induction of apoptosis, interaction with tubulin, and stabilization of microtubules. Moreover, the 72-, 86- and 101-residue forms of Tat also exhibit different stability and aforementioned activities. Conclusions Our findings demonstrate that the ubiquitination and carboxyl-terminal region of Tat are critical determinants of its stability and activities.
Collapse
Affiliation(s)
- Linlin Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071 China
| | - Juan Qin
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071 China
| | - Yuanyuan Li
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071 China
| | - Jian Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071 China
| | - Qianqian He
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071 China
| | - Jun Zhou
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071 China
| | - Min Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071 China
| | - Dengwen Li
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071 China
| |
Collapse
|
15
|
Ipp H, Zemlin AE, Erasmus RT, Glashoff RH. Role of inflammation in HIV-1 disease progression and prognosis. Crit Rev Clin Lab Sci 2014; 51:98-111. [PMID: 24479745 DOI: 10.3109/10408363.2013.865702] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Inflammation and immune activation have been thrust to center stage in the understanding of HIV-1 disease pathogenesis and progression. Early work demonstrated that heightened levels of immune activation correlated with the extent of CD4 + T cell death in lymphoid tissue; however, this concept was not incorporated into the general view of disease pathogenesis. Since these early studies, the extension of life for patients on combination antiretroviral therapies (cART) has heralded a new era of non-AIDS-related diseases and incomplete restoration of immune function. The common link appears to be ongoing inflammation and immune activation. Thus, despite good control of viral loads, persons living with HIV (PLWH) remain at increased risk of inflammatory-associated complications such as cardiovascular disease and certain cancers. HIV-specific mechanisms as well as non-specific generalized responses to infection contribute to ongoing activation of the immune system. An early loss of gastrointestinal (GI) tract mucosal integrity, the pro-inflammatory cytokine milieu, co-infections and marked destruction of lymph node architecture are all factors contributing to the ongoing activation of the immune system as well as impaired immune recovery. It is becoming increasingly evident that the CD4 count and viral load do not provide a complete picture of the underlying state of the immune system. Heightened levels of inflammatory markers have been shown to predict increased mortality and other adverse events. Therefore, it will be important to incorporate these markers into management algorithms as soon as possible. This is particularly relevant in resource-poor countries where difficulties in cART roll-out and access are still encountered and, therefore, a mechanism for prioritizing individuals for therapy would be of value. This review will focus on the closely inter-related concepts of immune activation and inflammation. Both are broad concepts involving the interaction of various key players in the immune system. Importantly, immune activation promotes inflammation and thrombosis and similarly, inflammation and thrombosis induce immune activation. These concepts are thus intricately linked. Studies highlighting the potentially harmful effects of ongoing inflammation/immune activation are reviewed and the contributions of the GI tract "damage" and other co-infections such as CMV are explored. The complications resulting from persistent immune activation include enhanced CD4 + T cell death, lymphoid tissue destruction, and various pathologies related to chronic inflammation. Ultimately, we envision that the long-term management of the disease will incorporate both the identification and the amelioration of the potentially harmful effects of ongoing immune activation and inflammation.
Collapse
|
16
|
Abbas W, Herbein G. T-Cell Signaling in HIV-1 Infection. Open Virol J 2013; 7:57-71. [PMID: 23986795 PMCID: PMC3751038 DOI: 10.2174/1874357920130621001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Revised: 05/31/2013] [Accepted: 06/04/2013] [Indexed: 12/20/2022] Open
Abstract
HIV exploits the T-cell signaling network to gain access to downstream cellular components, which serves as effective tools to break the cellular barriers. Multiple host factors and their interaction with viral proteins contribute to the complexity of HIV-1 pathogenesis and disease progression. HIV-1 proteins gp120, Nef, Tat and Vpr alter the T-cell signaling pathways by activating multiple transcription factors including NF-ĸB, Sp1 and AP-1. HIV-1 evades the immune system by developing a multi-pronged strategy. Additionally, HIV-1 encoded proteins influence the apoptosis in the host cell favoring or blocking T-cell apoptosis. Thus, T-cell signaling hijacked by viral proteins accounts for both viral persistence and immune suppression during HIV-1 infection. Here, we summarize past and present studies on HIV-1 T-cell signaling with special focus on the possible role of T cells in facilitating viral infection and pathogenesis
Collapse
Affiliation(s)
- Wasim Abbas
- Department of Virology, Pathogens & Inflammation Laboratory, UPRES EA4266, SFR FED 4234, University of Franche-Comte, CHRU Besançon, F-25030 Besançon, France
