1
|
Miyamoto S. Untangling the role of RhoA in the heart: protective effect and mechanism. Cell Death Dis 2024; 15:579. [PMID: 39122698 PMCID: PMC11315981 DOI: 10.1038/s41419-024-06928-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024]
Abstract
RhoA (ras homolog family member A) is a small G-protein that transduces intracellular signaling to regulate a broad range of cellular functions such as cell growth, proliferation, migration, and survival. RhoA serves as a proximal downstream effector of numerous G protein-coupled receptors (GPCRs) and is also responsive to various stresses in the heart. Upon its activation, RhoA engages multiple downstream signaling pathways. Rho-associated coiled-coil-containing protein kinase (ROCK) is the first discovered and best characterized effector or RhoA, playing a major role in cytoskeletal arrangement. Many other RhoA effectors have been identified, including myocardin-related transcription factor A (MRTF-A), Yes-associated Protein (YAP) and phospholipase Cε (PLCε) to regulate transcriptional and post-transcriptional processes. The role of RhoA signaling in the heart has been increasingly studied in last decades. It was initially suggested that RhoA signaling pathway is maladaptive in the heart, but more recent studies using cardiac-specific expression or deletion of RhoA have revealed that RhoA activation provides cardioprotection against stress through various mechanisms including the novel role of RhoA in mitochondrial quality control. This review summarizes recent advances in understanding the role of RhoA in the heart and its signaling pathways to prevent progression of heart disease.
Collapse
Affiliation(s)
- Shigeki Miyamoto
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, 92093-0636, USA.
| |
Collapse
|
2
|
Le DDT, Le TPH, Lee SY. PIP5Kγ Mediates PI(4,5)P2/Merlin/LATS1 Signaling Activation and Interplays with Hsc70 in Hippo-YAP Pathway Regulation. Int J Mol Sci 2023; 24:14786. [PMID: 37834234 PMCID: PMC10572892 DOI: 10.3390/ijms241914786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
The type I phosphatidylinositol 4-phosphate 5-kinase (PIP5K) family produces the critical lipid regulator phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) in the plasma membrane (PM). Here, we investigated the potential role of PIP5Kγ, a PIP5K isoform, in the Hippo pathway. The ectopic expression of PIP5Kγ87 or PIP5Kγ90, two major PIP5Kγ splice variants, activated large tumor suppressor kinase 1 (LATS1) and inhibited Yes-associated protein (YAP), whereas PIP5Kγ knockdown yielded opposite effects. The regulatory effects of PIP5Kγ were dependent on its catalytic activity and the presence of Merlin and LATS1. PIP5Kγ knockdown weakened the restoration of YAP phosphorylation upon stimulation with epidermal growth factor or lysophosphatidic acid. We further found that PIP5Kγ90 bound to the Merlin's band 4.1/ezrin/radixin/moesin (FERM) domain, forming a complex with PI(4,5)P2 and LATS1 at the PM. Notably, PIP5Kγ90, but not its kinase-deficient mutant, potentiated Merlin-LATS1 interaction and recruited LATS1 to the PM. Consistently, PIP5Kγ knockdown or inhibitor (UNC3230) enhanced colony formation in carcinoma cell lines YAP-dependently. In addition, PIP5Kγ90 interacted with heat shock cognate 71-kDa protein (Hsc70), which also contributed to Hippo pathway activation. Collectively, our results suggest that PIP5Kγ regulates the Hippo-YAP pathway by forming a functional complex with Merlin and LATS1 at the PI(4,5)P2-rich PM and via interplay with Hsc70.
Collapse
Affiliation(s)
- Duong Duy Thai Le
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon 16499, Gyeonggi-do, Republic of Korea; (D.D.T.L.); (T.P.H.L.)
| | - Truc Phan Hoang Le
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon 16499, Gyeonggi-do, Republic of Korea; (D.D.T.L.); (T.P.H.L.)
| | - Sang Yoon Lee
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon 16499, Gyeonggi-do, Republic of Korea; (D.D.T.L.); (T.P.H.L.)
- Institute of Medical Science, Ajou University School of Medicine, Suwon 16499, Gyeonggi-do, Republic of Korea
| |
Collapse
|
3
|
Yin G, Huang J, Petela J, Jiang H, Zhang Y, Gong S, Wu J, Liu B, Shi J, Gao Y. Targeting small GTPases: emerging grasps on previously untamable targets, pioneered by KRAS. Signal Transduct Target Ther 2023; 8:212. [PMID: 37221195 DOI: 10.1038/s41392-023-01441-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/28/2023] [Accepted: 04/14/2023] [Indexed: 05/25/2023] Open
Abstract
Small GTPases including Ras, Rho, Rab, Arf, and Ran are omnipresent molecular switches in regulating key cellular functions. Their dysregulation is a therapeutic target for tumors, neurodegeneration, cardiomyopathies, and infection. However, small GTPases have been historically recognized as "undruggable". Targeting KRAS, one of the most frequently mutated oncogenes, has only come into reality in the last decade due to the development of breakthrough strategies such as fragment-based screening, covalent ligands, macromolecule inhibitors, and PROTACs. Two KRASG12C covalent inhibitors have obtained accelerated approval for treating KRASG12C mutant lung cancer, and allele-specific hotspot mutations on G12D/S/R have been demonstrated as viable targets. New methods of targeting KRAS are quickly evolving, including transcription, immunogenic neoepitopes, and combinatory targeting with immunotherapy. Nevertheless, the vast majority of small GTPases and hotspot mutations remain elusive, and clinical resistance to G12C inhibitors poses new challenges. In this article, we summarize diversified biological functions, shared structural properties, and complex regulatory mechanisms of small GTPases and their relationships with human diseases. Furthermore, we review the status of drug discovery for targeting small GTPases and the most recent strategic progress focused on targeting KRAS. The discovery of new regulatory mechanisms and development of targeting approaches will together promote drug discovery for small GTPases.
Collapse
Affiliation(s)
- Guowei Yin
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China.
| | - Jing Huang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Johnny Petela
- Wake Forest University School of Medicine, Winston-Salem, NC, 27101, USA
| | - Hongmei Jiang
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Yuetong Zhang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Siqi Gong
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
- School of Medicine, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Jiaxin Wu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Bei Liu
- National Biomedical Imaging Center, School of Future Technology, Peking University, Beijing, 100871, China
| | - Jianyou Shi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology, Chengdu, 610072, China.
| | - Yijun Gao
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
4
|
Dissecting the Mechanism of Action of Spiperone-A Candidate for Drug Repurposing for Colorectal Cancer. Cancers (Basel) 2022; 14:cancers14030776. [PMID: 35159043 PMCID: PMC8834219 DOI: 10.3390/cancers14030776] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/25/2022] [Accepted: 01/29/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary Despite advances in primary and adjuvant treatments, approximately 50% of colorectal cancer (CRC) patients still die from recurrence and metastatic disease. Thus, alternative and more effective therapeutic approaches are expected to be developed. Drug repurposing is increasing interest in cancer therapy, as it represents a cheaper and faster alternative strategy to de novo drug synthesis. Psychiatric medications are promising as a new generation of antitumor drugs. Here, we demonstrate that spiperone—a licensed drug for the treatment of schizophrenia—induces apoptosis in CRC cells. Our data reveal that spiperone’s cytotoxicity in CRC cells is mediated by phospholipase C activation, intracellular calcium homeostasis dysregulation, and irreversible endoplasmic reticulum stress induction, resulting in lipid metabolism alteration and Golgi apparatus damage. By identifying new targetable pathways in CRC cells, our findings represent a promising starting point for the design of novel therapeutic strategies for CRC. Abstract Approximately 50% of colorectal cancer (CRC) patients still die from recurrence and metastatic disease, highlighting the need for novel therapeutic strategies. Drug repurposing is attracting increasing attention because, compared to traditional de novo drug discovery processes, it may reduce drug development periods and costs. Epidemiological and preclinical evidence support the antitumor activity of antipsychotic drugs. Herein, we dissect the mechanism of action of the typical antipsychotic spiperone in CRC. Spiperone can reduce the clonogenic potential of stem-like CRC cells (CRC-SCs) and induce cell cycle arrest and apoptosis, in both differentiated and CRC-SCs, at clinically relevant concentrations whose toxicity is negligible for non-neoplastic cells. Analysis of intracellular Ca2+ kinetics upon spiperone treatment revealed a massive phospholipase C (PLC)-dependent endoplasmic reticulum (ER) Ca2+ release, resulting in ER Ca2+ homeostasis disruption. RNA sequencing revealed unfolded protein response (UPR) activation, ER stress, and induction of apoptosis, along with IRE1-dependent decay of mRNA (RIDD) activation. Lipidomic analysis showed a significant alteration of lipid profile and, in particular, of sphingolipids. Damage to the Golgi apparatus was also observed. Our data suggest that spiperone can represent an effective drug in the treatment of CRC, and that ER stress induction, along with lipid metabolism alteration, represents effective druggable pathways in CRC.
Collapse
|
5
|
Sieng M, Selvia AF, Garland-Kuntz EE, Hopkins JB, Fisher IJ, Marti AT, Lyon AM. Functional and structural characterization of allosteric activation of phospholipase Cε by Rap1A. J Biol Chem 2020; 295:16562-16571. [PMID: 32948655 PMCID: PMC7864056 DOI: 10.1074/jbc.ra120.015685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/08/2020] [Indexed: 01/16/2023] Open
Abstract
Phospholipase Cε (PLCε) is activated downstream of G protein-coupled receptors and receptor tyrosine kinases through direct interactions with small GTPases, including Rap1A and Ras. Although Ras has been reported to allosterically activate the lipase, it is not known whether Rap1A has the same ability or what its molecular mechanism might be. Rap1A activates PLCε in response to the stimulation of β-adrenergic receptors, translocating the complex to the perinuclear membrane. Because the C-terminal Ras association (RA2) domain of PLCε was proposed to the primary binding site for Rap1A, we first confirmed using purified proteins that the RA2 domain is indeed essential for activation by Rap1A. However, we also showed that the PLCε pleckstrin homology (PH) domain and first two EF hands (EF1/2) are required for Rap1A activation and identified hydrophobic residues on the surface of the RA2 domain that are also necessary. Small-angle X-ray scattering showed that Rap1A binding induces and stabilizes discrete conformational states in PLCε variants that can be activated by the GTPase. These data, together with the recent structure of a catalytically active fragment of PLCε, provide the first evidence that Rap1A, and by extension Ras, allosterically activate the lipase by promoting and stabilizing interactions between the RA2 domain and the PLCε core.
