1
|
Fechner J, Lausen J. Transcription Factor TAL1 in Erythropoiesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1459:243-258. [PMID: 39017847 DOI: 10.1007/978-3-031-62731-6_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Lineage-specific transcription factors (TFs) regulate differentiation of hematopoietic stem cells (HSCs). They are decisive for the establishment and maintenance of lineage-specific gene expression programs during hematopoiesis. For this they create a regulatory network between TFs, epigenetic cofactors, and microRNAs. They activate cell-type specific genes and repress competing gene expression programs. Disturbance of this process leads to impaired lineage fidelity and diseases of the blood system. The TF T-cell acute leukemia 1 (TAL1) is central for erythroid differentiation and contributes to the formation of distinct gene regulatory complexes in progenitor cells and erythroid cells. A TAL1/E47 heterodimer binds to DNA with the TFs GATA-binding factor 1 and 2 (GATA1/2), the cofactors LIM domain only 1 and 2 (LMO1/2), and LIM domain-binding protein 1 (LDB1) to form a core TAL1 complex. Furthermore, cell-type-dependent interactions of TAL1 with other TFs such as with runt-related transcription factor 1 (RUNX1) and Kruppel-like factor 1 (KLF1) are established. Moreover, TAL1 activity is regulated by the formation of TAL1 isoforms, posttranslational modifications (PTMs), and microRNAs. Here, we describe the function of TAL1 in normal hematopoiesis with a focus on erythropoiesis.
Collapse
Affiliation(s)
- Johannes Fechner
- Department of Eukaryotic Genetics, Institute of Biomedical Genetics, University of Stuttgart, Stuttgart, Germany
| | - Jörn Lausen
- Department of Eukaryotic Genetics, Institute of Biomedical Genetics, University of Stuttgart, Stuttgart, Germany.
| |
Collapse
|
2
|
Yu J, Cheng W, Jia M, Chen L, Gu C, Ren HQ, Wu B. Toxicity of perfluorooctanoic acid on zebrafish early embryonic development determined by single-cell RNA sequencing. JOURNAL OF HAZARDOUS MATERIALS 2022; 427:127888. [PMID: 34862108 DOI: 10.1016/j.jhazmat.2021.127888] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/08/2021] [Accepted: 11/20/2021] [Indexed: 05/27/2023]
Abstract
The perfluorooctanoic acid (PFOA) poses a high risk for aquatic organisms. Nevertheless, the current toxicity studies rarely report how PFOA affects different cell populations during the embryonic development of fish. Here, the zebrafish embryos at 2-30 hpf were exposed to 1-100 μg/L PFOA. The heartbeat and locomotor behavior were significantly decreased after ≥ 25 μg/L PFOA exposure. The single-cell RNA sequencing showed that PFOA exposure influenced nine cell populations, including heart cells, hatching gland cells, macrophages, lens cells, ionocytes, melanoblasts, optic cup cells, periderm cells, and differentiating neurons cells. Among them, heart cells were the most affected cell population. Functions of cardiac muscle contraction, actin cytoskeleton and oxygen binding were significantly changed in the heart cells, which were involved in the altered expressions of tnni2a.4, acta1a, atp1a1a.2, mylpfa, and so on. Besides, the changes of apoptotic process, innate immune response, and translation in lens cells, hatching gland cells, macrophages and ionocytes should also be of concern. Our study indicates that 2-30 hpf of embryonic development is the sensitivity window for the PFOA exposure. Identification of the target cell population provides clear information of the toxic endpoint of PFOA, which sheds new light on the risk assessment of PFOA on aquatic organisms.
Collapse
Affiliation(s)
- Jing Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Wanqing Cheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Min Jia
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Ling Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Cheng Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Hong-Qiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Bing Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China.