| | | |
Collapse
|
17
|
Ipp H, Zemlin A. The paradox of the immune response in HIV infection: when inflammation becomes harmful. Clin Chim Acta 2012; 416:96-9. [PMID: 23228847 DOI: 10.1016/j.cca.2012.11.025] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 11/20/2012] [Accepted: 11/23/2012] [Indexed: 01/11/2023]
Abstract
HIV-infection is associated with ongoing activation of the immune system and persistent inflammation. These are key driving forces in the loss of CD4+ T cells, progression to AIDS and development of non-HIV-related complications such as cardiovascular disease and certain cancers. Diseases associated with accelerated aging are increasing in incidence despite good anti-retroviral therapy (ART). The common underlying mechanism appears to be chronic inflammation. HIV-specific mechanisms as well as non-specific generalized responses to infection contribute to the chronic and aberrant activation of the immune system. An early loss of gut mucosal integrity, the pro-inflammatory cytokine milieu, co-infections and later, marked destruction of lymph node architecture are all factors contributing to the ongoing activation of both the innate and adaptive immune systems. These factors paradoxically promote CD4+ T cell loss, both by providing additional substrate for viral infection in the form of activated CD4+ T cells, as well as by priming non-infected 'bystander' CD4+ T cells for death by apoptosis. However, the relative contributions of each of these mechanisms to ongoing immune activation remain to be determined. Cost-effective markers of inflammation and selective anti-inflammatory agents are important fields of current and future research.
Collapse
Affiliation(s)
- Hayley Ipp
- Division of Haematology, Department of Pathology, Stellenbosch University and National Health Laboratory Service (NHLS), Tygerberg Hospital, Cape Town, South Africa.
| | | |
Collapse
|
18
|
Cooper I, Sasson K, Teichberg VI, Schnaider-Beeri M, Fridkin M, Shechter Y. Peptide derived from HIV-1 TAT protein destabilizes a monolayer of endothelial cells in an in vitro model of the blood-brain barrier and allows permeation of high molecular weight proteins. J Biol Chem 2012; 287:44676-83. [PMID: 23150670 DOI: 10.1074/jbc.m112.395384] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Most chemotherapeutic agents are blood-brain barrier (BBB) impermeants. HIV-1-derived TAT protein variants contain a transmembrane domain, which may enable them to cross the BBB and reach the brain. Here we synthesized CAYGRKKRRQRRR, a peptide containing a cysteine moiety attached to the N terminus of the transmembrane domain (C-TAT peptide), and studied its effects in an in vitro BBB model, which we found to reflect penetration by a receptor-independent pathway. Incubation of the brain capillary endothelial cell monolayer with 0.3-0.6 μmol/ml of this C-TAT peptide, for a period of 1-2 h, destabilizes brain capillary endothelial cell monolayer and introduces the ability of impermeant therapeutic agents including high molecular weight proteins to penetrate it substantially. The cysteinyl moiety at position 1 of the C-TAT peptide contributes largely to the destabilizing potency and the penetration efficacy of impermeant substances. The destabilizing effect was reversed using heparin. In summary, experimental conditions allowing a significant increase in entry of impermeant low and high molecular weight substances from the luminal (blood) to the abluminal side (brain) were found in an in vitro BBB model reflecting in vivo protein penetrability by a receptor-independent pathway.
Collapse
Affiliation(s)
- Itzik Cooper
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel.
| | | | | | | | | | | |
Collapse
|
19
|
Ramautar A, Mabandla M, Blackburn J, Daniels WMU. Inhibition of HIV-1 tat-induced transactivation and apoptosis by the divalent metal chelators, fusaric acid and picolinic acid-implications for HIV-1 dementia. Neurosci Res 2012; 74:59-63. [PMID: 22698778 DOI: 10.1016/j.neures.2012.05.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 05/28/2012] [Accepted: 05/30/2012] [Indexed: 11/29/2022]
Abstract
The HIV-1 transactivator protein tat is pivotal to the pathogenesis of AIDS, exerting its effects on both viral and cellular gene expression. The basic structure of tat protein allows it to be secreted by HIV-1 infected cells and penetrate uninfected cells where it elicits its multifunctional biochemical effects. The main function of tat protein is viral transactivation which leads to the upregulation of transcription through complex interactions with RNA and host cell factors. Since HIV-1 has been widely implicated as a causative agent of HIV-1 dementia, the aim of our study was to investigate the ability of two novel metal chelators, fusaric acid (FA) and picolinic acid (PA) to firstly inhibit HIV-1 tat induced transcription and secondly, to minimize its cytotoxic effects as mediated via apoptosis. Biologically active tat protein is not freely available commercially. We therefore had to produce, isolate and purify our own protein. A cell culture system and flow cytometric techniques were used in our study. Exposure of CEM-GFP cells to exogenous recombinant tat protein induced transcription and apoptosis, and both processes were inhibited by FA and PA at concentrations that alone did not induce any cytotoxicity. Our data suggest that FA and PA may have therapeutic potential in the management of HIV-1 dementia.