Collapse
Affiliation(s)
- Monita Sieng
- Department of Chemistry, Purdue University, West Lafayette, Indiana, USA
| | - Arielle F Selvia
- Department of Chemistry, Purdue University, West Lafayette, Indiana, USA
| | | | - Jesse B Hopkins
- Biophysics Collaborative Access Team, Illinois Institute of Technology, Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois, USA
| | - Isaac J Fisher
- Department of Chemistry, Purdue University, West Lafayette, Indiana, USA
| | - Andrea T Marti
- Department of Chemistry, Purdue University, West Lafayette, Indiana, USA
| | - Angeline M Lyon
- Department of Chemistry, Purdue University, West Lafayette, Indiana, USA; Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA.
| |
Collapse
|
6
|
Katan M, Cockcroft S. Phospholipase C families: Common themes and versatility in physiology and pathology. Prog Lipid Res 2020; 80:101065. [PMID: 32966869 DOI: 10.1016/j.plipres.2020.101065] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/14/2020] [Accepted: 09/17/2020] [Indexed: 12/20/2022]
Abstract
Phosphoinositide-specific phospholipase Cs (PLCs) are expressed in all mammalian cells and play critical roles in signal transduction. To obtain a comprehensive understanding of these enzymes in physiology and pathology, a detailed structural, biochemical, cell biological and genetic information is required. In this review, we cover all these aspects to summarize current knowledge of the entire superfamily. The families of PLCs have expanded from 13 enzymes to 16 with the identification of the atypical PLCs in the human genome. Recent structural insights highlight the common themes that cover not only the substrate catalysis but also the mechanisms of activation. This involves the release of autoinhibitory interactions that, in the absence of stimulation, maintain classical PLC enzymes in their inactive forms. Studies of individual PLCs provide a rich repertoire of PLC function in different physiologies. Furthermore, the genetic studies discovered numerous mutated and rare variants of PLC enzymes and their link to human disease development, greatly expanding our understanding of their roles in diverse pathologies. Notably, substantial evidence now supports involvement of different PLC isoforms in the development of specific cancer types, immune disorders and neurodegeneration. These advances will stimulate the generation of new drugs that target PLC enzymes, and will therefore open new possibilities for treatment of a number of diseases where current therapies remain ineffective.
Collapse
Affiliation(s)
- Matilda Katan
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London WC1E 6BT, UK
| | - Shamshad Cockcroft
- Department of Neuroscience, Physiology and Pharmacology, Division of Biosciences, University College London, 21 University Street, London WC1E 6JJ, UK.
| |
Collapse
|
7
|
Berger TC, Vigeland MD, Hjorthaug HS, Etholm L, Nome CG, Taubøll E, Heuser K, Selmer KK. Neuronal and glial DNA methylation and gene expression changes in early epileptogenesis. PLoS One 2019; 14:e0226575. [PMID: 31887157 PMCID: PMC6936816 DOI: 10.1371/journal.pone.0226575] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 11/28/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND AND AIMS Mesial Temporal Lobe Epilepsy is characterized by progressive changes of both neurons and glia, also referred to as epileptogenesis. No curative treatment options, apart from surgery, are available. DNA methylation (DNAm) is a potential upstream mechanism in epileptogenesis and may serve as a novel therapeutic target. To our knowledge, this is the first study to investigate epilepsy-related DNAm, gene expression (GE) and their relationship, in neurons and glia. METHODS We used the intracortical kainic acid injection model to elicit status epilepticus. At 24 hours post injection, hippocampi from eight kainic acid- (KA) and eight saline-injected (SH) mice were extracted and shock frozen. Separation into neurons and glial nuclei was performed by flow cytometry. Changes in DNAm and gene expression were measured with reduced representation bisulfite sequencing (RRBS) and mRNA-sequencing (mRNAseq). Statistical analyses were performed in R with the edgeR package. RESULTS We observed fulminant DNAm- and GE changes in both neurons and glia at 24 hours after initiation of status epilepticus. The vast majority of these changes were specific for either neurons or glia. At several epilepsy-related genes, like HDAC11, SPP1, GAL, DRD1 and SV2C, significant differential methylation and differential gene expression coincided. CONCLUSION We found neuron- and glia-specific changes in DNAm and gene expression in early epileptogenesis. We detected single genetic loci in several epilepsy-related genes, where DNAm and GE changes coincide, worth further investigation. Further, our results may serve as an information source for neuronal and glial alterations in both DNAm and GE in early epileptogenesis.
Collapse
Affiliation(s)
- Toni C. Berger
- Department of Neurology, Oslo University Hospital, Oslo, Norway
- University of Oslo, Oslo, Norway
- * E-mail:
| | - Magnus D. Vigeland
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Hanne S. Hjorthaug
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Lars Etholm
- National Center for Epilepsy, Oslo University Hospital, Sandvika, Norway
- Department of Neurology, Section for Neurophysiology, Oslo University Hospital, Oslo, Norway
| | | | - Erik Taubøll
- Department of Neurology, Oslo University Hospital, Oslo, Norway
- University of Oslo, Oslo, Norway
| | - Kjell Heuser
- Department of Neurology, Oslo University Hospital, Oslo, Norway
- University of Oslo, Oslo, Norway
| | - Kaja K. Selmer
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
- National Center for Epilepsy, Oslo University Hospital, Sandvika, Norway
- Division of Clinical Neuroscience, Department of Research and Development, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
8
|
Bok regulates mitochondrial fusion and morphology. Cell Death Differ 2019; 26:2682-2694. [PMID: 30976095 DOI: 10.1038/s41418-019-0327-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 03/05/2019] [Accepted: 03/25/2019] [Indexed: 12/11/2022] Open
Abstract
Bok (Bcl-2-related ovarian killer) is a member of the Bcl-2 protein family that governs the intrinsic apoptosis pathway, but the cellular role that Bok plays is controversial. Remarkably, endogenous Bok is constitutively bound to inositol 1,4,5-trisphosphate receptors (IP3Rs) and is stabilized by this interaction. Here we report that despite the strong association with IP3Rs, deletion of Bok expression by CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated protein-9 nuclease)-mediated gene editing does not alter calcium mobilization via IP3Rs or calcium influx into the mitochondria. Rather, Bok deletion significantly reduces mitochondrial fusion rate, resulting in mitochondrial fragmentation. This phenotype is reversed by exogenous wild-type Bok and by an IP3R binding-deficient Bok mutant, and may result from a decrease in mitochondrial motility. Bok deletion also enhances mitochondrial spare respiratory capacity and membrane potential. Finally, Bok does not play a major role in apoptotic signaling, since Bok deletion does not alter responsiveness to various apoptotic stimuli. Overall, despite binding to IP3Rs, Bok does not alter IP3R-mediated Ca2+ signaling, but is required to maintain normal mitochondrial fusion, morphology, and bioenergetics.
Collapse
|
9
|
de Rubio RG, Ransom RF, Malik S, Yule DI, Anantharam A, Smrcka AV. Phosphatidylinositol 4-phosphate is a major source of GPCR-stimulated phosphoinositide production. Sci Signal 2018; 11:11/547/eaan1210. [PMID: 30206135 DOI: 10.1126/scisignal.aan1210] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Phospholipase C (PLC) enzymes hydrolyze the plasma membrane (PM) lipid phosphatidylinositol 4,5-bisphosphate (PI4,5P2) to generate the second messengers inositol trisphosphate (IP3) and diacylglycerol (DAG) in response to receptor activation in almost all mammalian cells. We previously found that stimulation of G protein-coupled receptors (GPCRs) in cardiac cells leads to the PLC-dependent hydrolysis of phosphatidylinositol 4-phosphate (PI4P) at the Golgi, a process required for the activation of nuclear protein kinase D (PKD) during cardiac hypertrophy. We hypothesized that GPCR-stimulated PLC activation leading to direct PI4P hydrolysis may be a general mechanism for DAG production. We measured GPCR activation-dependent changes in PM and Golgi PI4P pools in various cells using GFP-based detection of PI4P. Stimulation with various agonists caused a time-dependent reduction in PI4P-associated, but not PI4,5P2-associated, fluorescence at the Golgi and PM. Targeted depletion of PI4,5P2 from the PM before GPCR stimulation had no effect on the depletion of PM or Golgi PI4P, total inositol phosphate (IP) production, or PKD activation. In contrast, acute depletion of PI4P specifically at the PM completely blocked the GPCR-dependent production of IPs and activation of PKD but did not change the abundance of PI4,5P2 Acute depletion of Golgi PI4P had no effect on these processes. These data suggest that most of the PM PI4,5P2 pool is not involved in GPCR-stimulated phosphoinositide hydrolysis and that PI4P at the PM is responsible for the bulk of receptor-stimulated phosphoinositide hydrolysis and DAG production.
Collapse
Affiliation(s)
- Rafael Gil de Rubio
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY 14642, USA
| | - Richard F Ransom
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sundeep Malik
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY 14642, USA
| | - David I Yule
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY 14642, USA
| | - Arun Anantharam
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Alan V Smrcka
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY 14642, USA. .,Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
10
|
Guo Y, Bao Y, Ma M, Zhang S, Zhang Y, Yuan M, Liu B, Yang Y, Cui W, Ansong E, Dong H, Macias V, Yang W. Clinical significance of the correlation between PLCE 1 and PRKCA in esophageal inflammation and esophageal carcinoma. Oncotarget 2018; 8:33285-33299. [PMID: 28402280 PMCID: PMC5464868 DOI: 10.18632/oncotarget.16635] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 03/11/2017] [Indexed: 12/16/2022] Open
Abstract
Esophagitis and Barrett's esophagus are linked to esophageal squamous cell carcinoma and adenocarcinoma, respectively. However, the underlying mechanisms are still unclear. This study analyzed the expression levels of and correlation between PLCE1 and PRKCA in human esophagitis, carcinogen NMBA-induced rat esophagus, PLCE1 genetic deficient mouse esophageal epithelial tissues and human esophageal cancer cell line, integrated with Online oncology data sets. We found that the expression levels of both PLCE1 and PRKCA were significantly elevated in human esophagitis, esophageal squamous cell carcinoma, Barrett's esophagus, esophageal adenocarcinoma and in NMBA-treated rat esophageal epithelia. However, PRKCA and cytokines were significantly downregulated in PLCE1-deficient mouse esophageal epithelia, and knockdown of PLCE1 in human esophageal cancer cells led to reduction of PRKCA and cytokines. Finally, high expression of both PLCE1 and PRKCA is significantly associated with poor outcomes of the patients with esophageal cancers. In conclusion, this study defined the initiation and progression of esophageal inflammation and malignant transformation, in which the positive correlation of PLCE1 and PRKCA exhibits critical clinical significance.
Collapse
Affiliation(s)
- Yongchen Guo
- Department of Pathology and Institute of Precision Medicine, Jining Medical University, Jining 272067, China
| | - Yonghua Bao
- Department of Pathology and Institute of Precision Medicine, Jining Medical University, Jining 272067, China
| | - Ming Ma
- Department of Thoracic Surgery, Affiliated Hospital, Jining Medical University, Jining 272067, China
| | - Shanshan Zhang
- Department of Pathology, Xinxiang Medical University, Xinxiang 453003, China
| | - Yongmeng Zhang
- Department of Pathology, Xinxiang Medical University, Xinxiang 453003, China
| | - Ming Yuan
- Department of Pathology, Xinxiang Medical University, Xinxiang 453003, China
| | - Bing Liu
- Department of Pathology and Institute of Precision Medicine, Jining Medical University, Jining 272067, China
| | - Yiqiong Yang
- Department of Pathology and Institute of Precision Medicine, Jining Medical University, Jining 272067, China
| | - Wen Cui
- Department of Pathology and Institute of Precision Medicine, Jining Medical University, Jining 272067, China
| | - Emmanuel Ansong
- Department of Pathology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Huali Dong
- Department of Pathology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Virgilia Macias
- Department of Pathology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Wancai Yang
- Department of Pathology and Institute of Precision Medicine, Jining Medical University, Jining 272067, China.,Department of Pathology, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
11
|
Janjanam J, Zhang B, Mani AM, Singh NK, Traylor JG, Orr AW, Rao GN. LIM and cysteine-rich domains 1 is required for thrombin-induced smooth muscle cell proliferation and promotes atherogenesis. J Biol Chem 2018; 293:3088-3103. [PMID: 29326163 DOI: 10.1074/jbc.ra117.000866] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/09/2018] [Indexed: 11/06/2022] Open
Abstract
Restenosis arises after vascular injury and is characterized by arterial wall thickening and decreased arterial lumen space. Vascular injury induces the production of thrombin, which in addition to its role in blood clotting acts as a mitogenic and chemotactic factor. In exploring the molecular mechanisms underlying restenosis, here we identified LMCD1 (LIM and cysteine-rich domains 1) as a gene highly responsive to thrombin in human aortic smooth muscle cells (HASMCs). Of note, LMCD1 depletion inhibited proliferation of human but not murine vascular smooth muscle cells. We also found that by physically interacting with E2F transcription factor 1, LMCD1 mediates thrombin-induced expression of the CDC6 (cell division cycle 6) gene in the stimulation of HASMC proliferation. Thrombin-induced LMCD1 and CDC6 expression exhibited a requirement for protease-activated receptor 1-mediated Gαq/11-dependent activation of phospholipase C β3. Moreover, the expression of LMCD1 was highly induced in smooth muscle cells located at human atherosclerotic lesions and correlated with CDC6 expression and that of the proliferation marker Ki67. Furthermore, the LMCD1- and SMCαactin-positive cells had higher cholesterol levels in the atherosclerotic lesions. In conclusion, these findings indicate that by acting as a co-activator with E2F transcription factor 1 in CDC6 expression, LMCD1 stimulates HASMC proliferation and thereby promotes human atherogenesis, suggesting an involvement of LMCD1 in restenosis.