| |
Collapse
|
3
|
Gore AV, Pillay LM, Venero Galanternik M, Weinstein BM. The zebrafish: A fintastic model for hematopoietic development and disease. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2018; 7:e312. [PMID: 29436122 DOI: 10.1002/wdev.312] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 11/30/2017] [Accepted: 12/03/2017] [Indexed: 12/19/2022]
Abstract
Hematopoiesis is a complex process with a variety of different signaling pathways influencing every step of blood cell formation from the earliest precursors to final differentiated blood cell types. Formation of blood cells is crucial for survival. Blood cells carry oxygen, promote organ development and protect organs in different pathological conditions. Hematopoietic stem and progenitor cells (HSPCs) are responsible for generating all adult differentiated blood cells. Defects in HSPCs or their downstream lineages can lead to anemia and other hematological disorders including leukemia. The zebrafish has recently emerged as a powerful vertebrate model system to study hematopoiesis. The developmental processes and molecular mechanisms involved in zebrafish hematopoiesis are conserved with higher vertebrates, and the genetic and experimental accessibility of the fish and the optical transparency of its embryos and larvae make it ideal for in vivo analysis of hematopoietic development. Defects in zebrafish hematopoiesis reliably phenocopy human blood disorders, making it a highly attractive model system to screen small molecules to design therapeutic strategies. In this review, we summarize the key developmental processes and molecular mechanisms of zebrafish hematopoiesis. We also discuss recent findings highlighting the strengths of zebrafish as a model system for drug discovery against hematopoietic disorders. This article is categorized under: Adult Stem Cells, Tissue Renewal, and Regeneration > Stem Cell Differentiation and Reversion Vertebrate Organogenesis > Musculoskeletal and Vascular Nervous System Development > Vertebrates: Regional Development Comparative Development and Evolution > Organ System Comparisons Between Species.
Collapse
Affiliation(s)
- Aniket V Gore
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland
| | - Laura M Pillay
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland
| | - Marina Venero Galanternik
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland
| | - Brant M Weinstein
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland
| |
Collapse
|
4
|
SCL/TAL1: a multifaceted regulator from blood development to disease. Blood 2017; 129:2051-2060. [DOI: 10.1182/blood-2016-12-754051] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 01/17/2017] [Indexed: 12/12/2022] Open
Abstract
Abstract
SCL/TAL1 (stem cell leukemia/T-cell acute lymphoblastic leukemia [T-ALL] 1) is an essential transcription factor in normal and malignant hematopoiesis. It is required for specification of the blood program during development, adult hematopoietic stem cell survival and quiescence, and terminal maturation of select blood lineages. Following ectopic expression, SCL contributes to oncogenesis in T-ALL. Remarkably, SCL’s activities are all mediated through nucleation of a core quaternary protein complex (SCL:E-protein:LMO1/2 [LIM domain only 1 or 2]:LDB1 [LIM domain-binding protein 1]) and dynamic recruitment of conserved combinatorial associations of additional regulators in a lineage- and stage-specific context. The finely tuned control of SCL’s regulatory functions (lineage priming, activation, and repression of gene expression programs) provides insight into fundamental developmental and transcriptional mechanisms, and highlights mechanistic parallels between normal and oncogenic processes. Importantly, recent discoveries are paving the way to the development of innovative therapeutic opportunities in SCL+ T-ALL.
Collapse
|
5
|
Antunes AT, Goos YJ, Pereboom TC, Hermkens D, Wlodarski MW, Da Costa L, MacInnes AW. Ribosomal Protein Mutations Result in Constitutive p53 Protein Degradation through Impairment of the AKT Pathway. PLoS Genet 2015; 11:e1005326. [PMID: 26132763 PMCID: PMC4488577 DOI: 10.1371/journal.pgen.1005326] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 05/29/2015] [Indexed: 11/19/2022] Open
Abstract
Mutations in ribosomal protein (RP) genes can result in the loss of erythrocyte progenitor cells and cause severe anemia. This is seen in patients with Diamond-Blackfan anemia (DBA), a pure red cell aplasia and bone marrow failure syndrome that is almost exclusively linked to RP gene haploinsufficiency. While the mechanisms underlying the cytopenia phenotype of patients with these mutations are not completely understood, it is believed that stabilization of the p53 tumor suppressor protein may induce apoptosis in the progenitor cells. In stark contrast, tumor cells from zebrafish with RP gene haploinsufficiency are unable to stabilize p53 even when exposed to acute DNA damage despite transcribing wild type p53 normally. In this work we demonstrate that p53 has a limited role in eliciting the anemia phenotype of zebrafish models of DBA. In fact, we find that RP-deficient embryos exhibit the same normal p53 transcription, absence of p53 protein, and impaired p53 response to DNA damage as RP haploinsufficient tumor cells. Recently we reported that RP mutations suppress activity of the AKT pathway, and we show here that this suppression results in proteasomal degradation of p53. By re-activating the AKT pathway or by inhibiting GSK-3, a downstream modifier that normally represses AKT signaling, we are able to restore the stabilization of p53. Our work indicates that the anemia phenotype of zebrafish models of DBA is dependent on factors other than p53, and may hold clinical significance for both DBA and the increasing number of cancers revealing spontaneous mutations in RP genes. The p53 tumor suppressor is the most commonly mutated gene in human cancers. However, cancer cells exploit multiple mechanisms to silence the p53 pathway in addition to inactivation of the p53 gene. We previously reported that one of these mechanisms is found in tumor cells with ribosomal protein (RP) gene mutations. These cells transcribe wild type p53 mRNA yet do not stabilize p53 protein when exposed to DNA damaging agents. In this work we demonstrate that this loss of p53 protein is due to its constitutive degradation. This degradation is due to impairment of the AKT pathway, which normal signals for p53 to stabilize when the DNA is damaged. By re-activating the AKT pathway in RP-mutant cells we are able to restore p53 stabilization and activity, which may hold clinical significance for cancer treatment.