Collapse
Affiliation(s)
- Atish Ramautar
- Discipline of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa.
| | | | | | | |
Collapse
|
20
|
Mediouni S, Watkins JD, Pierres M, Bole A, Loret EP, Baillat G. A monoclonal antibody directed against a conformational epitope of the HIV-1 trans-activator (Tat) protein neutralizes cross-clade. J Biol Chem 2012; 287:11942-50. [PMID: 22362765 DOI: 10.1074/jbc.m111.319863] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The identification of a neutralizing mAb against extracellular HIV-1 transactivator of transcription (Tat) is important for the development of an efficient HIV-1 treatment. Tat plays an essential role in HIV-1 pathogenesis, not only for HIV-1 replication but also as an extracellular toxin able to disrupt the immune system. We showed previously that immunization of rabbits with Tat Oyi, a variant cloned from an African woman who did not develop AIDS following HIV-1 infection, raised antibodies able to recognize different Tat variants. We carried out mice immunization with Tat Oyi and selected a mAb named 7G12, which had the capacity to cross-recognize heterologous Tat variants by a common three-dimensional epitope. These results highlighted that Tat variants were able to acquire a structure, in contrast to a number of studies showing Tat as an unfolded protein. mAb 7G12 also had the capacity to neutralize the biological activities of these Tat variants by blocking the cellular uptake of extracellular Tat. This is the first study using Tat Oyi to produce a mAb able to neutralize effectively activities of extracellular Tats from different HIV-1 subtypes. This mAb has an important potential in therapeutic passive immunization and could help HIV-1 infected patients to restore their immunity.
Collapse
Affiliation(s)
- Sonia Mediouni
- Equipe de Recherche Technologique 2011, Université de la Méditerranée, Faculté de Pharmacie, 27 BD Jean Moulin, 13385 Marseille Cedex 5, France
| | | | | | | | | | | |
Collapse
|
21
|
Molecular mechanism and structural basis of interactions of dipeptidyl peptidase IV with adenosine deaminase and human immunodeficiency virus type-1 transcription transactivator. Eur J Cell Biol 2011; 91:265-73. [PMID: 21856036 DOI: 10.1016/j.ejcb.2011.06.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Revised: 05/31/2011] [Accepted: 06/11/2011] [Indexed: 11/21/2022] Open
Abstract
Dipeptidyl peptidase IV (DPPIV or CD26) is a multifunctional membrane glycoprotein. As an exopeptidase it regulates the activity of a series of biologically important peptides. Through its interaction with specific proteins and peptides, DPPIV is also involved in a wide range of biologically relevant processes such as cell adhesion, T cell activation and apoptosis. In this paper, we review our recent studies on the interactions of DPPIV with adenosine deaminase (ADA) and the transcription transactivator of the human immunodeficiency virus type-1 (HIV-1 Tat) as revealed by three-dimensional structure reconstructed by single particle analysis of cryo-electron microscopy (EM) and crystal structures of the human DPPIV-bovine ADA complex as well as the crystal structures of DPPIV in complex with HIV-1 Tat-derived nonapeptides. These results contribute importantly to the clarification of the molecular mechanisms of this multifunctional protein. The biological relevance of these interactions is discussed.
