1
|
Gkouskou KK, Grammatikopoulou MG, Lazou E, Vasilogiannakopoulou T, Sanoudou D, Eliopoulos AG. A genomics perspective of personalized prevention and management of obesity. Hum Genomics 2024; 18:4. [PMID: 38281958 PMCID: PMC10823690 DOI: 10.1186/s40246-024-00570-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 01/03/2024] [Indexed: 01/30/2024] Open
Abstract
This review discusses the landscape of personalized prevention and management of obesity from a nutrigenetics perspective. Focusing on macronutrient tailoring, we discuss the impact of genetic variation on responses to carbohydrate, lipid, protein, and fiber consumption. Our bioinformatic analysis of genomic variants guiding macronutrient intake revealed enrichment of pathways associated with circadian rhythm, melatonin metabolism, cholesterol and lipoprotein remodeling and PPAR signaling as potential targets of macronutrients for the management of obesity in relevant genetic backgrounds. Notably, our data-based in silico predictions suggest the potential of repurposing the SYK inhibitor fostamatinib for obesity treatment in relevant genetic profiles. In addition to dietary considerations, we address genetic variations guiding lifestyle changes in weight management, including exercise and chrononutrition. Finally, we emphasize the need for a refined understanding and expanded research into the complex genetic landscape underlying obesity and its management.
Collapse
Affiliation(s)
- Kalliopi K Gkouskou
- Department of Biology, Medical School, National and Kapodistrian University of Athens, Mikras Asias 75, 11527, Athens, Greece.
- GENOSOPHY P.C., Athens, Greece.
| | - Maria G Grammatikopoulou
- Unit of Immunonutrition and Clinical Nutrition, Department of Rheumatology and Clinical Immunology, University General Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | | | - Theodora Vasilogiannakopoulou
- Department of Biology, Medical School, National and Kapodistrian University of Athens, Mikras Asias 75, 11527, Athens, Greece
| | - Despina Sanoudou
- Clinical Genomics and Pharmacogenomics Unit, 4th Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Center for New Biotechnologies and Precision Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Aristides G Eliopoulos
- Department of Biology, Medical School, National and Kapodistrian University of Athens, Mikras Asias 75, 11527, Athens, Greece.
- GENOSOPHY P.C., Athens, Greece.
- Center for New Biotechnologies and Precision Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
- Biomedical Research Foundation of the Academy of Athens, Athens, Greece.
| |
Collapse
|
2
|
Wu J, Peng J, Zhou Y, Zhang R, Wang Z, Hu N, Zhang D, Quan G, Wu Y, Feng J, Shen B, Zhao J, Zhang Y, Yang K, Luo L. Screening and Identification of A Novel Anti-Siglec-15 Human Antibody 3F1 and Relevant Antitumor Activity. Mol Pharmacol 2022; 102:161-171. [PMID: 35764384 DOI: 10.1124/molpharm.121.000470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 06/19/2022] [Indexed: 11/22/2022] Open
Abstract
Siglec-15 is an important immunosuppressive molecule considered to be a key target in next generation tumor immunotherapy. In this study, we screened 22 high affinity antibodies that specifically recognize human siglec-15 by using a large human phage antibody library and 5 representative sequences were selected for further study. The results showed the binding activity of 5 antibodies to siglec-15 (EC50 ranged from 0.02368μg /mL to 0.07949 μg /mL) and in 2 siglec-15 overexpressed cell lines, 3 antibodies had the strongest binding activity, so the 2 clones were discarded for further study. Subsequently the affinity of 3 antibodies were measured by Bio-layer interferometry technology (5-9×10E-09M). As the reported ligands of siglec-15, the binding activity of siglec-15 and sialyl-Tn, CD44, MAG and LRRC4C can be blocked by 3 of the antibodies. Among these, 3F1 had a competitive advantage. Then, the antibody 3F1 showed an obvious ADCC effect (EC50 were 0.85 μg/mL). Further, antibody 3F1 can reverse the inhibitory effect of siglec-15 on lymphocyte proliferation (especially CD4+T, CD8+T) and cytokine release (IFN-γ). Given the above results, 3F1 was selected as a candidate for the in vivo pharmacodynamics study. In the tumor model of Balb/c Nude mice, 3F1 (10 mg/kg) showed certain anti-tumor effects (TGI was 31.5%) while the combination of 3F1 (5 mg/kg) and ERBITUX (5 mg/kg) showed significant antitumor effects (TGI was 48.7%) compared with the PBS group. In conclusion, novel human antibody 3F1 has anti-tumor activity and is expected to be an innovative candidate drug targeting siglec-15 for tumor immunotherapy Significance Statement Siglec-15 is considered as an important target in the next generation of tumor immunotherapy. 3F1 is expected to be the most promising potential candidate for targeting siglec-15 for cancer treatment, and could provide a reference for the development of anti-tumor drugs.