Collapse
Affiliation(s)
- Ana T. Antunes
- Hubrecht Institute, KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Yvonne J. Goos
- Hubrecht Institute, KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Tamara C. Pereboom
- Hubrecht Institute, KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Dorien Hermkens
- Hubrecht Institute, KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Marcin W. Wlodarski
- Department of Pediatric Hematology and Oncology, University of Freiburg, Freiburg, Germany
| | - Lydie Da Costa
- AP-HP, Service d’Hématologie Biologique, Hôpital Robert Debré, Paris F-75019, France
- Laboratoire d'excellence, GR-Ex, Paris, France
- Université Paris VII-Denis Diderot, Sorbonne Paris Cité, Paris F-75475, France
- U1149, CRB3, Paris, France
- * E-mail: (LDC); (AWM)
| | - Alyson W. MacInnes
- Hubrecht Institute, KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
- * E-mail: (LDC); (AWM)
| |
Collapse
|
6
|
Pimtong W, Datta M, Ulrich AM, Rhodes J. Drl.3 governs primitive hematopoiesis in zebrafish. Sci Rep 2014; 4:5791. [PMID: 25051985 PMCID: PMC4107348 DOI: 10.1038/srep05791] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 06/19/2014] [Indexed: 12/16/2022] Open
Abstract
The molecular program controlling hematopoietic differentiation is not fully understood. Here, we describe a family of zebrafish genes that includes a novel hematopoietic regulator, draculin-like 3 (drl.3). We found that drl.3 is expressed in mesoderm-derived hematopoietic cells and is retained during erythroid maturation. Moreover, drl.3 expression correlated with erythroid development in gata1a- and spi1b-depleted embryos. Loss-of-function analysis indicated that drl.3 plays an essential role in primitive erythropoiesis and, to a lesser extent, myelopoiesis that is independent of effects on vasculature, emergence of primitive and definitive progenitor cells and cell viability. While drl.3 depletion reduced gata1a expression and inhibited erythroid development, enforced expression of gata1a was not sufficient to rescue erythropoiesis, indicating that the regulation of hematopoiesis by drl.3 extends beyond control of gata1a expression. Knockdown of drl.3 increased the proportion of less differentiated, primitive hematopoietic cells without affecting proliferation, establishing drl.3 as an important regulator of primitive hematopoietic cell differentiation.