Collapse
Affiliation(s)
- Jagadeesh Janjanam
- From the Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee 38163 and
| | - Baolin Zhang
- From the Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee 38163 and
| | - Arul M Mani
- From the Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee 38163 and
| | - Nikhlesh K Singh
- From the Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee 38163 and
| | - James G Traylor
- the Department of Pathology, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71103
| | - A Wayne Orr
- the Department of Pathology, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71103
| | - Gadiparthi N Rao
- From the Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee 38163 and
| |
Collapse
|
12
|
Tyutyunnykova A, Telegeev G, Dubrovska A. The controversial role of phospholipase C epsilon (PLCε) in cancer development and progression. J Cancer 2017; 8:716-729. [PMID: 28382133 PMCID: PMC5381159 DOI: 10.7150/jca.17779] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 12/23/2016] [Indexed: 01/21/2023] Open
Abstract
The phospholipase C (PLC) enzymes are important regulators of membrane phospholipid metabolism. PLC proteins can be activated by the receptor tyrosine kinases (RTK) or G-protein coupled receptors (GPCR) in response to the different extracellular stimuli including hormones and growth factors. Activated PLC enzymes hydrolyze phosphoinositides to increase the intracellular level of Ca2+ and produce diacylglycerol, which are important mediators of the intracellular signaling transduction. PLC family includes 13 isozymes belonging to 6 subfamilies according to their domain structures and functions. Although importance of PLC enzymes for key cellular functions is well established, the PLC proteins belonging to the ε, ζ and η subfamilies were identified and characterized only during the last decade. As a largest known PLC protein, PLCε is involved in a variety of signaling pathways and controls different cellular properties. Nevertheless, its role in carcinogenesis remains elusive. The aim of this review is to provide a comprehensive and up-to-date overview of the experimental and clinical data about the role of PLCε in the development and progression of the different types of human and experimental tumors.
Collapse
Affiliation(s)
- Anna Tyutyunnykova
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Gennady Telegeev
- The Institute of Molecular Biology and Genetics of NASU, Kyiv, Ukraine
| | - Anna Dubrovska
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Fetscherstrasse 74, 01307 Dresden, Germany.; German Cancer Consortium (DKTK), Dresden, Germany.; Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| |
Collapse
|
13
|
DiStefano PV, Smrcka AV, Glading AJ. Phospholipase Cε Modulates Rap1 Activity and the Endothelial Barrier. PLoS One 2016; 11:e0162338. [PMID: 27612188 PMCID: PMC5017709 DOI: 10.1371/journal.pone.0162338] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 08/22/2016] [Indexed: 11/18/2022] Open
Abstract
The phosphoinositide-specific phospholipase C, PLCε, is a unique signaling protein with known roles in regulating cardiac myocyte growth, astrocyte inflammatory signaling, and tumor formation. PLCε is also expressed in endothelial cells, however its role in endothelial regulation is not fully established. We show that endothelial cells of multiple origins, including human pulmonary artery (HPAEC), human umbilical vein (HUVEC), and immortalized brain microvascular (hCMEC/D3) endothelial cells, express PLCε. Knockdown of PLCε in arterial endothelial monolayers decreased the effectiveness of the endothelial barrier. Concomitantly, RhoA activity and stress fiber formation were increased. PLCε-deficient arterial endothelial cells also exhibited decreased Rap1-GTP levels, which could be restored by activation of the Rap1 GEF, Epac, to rescue the increase in monolayer leak. Reintroduction of PLCε rescued monolayer leak with both the CDC25 GEF domain and the lipase domain of PLCε required to fully activate Rap1 and to rescue endothelial barrier function. Finally, we demonstrate that the barrier promoting effects PLCε are dependent on Rap1 signaling through the Rap1 effector, KRIT1, which we have previously shown is vital for maintaining endothelial barrier stability. Thus we have described a novel role for PLCε PIP2 hydrolytic and Rap GEF activities in arterial endothelial cells, where PLCε-dependent activation of Rap1/KRIT1 signaling promotes endothelial barrier stability.
Collapse
Affiliation(s)
- Peter V. DiStefano
- Department of Pharmacology and Physiology, University of Rochester, Rochester, New York, 14642, United States of America
| | - Alan V. Smrcka
- Department of Pharmacology and Physiology, University of Rochester, Rochester, New York, 14642, United States of America
| | - Angela J. Glading
- Department of Pharmacology and Physiology, University of Rochester, Rochester, New York, 14642, United States of America
- * E-mail:
| |
Collapse
|
14
|
Bijli KM, Fazal F, Slavin SA, Leonard A, Grose V, Alexander WB, Smrcka AV, Rahman A. Phospholipase C-ε signaling mediates endothelial cell inflammation and barrier disruption in acute lung injury. Am J Physiol Lung Cell Mol Physiol 2016; 311:L517-24. [PMID: 27371732 DOI: 10.1152/ajplung.00069.2016] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 06/29/2016] [Indexed: 12/12/2022] Open
Abstract
Phospholipase C-ε (PLC-ε) is a unique PLC isoform that can be regulated by multiple signaling inputs from both Ras family GTPases and heterotrimeric G proteins and has primary sites of expression in the heart and lung. Whereas the role of PLC-ε in cardiac function and pathology has been documented, its relevance in acute lung injury (ALI) is unclear. We used PLC-ε(-/-) mice to address the role of PLC-ε in regulating lung vascular inflammation and injury in an aerosolized bacterial LPS inhalation mouse model of ALI. PLC-ε(-/-) mice showed a marked decrease in LPS-induced proinflammatory mediators (ICAM-1, VCAM-1, TNF-α, IL-1β, IL-6, macrophage inflammatory protein 2, keratinocyte-derived cytokine, monocyte chemoattractant protein 1, and granulocyte-macrophage colony-stimulating factor), lung neutrophil infiltration and microvascular leakage, and loss of VE-cadherin compared with PLC-ε(+/+) mice. These data identify PLC-ε as a critical determinant of proinflammatory and leaky phenotype of the lung. To test the possibility that PLC-ε activity in endothelial cells (EC) could contribute to ALI, we determined its role in EC inflammation and barrier disruption. RNAi knockdown of PLC-ε inhibited NF-κB activity in response to diverse proinflammatory stimuli, thrombin, LPS, TNF-α, and the nonreceptor agonist phorbol 13-myristate 12-acetate (phorbol esters) in EC. Depletion of PLC-ε also inhibited thrombin-induced expression of NF-κB target gene, VCAM-1. Importantly, PLC-ε knockdown also protected against thrombin-induced EC barrier disruption by inhibiting the loss of VE-cadherin at adherens junctions and formation of actin stress fibers. These data identify PLC-ε as a novel regulator of EC inflammation and permeability and show a hitherto unknown role of PLC-ε in the pathogenesis of ALI.
Collapse
Affiliation(s)
- Kaiser M Bijli
- Department of Pediatrics, Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Fabeha Fazal
- Department of Pediatrics, Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Spencer A Slavin
- Department of Pediatrics, Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Antony Leonard
- Department of Pediatrics, Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Valerie Grose
- Department of Pediatrics, Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - William B Alexander
- Department of Pediatrics, Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Alan V Smrcka
- Department of Pharmacology and Physiology, Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Arshad Rahman
- Department of Pediatrics, Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry, Rochester, New York;
| |
Collapse
|
15
|
Wakita M, Edamatsu H, Li M, Emi A, Kitazawa S, Kataoka T. Phospholipase Cϵ Activates Nuclear Factor-κB Signaling by Causing Cytoplasmic Localization of Ribosomal S6 Kinase and Facilitating Its Phosphorylation of Inhibitor κB in Colon Epithelial Cells. J Biol Chem 2016; 291:12586-12600. [PMID: 27053111 DOI: 10.1074/jbc.m116.717561] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Indexed: 12/30/2022] Open
Abstract
Phospholipase Cϵ (PLCϵ), an effector of Ras and Rap small GTPases, plays a crucial role in inflammation by augmenting proinflammatory cytokine expression. This proinflammatory function of PLCϵ is implicated in its facilitative role in tumor promotion and progression during skin and colorectal carcinogenesis, although their direct link remains to be established. Moreover, the molecular mechanism underlying these functions of PLCϵ remains unknown except that PKD works downstream of PLCϵ. Here we show by employing the colitis-induced colorectal carcinogenesis model, where Apc(Min) (/+) mice are administered with dextran sulfate sodium, that PLCϵ knock-out alleviates the colitis and suppresses the following tumorigenesis concomitant with marked attenuation of proinflammatory cytokine expression. In human colon epithelial Caco2 cells, TNF-α induces sustained expression of proinflammatory molecules and sustained activation of nuclear factor-κB (NF-κB) and PKD, the late phases of which are suppressed by not only siRNA-mediated PLCϵ knockdown but also treatment with a lysophosphatidic acid (LPA) receptor antagonist. Also, LPA stimulation induces these events in an early time course, suggesting that LPA mediates TNF-α signaling in an autocrine manner. Moreover, PLCϵ knockdown results in inhibition of phosphorylation of IκB by ribosomal S6 kinase (RSK) but not by IκB kinases. Subcellular fractionation suggests that enhanced phosphorylation of a scaffolding protein, PEA15 (phosphoprotein enriched in astrocytes 15), downstream of the PLCϵ-PKD axis causes sustained cytoplasmic localization of phosphorylated RSK, thereby facilitating IκB phosphorylation in the cytoplasm. These results suggest the crucial role of the TNF-α-LPA-LPA receptor-PLCϵ-PKD-PEA15-RSK-IκB-NF-κB pathway in facilitating inflammation and inflammation-associated carcinogenesis in the colon.