Collapse
Affiliation(s)
- Jiaguo Wu
- Dali University; Institute of Pharmacology and Toxicology, China
| | - Jingyi Peng
- Institute of Pharmacology and Toxicology, China
| | | | - Ran Zhang
- Hunan Normal University School of Medicine, China
| | - Zhihong Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, China
| | - Naijing Hu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, China
| | - Dingmu Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, China
| | - Guiqi Quan
- Institute of Pharmacology and Toxicology, China
| | - Yuanyu Wu
- Institute of Pharmacology and Toxicology, China
| | - Jiannan Feng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, China
| | - Beifen Shen
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, China
| | | | - Yan Zhang
- Department of Obstetrics and Gynecology, First Medical Center, General Hospital of Chinese PLA, China
| | - Kaiming Yang
- School of Basic Medical Sciences of Dali University, China
| | | |
Collapse
|
3
|
Vougioukalaki M, Georgila K, Athanasiadis EI, Eliopoulos AG. Cell adhesion tunes inflammatory TPL2 kinase signal transduction. Cell Mol Life Sci 2022; 79:156. [PMID: 35218437 PMCID: PMC11072766 DOI: 10.1007/s00018-022-04130-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/22/2021] [Accepted: 01/03/2022] [Indexed: 12/01/2022]
Abstract
Signaling through adhesion-related molecules is important for cancer growth and metastasis and cancer cells are resistant to anoikis, a form of cell death ensued by cell detachment from the extracellular matrix. Herein, we report that detached carcinoma cells and immortalized fibroblasts display defects in TNF and CD40 ligand (CD40L)-induced MEK-ERK signaling. Cell detachment results in reduced basal levels of the MEK kinase TPL2, compromises TPL2 activation and sensitizes carcinoma cells to death-inducing receptor ligands, mimicking the synthetic lethal interactions between TPL2 inactivation and TNF or CD40L stimulation. Focal Adhesion Kinase (FAK), which is activated in focal adhesions and mediates anchorage-dependent survival signaling, was found to sustain steady state TPL2 protein levels and to be required for TNF-induced TPL2 signal transduction. We show that when FAK levels are reduced, as seen in certain types of malignancy or malignant cell populations, the formation of cIAP2:RIPK1 complexes increases, leading to reduced TPL2 expression levels by a dual mechanism: first, by the reduction in the levels of NF-κΒ1 which is required for TPL2 stability; second, by the engagement of an RelA NF-κΒ pathway that elevates interleukin-6 production, leading to activation of STAT3 and its transcriptional target SKP2 which functions as a TPL2 E3 ubiquitin ligase. These data underscore a new mode of regulation of TNF family signal transduction on the TPL2-MEK-ERK branch by adhesion-related molecules that may have important ramifications for cancer therapy.
Collapse
Affiliation(s)
- Maria Vougioukalaki
- Division of Basic Sciences, University of Crete Medical School, Heraklion, Greece
- Institute for Molecular Biology and Biotechnology, Foundation of Research and Technology Hellas, Heraklion, Greece
| | - Konstantina Georgila
- Department of Biology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Emmanouil I Athanasiadis
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Aristides G Eliopoulos
- Institute for Molecular Biology and Biotechnology, Foundation of Research and Technology Hellas, Heraklion, Greece.
- Department of Biology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece.
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.
| |
Collapse
|
4
|
Murugesan G, Correia VG, Palma AS, Chai W, Li C, Feizi T, Martin E, Laux B, Franz A, Fuchs K, Weigle B, Crocker PR. Siglec-15 recognition of sialoglycans on tumor cell lines can occur independently of sialyl Tn antigen expression. Glycobiology 2021; 31:44-54. [PMID: 32501471 PMCID: PMC7799145 DOI: 10.1093/glycob/cwaa048] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/21/2020] [Accepted: 06/01/2020] [Indexed: 12/15/2022] Open
Abstract
Siglec-15 is a conserved sialic acid-binding Ig-like lectin expressed on osteoclast progenitors, which plays an important role in osteoclast development and function. It is also expressed by tumor-associated macrophages and by some tumors, where it is thought to contribute to the immunosuppressive microenvironment. It was shown previously that engagement of macrophage-expressed Siglec-15 with tumor cells expressing its ligand, sialyl Tn (sTn), triggered production of TGF-β. In the present study, we have further investigated the interaction between Siglec-15 and sTn on tumor cells and its functional consequences. Based on binding assays with lung and breast cancer cell lines and glycan-modified cells, we failed to see evidence for recognition of sTn by Siglec-15. However, using a microarray of diverse, structurally defined glycans, we show that Siglec-15 binds with higher avidity to sialylated glycans other than sTn or related antigen sequences. In addition, we were unable to demonstrate enhanced TGF-β secretion following co-culture of Siglec-15-expressing monocytic cell lines with tumor cells expressing sTn or following Siglec-15 cross-linking with monoclonal antibodies. However, we did observe activation of the SYK/MAPK signaling pathway following antibody cross-linking of Siglec-15 that may modulate the functional activity of macrophages.