Collapse
Affiliation(s)
- Wittaya Pimtong
- 1] Immune Cell Development and Host Defense Program, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA, 19111, USA [2]
| | - Madhusmita Datta
- 1] Immune Cell Development and Host Defense Program, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA, 19111, USA [2]
| | - Allison M Ulrich
- Immune Cell Development and Host Defense Program, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA, 19111, USA
| | - Jennifer Rhodes
- Immune Cell Development and Host Defense Program, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA, 19111, USA
| |
Collapse
|
7
|
Su Z, Si W, Li L, Zhou B, Li X, Xu Y, Xu C, Jia H, Wang QK. MiR-144 regulates hematopoiesis and vascular development by targeting meis1 during zebrafish development. Int J Biochem Cell Biol 2014; 49:53-63. [PMID: 24448023 DOI: 10.1016/j.biocel.2014.01.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 12/24/2013] [Accepted: 01/07/2014] [Indexed: 12/12/2022]
Abstract
Hematopoiesis is a dynamic process by which peripheral blood lineages are developed. It is a process tightly regulated by many intrinsic and extrinsic factors, including transcriptional factors and signaling molecules. However, the epigenetic regulation of hematopoiesis, for example, regulation via microRNAs (miRNAs), remains incompletely understood. Here we show that miR-144 regulates hematopoiesis and vascular development in zebrafish. Overexpression of miR-144 inhibited primitive hematopoiesis as demonstrated by a reduced number of circulating blood cells, reduced o-dianisidine staining of hemoglobin, and reduced expression of hbαe1, hbβe1, gata1 and pu.1. Overexpression of miR-144 also inhibited definitive hematopoiesis as shown by reduced expression of runx1 and c-myb. Mechanistically, miR-144 regulates hematopoiesis by repressing expression of meis1 involved in hematopoiesis. Both real-time RT-PCR and Western blot analyses showed that overexpression of miR-144 repressed expression of meis1. Bioinformatic analysis predicts a target binding sequence for miR-144 at the 3'-UTR of meis1. Deletion of the miR-144 target sequence eliminated the repression of meis1 expression mediated by miR-144. The miR-144-mediated abnormal phenotypes were partially rescued by co-injection of meis1 mRNA and could be almost completely rescued by injection of both meis1 and gata1 mRNA. Finally, because meis1 is involved in vascular development, we tested the effect of miR-144 on vascular development. Overexpression of miR-144 resulted in abnormal vascular development of intersegmental vessels in transgenic zebrafish with Flk1p-EGFP, and the defect was rescued by co-injection of meis1 mRNA. These findings establish miR-144 as a novel miRNA that regulates hematopoiesis and vascular development by repressing expression of meis1.
Collapse
Affiliation(s)
- Zhenhong Su
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, PR China; Key Laboratory of Kidney Disease Pathogenesis and Intervention of Hubei Province, Key Discipline of Pharmacy of Hubei Department of Education, Medical College, Hubei Polytechnic University, Huangshi, Hubei, PR China
| | - Wenxia Si
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, PR China
| | - Lei Li
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, PR China
| | - Bisheng Zhou
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, PR China
| | - Xiuchun Li
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, PR China
| | - Yan Xu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, PR China
| | - Chengqi Xu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, PR China
| | - Haibo Jia
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, PR China
| | - Qing K Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, PR China; Center for Cardiovascular Genetics, Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
8
|
Schumacher JA, Bloomekatz J, Garavito-Aguilar ZV, Yelon D. tal1 Regulates the formation of intercellular junctions and the maintenance of identity in the endocardium. Dev Biol 2013; 383:214-26. [PMID: 24075907 DOI: 10.1016/j.ydbio.2013.09.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 09/13/2013] [Accepted: 09/16/2013] [Indexed: 11/26/2022]
Abstract
The endocardium forms the inner lining of the heart tube, where it enables blood flow and also interacts with the myocardium during the formation of valves and trabeculae. Although a number of studies have identified regulators in the morphogenesis of the myocardium, relatively little is known about the molecules that control endocardial morphogenesis. Prior work has implicated the bHLH transcription factor Tal1 in endocardial tube formation: in zebrafish embryos lacking Tal1, endocardial cells form a disorganized mass within the ventricle and do not populate the atrium. Through blastomere transplantation, we find that tal1 plays a cell-autonomous role in regulating endocardial extension, suggesting that Tal1 activity influences the behavior of individual endocardial cells. The defects in endocardial behavior in tal1-deficient embryos originate during the earliest steps of endocardial morphogenesis: tal1-deficient endocardial cells fail to generate a cohesive monolayer at the midline and instead pack tightly together into a multi-layered aggregate. Moreover, the tight junction protein ZO-1 is mislocalized in the tal1-deficient endocardium, indicating a defect in intercellular junction formation. In addition, we find that the tal1-deficient endocardium fails to maintain its identity; over time, a progressively increasing number of tal1-deficient endocardial cells initiate myocardial gene expression. However, the onset of defects in intercellular junction formation precedes the onset of ectopic myocardial gene expression in the tal1-deficient endocardium. We therefore propose a model in which Tal1 has distinct roles in regulating the formation of endocardial intercellular junctions and maintaining endocardial identity.