Collapse
|
22
|
Campbell GR, Watkins JD, Loret EP, Spector SA. Differential induction of rat neuronal excitotoxic cell death by human immunodeficiency virus type 1 clade B and C tat proteins. AIDS Res Hum Retroviruses 2011; 27:647-54. [PMID: 20977378 DOI: 10.1089/aid.2010.0192] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
In the absence of effective antiretroviral therapy, infection with clade B human immunodeficiency virus (HIV-1) infection commonly progresses to AIDS dementia. However, in India, where clade C infection is most prevalent, severe cognitive impairment due to HIV-1 is reported to be less prevalent. The Tat protein of HIV-1, which is released from HIV-1-infected macrophages, is thought to play a major role in the disruption of neuronal function as well as in the infiltration of macrophages associated with advanced neuropathogenesis. Clade B Tat is excitotoxic to hippocampal neurons by potentiating N-methyl-d-aspartate-induced currents of the zinc-sensitive NR1/NR2A N-methyl-d-aspartate receptor in a zinc-binding-dependent mechanism. This study characterizes the zinc-binding properties of clade C Tat protein. Using ultraviolet spectroscopy and the Ellman reaction, we show that clade C Tat protein binds just one zinc ion per monomer. We then investigated the ability of clade C Tat to block the inhibition of N-methyl-d-aspartate receptors from zinc antagonism through ion chelation. Although clade C Tat enhanced N-methyl-d-aspartate-mediated rat hippocampus neuronal toxicity in the presence of zinc, the increase was significantly less than that observed with clade B Tat. These findings suggest that the observed differences in neuropathogenesis found with HIV-1 clade C infection compared to clade B may, in part, be due to a decrease in Tat-mediated neurotoxicity.
Collapse
Affiliation(s)
- Grant R. Campbell
- Department of Pediatrics, Division of Infectious Diseases, University of California San Diego, La Jolla, California
| | - Jennifer D. Watkins
- Equipe Technologique de Recherche Appliquée sur le VIH-1 2011, Faculté de Pharmacie, Université de la Méditerranée, Marseille, France
- Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Erwann P. Loret
- Equipe Technologique de Recherche Appliquée sur le VIH-1 2011, Faculté de Pharmacie, Université de la Méditerranée, Marseille, France
| | - Stephen A. Spector
- Department of Pediatrics, Division of Infectious Diseases, University of California San Diego, La Jolla, California
- Rady Children's Hospital, San Diego, California
| |
Collapse
|
23
|
Wong JK, Campbell GR, Spector SA. Differential induction of interleukin-10 in monocytes by HIV-1 clade B and clade C Tat proteins. J Biol Chem 2010; 285:18319-25. [PMID: 20378550 DOI: 10.1074/jbc.m110.120840] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The clade B human immunodeficiency virus, type 1 (HIV-1) Tat (trans-acting regulatory protein) induces interleukin-10 (IL-10) production in monocytes. IL-10, an anti-inflammatory cytokine, down-regulates proinflammatory cytokines and suppresses the immune response, leading to a rapid progression from HIV-1 infection to AIDS. Nine clades of HIV-1 are responsible for the majority of infections worldwide. Recent studies demonstrate that different HIV-1 clades have biological differences in relation to transmission, replication, and disease progression. In this study, we show that the cysteine to serine mutation at position 31, found in >90% of HIV-1 clade C Tat proteins, results in a marked decrease in IL-10 production in monocytes compared with clade B Tat. Additionally, the C31S mutation found in C Tat is responsible for the inability of these Tat proteins to produce high IL-10 levels in monocytes due to its inability to induce intracellular calcium flux through L-type calcium channels. Moreover, we show that p38alpha/p38beta and phosphoinositide 3-kinase are crucial to Tat-induced IL-10 production. These findings provide further evidence that HIV-1 clades differ in their biological properties that may impact HIV-1 pathogenesis and disease progression.
Collapse
Affiliation(s)
- Justine K Wong
- Department of Pediatrics, Division of Infectious Diseases, University of California, San Diego,La Jolla, California 92093, USA
| | | | | |
Collapse
|
24
|
López-Huertas MR, Callejas S, Abia D, Mateos E, Dopazo A, Alcamí J, Coiras M. Modifications in host cell cytoskeleton structure and function mediated by intracellular HIV-1 Tat protein are greatly dependent on the second coding exon. Nucleic Acids Res 2010; 38:3287-307. [PMID: 20139419 PMCID: PMC2879518 DOI: 10.1093/nar/gkq037] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) regulator Tat is essential for viral replication because it achieves complete elongation of viral transcripts. Tat can be released to the extracellular space and taken up by adjacent cells, exerting profound cytoskeleton rearrangements that lead to apoptosis. In contrast, intracellular Tat has been described as protector from apoptosis. Tat gene is composed by two coding exons that yield a protein of 101 amino acids (aa). First exon (1–72aa) is sufficient for viral transcript elongation and second exon (73–101 aa) appears to contribute to non-transcriptional functions. We observed that Jurkat cells stably expressing intracellular Tat101 showed gene expression deregulation 4-fold higher than cells expressing Tat72. Functional experiments were performed to evaluate the effect of this deregulation. First, NF-κB-, NF-AT- and Sp1-dependent transcriptional activities were greatly enhanced in Jurkat-Tat101, whereas Tat72 induced milder but efficient activation. Second, cytoskeleton-related functions as cell morphology, proliferation, chemotaxis, polarization and actin polymerization were deeply altered in Jurkat-Tat101, but not in Jurkat-Tat72. Finally, expression of several cell surface receptors was dramatically impaired by intracellular Tat101 but not by Tat72. Consequently, these modifications were greatly dependent on Tat second exon and they could be related to the anergy observed in HIV-1-infected T cells.