Collapse
Affiliation(s)
- Gavuthami Murugesan
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, United Kingdom
| | - Viviana G Correia
- Applied Molecular Biosciences Unit, Faculty of Science and Technology, NOVA University of Lisbon, Lisbon, Portugal
| | - Angelina S Palma
- Applied Molecular Biosciences Unit, Department of Chemistry, Faculty of Science and Technology, NOVA University of Lisbon, Lisbon, Portugal
| | - Wengang Chai
- Glycosciences Laboratory, Imperial College London, London, United Kingdom
| | - Chunxia Li
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy and Shandong Provincial Key laboratory of Glycoscience and Glycoengineering, Ocean University of China, Qingdao 266003, China
| | - Ten Feizi
- Glycosciences Laboratory, Imperial College London, London, United Kingdom
| | - Eva Martin
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co KG, Birkendorfer Str. 65, 88397 Biberach/Riss, Germany
| | - Brigitte Laux
- Cancer Immunology & Immune Modulation, Boehringer Ingelheim Pharma GmbH & Co KG, Birkendorfer Str. 65, 88397 Biberach/Riss, Germany
| | - Alexandra Franz
- Cancer Immunology & Immune Modulation, Boehringer Ingelheim Pharma GmbH & Co KG, Birkendorfer Str. 65, 88397 Biberach/Riss, Germany
| | - Klaus Fuchs
- Biotherapeutics Discovery, Boehringer Ingelheim Pharma GmbH & Co KG, Birkendorfer Str. 65, 88397 Biberach/Riss, Germany
| | - Bernd Weigle
- Cancer Immunology & Immune Modulation, Boehringer Ingelheim Pharma GmbH & Co KG, Birkendorfer Str. 65, 88397 Biberach/Riss, Germany
| | - Paul R Crocker
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, United Kingdom
| |
Collapse
|
5
|
Huang B, Chen Z, Geng L, Wang J, Liang H, Cao Y, Chen H, Huang W, Su M, Wang H, Xu Y, Liu Y, Lu B, Xian H, Li H, Li H, Ren L, Xie J, Ye L, Wang H, Zhao J, Chen P, Zhang L, Zhao S, Zhang T, Xu B, Che D, Si W, Gu X, Zeng L, Wang Y, Li D, Zhan Y, Delfouneso D, Lew AM, Cui J, Tang WH, Zhang Y, Gong S, Bai F, Yang M, Zhang Y. Mucosal Profiling of Pediatric-Onset Colitis and IBD Reveals Common Pathogenics and Therapeutic Pathways. Cell 2020; 179:1160-1176.e24. [PMID: 31730855 DOI: 10.1016/j.cell.2019.10.027] [Citation(s) in RCA: 164] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 06/25/2019] [Accepted: 10/23/2019] [Indexed: 12/17/2022]
Abstract
Pediatric-onset colitis and inflammatory bowel disease (IBD) have significant effects on the growth of infants and children, but the etiopathogenesis underlying disease subtypes remains incompletely understood. Here, we report single-cell clustering, immune phenotyping, and risk gene analysis for children with undifferentiated colitis, Crohn's disease, and ulcerative colitis. We demonstrate disease-specific characteristics, as well as common pathogenesis marked by impaired cyclic AMP (cAMP)-response signaling. Specifically, infiltration of PDE4B- and TNF-expressing macrophages, decreased abundance of CD39-expressing intraepithelial T cells, and platelet aggregation and release of 5-hydroxytryptamine at the colonic mucosae were common in colitis and IBD patients. Targeting these pathways by using the phosphodiesterase inhibitor dipyridamole restored immune homeostasis and improved colitis symptoms in a pilot study. In summary, comprehensive analysis of the colonic mucosae has uncovered common pathogenesis and therapeutic targets for children with colitis and IBD.