Collapse
Affiliation(s)
- Masahiro Wakita
- Division of Molecular Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Hironori Edamatsu
- Division of Molecular Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Mingzhen Li
- Division of Molecular Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Aki Emi
- Division of Molecular Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Sohei Kitazawa
- Department of Molecular Pathology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Tohru Kataoka
- Division of Molecular Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan.
| |
Collapse
|
16
|
Jiang T, Liu T, Li L, Yang Z, Bai Y, Liu D, Kong C. Knockout of phospholipase Cε attenuates N-butyl-N-(4-hydroxybutyl) nitrosamine-induced bladder tumorigenesis. Mol Med Rep 2016; 13:2039-45. [PMID: 26782701 PMCID: PMC4768990 DOI: 10.3892/mmr.2016.4762] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 09/01/2015] [Indexed: 11/20/2022] Open
Abstract
Bladder cancer frequently shows mutational activation of the oncogene Ras, which is associated with bladder carcinogenesis. However, the signaling pathway downstream of Ras remains to be fully elucidated. N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN) is able to induce bladder cancer by driving the clonal expansion of initiated cells carrying the activated form of Ras. Phospholipase Cε (PLCε) is the main target of BBN, while the tumor promoting role of PLCε remains controversial. The present study examined the role of PLCε in BBN-induced bladder carcinogenesis of mice with genetically inactivated PLCε. Using light and electron microscopy, the present study demonstrated that PLCε−/− mice were resistant to BBN-induced bladder carcinogenesis. Furthermore, it was demonstrated that cyclooxygenase 2 and vascular endothelial growth factor-A were affected by the PLCε background of the mice, suggesting that the role of PLCε in tumor promotion may be ascribed to augmentation of inflammatory responses and angiogenesis. These results indicated that PLCε is crucial for BBN-induced bladder carcinogenesis as well as signaling downstream of Ras, and that PLCε is a candidate molecular target for the development of anti-cancer drugs.
Collapse
Affiliation(s)
- Taimao Jiang
- Department of Urology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Tao Liu
- Department of Urology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Lin Li
- Department of Rehabilitation Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110036, P.R. China
| | - Zhijun Yang
- Department of Neurosurgery, Hospital of Beijing Military District of People's Liberation Army, Beijing 100070, P.R. China
| | - Yunfeng Bai
- Infection Section 15, The 302 Hospital of Chinese People's Liberation Army, Beijing 100039, P.R. China
| | - Dongye Liu
- Department of Urology, The 463 Hospital of Chinese People's Liberation Army, Shenyang, Liaoning 110042, P.R. China
| | - Chuize Kong
- Department of Urology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
17
|
The Novel Functions of the PLC/PKC/PKD Signaling Axis in G Protein-Coupled Receptor-Mediated Chemotaxis of Neutrophils. J Immunol Res 2015; 2015:817604. [PMID: 26605346 PMCID: PMC4641950 DOI: 10.1155/2015/817604] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 10/05/2015] [Indexed: 12/16/2022] Open
Abstract
Chemotaxis, a directional cell migration guided by extracellular chemoattractant gradients, plays an essential role in the recruitment of neutrophils to sites of inflammation. Chemotaxis is mediated by the G protein-coupled receptor (GPCR) signaling pathway. Extracellular stimuli trigger activation of the PLC/PKC/PKD signaling axis, which controls several signaling pathways. Here, we concentrate on the novel functions of PLC/PKC/PKD signaling in GPCR-mediated chemotaxis of neutrophils.
Collapse
|
18
|
Janjanam J, Chandaka GK, Kotla S, Rao GN. PLCβ3 mediates cortactin interaction with WAVE2 in MCP1-induced actin polymerization and cell migration. Mol Biol Cell 2015; 26:4589-606. [PMID: 26490115 PMCID: PMC4678017 DOI: 10.1091/mbc.e15-08-0570] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 10/13/2015] [Indexed: 12/24/2022] Open
Abstract
Monocyte chemotactic protein 1 (MCP1) stimulates vascular smooth muscle cell (VSMC) migration in vascular wall remodeling. However, the mechanisms underlying MCP1-induced VSMC migration have not been understood. Here we identify the signaling pathway associated with MCP1-induced human aortic smooth muscle cell (HASMC) migration. MCP1, a G protein-coupled receptor agonist, activates phosphorylation of cortactin on S405 and S418 residues in a time-dependent manner, and inhibition of its phosphorylation attenuates MCP1-induced HASMC G-actin polymerization, F-actin stress fiber formation, and migration. Cortactin phosphorylation on S405/S418 is found to be critical for its interaction with WAVE2, a member of the WASP family of cytoskeletal regulatory proteins required for cell migration. In addition, the MCP1-induced cortactin phosphorylation is dependent on PLCβ3-mediated PKCδ activation, and siRNA-mediated down-regulation of either of these molecules prevents cortactin interaction with WAVE2, affecting G-actin polymerization, F-actin stress fiber formation, and HASMC migration. Upstream, MCP1 activates CCR2 and Gαq/11 in a time-dependent manner, and down-regulation of their levels attenuates MCP1-induced PLCβ3 and PKCδ activation, cortactin phosphorylation, cortactin-WAVE2 interaction, G-actin polymerization, F-actin stress fiber formation, and HASMC migration. Together these findings demonstrate that phosphorylation of cortactin on S405 and S418 residues is required for its interaction with WAVE2 in MCP1-induced cytoskeleton remodeling, facilitating HASMC migration.
Collapse
Affiliation(s)
- Jagadeesh Janjanam
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163
| | - Giri Kumar Chandaka
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163
| | - Sivareddy Kotla
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163
| | - Gadiparthi N Rao
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163
| |
Collapse
|
19
|
Dusaban SS, Kunkel MT, Smrcka AV, Brown JH. Thrombin promotes sustained signaling and inflammatory gene expression through the CDC25 and Ras-associating domains of phospholipase Cϵ. J Biol Chem 2015; 290:26776-83. [PMID: 26350460 DOI: 10.1074/jbc.m115.676098] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Indexed: 01/24/2023] Open
Abstract
Phospholipase C-epsilon (PLCϵ) plays a critical role in G-protein-coupled receptor-mediated inflammation. In addition to its ability to generate the second messengers inositol 1,4,5-trisphosphate and diacylglycerol, PLCϵ, unlike the other phospholipase C family members, is activated in a sustained manner. We hypothesized that the ability of PLCϵ to function as a guanine nucleotide exchange factor (GEF) for Rap1 supports sustained downstream signaling via feedback of Rap1 to the enzyme Ras-associating (RA2) domain. Using gene deletion and adenoviral rescue, we demonstrate that both the GEF (CDC25 homology domain) and RA2 domains of PLCϵ are required for long term protein kinase D (PKD) activation and subsequent induction of inflammatory genes. PLCϵ localization is largely intracellular and its compartmentalization could contribute to its sustained activation. Here we show that localization of PLCϵ to the Golgi is required for activation of PKD in this compartment as well as for subsequent induction of inflammatory genes. These data provide a molecular mechanism by which PLCϵ mediates sustained signaling and by which astrocytes mediate pathophysiological inflammatory responses.
Collapse
Affiliation(s)
- Stephanie S Dusaban
- From the Department of Pharmacology, School of Medicine and Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, California 92093 and
| | - Maya T Kunkel
- From the Department of Pharmacology, School of Medicine and
| | - Alan V Smrcka
- Department of Pharmacology and Physiology, University of Rochester, Rochester, New York 14642
| | | |
Collapse
|
20
|
Xu X, Gera N, Li H, Yun M, Zhang L, Wang Y, Wang QJ, Jin T. GPCR-mediated PLCβγ/PKCβ/PKD signaling pathway regulates the cofilin phosphatase slingshot 2 in neutrophil chemotaxis. Mol Biol Cell 2015; 26:874-86. [PMID: 25568344 PMCID: PMC4342024 DOI: 10.1091/mbc.e14-05-0982] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Chemotaxis requires precisely coordinated polymerization and depolymerization of the actin cytoskeleton at leading fronts of migrating cells. However, GPCR activation-controlled F-actin depolymerization remains largely elusive. Here, we reveal a novel signaling pathway, including Gαi, PLC, PKCβ, protein kinase D (PKD), and SSH2, in control of cofilin phosphorylation and actin cytoskeletal reorganization, which is essential for neutrophil chemotaxis. We show that PKD is essential for neutrophil chemotaxis and that GPCR-mediated PKD activation depends on PLC/PKC signaling. More importantly, we discover that GPCR activation recruits/activates PLCγ2 in a PI3K-dependent manner. We further verify that PKCβ specifically interacts with PKD1 and is required for chemotaxis. Finally, we identify slingshot 2 (SSH2), a phosphatase of cofilin (actin depolymerization factor), as a target of PKD1 that regulates cofilin phosphorylation and remodeling of the actin cytoskeleton during neutrophil chemotaxis.
Collapse
Affiliation(s)
- Xuehua Xu
- Chemotaxis Signaling Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852
| | - Nidhi Gera
- Chemotaxis Signaling Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852
| | - Hongyan Li
- Chemotaxis Signaling Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852 Center of Therapeutic Research for Hepatocellular Carcinoma, 302 Hospital of PLA, Beijing 100039, China
| | - Michelle Yun
- Chemotaxis Signaling Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852
| | - Liyong Zhang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Youhong Wang
- Chemotaxis Signaling Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852
| | - Q Jane Wang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Tian Jin
- Chemotaxis Signaling Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852
| |
Collapse
|
21
|
Dusaban SS, Brown JH. PLCε mediated sustained signaling pathways. Adv Biol Regul 2014; 57:17-23. [PMID: 25453218 DOI: 10.1016/j.jbior.2014.09.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 09/22/2014] [Accepted: 09/25/2014] [Indexed: 01/09/2023]
Abstract
Phospholipase C-ε (PLCε) integrates signaling from G-protein coupled receptors (GPCRs) to downstream kinases to regulate a broad range of biological and pathophysiological responses. Relative to other PLCs, PLCε is unique in that it not only serves a catalytic function in phosphoinositide hydrolysis but also functions as an exchange factor small the low molecular weight G-protein Rap1. PLCε is selectively stimulated by agonists for GPCRs that couple to RhoA, which bind directly to the enzyme to regulate its activity. Rap1 also regulates PLCε activity by binding to its RA2 domain and this generates a feedback mechanism allowing sustained signaling. As a result of its regulation by inflammatory ligands for GPCRs and its ability to promote chronic signals, PLCε has been implicated in diseases ranging from cancer to ischemia/reperfusion injury. This review will discuss the regulation of PLCε, molecular mechanisms that contribute to sustained signaling, and the role of the enzyme in various disease contexts.
Collapse
Affiliation(s)
- Stephanie S Dusaban
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Joan Heller Brown
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
22
|
Xiang SY, Ouyang K, Yung BS, Miyamoto S, Smrcka AV, Chen J, Heller Brown J. PLCε, PKD1, and SSH1L transduce RhoA signaling to protect mitochondria from oxidative stress in the heart. Sci Signal 2013; 6:ra108. [PMID: 24345679 DOI: 10.1126/scisignal.2004405] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Activation of the small guanosine triphosphatase RhoA can promote cell survival in cultured cardiomyocytes and in the heart. We showed that the circulating lysophospholipid sphingosine 1-phosphate (S1P), a G protein (heterotrimeric guanine nucleotide-binding protein)-coupled receptor (GPCR) agonist, signaled through RhoA and phospholipase Cε (PLCε) to increase the phosphorylation and activation of protein kinase D1 (PKD1). Genetic deletion of either PKD1 or its upstream regulator PLCε inhibited S1P-mediated cardioprotection against ischemia/reperfusion injury. Cardioprotection involved PKD1-mediated phosphorylation and inhibition of the cofilin phosphatase Slingshot 1L (SSH1L). Cofilin 2 translocates to mitochondria in response to oxidative stress or ischemia/reperfusion injury, and both S1P pretreatment and SSH1L knockdown attenuated translocation of cofilin 2 to mitochondria. Cofilin 2 associates with the proapoptotic protein Bax, and the mitochondrial translocation of Bax in response to oxidative stress was also attenuated by S1P treatment in isolated hearts or by knockdown of SSH1L or cofilin 2 in cardiomyocytes. Furthermore, SSH1L knockdown, like S1P treatment, increased cardiomyocyte survival and preserved mitochondrial integrity after oxidative stress. These findings reveal a pathway initiated by GPCR agonist-induced RhoA activation, in which PLCε signals to PKD1-mediated phosphorylation of cytoskeletal proteins to prevent the mitochondrial translocation and proapoptotic function of cofilin 2 and Bax and thereby promote cell survival.