Collapse
Affiliation(s)
- M R López-Huertas
- AIDS Immunopathology Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
25
|
Campbell GR, Loret EP, Spector SA. HIV-1 clade B Tat, but not clade C Tat, increases X4 HIV-1 entry into resting but not activated CD4+ T cells. J Biol Chem 2010; 285:1681-91. [PMID: 19917610 PMCID: PMC2804326 DOI: 10.1074/jbc.m109.049957] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Revised: 11/13/2009] [Indexed: 11/06/2022] Open
Abstract
CXCR4-using human immunodeficiency virus, type 1 (HIV-1) variants emerge late in the course of infection in >40% of individuals infected with clade B HIV-1 but are described less commonly with clade C isolates. Tat is secreted by HIV-1-infected cells where it acts on both uninfected bystander cells and infected cells. In this study, we show that clade B Tat, but not clade C Tat, increases CXCR4 surface expression on resting CD4+ T cells through a CCR2b-dependent mechanism that does not involve de novo protein synthesis. The expression of plectin, a cytolinker protein that plays an important role as a scaffolding platform for proteins involved in cellular signaling including CXCR4 signaling and trafficking, was found to be significantly increased following B Tat but not C Tat treatment. Knockdown of plectin using RNA interference showed that plectin is essential for the B Tat-induced translocation of CXCR4 to the surface of resting CD4+ T cells. The increased surface CXCR4 expression following B Tat treatment led to increased function of CXCR4 including increased chemoattraction toward CXCR4-using-gp120. Moreover, increased CXCR4 surface expression rendered resting CD4+ T cells more permissive to X4 but not R5 HIV-1 infection. However, neither B Tat nor C Tat was able to up-regulate surface expression of CXCR4 on activated CD4+ T cells, and both proteins inhibited the infection of activated CD4+ T cells with X4 but not R5 HIV-1. Thus, B Tat, but not C Tat, has the capacity to render resting, but not activated, CD4+ T cells more susceptible to X4 HIV-1 infection.
Collapse
Affiliation(s)
- Grant R. Campbell
- From the Department of Pediatrics, Division of Infectious Diseases, University of California San Diego, La Jolla, California 92093-0672
| | - Erwann P. Loret
- INSERM U911, Faculté de Pharmacie, Université de la Méditerranée, 13385 Marseille Cedex 5, France
| | - Stephen A. Spector
- From the Department of Pediatrics, Division of Infectious Diseases, University of California San Diego, La Jolla, California 92093-0672
- Rady Children's Hospital, San Diego, California 92123, and
| |
Collapse
|
26
|
Campbell GR, Loret EP. What does the structure-function relationship of the HIV-1 Tat protein teach us about developing an AIDS vaccine? Retrovirology 2009; 6:50. [PMID: 19467159 PMCID: PMC2693501 DOI: 10.1186/1742-4690-6-50] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Accepted: 05/25/2009] [Indexed: 11/03/2022] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) trans-activator of transcription protein Tat is an important factor in viral pathogenesis. In addition to its function as the key trans-activator of viral transcription, Tat is also secreted by the infected cell and taken up by neighboring cells where it has an effect both on infected and uninfected cells. In this review we will focus on the relationship between the structure of the Tat protein and its function as a secreted factor. To this end we will summarize some of the exogenous functions of Tat that have been implicated in HIV-1 pathogenesis and the impact of structural variations and viral subtype variants of Tat on those functions. Finally, since in some patients the presence of Tat-specific antibodies or CTL frequencies are associated with slow or non-progression to AIDS, we will also discuss the role of Tat as a potential vaccine candidate, the advances made in this field, and the importance of using a Tat protein capable of eliciting a protective or therapeutic immune response to viral challenge.