Collapse
Affiliation(s)
- Bing Huang
- Department of Gastroenterology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Zhanghua Chen
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, 100871, China
| | - Lanlan Geng
- Department of Gastroenterology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Jun Wang
- Department of Gastroenterology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Huiying Liang
- Department of Gastroenterology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Yujie Cao
- Department of Pediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Huan Chen
- Department of Gastroenterology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Wanming Huang
- Department of Gastroenterology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Meiling Su
- Department of Gastroenterology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Hanqing Wang
- Department of Gastroenterology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Yanhui Xu
- Department of Gastroenterology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Yukun Liu
- Department of Gastroenterology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Bingtai Lu
- Department of Gastroenterology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Huifang Xian
- Department of Gastroenterology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Huiwen Li
- Department of Gastroenterology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Huilin Li
- Department of Gastroenterology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Lu Ren
- Department of Gastroenterology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Jing Xie
- Department of Gastroenterology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Liping Ye
- Department of Gastroenterology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Hongli Wang
- Department of Gastroenterology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Junhong Zhao
- Department of Gastroenterology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Peiyu Chen
- Department of Gastroenterology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Li Zhang
- Department of Gastroenterology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Shanmeizi Zhao
- Department of Gastroenterology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Ting Zhang
- Department of Laboratory Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
| | - Banglao Xu
- Department of Laboratory Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
| | - Di Che
- Department of Gastroenterology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Wenyue Si
- Department of Gastroenterology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Xiaoqiong Gu
- Department of Gastroenterology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Liang Zeng
- Department of Gastroenterology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Yong Wang
- Department of Gastroenterology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Dingyou Li
- Division of Gastroenterology, Children's Mercy Hospital, University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108, USA
| | - Yifan Zhan
- Walter and Eliza Hall Institute of Medical Research and Department of Medical Biology, University of Melbourne, Parkville, Melbourne, VIC 3052, Australia
| | - David Delfouneso
- Department of Gastroenterology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Andrew M Lew
- Walter and Eliza Hall Institute of Medical Research and Department of Medical Biology, University of Melbourne, Parkville, Melbourne, VIC 3052, Australia
| | - Jun Cui
- School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China
| | - Wai Ho Tang
- Department of Gastroenterology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Yan Zhang
- Department of Gastroenterology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Sitang Gong
- Department of Gastroenterology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China.
| | - Fan Bai
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, 100871, China; Center for Translational Cancer Research, First Hospital, Peking University, Beijing 100871, China.
| | - Min Yang
- Department of Gastroenterology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China.
| | - Yuxia Zhang
- Department of Gastroenterology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China; The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
6
|
Lee HW, Choi HY, Joo KM, Nam DH. Tumor progression locus 2 (Tpl2) kinase as a novel therapeutic target for cancer: double-sided effects of Tpl2 on cancer. Int J Mol Sci 2015; 16:4471-91. [PMID: 25723737 PMCID: PMC4394431 DOI: 10.3390/ijms16034471] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 02/15/2015] [Accepted: 02/15/2015] [Indexed: 12/14/2022] Open
Abstract
Tumor progression locus 2 (Tpl2) is a mitogen-activated protein kinase (MAPK) kinase kinase (MAP3K) that conveys various intra- and extra-cellular stimuli to effector proteins of cells provoking adequate adoptive responses. Recent studies have elucidated that Tpl2 is an indispensable signal transducer as an MAP3K family member in diverse signaling pathways that regulate cell proliferation, survival, and death. Since tumorigenesis results from dysregulation of cellular proliferation, differentiation, and apoptosis, Tpl2 participates in many decisive molecular processes of tumor development and progression. Moreover, Tpl2 is closely associated with cytokine release of inflammatory cells, which has crucial effects on not only tumor cells but also tumor microenvironments. These critical roles of Tpl2 in human cancers make it an attractive anti-cancer therapeutic target. However, Tpl2 contradictorily works as a tumor suppressor in some cancers. The double-sided effects of Tpl2 originate from the specific upstream and downstream signaling environment of each tumor, since Tpl2 interacts with various signaling components. This review summarizes recent studies concerning the possible roles of Tpl2 in human cancers and considers its possibility as a therapeutic target, against which novel anti-cancer agents could be developed.
Collapse
Affiliation(s)
- Hye Won Lee
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, 135-710 Seoul, Korea.
- Department of Urology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 135-710 Seoul, Korea.
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, 135-710 Seoul, Korea.
| | - Han Yong Choi
- Department of Urology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 135-710 Seoul, Korea.
| | - Kyeung Min Joo
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, 135-710 Seoul, Korea.
- Department of Anatomy and Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 135-710 Seoul, Korea.
| | - Do-Hyun Nam
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, 135-710 Seoul, Korea.
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, 135-710 Seoul, Korea.
| |
Collapse
|
7
|
Kuriakose T, Rada B, Watford WT. Tumor progression locus 2-dependent oxidative burst drives phosphorylation of extracellular signal-regulated kinase during TLR3 and 9 signaling. J Biol Chem 2014; 289:36089-100. [PMID: 25378393 DOI: 10.1074/jbc.m114.587121] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Signal transduction via NFκB and MAP kinase cascades is a universal response initiated upon pathogen recognition by Toll-like receptors (TLRs). How activation of these divergent signaling pathways is integrated to dictate distinct immune responses to diverse pathogens is still incompletely understood. Herein, contrary to current perception, we demonstrate that a signaling pathway defined by the inhibitor of κB kinase β (IKKβ), MAP3 kinase tumor progression locus 2 (Tpl2/MAP3K8), and MAP kinase ERK is differentially activated by TLRs. TLRs 2, 4, and 7 directly activate this inflammatory axis, inducing immediate ERK phosphorylation and early TNFα secretion. In addition to TLR adaptor proteins, IKKβ-Tpl2-ERK activation by TLR4 is regulated by the TLR4 co-receptor CD14 and the tyrosine kinase Syk. Signals from TLRs 3 and 9 do not initiate early activation of IKKβ-Tpl2-ERK pathway but instead induce delayed, NADPH-oxidase-dependent ERK phosphorylation and TNFα secretion via autocrine reactive oxygen species signaling. Unexpectedly, Tpl2 is an essential regulator of ROS production during TLR signaling. Overall, our study reveals distinct mechanisms activating a common inflammatory signaling cascade and delineates differences in MyD88-dependent signaling between endosomal TLRs 7 and 9. These findings further confirm the importance of Tpl2 in innate host defense mechanisms and also enhance our understanding of how the immune system tailors pathogen-specific gene expression patterns.