Collapse
Affiliation(s)
- Sunny Y Xiang
- 1Department of Pharmacology, University of California, San Diego, San Diego, CA 92093, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Ruisanchez É, Dancs P, Kerék M, Németh T, Faragó B, Balogh A, Patil R, Jennings BL, Liliom K, Malik KU, Smrcka AV, Tigyi G, Benyó Z. Lysophosphatidic acid induces vasodilation mediated by LPA1 receptors, phospholipase C, and endothelial nitric oxide synthase. FASEB J 2013; 28:880-90. [PMID: 24249637 DOI: 10.1096/fj.13-234997] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Lysophosphatidic acid (LPA) has been implicated as a mediator of several cardiovascular functions, but its potential involvement in the control of vascular tone is obscure. Here, we show that both LPA (18:1) and VPC31143 (a synthetic agonist of LPA1-3 receptors) relax intact mouse thoracic aorta with similar Emax values (53.9 and 51.9% of phenylephrine-induced precontraction), although the EC50 of LPA- and VPC31143-induced vasorelaxations were different (400 vs. 15 nM, respectively). Mechanical removal of the endothelium or genetic deletion of endothelial nitric oxide synthase (eNOS) not only diminished vasorelaxation by LPA or VPC31143 but converted it to vasoconstriction. Freshly isolated mouse aortic endothelial cells expressed LPA1, LPA2, LPA4 and LPA5 transcripts. The LPA1,3 antagonist Ki16425, the LPA1 antagonist AM095, and the genetic deletion of LPA1, but not that of LPA2, abolished LPA-induced vasorelaxation. Inhibition of the phosphoinositide 3 kinase-protein kinase B/Akt pathway by wortmannin or MK-2206 failed to influence the effect of LPA. However, pharmacological inhibition of phospholipase C (PLC) by U73122 or edelfosine, but not genetic deletion of PLCε, abolished LPA-induced vasorelaxation and indicated that a PLC enzyme, other than PLCε, mediates the response. In summary, the present study identifies LPA as an endothelium-dependent vasodilator substance acting via LPA1, PLC, and eNOS.
Collapse
Affiliation(s)
- Éva Ruisanchez
- 1Z.B., Institute of Human Physiology and Clinical Experimental Research, Semmelweis University, POB 448, H-1446 Budapest, Hungary.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Clouthier DE, Passos-Bueno MR, Tavares ALP, Lyonnet S, Amiel J, Gordon CT. Understanding the basis of auriculocondylar syndrome: Insights from human, mouse and zebrafish genetic studies. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2013; 163C:306-17. [PMID: 24123988 DOI: 10.1002/ajmg.c.31376] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Among human birth defect syndromes, malformations affecting the face are perhaps the most striking due to cultural and psychological expectations of facial shape. One such syndrome is auriculocondylar syndrome (ACS), in which patients present with defects in ear and mandible development. Affected structures arise from cranial neural crest cells, a population of cells in the embryo that reside in the pharyngeal arches and give rise to most of the bone, cartilage and connective tissue of the face. Recent studies have found that most cases of ACS arise from defects in signaling molecules associated with the endothelin signaling pathway. Disruption of this signaling pathway in both mouse and zebrafish results in loss of identity of neural crest cells of the mandibular portion of the first pharyngeal arch and the subsequent repatterning of these cells, leading to homeosis of lower jaw structures into more maxillary-like structures. These findings illustrate the importance of endothelin signaling in normal human craniofacial development and illustrate how clinical and basic science approaches can coalesce to improve our understanding of the genetic basis of human birth defect syndromes. Further, understanding the genetic basis for ACS that lies outside of known endothelin signaling components may help elucidate unknown aspects critical to the establishment of neural crest cell patterning during facial morphogenesis.
Collapse
|
25
|
Schulman JJ, Wright FA, Kaufmann T, Wojcikiewicz RJH. The Bcl-2 protein family member Bok binds to the coupling domain of inositol 1,4,5-trisphosphate receptors and protects them from proteolytic cleavage. J Biol Chem 2013; 288:25340-25349. [PMID: 23884412 DOI: 10.1074/jbc.m113.496570] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bok is a member of the Bcl-2 protein family that controls intrinsic apoptosis. Bok is most closely related to the pro-apoptotic proteins Bak and Bax, but in contrast to Bak and Bax, very little is known about its cellular role. Here we report that Bok binds strongly and constitutively to inositol 1,4,5-trisphosphate receptors (IP3Rs), proteins that form tetrameric calcium channels in the endoplasmic reticulum (ER) membrane and govern the release of ER calcium stores. Bok binds most strongly to IP3R1 and IP3R2, and barely to IP3R3, and essentially all cellular Bok is IP3R bound in cells that express substantial amounts of IP3Rs. Binding to IP3Rs appears to be mediated by the putative BH4 domain of Bok and the docking site localizes to a small region within the coupling domain of IP3Rs (amino acids 1895-1903 of IP3R1) that is adjacent to numerous regulatory sites, including sites for proteolysis. With regard to the possible role of Bok-IP3R binding, the following was observed: (i) Bok does not appear to control the ability of IP3Rs to release ER calcium stores, (ii) Bok regulates IP3R expression, (iii) persistent activation of inositol 1,4,5-trisphosphate-dependent cell signaling causes Bok degradation by the ubiquitin-proteasome pathway, in a manner that parallels IP3R degradation, and (iv) Bok protects IP3Rs from proteolysis, either by chymotrypsin in vitro or by caspase-3 in vivo during apoptosis. Overall, these data show that Bok binds strongly and constitutively to IP3Rs and that the most significant consequence of this binding appears to be protection of IP3Rs from proteolysis. Thus, Bok may govern IP3R cleavage and activity during apoptosis.
Collapse
Affiliation(s)
- Jacqualyn J Schulman
- From the Department of Pharmacology, SUNY Upstate Medical University, Syracuse, New York 13210 and
| | - Forrest A Wright
- From the Department of Pharmacology, SUNY Upstate Medical University, Syracuse, New York 13210 and
| | - Thomas Kaufmann
- University of Bern, Medical Faculty, Institute of Pharmacology, Friedbuehlstrasse 49, CH-3010 Bern, Switzerland
| | - Richard J H Wojcikiewicz
- From the Department of Pharmacology, SUNY Upstate Medical University, Syracuse, New York 13210 and.
| |
Collapse
|
26
|
Abstract
Phosphoinositides (PIs) make up only a small fraction of cellular phospholipids, yet they control almost all aspects of a cell's life and death. These lipids gained tremendous research interest as plasma membrane signaling molecules when discovered in the 1970s and 1980s. Research in the last 15 years has added a wide range of biological processes regulated by PIs, turning these lipids into one of the most universal signaling entities in eukaryotic cells. PIs control organelle biology by regulating vesicular trafficking, but they also modulate lipid distribution and metabolism via their close relationship with lipid transfer proteins. PIs regulate ion channels, pumps, and transporters and control both endocytic and exocytic processes. The nuclear phosphoinositides have grown from being an epiphenomenon to a research area of its own. As expected from such pleiotropic regulators, derangements of phosphoinositide metabolism are responsible for a number of human diseases ranging from rare genetic disorders to the most common ones such as cancer, obesity, and diabetes. Moreover, it is increasingly evident that a number of infectious agents hijack the PI regulatory systems of host cells for their intracellular movements, replication, and assembly. As a result, PI converting enzymes began to be noticed by pharmaceutical companies as potential therapeutic targets. This review is an attempt to give an overview of this enormous research field focusing on major developments in diverse areas of basic science linked to cellular physiology and disease.
Collapse
Affiliation(s)
- Tamas Balla
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA.
| |
Collapse
|
27
|
Sundström L, Greasley PJ, Engberg S, Wallander M, Ryberg E. Succinate receptor GPR91, a Gα(i) coupled receptor that increases intracellular calcium concentrations through PLCβ. FEBS Lett 2013; 587:2399-404. [PMID: 23770096 DOI: 10.1016/j.febslet.2013.05.067] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 05/30/2013] [Accepted: 05/30/2013] [Indexed: 11/15/2022]
Abstract
Succinate has been reported as the endogenous ligand for GPR91. In this study, succinate was confirmed to activate GPR91 resulting in both 3'-5'-cyclic adenosine monophosphate (cAMP) inhibition and inositol phosphate formation in a pertussis toxin (PTX)-sensitive manner. GPR91 agonist-mediated effects detected using dynamic mass redistribution (DMR) were inhibited with PTX, edelfosine and U73122 demonstrating the importance of not only the Gαi pathway but also PLCβ. These results show that GPR91 when expressed in HEK293s cells couples exclusively through the Gαi pathway and acts through Gαi not only to inhibit cAMP production but also to increase intracellular Ca(2+) in an inositol phosphate dependent mechanism via PLCβ activation.
Collapse
|
28
|
Siehler S. G12/13-dependent signaling of G-protein-coupled receptors: disease context and impact on drug discovery. Expert Opin Drug Discov 2013; 2:1591-604. [PMID: 23488903 DOI: 10.1517/17460441.2.12.1591] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
G-protein-coupled receptors (GPCRs) transmit extracellular signals across the plasma membrane via intracellular activation of heterotrimeric G proteins. The signal transduction pathways of Gs, Gi and Gq protein families are widely studied, whereas signaling properties of G12 proteins are only emerging. Many GPCRs were found to couple to G12/13 proteins in addition to coupling to one or more other types of G proteins. G12/13 proteins couple GPCRs to activation of the small monomeric GTPase RhoA. Activation of RhoA modulates various downstream effector systems relevant to diseases such as hypertension, artherosclerosis, asthma and cancer. GPCR screening assays exist for Gs-, Gi- and Gq-linked pathways, whereas a drug-screening assay for the G12-Rho pathway was developed only recently. The review gives an overview of the present understanding of the G12/13-related biology of GPCRs.
Collapse
Affiliation(s)
- Sandra Siehler
- Novartis Institutes for BioMedical Research Basel, Center for Proteomic Chemistry, Novartis Pharma AG, WSJ-88.2.05, 4002 Basel, Switzerland +41 61 324 8946 ; +41 61 324 2870 ;
| |
Collapse
|
29
|
Phospholipase C epsilon links G protein-coupled receptor activation to inflammatory astrocytic responses. Proc Natl Acad Sci U S A 2013; 110:3609-14. [PMID: 23401561 DOI: 10.1073/pnas.1217355110] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Neuroinflammation plays a major role in the pathophysiology of diseases of the central nervous system, and the role of astroglial cells in this process is increasingly recognized. Thrombin and the lysophospholipids lysophosphatidic acid and sphingosine 1-phosphate (S1P) are generated during injury and can activate G protein-coupled receptors (GPCRs) on astrocytes. We postulated that GPCRs that couple to Ras homolog gene family, member A (RhoA) induce inflammatory gene expression in astrocytes through the small GTPase responsive phospholipase Cε (PLCε). Using primary astrocytes from wild-type and PLCε knockout mice, we demonstrate that 1-h treatment with thrombin or S1P increases cyclooxygenase 2 (COX-2) mRNA levels ∼10-fold and that this requires PLCε. Interleukin-6 and interleukin-1β mRNA levels are also increased in a PLCε-dependent manner. Thrombin, lysophosphatidic acid, and S1P increase COX-2 protein expression through a mechanism involving RhoA, catalytically active PLCε, sustained activation of protein kinase D (PKD), and nuclear translocation of NF-κB. Endogenous ligands that are released from astrocytes in an in vitro wounding assay also induce COX-2 expression through a PLCε- and NF-κB-dependent pathway. Additionally, in vivo stab wound injury activates PKD and induces COX-2 and other inflammatory genes in WT but not in PLCε knockout mouse brain. Thus, PLCε links GPCRs to sustained PKD activation, providing a means for GPCR ligands that couple to RhoA to induce NF-κB signaling and promote neuroinflammation.