Collapse
Affiliation(s)
- Grant R Campbell
- Department of Pediatrics, Division of Infectious Diseases, University of California San Diego, La Jolla, California 92093-0672, USA.
| | | |
Collapse
|
27
|
Passiatore G, Rom S, Eletto D, Peruzzi F. HIV-1 Tat C-terminus is cleaved by calpain 1: implication for Tat-mediated neurotoxicity. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1793:378-87. [PMID: 19022302 DOI: 10.1016/j.bbamcr.2008.10.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Revised: 09/24/2008] [Accepted: 10/14/2008] [Indexed: 01/15/2023]
Abstract
HIV-Encephalopathy (HIVE) is a common neurological disorder associated with HIV-1 infection and AIDS. The activity of the HIV trans-activating protein Tat is thought to contribute to neuronal pathogenesis. While Tat proteins from primary virus isolates consist of 101 or more amino acids, 72 and 86 amino acids forms of Tat are commonly used for in vitro studies. Although Tat72 contains the minimal domain required for viral replication, other activities of Tat appear to vary according to its length, sub-cellular localization, cell type and the stage of cellular differentiation. In this study, we investigated the stability of intracellular Tat101 during proliferation and differentiation of neuronal cells in culture. We have utilized rat neuronal progenitors as a model of neuronal cell proliferation and differentiation, as well as rat primary cortical neurons as a model of fully differentiated cells. Our results indicate that, upon internalization, Tat101 was degraded more rapidly in proliferating cells than in cells which either underwent neuronal differentiation or were fully differentiated. Intracellular degradation of Tat was prevented by the calpain 1 inhibitor, ALLN, in both proliferating and differentiated cells. Inhibition of calpain 1 by calpastatin peptide also prevented Tat cleavage. In vitro calpain digestion and mass spectrometry analysis further demonstrated that the sequence of Tat sensitive to calpain cleavage was located in the C-terminus of this viral protein, between amino acids 68 and 69. Moreover, cleavage of Tat101 by calpain 1 increased neurotoxic effect of this viral protein and presence of the calpain inhibitor protected neuronal cells from Tat-mediated toxicity.
Collapse
Affiliation(s)
- Giovanni Passiatore
- Department of Neuroscience and Center for Neurovirology, Temple University School of Medicine, 1900 North 12th Street, Philadelphia, Pennsylvania 19122, USA
| | | | | | | |
Collapse
|
28
|
Watkins JD, Campbell GR, Halimi H, Loret EP. Homonuclear 1H NMR and circular dichroism study of the HIV-1 Tat Eli variant. Retrovirology 2008; 5:83. [PMID: 18808674 PMCID: PMC2557015 DOI: 10.1186/1742-4690-5-83] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Accepted: 09/22/2008] [Indexed: 11/30/2022] Open
Abstract
Background The HIV-1 Tat protein is a promising target to develop AIDS therapies, particularly vaccines, due to its extracellular role that protects HIV-1-infected cells from the immune system. Tat exists in two different lengths, 86 or 87 residues and 99 or 101 residues, with the long form being predominant in clinical isolates. We report here a structural study of the 99 residue Tat Eli variant using 2D liquid-state NMR, molecular modeling and circular dichroism. Results Tat Eli was obtained from solid-phase peptide synthesis and the purified protein was proven biologically active in a trans-activation assay. Circular dichroism spectra at different temperatures up to 70°C showed that Tat Eli is not a random coil at 20°C. Homonuclear 1H NMR spectra allowed us to identify 1639 NMR distance constraints out of which 264 were interresidual. Molecular modeling satisfying at least 1474 NMR constraints revealed the same folding for different model structures. The Tat Eli model has a core region composed of a part of the N-terminus including the highly conserved Trp 11. The extra residues in the Tat Eli C-terminus protrude from a groove between the basic region and the cysteine-rich region and are well exposed to the solvent. Conclusion We show that active Tat variants share a similar folding pattern whatever their size, but mutations induce local structural changes.