Collapse
Affiliation(s)
- Teneema Kuriakose
- From the Department of Infectious Diseases, The University of Georgia, College of Veterinary Medicine, Athens, Georgia 30602
| | - Balázs Rada
- From the Department of Infectious Diseases, The University of Georgia, College of Veterinary Medicine, Athens, Georgia 30602
| | - Wendy T Watford
- From the Department of Infectious Diseases, The University of Georgia, College of Veterinary Medicine, Athens, Georgia 30602
| |
Collapse
|
8
|
Kyrmizi I, Ioannou M, Hatziapostolou M, Tsichlis PN, Boumpas DT, Tassiulas I. Tpl2 kinase regulates FcγR signaling and immune thrombocytopenia in mice. J Leukoc Biol 2013; 94:751-7. [PMID: 23898046 DOI: 10.1189/jlb.0113039] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The MAPK3 Tpl2 controls innate and adaptive immunity by regulating TLR, TNF-α, and GPCR signaling in a variety of cell types. Its ablation gives rise to an anti-inflammatory phenotype characterized by resistance to LPS-induced endotoxin shock, DSS-induced colitis, and TNF-α-induced IBD. Here, we address the role of Tpl2 in autoimmunity. Our data show that the ablation and the pharmacological inhibition of Tpl2 protect mice from antiplatelet antibody-induced thrombocytopenia, a model of ITP. Thrombocytopenia in this model and in ITP is caused by phagocytosis of platelets opsonized with antiplatelet antibodies and depends on FcγR activation in splenic and hepatic myeloid cells. Further studies explained how Tpl2 inhibition protects from antibody-induced thrombocytopenia, by showing that Tpl2 is activated by FcγR signals in macrophages and that its activation by these signals is required for ERK activation, cytoplasmic Ca(2+) influx, the induction of cytokine and coreceptor gene expression, and phagocytosis.
Collapse
Affiliation(s)
- Irene Kyrmizi
- 2.Div. of Allergy, Clinical Immunology and Rheumatology, New York Medical College, 40 Sunshine Cottage Rd., Valhalla, NY 10595, USA.
| | | | | | | | | | | |
Collapse
|
9
|
Eberle ME, Dalpke AH. Dectin-1 Stimulation Induces Suppressor of Cytokine Signaling 1, Thereby Modulating TLR Signaling and T Cell Responses. THE JOURNAL OF IMMUNOLOGY 2012; 188:5644-54. [DOI: 10.4049/jimmunol.1103068] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
10
|
Kim JE, Son JE, Jang YJ, Lee DE, Kang NJ, Jung SK, Heo YS, Lee KW, Lee HJ. Luteolin, a novel natural inhibitor of tumor progression locus 2 serine/threonine kinase, inhibits tumor necrosis factor-alpha-induced cyclooxygenase-2 expression in JB6 mouse epidermis cells. J Pharmacol Exp Ther 2011; 338:1013-22. [PMID: 21705614 DOI: 10.1124/jpet.111.179200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Targeting tumor necrosis factor (TNF)-α-mediated signal pathways may be a promising strategy for developing chemopreventive agents, because TNF-α-mediated cyclooxygenase (COX)-2 expression plays a key role in inflammation and carcinogenesis. Luteolin [2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-4-chromenone] exerts anticarcinogenic effects, although little is known about the underlying molecular mechanisms and specific targets of this compound. In the present study, we found that luteolin inhibited TNF-α-induced COX-2 expression by down-regulating the transactivation of nuclear factor-κB and activator protein-1. Furthermore, luteolin inhibited TNF-α-induced phosphorylation of mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK) kinase 1/ERK/p90(RSK), mitogen-activated protein kinase kinase 4/c-Jun N-terminal kinase/c-Jun, and Akt/p70(S6K). However, it had no effect on the phosphorylation of p38. These effects of luteolin on TNF-α-mediated signaling pathways and COX-2 expression are similar to those achieved by blocking tumor progression locus 2 serine/threonine kinase (TPL2) using pharmacologic inhibitors and small interfering RNAs. Luteolin inhibited TPL2 activity in vitro and in TPL2 immunoprecipitation kinase assays by binding directly in an ATP-competitive manner. Overall, these results indicate that luteolin exerts potent chemopreventive activities, which primarily target TPL2.