Collapse
Affiliation(s)
- Jennifer A Schumacher
- Developmental Genetics Program and Department of Cell Biology, Kimmel Center for Biology and Medicine, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016, USA
| | | | | | | |
Collapse
|
9
|
Dresner E, Malishkevich A, Arviv C, Leibman Barak S, Alon S, Ofir R, Gothilf Y, Gozes I. Novel evolutionary-conserved role for the activity-dependent neuroprotective protein (ADNP) family that is important for erythropoiesis. J Biol Chem 2012; 287:40173-85. [PMID: 23071114 DOI: 10.1074/jbc.m112.387027] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND ADNP is vital for embryonic development. Is this function conserved for the homologous protein ADNP2? RESULTS Down-regulation/silencing of ADNP or ADNP2 in zebrafish embryos or mouse erythroleukemia cells inhibited erythroid maturation, with ADNP directly associating with the β-globin locus control region. CONCLUSION ADNPs are novel molecular regulators of erythropoiesis. SIGNIFICANCE New regulators of globin synthesis are suggested. Activity-dependent neuroprotective protein (ADNP) and its homologue ADNP2 belong to a homeodomain, the zinc finger-containing protein family. ADNP is essential for mouse embryonic brain formation. ADNP2 is associated with cell survival, but its role in embryogenesis has not been evaluated. Here, we describe the use of the zebrafish model to elucidate the developmental roles of ADNP and ADNP2. Although we expected brain defects, we were astonished to discover that the knockdown zebrafish embryos were actually lacking blood and suffered from defective hemoglobin production. Evolutionary conservation was established using mouse erythroleukemia (MEL) cells, a well studied erythropoiesis model, in which silencing of ADNP or ADNP2 produced similar results as in zebrafish. Exogenous RNA encoding ADNP/ADNP2 rescued the MEL cell undifferentiated state, demonstrating phenotype specificity. Brg1, an ADNP-interacting chromatin-remodeling protein involved in erythropoiesis through regulation of the globin locus, was shown here to interact also with ADNP2. Furthermore, chromatin immunoprecipitation revealed recruitment of ADNP, similar to Brg1, to the mouse β-globin locus control region in MEL cells. This recruitment was apparently diminished upon dimethyl sulfoxide (DMSO)-induced erythrocyte differentiation compared with the nondifferentiated state. Importantly, exogenous RNA encoding ADNP/ADNP2 significantly increased β-globin expression in MEL cells in the absence of any other differentiation factors. Taken together, our results reveal an ancestral role for the ADNP protein family in maturation and differentiation of the erythroid lineage, associated with direct regulation of β-globin expression.
Collapse
Affiliation(s)
- Efrat Dresner
- Adams Super Center for Brain Studies, Lily and Avraham Gildor Chair for the Investigation of Growth Factors, Department of Human Molecular Genetics and Biochemistry, Sagol School of Neuroscience, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Liu F, Yao S, Zhang T, Xiao C, Shang Y, Liu J, Mo X. Kzp Regulates the Transcription of gata2 and pu.1 during Primitive Hematopoiesis in Zebrafish Embryos. J Genet Genomics 2012; 39:463-71. [DOI: 10.1016/j.jgg.2012.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 06/24/2012] [Accepted: 06/28/2012] [Indexed: 10/27/2022]
|
11
|
Novel insights into the genetic controls of primitive and definitive hematopoiesis from zebrafish models. Adv Hematol 2012; 2012:830703. [PMID: 22888355 PMCID: PMC3410305 DOI: 10.1155/2012/830703] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 05/20/2012] [Accepted: 06/08/2012] [Indexed: 11/17/2022] Open
Abstract
Hematopoiesis is a dynamic process where initiation and maintenance of hematopoietic stem cells, as well as their differentiation into erythroid, myeloid and lymphoid lineages, are tightly regulated by a network of transcription factors. Understanding the genetic controls of hematopoiesis is crucial as perturbations in hematopoiesis lead to diseases such as anemia, thrombocytopenia, or cancers, including leukemias and lymphomas. Animal models, particularly conventional and conditional knockout mice, have played major roles in our understanding of the genetic controls of hematopoiesis. However, knockout mice for most of the hematopoietic transcription factors are embryonic lethal, thus precluding the analysis of their roles during the transition from embryonic to adult hematopoiesis. Zebrafish are an ideal model organism to determine the function of a gene during embryonic-to-adult transition of hematopoiesis since bloodless zebrafish embryos can develop normally into early larval stage by obtaining oxygen through diffusion. In this review, we discuss the current status of the ontogeny and regulation of hematopoiesis in zebrafish. By providing specific examples of zebrafish morphants and mutants, we have highlighted the contributions of the zebrafish model to our overall understanding of the roles of transcription factors in regulation of primitive and definitive hematopoiesis.