Collapse
Affiliation(s)
- Jennifer D Watkins
- Faculté de Pharmacie, Unité Mixte de Recherche Université de la Méditerranée/INSERM U911, Université de la Méditerranée, Marseille, France.
| | | | | | | |
Collapse
|
29
|
Is HIV infection a TNF receptor signalling-driven disease? Trends Immunol 2008; 29:61-7. [DOI: 10.1016/j.it.2007.10.008] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Revised: 09/20/2007] [Accepted: 10/31/2007] [Indexed: 02/03/2023]
|
30
|
Mahlknecht U, Dichamp I, Varin A, Van Lint C, Herbein G. NF-kappaB-dependent control of HIV-1 transcription by the second coding exon of Tat in T cells. J Leukoc Biol 2007; 83:718-27. [PMID: 18070983 DOI: 10.1189/jlb.0607405] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
HIV-1 two-exon transactivator protein (Tat) is a 101-aa protein. We investigated the possible contribution of the extreme C terminus of HIV-1 Tat to maximize nuclear transcription factor NF-kappaB activation, long terminal repeat (LTR) transactivation, and viral replication in T cells. C-terminal deletion and substitution mutants made with the infectious clone HIV-89.6 were assayed for their ability to transactivate NF-kappaB-secreted alkaline phosphatase and HIV-1 LTR-luciferase reporter constructs for low concentrations of Tat. A mutant infectious clone of HIV-89.6 engineered by introducing a stop codon at aa 72 in the Tat open-reading frame (HIVDeltatatexon2) replicated at a significantly lower rate than the wild-type HIV-89.6 in phytohemagglutinin-A/IL-2-stimulated primary peripheral blood lymphocytes. Altogether, our results suggest a critical role for the glutamic acids at positions 92, 94, and 96 or lysines at positions 88, 89, and 90, present in the second encoding Tat exon in activating NF-kappaB, transactivating the HIV-1 LTR and enhancing HIV-1 replication in T cells.
Collapse
Affiliation(s)
- Ulrich Mahlknecht
- Franche-Comté School of Medicine, Hôpital Saint-Jacques, 2 Place Saint-Jacques, F-25030 Besançon Cedex, France
| | | | | | | | | |
Collapse
|
31
|
Campbell GR, Senkaali D, Watkins J, Esquieu D, Opi S, Yirrell DL, Kaleebu P, Loret EP. Tat mutations in an African cohort that do not prevent transactivation but change its immunogenic properties. Vaccine 2007; 25:8441-7. [PMID: 17997200 DOI: 10.1016/j.vaccine.2007.09.070] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2006] [Revised: 03/04/2007] [Accepted: 09/20/2007] [Indexed: 11/26/2022]
Abstract
Humoral responses against extra-cellular HIV-1 Tat may be beneficial as Tat has been implicated in the viral pathogenesis associated with HIV-1 disease progression. We determined the levels of anti-Tat IgG in sera of HIV-1 seropositive individuals from the Rural Clinical Cohort in Uganda using nine different Tat proteins representative of the major subtypes presently accounting for 97% of infections worldwide. We observed the presence of anti-Tat IgG able to react against the various subtypes tested, although none cross-reacted against all nine variants. We show that 46.25% of seropositive patients were able to recognise at least one Tat variant with 1:1000 sera dilution. We also show that the C terminus of Tat is the most variable region and an important epitope that might explain the limitation of cross-recognition of Tat antibodies regarding Tat variants. This study shows in seropositive patients that Tat can tolerate mutations without modification of its primary function but with changes in its immunogenic properties. These findings should be considered when designing Tat-based HIV-1 vaccines.
Collapse
Affiliation(s)
- Grant R Campbell
- CNRS Formation de Recherche en Evolution 2737, Faculté de Pharmacie, Université de la Méditerranée, 27 Boulevard Jean Moulin, 13385 Marseille Cedex 5, France
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Campbell GR, Watkins JD, Singh KK, Loret EP, Spector SA. Human immunodeficiency virus type 1 subtype C Tat fails to induce intracellular calcium flux and induces reduced tumor necrosis factor production from monocytes. J Virol 2007; 81:5919-28. [PMID: 17376903 PMCID: PMC1900281 DOI: 10.1128/jvi.01938-06] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Over 50% of all human immunodeficiency virus type 1 (HIV-1) infections worldwide are caused by subtype C strains, yet most research to date focuses on subtype B, the subtype most commonly found in North America and Europe. The HIV-1 trans-acting regulatory protein (Tat) is essential for regulating productive replication of HIV-1. Tat is secreted by HIV-infected cells and alters several functions of uninfected bystander cells. One such function is that, by acting at the cell membrane, subtype B Tat stimulates the production of tumor necrosis factor (TNF) and chemokine (C-C motif) ligand 2 (CCL2) from human monocytes and can act as a chemoattractant. In this study, we show that the mutation of a cysteine to a serine at residue 31 of Tat commonly found in subtype C variants significantly inhibits the abilities of the protein to bind to chemokine (C-C motif) receptor 2 (CCR2), induce intracellular calcium flux, stimulate TNF and CCL2 production, and inhibit its chemoattractant properties. We also show that TNF is important in mediating some effects of extracellular Tat. This report therefore demonstrates the important functional differences between subtype C and subtype B Tat and highlights the need for further investigation into the different strains of HIV-1.