Collapse
Affiliation(s)
- Jong-Eun Kim
- World Class University Biomodulation Program, Department of Agricultural Biotechnology, Center for Agricultural Biomaterials and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Vougioukalaki M, Kanellis DC, Gkouskou K, Eliopoulos AG. Tpl2 kinase signal transduction in inflammation and cancer. Cancer Lett 2011; 304:80-9. [PMID: 21377269 DOI: 10.1016/j.canlet.2011.02.004] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 02/03/2011] [Accepted: 02/03/2011] [Indexed: 01/11/2023]
Abstract
The activation of mitogen-activated protein kinases (MAPKs) is critically involved in inflammatory and oncogenic events. Tumor progression locus 2 (Tpl2), also known as COT and MAP3 kinase 8 (MAP3K8), is a serine-threonine kinase with an important physiological role in tumor necrosis factor, interleukin-1, CD40, Toll-like receptor and G protein-coupled receptor-mediated ERK MAPK signaling. Whilst the full characterization of the biochemical events that lead to the activation of Tpl2 still represent a major challenge, genetic and molecular evidence has highlighted interesting interactions with the NF-κB network. Here, we provide an overview of the multifaceted functions of Tpl2 and the molecular mechanisms that govern its regulation.
Collapse
Affiliation(s)
- Maria Vougioukalaki
- Molecular and Cellular Biology Laboratory, Division of Basic Sciences, University of Crete Medical School, Institute for Molecular Biology and Biotechnology, Foundation of Research and Technology Hellas, Heraklion, Greece
| | | | | | | |
Collapse
|
12
|
Morgan MJ, Liu ZG. Reactive oxygen species in TNFalpha-induced signaling and cell death. Mol Cells 2010; 30:1-12. [PMID: 20652490 PMCID: PMC6608586 DOI: 10.1007/s10059-010-0105-0] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Accepted: 06/17/2010] [Indexed: 12/29/2022] Open
Abstract
TNFalpha is a pleotropic cytokine that initiates many downstream signaling pathways, including NF-kappaB activation, MAP kinase activation and the induction of both apoptosis and necrosis. TNFalpha has shown to lead to reactive oxygen species generation through activation of NADPH oxidase, through mitochondrial pathways, or other enzymes. As discussed, ROS play a role in potentiation or inhibition of many of these signaling pathways. We particularly discuss the role of sustained JNK activation potentiated by ROS, which generally is supportive of apoptosis and "necrotic cell death" through various mechanisms, while ROS could have inhibitory or stimulatory roles in NF-kappaB signaling.
Collapse
Affiliation(s)
- Michael J. Morgan
- Cell and Cancer Biology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Zheng-gang Liu
- Cell and Cancer Biology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
13
|
Kelly EK, Wang L, Ivashkiv LB. Calcium-activated pathways and oxidative burst mediate zymosan-induced signaling and IL-10 production in human macrophages. THE JOURNAL OF IMMUNOLOGY 2010; 184:5545-52. [PMID: 20400701 DOI: 10.4049/jimmunol.0901293] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Outside of the TLR paradigm, there is little understanding of how pathogen recognition at the cell surface is linked to functional responses in cells of the innate immune system. Recent work in this area demonstrates that the yeast particle zymosan, by binding to the beta-glucan receptor Dectin-1, activates an ITAM-Syk-dependent pathway in dendritic cells, which is required for optimal cytokine production and generation of an oxidative burst. It remains unclear how activation of Syk is coupled to effector mechanisms. In human macrophages, zymosan rapidly activated a calcium-dependent pathway downstream of Dectin-1 and Syk that led to activation of calmodulin-dependent kinase II and Pyk2. Calmodulin-dependent kinase and Pyk2 transduced calcium signals into activation of the ERK-MAPK pathway, CREB, and generation of an oxidative burst, leading to downstream production of IL-10. These observations identify a new calcium-mediated signaling pathway activated by zymosan and link this pathway to both inflammatory and anti-inflammatory responses in macrophages.
Collapse
Affiliation(s)
- Erin K Kelly
- Graduate Program in Cell Biology and Genetics, Weill Cornell Graduate School of Medical Sciences, New York, NY 10021, USA
| | | | | |
Collapse
|
14
|
Jouault T, Sarazin A, Martinez-Esparza M, Fradin C, Sendid B, Poulain D. Host responses to a versatile commensal: PAMPs and PRRs interplay leading to tolerance or infection by Candida albicans. Cell Microbiol 2009; 11:1007-15. [PMID: 19388906 DOI: 10.1111/j.1462-5822.2009.01318.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The molecular interactions between commensal microorganisms and their host are basically different from those triggered by pathogens since they involve tolerance. When the commensal is genetically equipped to become an opportunistic pathogen, as is the case with Candida albicans, the picture becomes more complex. In this case, the balance between protection and invasion depends on host reactivity to altered microbial expression of ligands interacting with innate immune sensors. Based on experimental evidence obtained with C. albicans, we discuss the different molecular processes involved in the sensing of this important opportunistic human pathogen by a panel of pattern recognition receptors (PRRs) according to the numerous pathogen-associated molecular patterns (PAMPs) that can be exposed at its surface. Beneficial or deleterious immune responses that either maintain a commensal state or favour damage by the yeast result from this dynamic interplay.