Collapse
|
12
|
Marschallinger J, Steinbacher P, Haslett JR, Sänger AM, Rescan PY, Stoiber W. Patterns of angiogenic and hematopoietic gene expression during brown trout embryogenesis. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2008; 310:479-91. [DOI: 10.1002/jez.b.21220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
13
|
Abstract
Dissecting the molecular mechanisms used by developmental regulators is essential to understand tissue specification/differentiation. SCL/TAL-1 is a basic helix-loop-helix transcription factor absolutely critical for hematopoietic stem/progenitor cell specification and lineage maturation. Using in vitro and forced expression experimental systems, we previously suggested that SCL might have DNA-binding-independent functions. Here, to assess the requirements for SCL DNA-binding activity in vivo, we examined hematopoietic development in mice carrying a germline DNA-binding mutation. Remarkably, in contrast to complete absence of hematopoiesis and early lethality in scl-null embryos, specification of hematopoietic cells occurred in homozygous mutant embryos, indicating that direct DNA binding is dispensable for this process. Lethality was forestalled to later in development, although some mice survived to adulthood. Anemia was documented throughout development and in adulthood. Cellular and molecular studies showed requirements for SCL direct DNA binding in red cell maturation and indicated that scl expression is positively autoregulated in terminally differentiating erythroid cells. Thus, different mechanisms of SCL's action predominate depending on the developmental/cellular context: indirect DNA binding activities and/or sequestration of other nuclear regulators are sufficient in specification processes, whereas direct DNA binding functions with transcriptional autoregulation are critically required in terminal maturation processes.
Collapse
|
14
|
Schoenebeck JJ, Keegan BR, Yelon D. Vessel and blood specification override cardiac potential in anterior mesoderm. Dev Cell 2007; 13:254-67. [PMID: 17681136 PMCID: PMC2709538 DOI: 10.1016/j.devcel.2007.05.012] [Citation(s) in RCA: 178] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2007] [Revised: 04/27/2007] [Accepted: 05/17/2007] [Indexed: 10/23/2022]
Abstract
Organ progenitors arise within organ fields, embryonic territories that are larger than the regions required for organ formation. Little is known about the regulatory pathways that define organ field boundaries and thereby limit organ size. Here we identify a mechanism for restricting heart size through confinement of the developmental potential of the heart field. Via fate mapping in zebrafish, we locate cardiac progenitors within hand2-expressing mesoderm and demonstrate that hand2 potentiates cardiac differentiation within this region. Beyond the rostral boundary of hand2 expression, we find progenitors of vessel and blood lineages. In embryos deficient in vessel and blood specification, rostral mesoderm undergoes a fate transformation and generates ectopic cardiomyocytes. Therefore, induction of vessel and blood specification represses cardiac specification and delimits the capacity of the heart field. This regulatory relationship between cardiovascular pathways suggests strategies for directing progenitor cell differentiation to facilitate cardiac regeneration.