Collapse
|
30
|
Wang LD, Bi X, Song X, Pohl NM, Cheng Y, Zhou Y, Shears S, Ansong E, Xing M, Wang S, Xu XC, Huang P, Xu L, Wang L, Fan Z, Zhao X, Dong H, Meltzer SJ, Ding I, Yang W. A sequence variant in the phospholipase C epsilon C2 domain is associated with esophageal carcinoma and esophagitis. Mol Carcinog 2013; 52 Suppl 1:E80-6. [PMID: 23390063 DOI: 10.1002/mc.22016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2012] [Revised: 01/13/2013] [Accepted: 01/18/2013] [Indexed: 12/14/2022]
Abstract
A single-nucleotide polymorphism (rs2274223: A5780G:His1927Arg) in the phospholipase C epsilon gene (PLCϵ) was recently identified as a susceptibility locus for esophageal cancer in Chinese subjects. To determine the underlying mechanisms of PLCϵ and this SNP in esophageal carcinogenesis, we analyzed PLCϵ genotypes, expression, and their correlation in esophageal cancer cell lines, non-transformed esophageal cells, 58 esophageal squamous cell carcinomas and 10,614 non-cancer subjects from China. We found that the G allele (AG or GG) was associated with increased PLCϵ mRNA and protein expression in esophageal cancer tissues and in esophageal cancer cell lines. G allele was also associated with higher enzyme activity, which might be associated with increased protein expression. Quantitative analysis of the C2 domain sequences revealed that A:G allelic imbalance was strongly linked to esophageal malignancy. Moreover, the analysis of 10,614 non-cancer subjects demonstrated that the G allele was strongly associated with moderate to severe esophagitis in the subjects from the high-incidence areas of China (OR 6.03, 95% CI 1.59-22.9 in high-incidence area vs. OR 0.74, 95% CI 0.33-1.64 in low-incidence area; P = 0.008). In conclusion, the PLCϵ gene, particularly the 5780G allele, might play a pivotal role in esophageal carcinogenesis via upregulating PLCϵ mRNA, protein, and enzyme activity, and augmenting inflammatory process in esophageal epithelium. Thus, 5780G allele may constitute a promising biomarker for esophageal squamous cell carcinoma risk stratification, early detection, and progression prediction.
Collapse
Affiliation(s)
- Li-Dong Wang
- Department of Pathology, Xinxiang Medical University, Xinxiang, China; Henan Key Laboratory for Esophageal Cancer Research, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
AbstractThe Gq-linked G protein coupled receptors (GPCRs) and their signaling pathways are important clinical targets for the dementia of Alzheimer’s disease and cognitive decline with aging. Gq stimulates phospholipase C-β1 (PLC-β1) activity, increasing levels of inositol-1, 4, 5-trisphosphate (IP3) and diacylglycerol, to initiate mobilization of intracellular Ca2+ and activation of protein kinase C, respectively. While high concentrations of ligand typically evoke large sustained increases in cytosolic Ca2+ levels, it has long been appreciated that the dynamics of the Ca2+ increase are more complex and consistent with multiple levels of regulation. Physiologically relevant concentrations of Gq-ligands evoke rhythmic fluctuations or an oscillation in the level of cytosolic Ca2+. Downstream targets are tuned to respond to the frequency of the Ca2+ oscillations which in turn, reflect the oscillations in IP3 levels. Oscillatory behavior depends on the assembly of self-organizing interactions. The components that contribute to and regulate the Ca2+ oscillator have been unclear, precluding transfer of this fundamental knowledge from bench to bedside. Many GPCRs that signal with Gq also co-signal with G12. G protein co-signaling could therefore regulate the Ca2+ oscillator. This letter explores the potential relationship between Ca2+ oscillations, G protein co-signaling and cellular response in the context of our recent observations. We found that Gq efficacy is synergistic with phosphatidic acid, (PA), a signaling mediator generated downstream of activated G12 and RhoA. Regulation by PA depends on interaction with the unique PLC-β1 PA binding region. G protein co-signaling is therefore a mechanism for GPCRs to collectively assemble self-organizing interactions that regulate the Ca2+ oscillator.
Collapse
|
32
|
Abstract
Phospholipase C (PLC) converts phosphatidylinositol 4,5-bisphosphate (PIP(2)) to inositol 1,4,5-trisphosphate (IP(3)) and diacylglycerol (DAG). DAG and IP(3) each control diverse cellular processes and are also substrates for synthesis of other important signaling molecules. PLC is thus central to many important interlocking regulatory networks. Mammals express six families of PLCs, each with both unique and overlapping controls over expression and subcellular distribution. Each PLC also responds acutely to its own spectrum of activators that includes heterotrimeric G protein subunits, protein tyrosine kinases, small G proteins, Ca(2+), and phospholipids. Mammalian PLCs are autoinhibited by a region in the catalytic TIM barrel domain that is the target of much of their acute regulation. In combination, the PLCs act as a signaling nexus that integrates numerous signaling inputs, critically governs PIP(2) levels, and regulates production of important second messengers to determine cell behavior over the millisecond to hour timescale.
Collapse
Affiliation(s)
- Ganesh Kadamur
- Department of Pharmacology, Molecular Biophysics Graduate Program and Green Center for Systems Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | | |
Collapse
|
33
|
Martins M, Warren S, Kimberley C, Margineanu A, Peschard P, McCarthy A, Yeo M, Marshall CJ, Dunsby C, French PMW, Katan M. Activity of PLCε contributes to chemotaxis of fibroblasts towards PDGF. J Cell Sci 2012; 125:5758-69. [PMID: 22992460 DOI: 10.1242/jcs.110007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Cell chemotaxis, such as migration of fibroblasts towards growth factors during development and wound healing, requires precise spatial coordination of signalling events. Phosphoinositides and signalling enzymes involved in their generation and hydrolysis have been implicated in regulation of chemotaxis; however, the role and importance of specific components remain poorly understood. Here, we demonstrate that phospholipase C epsilon (PLCε) contributes to fibroblast chemotaxis towards platelet-derived growth factor (PDGF-BB). Using PLCe1 null fibroblasts we show that cells deficient in PLCε have greatly reduced directionality towards PDGF-BB without detrimental effect on their basal ability to migrate. Furthermore, we show that in intact fibroblasts, signalling events, such as activation of Rac, are spatially compromised by the absence of PLCε that affects the ability of cells to enlarge their protrusions in the direction of the chemoattractant. By further application of live cell imaging and the use of FRET-based biosensors, we show that generation of Ins(1,4,5)P(3) and recruitment of PLCε are most pronounced in protrusions responding to the PDGF-BB gradient. Furthermore, the phospholipase C activity of PLCε is critical for its role in chemotaxis, consistent with the importance of Ins(1,4,5)P(3) generation and sustained calcium responses in this process. As PLCε has extensive signalling connectivity, using transgenic fibroblasts we ruled out its activation by direct binding to Ras or Rap GTPases, and suggest instead new unexpected links for PLCε in the context of chemotaxis.
Collapse
Affiliation(s)
- Marta Martins
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London WC1E 6BT, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Smrcka AV, Brown JH, Holz GG. Role of phospholipase Cε in physiological phosphoinositide signaling networks. Cell Signal 2012; 24:1333-43. [PMID: 22286105 PMCID: PMC3325758 DOI: 10.1016/j.cellsig.2012.01.009] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 01/13/2012] [Indexed: 02/05/2023]
Abstract
Receptor-initiated phospholipase C activation and generation of IP(3) and DAG are important common triggers for a diversity of signal transduction processes in many cell types. Contributing to this diversity is the existence and differential cellular and subcellular distribution of distinct phospholipase C isoforms with distinct regulatory properties. The recently identified PLCε enzyme is an isoform that is uniquely regulated by multiple upstream signals including ras-family GTP binding proteins as well as heterotrimeric G-proteins. In this review we will consider the well documented biochemical regulation of this isoform in the context of cell and whole animal physiology and in the context of other G protein-regulated PLC isoforms. These studies together reveal a surprisingly wide range of unexpected functions for PLCε in cellular signaling, physiology and disease.
Collapse
Affiliation(s)
- Alan V Smrcka
- Department of Pharmacology and Physiology, University of Rochester School of Medicine, 601 Elmwood Ave, Rochester, NY 14642, USA.
| | | | | |
Collapse
|
35
|
McCoy KL, Gyoneva S, Vellano CP, Smrcka AV, Traynelis SF, Hepler JR. Protease-activated receptor 1 (PAR1) coupling to G(q/11) but not to G(i/o) or G(12/13) is mediated by discrete amino acids within the receptor second intracellular loop. Cell Signal 2012; 24:1351-60. [PMID: 22306780 DOI: 10.1016/j.cellsig.2012.01.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2011] [Revised: 12/27/2011] [Accepted: 01/19/2012] [Indexed: 12/29/2022]
Abstract
Protease-activated receptor 1 (PAR1) is an unusual GPCR that interacts with multiple G protein subfamilies (G(q/11), G(i/o), and G(12/13)) and their linked signaling pathways to regulate a broad range of pathophysiological processes. However, the molecular mechanisms whereby PAR1 interacts with multiple G proteins are not well understood. Whether PAR1 interacts with various G proteins at the same, different, or overlapping binding sites is not known. Here we investigated the functional and specific binding interactions between PAR1 and representative members of the G(q/11), G(i/o), and G(12/13) subfamilies. We report that G(q/11) physically and functionally interacts with specific amino acids within the second intracellular (i2) loop of PAR1. We identified five amino acids within the PAR1 i2 loop that, when mutated individually, each markedly reduced PAR1 activation of linked inositol phosphate formation in transfected COS-7 cells (functional PAR1-null cells). Among these mutations, only R205A completely abolished direct G(q/11) binding to PAR1 and also PAR1-directed inositol phosphate and calcium mobilization in COS-7 cells and PAR1-/- primary astrocytes. In stark contrast, none of the PAR1 i2 loop mutations disrupted direct PAR1 binding to either G(o) or G(12), or their functional coupling to linked pertussis toxin-sensitive ERK phosphorylation and C3 toxin-sensitive Rho activation, respectively. In astrocytes, our findings suggest that PAR1-directed calcium signaling involves a newly appreciated G(q/11)-PLCε pathway. In summary, we have identified key molecular determinants for PAR1 interactions with G(q/11), and our findings support a model where G(q/11), G(i/o) or G(12/13) each bind to distinct sites within the cytoplasmic regions of PAR1.