Collapse
|
15
|
Zhou Q, Geahlen RL. The protein-tyrosine kinase Syk interacts with TRAF-interacting protein TRIP in breast epithelial cells. Oncogene 2009; 28:1348-56. [PMID: 19151749 PMCID: PMC2656405 DOI: 10.1038/onc.2008.493] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The nonreceptor, protein-tyrosine kinase Syk is a suppressor of breast cancer progression whose expression is inversely correlated with the invasive behavior of cancer cells. In contrast, Syk has a positive function in murine mammary tumor virus-mediated tumorigenesis. A yeast two-hybrid screen using a library from human mammary gland identified tumor necrosis factor (TNF) receptor-associated factor-interacting protein (TRIP) as an Syk-binding partner. This interaction is mediated by the C-terminal region of TRIP and is enhanced by the treatment of cells with TNF and the tyrosine phosphorylation of Syk. Syk and TRIP have opposing functions in TNF-signaling pathways. Syk enhances the activation of nuclear factor-kappaB by TNF and this is antagonized by TRIP. The overexpression of TRIP sensitizes cells to TNF-induced apoptosis, an effect that can be reversed by the coexpression of Syk.
Collapse
Affiliation(s)
- Q Zhou
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907-2064, USA
| | | |
Collapse
|
16
|
Ulanova M, Asfaha S, Stenton G, Lint A, Gilbertson D, Schreiber A, Befus D. Involvement of Syk protein tyrosine kinase in LPS-induced responses in macrophages. ACTA ACUST UNITED AC 2007; 13:117-25. [PMID: 17621553 DOI: 10.1177/0968051907079125] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Syk kinase is best known as a critical component of immunoreceptor signaling in leukocytes. Activation of Syk following cross-linking of Fcgamma and Fcepsilon receptors on macrophages, mast cells, and other cells induces various inflammatory events. We hypothesized that Syk is involved in inflammatory responses induced by the lipopolysaccharide (LPS). We studied the role of Syk using its inhibition by antisense oligonucleotides, or small interfering RNA. Our data demonstrated that in vivo inhibition of Syk caused down-regulation of LPS-induced responses in rat alveolar macrophages. In in vitro experiments, inhibition of Syk in rat peritoneal macrophages, as well as in human myelomonocyte cell line THP-1 also caused a decrease in LPS-induced cytokine release. Our data support the hypothesis that, in macrophages, Syk is involved in LPS-induced intracellular signaling pathways leading to the release of pro-inflammatory mediators. Understanding the role of Syk in LPS-induced signaling may help in developing new therapeutic tools for inflammatory disorders.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Cell Line
- Cytokines/immunology
- Cytokines/metabolism
- Enzyme-Linked Immunosorbent Assay
- Humans
- Inflammation Mediators/metabolism
- Intracellular Signaling Peptides and Proteins/antagonists & inhibitors
- Intracellular Signaling Peptides and Proteins/immunology
- Intracellular Signaling Peptides and Proteins/metabolism
- Lipopolysaccharides/immunology
- Lipopolysaccharides/metabolism
- Liposomes
- Macrophages, Alveolar/enzymology
- Macrophages, Alveolar/immunology
- Macrophages, Alveolar/metabolism
- Macrophages, Peritoneal/enzymology
- Macrophages, Peritoneal/immunology
- Macrophages, Peritoneal/metabolism
- Male
- Monocytes/immunology
- Monocytes/metabolism
- Nitric Oxide/metabolism
- Oligonucleotides, Antisense/metabolism
- Oligonucleotides, Antisense/pharmacology
- Protein-Tyrosine Kinases/antagonists & inhibitors
- Protein-Tyrosine Kinases/immunology
- Protein-Tyrosine Kinases/metabolism
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Rats
- Rats, Sprague-Dawley
- Reverse Transcriptase Polymerase Chain Reaction
- Syk Kinase
- Transfection
- Tumor Necrosis Factor-alpha/metabolism
Collapse
Affiliation(s)
- Marina Ulanova
- Pulmonary Research Group, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.