Collapse
Affiliation(s)
| | | | - Deborah Yelon
- Correspondence: Deborah Yelon, , phone: 212-263-2820, fax: 212-263-7760
| |
Collapse
|
15
|
Su F, Juarez MA, Cooke CL, LaPointe L, Shavit JA, Yamaoka JS, Lyons SE. Differential Regulation of Primitive Myelopoiesis in the Zebrafish by Spi-1/Pu.1 and C/ebp1. Zebrafish 2007; 4:187-99. [DOI: 10.1089/zeb.2007.0505] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Fengyun Su
- Division of Hematology–Oncology and Cellular and Molecular Biology Program, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Marianne A. Juarez
- Division of Hematology–Oncology and Cellular and Molecular Biology Program, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Christopher L. Cooke
- Division of Hematology–Oncology and Cellular and Molecular Biology Program, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Lisa LaPointe
- Division of Hematology–Oncology and Cellular and Molecular Biology Program, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Jordan A. Shavit
- HHMI and Life Sciences Institute, University of Michigan, Ann Arbor, Michigan
| | - Jennifer S. Yamaoka
- HHMI and Life Sciences Institute, University of Michigan, Ann Arbor, Michigan
| | - Susan E. Lyons
- Division of Hematology–Oncology and Cellular and Molecular Biology Program, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
16
|
Bussmann J, Bakkers J, Schulte-Merker S. Early endocardial morphogenesis requires Scl/Tal1. PLoS Genet 2007; 3:e140. [PMID: 17722983 PMCID: PMC1950955 DOI: 10.1371/journal.pgen.0030140] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2007] [Accepted: 07/09/2007] [Indexed: 11/19/2022] Open
Abstract
The primitive heart tube is composed of an outer myocardial and an inner endocardial layer that will give rise to the cardiac valves and septa. Specification and differentiation of these two cell layers are among the earliest events in heart development, but the embryonic origins and genetic regulation of early endocardial development remain largely undefined. We have analyzed early endocardial development in the zebrafish using time-lapse confocal microscopy and show that the endocardium seems to originate from a region in the lateral plate mesoderm that will give rise to hematopoietic cells of the primitive myeloid lineage. Endocardial precursors appear to rapidly migrate to the site of heart tube formation, where they arrive prior to the bilateral myocardial primordia. Analysis of a newly discovered zebrafish Scl/Tal1 mutant showed an additional and previously undescribed role of this transcription factor during the development of the endocardium. In Scl/Tal1 mutant embryos, endocardial precursors are specified, but migration is severely defective and endocardial cells aggregate at the ventricular pole of the heart. We further show that the initial fusion of the bilateral myocardial precursor populations occurs independently of the endocardium and tal1 function. Our results suggest early separation of the two components of the primitive heart tube and imply Scl/Tal1 as an indispensable component of the molecular hierarchy that controls endocardium morphogenesis. In its earliest functional form, the embryonic heart of all vertebrates is a simple linear tube consisting of two cell types. An outer muscular cell layer called the myocardium surrounds an inner vascular cell layer called the endocardium that connects the heart to the vascular system. The integration of both cell types is an important step during heart development, but the formation of the endocardial component of the heart tube is poorly understood. Here, we analyze the formation of the endocardium in the zebrafish embryo and show using time-lapse imaging that it is a highly dynamic structure. In addition, we have identified a zebrafish mutant with a specific defect during endocardial development. This defect is caused by a mutation in T cell acute leukemia 1, a gene that—when misexpressed—causes many cases of childhood leukemias. Here, we show an additional role for this gene during heart development. In mutant embryos, both endocardial and myocardial precursors are specified, but integration of both cell types does not occur properly due to a defective migration of the endocardial precursors. Given the many interactions that occur between the endocardium and the myocardium, our results will provide a more comprehensive understanding of heart development.
Collapse
Affiliation(s)
| | - Jeroen Bakkers
- Hubrecht Institute, Utrecht, The Netherlands
- Interuniversity Cardiology Institute of the Netherlands, Utrecht, The Netherlands
| | - Stefan Schulte-Merker
- Hubrecht Institute, Utrecht, The Netherlands
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
17
|
Villablanca EJ, Pistocchi A, Court FA, Cotelli F, Bordignon C, Allende ML, Traversari C, Russo V. Abrogation of Prostaglandin E2/EP4 Signaling Impairs the Development of rag1+ Lymphoid Precursors in the Thymus of Zebrafish Embryos. THE JOURNAL OF IMMUNOLOGY 2007; 179:357-64. [PMID: 17579056 DOI: 10.4049/jimmunol.179.1.357] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
PGE(2) is involved in a wide variety of physiological and pathological processes; however, deciphering its role in early mammalian development has been difficult due to the maternal contribution of PGE(2). To overcome this limitation we have investigated the role of PGE(2) during T cell development in zebrafish. In this study, we show that zebrafish ep4a, a PGE(2) receptor isoform of EP4, is expressed at 26 h postfertilization in the dorsal aorta-posterior cardinal vein joint region, which has a high homology with the mammal aorta-gonad-mesonephros area and where definitive hemopoiesis arises. Furthermore, it is expressed in the presumptive thymus rudiment by 48 h postfertilization. Supplementation of PGE(2) results in a strong increase in rag1 levels and cell proliferation in the thymus. In contrast, the inhibition of PGE(2) production, as well as EP4 blockade, abrogates the expression of rag1 in the thymus and that of the lymphoid precursor marker ikaros, not only in the dorsal aorta-posterior cardinal vein joint region but also in the newly identified caudal hemopoietic tissue without affecting early hemopoietic (scl, gata2) and erythropoietic (gata1) markers. These results identify ep4a as the earliest thymus marker and define a novel role for the PGE(2)/EP4 pathway in controlling T cell precursor development in zebrafish.