Collapse
Affiliation(s)
- Kelly L McCoy
- Department of Pharmacology, O. Wayne Rollins Research Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | | | |
Collapse
|
36
|
Abstract
The physiological effects of many extracellular neurotransmitters, hormones, growth factors, and other stimuli are mediated by receptor-promoted activation of phospholipase C (PLC) and consequential activation of inositol lipid signaling pathways. These signaling responses include the classically described conversion of phosphatidylinositol(4,5)P(2) to the Ca(2+)-mobilizing second messenger inositol(1,4,5)P(3) and the protein kinase C-activating second messenger diacylglycerol as well as alterations in membrane association or activity of many proteins that harbor phosphoinositide binding domains. The 13 mammalian PLCs elaborate a minimal catalytic core typified by PLC-d to confer multiple modes of regulation of lipase activity. PLC-b isozymes are activated by Gaq- and Gbg-subunits of heterotrimeric G proteins, and activation of PLC-g isozymes occurs through phosphorylation promoted by receptor and non-receptor tyrosine kinases. PLC-e and certain members of the PLC-b and PLC-g subclasses of isozymes are activated by direct binding of small G proteins of the Ras, Rho, and Rac subfamilies of GTPases. Recent high resolution three dimensional structures together with biochemical studies have illustrated that the X/Y linker region of the catalytic core mediates autoinhibition of most if not all PLC isozymes. Activation occurs as a consequence of removal of this autoinhibition.
Collapse
|
37
|
Luo D, Gao Y, Wang S, Wang M, Wu D, Wang W, Xu M, Zhou J, Gong W, Tan Y, Zhang Z. Genetic variation in PLCE1 is associated with gastric cancer survival in a Chinese population. J Gastroenterol 2011; 46:1260-6. [PMID: 21837401 DOI: 10.1007/s00535-011-0445-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Accepted: 06/27/2011] [Indexed: 02/04/2023]
Abstract
BACKGROUND Two genome-wide association studies on gastric cancer showed a previously unknown gastric cancer susceptible locus in PLCE1 at 10q23. We hypothesized that the single nucleotide polymorphism (SNP) rs2274223 A/G is associated with the survival rate of gastric cancer. METHODS We genotyped the above SNP in 940 gastric cancer patients to investigate the association between the polymorphism and gastric cancer survival by the TaqMan method. RESULTS We found that patients carrying PLCE1 rs2274223 AA genotype survived for a significantly shorter time than those carrying the AG and GG genotypes (log-rank P = 0.046). This significance was enhanced in the dominant model (AA vs. AG/GG, log-rank P = 0.014). Multivariate Cox regression analyses showed that the AG/GG genotypes were associated with a significantly decreased risk of death from gastric cancer [adjusted hazard ratio (HR) = 0.79, 95% confidence interval (CI) = 0.65-0.95]. Most of stratification analysis did not find an enhanced association between the same genotype and prognosis, except for patients with TNM stage III disease (HR = 0.63, 95% CI = 0.48-0.83). CONCLUSION Our findings showed that the PLCE1 SNP rs2274223 was associated with significantly improved gastric cancer survival in a Chinese population. Further functional studies are needed to validate our results.
Collapse
Affiliation(s)
- Dewei Luo
- Department of Molecular and Genetic Toxicology, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Cancer Center, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Zhang L, Malik S, Kelley GG, Kapiloff MS, Smrcka AV. Phospholipase C epsilon scaffolds to muscle-specific A kinase anchoring protein (mAKAPbeta) and integrates multiple hypertrophic stimuli in cardiac myocytes. J Biol Chem 2011; 286:23012-21. [PMID: 21550986 DOI: 10.1074/jbc.m111.231993] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To define a role for phospholipase Cε (PLCε) signaling in cardiac myocyte hypertrophic growth, PLCε protein was depleted from neonatal rat ventricular myocytes (NRVMs) using siRNA. NRVMs with PLCε depletion were stimulated with endothelin (ET-1), norepinephrine, insulin-like growth factor-1 (IGF-1), or isoproterenol and assessed for development of hypertrophy. PLCε depletion dramatically reduced hypertrophic growth and gene expression induced by all agonists tested. PLCε catalytic activity was required for hypertrophy development, yet PLCε depletion did not reduce global agonist-stimulated inositol phosphate production, suggesting a requirement for localized PLC activity. PLCε was found to be scaffolded to a muscle-specific A kinase anchoring protein (mAKAPβ) in heart and NRVMs, and mAKAPβ localizes to the nuclear envelope in NRVMs. PLCε-mAKAP interaction domains were defined and overexpressed to disrupt endogenous mAKAPβ-PLCε complexes in NRVMs, resulting in significantly reduced ET-1-dependent NRVM hypertrophy. We propose that PLCε integrates multiple upstream signaling pathways to generate local signals at the nucleus that regulate hypertrophy.
Collapse
Affiliation(s)
- Lianghui Zhang
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | | | | | | | | |
Collapse
|
39
|
Prostatic acid phosphatase reduces thermal sensitivity and chronic pain sensitization by depleting phosphatidylinositol 4,5-bisphosphate. J Neurosci 2010; 30:10282-93. [PMID: 20685973 DOI: 10.1523/jneurosci.2162-10.2010] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Prostatic acid phosphatase (PAP) is expressed in nociceptive dorsal root ganglion (DRG) neurons, functions as an ectonucleotidase, and generates adenosine extracellularly. Here, we found that PAP inhibits noxious thermal sensitivity and sensitization that is associated with chronic pain through sustained activation of the adenosine A(1) receptor (A(1)R) and phospholipase C-mediated depletion of phosphatidylinositol 4,5-bisphosphate (PIP(2)). In mice, intrathecal injection of PAP reduced PIP(2) levels in DRGs, inhibited thermosensation through TRPV1, and enduringly reduced thermal hyperalgesia and mechanical allodynia caused by inflammation, nerve injury, and pronociceptive receptor activation. This included inhibitory effects on lysophosphatidic acid, purinergic (ATP), bradykinin, and protease-activated (thrombin) receptors. Conversely, PIP(2) levels were significantly elevated in DRGs from Pap(-/-) mice, and this correlated with enhanced thermal hyperalgesia and mechanical allodynia in Pap(-/-) mice. To directly test the importance of PIP(2) in nociception, we intrathecally injected PIP(2) into mice. This transiently (2 h) elevated PIP(2) levels in lumbar DRGs and transiently (2 h) enhanced thermosensation. Additionally, thermal hyperalgesia and mechanical allodynia were enduringly enhanced when PIP(2) levels were elevated coincident with injury/pronociceptive receptor stimulation. Nociceptive sensitization was not affected if PIP(2) levels were elevated in the absence of ongoing pronociceptive receptor stimulation. Together, our data suggest that PIP(2) levels in DRGs directly influence thermosensation and the magnitude of nociceptive sensitization. Moreover, our data suggest there is an underlying "phosphoinositide tone" that can be manipulated by an adenosine-generating ectonucleotidase. This tone regulates how effectively acute nociceptive insults promote the transition to chronic pain.
Collapse
|
40
|
Miyamoto S, Del Re DP, Xiang SY, Zhao X, Florholmen G, Brown JH. Revisited and revised: is RhoA always a villain in cardiac pathophysiology? J Cardiovasc Transl Res 2010; 3:330-43. [PMID: 20559774 DOI: 10.1007/s12265-010-9192-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Accepted: 04/22/2010] [Indexed: 01/10/2023]
Abstract
The neonatal rat ventricular myocyte model of hypertrophy has provided tremendous insight with regard to signaling pathways regulating cardiac growth and gene expression. Many mediators thus discovered have been successfully extrapolated to the in vivo setting, as assessed using genetically engineered mice and physiological interventions. Studies in neonatal rat ventricular myocytes demonstrated a role for the small G-protein RhoA and its downstream effector kinase, Rho-associated coiled-coil containing protein kinase (ROCK), in agonist-mediated hypertrophy. Transgenic expression of RhoA in the heart does not phenocopy this response, however, nor does genetic deletion of ROCK prevent hypertrophy. Pharmacologic inhibition of ROCK has effects most consistent with roles for RhoA signaling in the development of heart failure or responses to ischemic damage. Whether signals elicited downstream of RhoA promote cell death or survival and are deleterious or salutary is, however, context and cell-type dependent. The concepts discussed above are reviewed, and the hypothesis that RhoA might protect cardiomyocytes from ischemia and other insults is presented. Novel RhoA targets including phospholipid regulated and regulating enzymes (Akt, PI kinases, phospholipase C, protein kinases C and D) and serum response element-mediated transcriptional responses are considered as possible pathways through which RhoA could affect cardiomyocyte survival.
Collapse
Affiliation(s)
- Shigeki Miyamoto
- Department of Pharmacology, University of California, 9500 Gilman Dr., La Jolla, San Diego, CA 92093-0636, USA
| | | | | | | | | | | |
Collapse
|
41
|
Matsuoka I, Ito M. [Negative regulatory mechanism of phospholipase C signaling triggered by G protein-coupled receptor]. Nihon Yakurigaku Zasshi 2009; 134:254-258. [PMID: 19915284 DOI: 10.1254/fpj.134.254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
|
42
|
Lee M, Choi S, Halldén G, Yo SJ, Schichnes D, Aponte GW. P2Y5 is a G(alpha)i, G(alpha)12/13 G protein-coupled receptor activated by lysophosphatidic acid that reduces intestinal cell adhesion. Am J Physiol Gastrointest Liver Physiol 2009; 297:G641-54. [PMID: 19679818 PMCID: PMC2763810 DOI: 10.1152/ajpgi.00191.2009] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
P2Y5 is a G protein-coupled receptor that binds and is activated by lysophosphatidic acid (LPA). We determined that P2Y5 transcript is expressed along the intestinal mucosa and investigated the intracellular pathways induced by P2Y5 activation, which could contribute to LPA effects on intestinal cell adhesion. P2Y5 heterologously expressed in CHO and small intestinal hBRIE 380i cells was activated by LPA resulting in an increase in intracellular calcium ([Ca(2+)](i)) when the cells concurrently expressed G(alpha)(Delta6qi5myr). P2Y5 activation also increased the phosphorylation of ERK1/2 that was sensitive to pertussis toxin. Together these indicate that P2Y5 activation by LPA induces an increase in [Ca(2+)](i) and ERK1/2 phosphorylation through G(alpha)(i). We discovered that P2Y5 was activated by farnesyl pyrophosphate (FPP) without a detectable change in [Ca(2+)](i). The activation of P2Y5 by LPA or FPP induced the activity of a serum response element (SRE)-linked luciferase reporter that was inhibited by the RGS domain of p115RhoGEF, C3 exotoxin, and Y-27632, suggesting the involvement of G(alpha)(12/13), Rho GTPase, and ROCK, respectively. However, only LPA-mediated induction of SRE reporter activity was sensitive to inhibitors targeting p38 MAPK, PI3K, PLC, and PKC. In addition, only LPA transactivated the epidermal growth factor receptor, leading to an induction of ERK1/2 phosphorylation. These observations correlate with our subsequent finding that P2Y5 activation by LPA, and not FPP, reduced intestinal cell adhesion. This study elucidates a mechanism whereby LPA can act as a luminal and/or serosal cue to alter mucosal integrity.