| | | | | | | | | | | | | |
Collapse
|
17
|
Ueki Y, Lin CY, Senoo M, Ebihara T, Agata N, Onji M, Saheki Y, Kawai T, Mukherjee PM, Reichenberger E, Olsen BR. Increased myeloid cell responses to M-CSF and RANKL cause bone loss and inflammation in SH3BP2 "cherubism" mice. Cell 2007; 128:71-83. [PMID: 17218256 DOI: 10.1016/j.cell.2006.10.047] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2006] [Revised: 07/25/2006] [Accepted: 10/27/2006] [Indexed: 12/21/2022]
Abstract
While studies of the adaptor SH3BP2 have implicated a role in receptor-mediated signaling in mast cells and lymphocytes, they have failed to identify its function or explain why SH3BP2 missense mutations cause bone loss and inflammation in patients with cherubism. We demonstrate that Sh3bp2 "cherubism" mice exhibit trabecular bone loss, TNF-alpha-dependent systemic inflammation, and cortical bone erosion. The mutant phenotype is lymphocyte independent and can be transferred to mice carrying wild-type Sh3bp2 alleles through mutant fetal liver cells. Mutant myeloid cells show increased responses to M-CSF and RANKL stimulation, and, through mechanisms of increased ERK 1/2 and SYK phosphorylation/activation, they form macrophages that express high levels of TNF-alpha and osteoclasts that are unusually large. M-CSF and RANKL stimulation of myeloid cells that overexpress wild-type SH3BP2 results in similar large osteoclasts. This indicates that the mutant phenotype reflects gain of SH3BP2 function and suggests that SH3BP2 is a critical regulator of myeloid cell responses to M-CSF and RANKL stimulation.
Collapse
Affiliation(s)
- Yasuyoshi Ueki
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Ulanova M, Marcet-Palacios M, Muñoz S, Asfaha S, Kim MK, Schreiber AD, Befus AD. Involvement of Syk kinase in TNF-induced nitric oxide production by airway epithelial cells. Biochem Biophys Res Commun 2006; 351:431-7. [PMID: 17070777 DOI: 10.1016/j.bbrc.2006.10.073] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2006] [Accepted: 10/07/2006] [Indexed: 11/30/2022]
Abstract
We have recently found that Syk is widely expressed in lung epithelial cells (EC) and participates in beta1 integrin signaling. In this study, we assessed the role of Syk in regulation of NO production. Stimulation of human bronchial EC line HS-24 by TNF caused an increased expression of inducible nitric oxide synthase (iNOS). Inhibition of Syk using siRNA or piceatannol down-regulated the iNOS expression and reduced NO production. This effect occurred in EC simultaneously stimulated via beta1 integrins, suggesting that TNF and beta1 integrins provide co-stimulatory signals. Inhibition of Syk down-regulated TNF-induced p38 and p44/42 MAPK phosphorylation and nuclear translocation of p65 NF-kappaB. Thus, TNF-induced activation of pro-inflammatory signaling in EC leading to enhanced expression of iNOS and NO production was dependent on Syk. Syk-mediated signaling regulates NO production at least partly via activating the MAPK cascade. Understanding the role of Syk in airway EC may help in developing new therapeutic tools for inflammatory lung disorders.
Collapse
Affiliation(s)
- Marina Ulanova
- Department of Medicine, University of Alberta, Edmonton, Alta., Canada.
| | | | | | | | | | | | | |
Collapse
|
19
|
Gross O, Gewies A, Finger K, Schäfer M, Sparwasser T, Peschel C, Förster I, Ruland J. Card9 controls a non-TLR signalling pathway for innate anti-fungal immunity. Nature 2006; 442:651-6. [PMID: 16862125 DOI: 10.1038/nature04926] [Citation(s) in RCA: 648] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2006] [Accepted: 05/17/2006] [Indexed: 11/09/2022]
Abstract
Fungal infections are increasing worldwide due to the marked rise in immunodeficiencies including AIDS; however, immune responses to fungi are poorly understood. Dectin-1 is the major mammalian pattern recognition receptor for the fungal component zymosan. Dectin-1 represents the prototype of innate non-Toll-like receptors (TLRs) containing immunoreceptor tyrosine-based activation motifs (ITAMs) related to those of adaptive antigen receptors. Here we identify Card9 as a key transducer of Dectin-1 signalling. Although being dispensable for TLR/MyD88-induced responses, Card9 controls Dectin-1-mediated myeloid cell activation, cytokine production and innate anti-fungal immunity. Card9 couples to Bcl10 and regulates Bcl10-Malt1-mediated NF-kappaB activation induced by zymosan. Yet, Card9 is dispensable for antigen receptor signalling that uses Carma1 as a link to Bcl10-Malt1. Thus, our results define a novel innate immune pathway and indicate that evolutionarily distinct ITAM receptors in innate and adaptive immune cells use diverse adaptor proteins to engage selectively the conserved Bcl10-Malt1 module.
Collapse
Affiliation(s)
- Olaf Gross
- III. Medizinische Klinik, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany
| | | | | | | | | | | | | | | |
Collapse
|