Collapse
Affiliation(s)
- Grant R Campbell
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0672, USA
| | | | | | | | | |
Collapse
|
33
|
Minami R, Yamamoto M, Takahama S, Miyamura T, Watanabe H, Suematsu E. RCAS1 induced by HIV-Tat is involved in the apoptosis of HIV-1 infected and uninfected CD4+ T cells. Cell Immunol 2007; 243:41-7. [PMID: 17250817 DOI: 10.1016/j.cellimm.2006.11.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2006] [Revised: 10/25/2006] [Accepted: 11/27/2006] [Indexed: 12/28/2022]
Abstract
HIV-1 infection is known to lead to a massive depletion of CD4(+) T cells, and the Fas/FasL and TRAIL/TRAIL-receptor systems have been reported to be one of the mechanisms of CD4(+) T cell apoptosis in HIV-1 infection. RCAS1 (a receptor-binding cancer antigen expressed on SiSo cells) is also an apoptosis-associated protein that induces apoptosis in receptor positive-cells including T cells, and NK cells. To investigate the role of RCAS1 in HIV-1 infection, we stimulated CD4(+) T cells, monocytes, and several cell lines by HIV-Tat protein and thus showed that Tat significantly increased the mRNA transcription levels and the secretion of soluble RCAS1 in CD4(+) T cells and monocytes. We also showed that the apoptosis induced by HIV-Tat was blocked by inhibiting the expression of RCAS1, using small interfering RNA (siRNA), which was specific for RCAS1. These results indicate that RCAS1 is one of the mechanisms of CD4(+) T cell depletion induced by HIV infection.
Collapse
Affiliation(s)
- Rumi Minami
- Internal Medicine, Clinical Research Institute, National Hospital Organization, Kyushu Medical Center, Fukuoka, Japan.
| | | | | | | | | | | |
Collapse
|
34
|
Ensoli B, Fiorelli V, Ensoli F, Cafaro A, Titti F, Buttò S, Monini P, Magnani M, Caputo A, Garaci E. Candidate HIV-1 Tat vaccine development: from basic science to clinical trials. AIDS 2006; 20:2245-61. [PMID: 17117011 DOI: 10.1097/qad.0b013e3280112cd1] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
35
|
Toro A, Paiva M, Ackerley C, Grunebaum E. Intracellular delivery of purine nucleoside phosphorylase (PNP) fused to protein transduction domain corrects PNP deficiency in vitro. Cell Immunol 2006; 240:107-15. [PMID: 16930574 DOI: 10.1016/j.cellimm.2006.07.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2006] [Revised: 07/05/2006] [Accepted: 07/05/2006] [Indexed: 02/06/2023]
Abstract
Purine nucleoside phosphorylase (PNP) is an intracellular enzyme crucial for purine degradation. PNP defects result in metabolic abnormalities and fatal T cell immunodeficiency. Protein transduction domains (PTD) transfer molecules across biological membranes. We hypothesized that fusion of PTD to PNP (PTD-PNP) would be an effective method for treating PNP deficiency. We find that PTD-PNP rapidly enters PNP-deficient lymphocytes and increases intracellular enzyme activity for 96 h. Similar to endogenous PNP, PTD-PNP is predominantly distributed in the cytoplasm. PTD-PNP improve viability and correct abnormal functions of PNP-deficient T lymphocytes including their response to stimulation and IL-2 secretion. Intracellular transduction protects PTD-PNP from antibody neutralization and from elimination, which may also provide significant in vivo therapeutic advantages to PNP. In conclusion, PTD fusion is an attractive method for extended PNP intracellular enzyme replacement therapy for PNP-deficient patients as well as for the intracellular delivery of other proteins.
Collapse
Affiliation(s)
- Ana Toro
- Infection, Immunity, Injury and Repair Program, Research Institute, Hospital for Sick Children, The University of Toronto, Toronto, Ont., Canada M5G 1X8
| | | | | | | |
Collapse
|