Collapse
Affiliation(s)
- Mike Lee
- 1Department of Nutritional Science and Toxicology, University of California at Berkeley, Berkeley, California; and
| | - Sungwon Choi
- 1Department of Nutritional Science and Toxicology, University of California at Berkeley, Berkeley, California; and
| | - Gunnel Halldén
- 1Department of Nutritional Science and Toxicology, University of California at Berkeley, Berkeley, California; and
| | - Sek Jin Yo
- 1Department of Nutritional Science and Toxicology, University of California at Berkeley, Berkeley, California; and
| | - Denise Schichnes
- 2College of Natural Resources Biological Imaging Facility, University of California at Berkeley, Berkeley, California
| | - Gregory W. Aponte
- 1Department of Nutritional Science and Toxicology, University of California at Berkeley, Berkeley, California; and
| |
Collapse
|
43
|
Zhang Y, Kwon SH, Vogel WK, Filtz TM. PI(3,4,5)P3 potentiates phospholipase C-beta activity. J Recept Signal Transduct Res 2009; 29:52-62. [PMID: 19519170 DOI: 10.1080/10799890902729449] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Phospholipase C-beta (PLC-beta) isozymes are key effectors in G protein-coupled signaling pathways. Previously, we showed that PLC-beta1 and PLC-beta3 bound immobilized PIP(3). In this study, PIP(3) was found to potentiate Ca(2+)-stimulated PLC-beta activities using an in vitro reconstitution assay. LY294002, a specific PI 3-kinase inhibitor, significantly inhibited 10 min of agonist-stimulated total IP accumulation. Both LY294002 and wortmannin inhibited 90 sec of agonist-stimulated IP(3) accumulation in intact cells. Moreover, transfected p110CAAX, a constitutively activated PI 3-kinase catalytic subunit, increased 90 sec of oxytocin-stimulated IP(3) accumulation. Receptor-ligand binding assays indicated that LY294002 did not affect G protein-coupled receptors directly, suggesting a physiological role for PIP(3) in directly potentiating PLC-beta activity. When coexpressed with p110CAAX, fluorescence-tagged PLC-beta3 was increasingly localized to the plasma membrane. Additional observations suggest that the PH domain of PLC-beta is not important for p110CAAX-induced membrane association.
Collapse
Affiliation(s)
- Yong Zhang
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR 97331, USA
| | | | | | | |
Collapse
|
44
|
Sprouty4 negatively regulates protein kinase C activation by inhibiting phosphatidylinositol 4,5-biphosphate hydrolysis. Oncogene 2009; 28:1076-88. [PMID: 19137008 DOI: 10.1038/onc.2008.464] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Sproutys have been shown to negatively regulate growth factor-induced extracellular signal-regulated kinase (ERK) activation, and suggested to be an anti-oncogene. However, molecular mechanism of the suppression has not yet been clarified completely. Sprouty4 inhibits vascular endothelial growth factor (VEGF)-A-induced ERK activation, but not VEGF-C-induced ERK activation. It has been shown that VEGF-A-mediated ERK activation is strongly dependent on protein kinase C (PKC), whereas that by VEGF-C is dependent on Ras. This suggests that Sprouty4 inhibits the PKC pathway more specifically than the Ras pathway. In this study, we confirmed that Sprouty4 suppressed various signals downstream of PKC, such as phosphorylation of MARCKS and protein kinase D (PKD), as well as PKC-dependent nuclear factor (NF)-kappaB activation. Furthermore, Sprouty4 suppressed upstream signals of PKC, such as Ca(2+) mobilization, phosphatidylinositol 4,5-biphosphate (PIP(2)) breakdown and inositol 1,4,5-triphosphate (IP(3)) production in response to VEGF-A. Those effects were dependent on the C-terminal cysteine-rich region, but not on the N-terminal region of Sprouty4, which is critical for the suppression of fibroblast growth factor (FGF)-mediated ERK activation. Sprouty4 overexpression or deletion of the Sprouty4 gene did not affect phospholipase C (PLC) gamma-1 activation, which is an enzyme that catalyzes PIP(2) hydrolysis. Moreover, Sprouty4 inhibited not only VEGF-A-mediated PIP(2) hydrolysis but also inhibited the lysophosphatidic acid (LPA)-induced PIP(2) breakdown that is catalyzed by PLC beta/epsilon activated by G-protein coupled receptor (GPCR). Taken together, Sprouty4 has broader suppression activity for various stimuli than previously thought; it may function as an inhibitor for various types of PLC-dependent signaling as well as for ERK activation.
Collapse
|
45
|
Signaling by G-protein-coupled receptor (GPCR): studies on the GnRH receptor. Front Neuroendocrinol 2009; 30:10-29. [PMID: 18708085 DOI: 10.1016/j.yfrne.2008.07.001] [Citation(s) in RCA: 199] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Revised: 04/28/2008] [Accepted: 07/21/2008] [Indexed: 01/22/2023]
Abstract
Gonadotropin-releasing hormone (GnRH) is the first key hormone of reproduction. GnRH analogs are extensively used in in vitro fertilization, and treatment of sex hormone-dependent cancers, due to their ability to bring about 'chemical castration'. The interaction of GnRH with its cognate type I receptor (GnRHR) in pituitary gonadotropes results in the activation of Gq/G(11), phospholipase Cbeta (PLCbetaI), PLA(2), and PLD. Sequential activation of the phospholipases generates the second messengers inositol 1, 4, 5-trisphosphate (IP(3)), diacylglycerol (DAG), and arachidonic acid (AA), which are required for Ca(2+) mobilization, the activation of various protein kinase C isoforms (PKCs), and the production of prostaglandin (PG) and other metabolites of AA, respectively. PKC isoforms are the major mediators of the downstream activation of a number of mitogen-activated protein kinase (MAPK) cascades by GnRH, namely: extracellular signal-regulated kinase (ERK), jun-N-terminal kinase (JNK), and p38MAPK. The activated MAPKs phosphorylate both cytosolic and nuclear proteins to initiate the transcriptional activation of the gonadotropin subunit genes and the GnRHR. While Ca(2+) mobilization has been found to initiate rapid gonadotropin secretion, Ca(2+), together with various PKC isoforms, MAPKs and AA metabolites also serve as key nodes, in the GnRH-stimulated signaling network that enables the gonadotropes to decode GnRH pulse frequencies and translating that into differential gonadotropin synthesis and release. Even though pulsatility of GnRH is recognized as a major determinant for differential gonadotropin subunit gene expression and gonadotropin secretion very little is yet known about the signaling circuits governing GnRH action at the 'Systems Biology' level. Direct apoptotic and metastatic effects of GnRH analogs in gonadal steroid-dependent cancers expressing the GnRHR also seem to be mediated by the activation of the PKC/MAPK pathways. However, the mechanisms dictating life (pituitary) vs. death (cancer) decisions made by the same GnRHR remain elusive. Understanding these molecular mechanisms triggered by the GnRHR through biochemical and 'Systems Biology' approaches would provide the basis for the construction of the dynamic connectivity maps, which operate in the various cell types (endocrine, cancer, and immune system) targeted by GnRH. The connectivity maps will open a new vista for exploring the direct effects of GnRH analogs in tumors and the design of novel combined therapies for fertility control, reproductive disorders and cancers.
Collapse
|
46
|
Phospholipase C delta 1 regulates cell proliferation and cell-cycle progression from G1- to S-phase by control of cyclin E-CDK2 activity. Biochem J 2008; 415:439-48. [PMID: 18588506 DOI: 10.1042/bj20080233] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In the present study, we examined the role of PLC delta 1 (phospholipase C delta 1) in the regulation of cellular proliferation. We demonstrate that RNAi (RNA interference)-mediated knockdown of endogenous PLC delta 1, but not PLC beta 3 or PLC epsilon, induces a proliferation defect in Rat-1 and NIH 3T3 fibroblasts. The decreased proliferation was not due to an induction of apoptosis or senescence, but was associated with an approx. 60% inhibition of [(3)H]thymidine incorporation. Analysis of the cell cycle with BrdU (bromodeoxyuridine)/propidium iodide-labelled FACS (fluorescence-activated cell sorting) demonstrated an accumulation of cells in G(0)/G(1)-phase and a corresponding decrease in cells in S-phase. Further examination of the cell cycle after synchronization by serum-starvation demonstrated normal movement through G(1)-phase but delayed entry into S-phase. Consistent with these findings, G(1) cyclin (D2 and D3) and CDK4 (cyclin-dependent kinase 4) levels and associated kinase activity were not affected. However, cyclin E-associated CDK2 activity, responsible for G(1)-to-S-phase progression, was inhibited. This decreased activity was accompanied by unchanged CDK2 protein levels and paradoxically elevated cyclin E and cyclin E-associated CDK2 levels, suggesting inhibition of the cyclin E-CDK2 complex. This inhibition was not due to altered stimulatory or inhibitory phosphorylation of CDK2. However, p27, a Cip/Kip family CKI (CDK inhibitor)-binding partner, was elevated and showed increased association with CDK2 in PLC delta 1-knockdown cells. The result of the present study demonstrate a novel and critical role for PLC delta 1 in cell-cycle progression from G(1)-to-S-phase through regulation of cyclin E-CDK2 activity and p27 levels.
Collapse
|
47
|
Harden TK, Hicks SN, Sondek J. Phospholipase C isozymes as effectors of Ras superfamily GTPases. J Lipid Res 2008; 50 Suppl:S243-8. [PMID: 19033212 DOI: 10.1194/jlr.r800045-jlr200] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The physiological effects of many extracellular stimuli are initiated through receptor-promoted activation of phospholipase C and inositol lipid signaling pathways. The historical view that phospholipase C-promoted signaling primarily occurs through activation of heterotrimeric G proteins or tyrosine kinases has expanded in recent years with the realization that at least three different mammalian phospholipase C isozymes are directly activated by members of the Ras superfamily of GTPases. Thus, Ras, Rap, Rac, and Rho GTPases all specifically regulate certain phospholipase C isozymes, and insight into the physiological significance of these signaling responses is beginning to accrue. High resolution three-dimensional structures of phospholipase C isozymes also are beginning to shed light on their mechanism of activation.
Collapse
Affiliation(s)
- T Kendall Harden
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA.
| | | | | |
Collapse
|
48
|
Abstract
Protein kinase C (PKC) is a family of kinases that plays diverse roles in many cellular functions, notably proliferation, differentiation, and cell survival. PKC is processed by phosphorylation and regulated by cofactor binding and subcellular localization. Extensive detail is available on the molecular mechanisms that regulate the maturation, activation, and signaling of PKC. However, less information is available on how signaling is terminated both from a global perspective and isozyme-specific differences. To target PKC therapeutically, various ATP-competitive inhibitors have been developed, but this method has problems with specificity. One possible new approach to developing novel, specific therapeutics for PKC would be to target the signaling termination pathways of the enzyme. This review focuses on the new developments in understanding how PKC signaling is terminated and how current drug therapies as well as information obtained from the recent elucidation of various PKC structures and down-regulation pathways could be used to develop novel and specific therapeutics for PKC.
Collapse
Affiliation(s)
- Christine M. Gould
- Department of Pharmacology, University of California at San Diego, La Jolla, CA 92093-0721
| | - Alexandra C. Newton
- Department of Pharmacology, University of California at San Diego, La Jolla, CA 92093-0721
| |
Collapse
|
49
|
Abstract
G protein betagamma subunits are central participants in G protein-coupled receptor signaling pathways. They interact with receptors, G protein alpha subunits and downstream targets to coordinate multiple, different GPCR functions. Much is known about the biology of Gbetagamma subunits but mysteries remain. Here, we will review what is known about general aspects of structure and function of Gbetagamma as well as discuss emerging mechanisms for regulation of Gbetagamma signaling. Recent data suggest that Gbetagamma is a potential therapeutic drug target. Thus, a thorough understanding of the molecular and physiological functions of Gbetagamma has significant implications.
Collapse
Affiliation(s)
- A V Smrcka
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA.
| |
Collapse
|
50
|
Suh PG, Park JI, Manzoli L, Cocco L, Peak JC, Katan M, Fukami K, Kataoka T, Yun SU, Ryu SH. Multiple roles of phosphoinositide-specific phospholipase C isozymes. BMB Rep 2008; 41:415-34. [DOI: 10.5483/bmbrep.2008.41.6.415] [Citation(s) in RCA: 369] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|