Collapse
Affiliation(s)
- Eduardo J Villablanca
- Cancer Gene Therapy Unit, Cancer Immunotherapy and Gene Therapy Program, Scientific Institute H. San Raffaele, Via Olgettina 58, Milan, Italy
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Qian F, Zhen F, Xu J, Huang M, Li W, Wen Z. Distinct functions for different scl isoforms in zebrafish primitive and definitive hematopoiesis. PLoS Biol 2007; 5:e132. [PMID: 17472439 PMCID: PMC1858710 DOI: 10.1371/journal.pbio.0050132] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Accepted: 03/12/2007] [Indexed: 01/20/2023] Open
Abstract
The stem-cell leukemia (SCL, also known as TAL1) gene encodes a basic helix-loop-helix transcription factor that is essential for the initiation of primitive and definitive hematopoiesis, erythrocyte and megakarocyte differentiation, angiogenesis, and astrocyte development. Here we report that the zebrafish produces, through an alternative promoter site, a novel truncated scl (tal1) isoform, scl-beta, which manifests a temporal and spatial expression distinct from the previously described full-length scl-alpha. Functional analysis reveals that while scl-alpha and -beta are redundant for the initiation of primitive hematopoiesis, these two isoforms exert distinct functions in the regulation of primitive erythroid differentiation and definitive hematopoietic stem cell specification. We further demonstrate that differences in the protein expression levels of scl-alpha and -beta, by regulating their protein stability, are likely to give rise to their distinct functions. Our findings suggest that hematopoietic cells at different levels of hierarchy are likely governed by a gradient of the Scl protein established through temporal and spatial patterns of expression of the different isoforms.
Collapse
Affiliation(s)
- Feng Qian
- Laboratory of Molecular and Developmental Immunology, Institute of Molecular and Cell Biology, Singapore, Singapore
| | - Fenghua Zhen
- Laboratory of Molecular and Developmental Immunology, Institute of Molecular and Cell Biology, Singapore, Singapore
- Department of Biological Sciences National University of Singapore, Singapore, Singapore
| | - Jin Xu
- Laboratory of Molecular and Developmental Immunology, Institute of Molecular and Cell Biology, Singapore, Singapore
- Department of Biological Sciences National University of Singapore, Singapore, Singapore
| | - Mei Huang
- Laboratory of Molecular and Developmental Immunology, Institute of Molecular and Cell Biology, Singapore, Singapore
| | - Wanyu Li
- Laboratory of Molecular and Developmental Immunology, Institute of Molecular and Cell Biology, Singapore, Singapore
| | - Zilong Wen
- Laboratory of Molecular and Developmental Immunology, Institute of Molecular and Cell Biology, Singapore, Singapore
- Department of Biological Sciences National University of Singapore, Singapore, Singapore
| |
Collapse
|
19
|
Patterson LJ, Gering M, Eckfeldt CE, Green AR, Verfaillie CM, Ekker SC, Patient R. The transcription factors Scl and Lmo2 act together during development of the hemangioblast in zebrafish. Blood 2006; 109:2389-98. [PMID: 17090656 DOI: 10.1182/blood-2006-02-003087] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractThe transcription factors Scl and Lmo2 are crucial for development of all blood. An important early requirement for Scl in endothelial development has also been revealed recently in zebrafish embryos, supporting previous findings in scl−/− embryoid bodies. Scl depletion culminates most notably in failure of dorsal aorta formation, potentially revealing a role in the formation of hemogenic endothelium. We now present evidence that the requirements for Lmo2 in zebrafish embryos are essentially the same as for Scl. The expression of important hematopoietic regulators is lost, reduced, or delayed, panendothelial gene expression is down-regulated, and aorta-specific marker expression is lost. The close similarity of the phenotypes for Scl and Lmo2 suggest that they perform these early functions in hemangioblast development within a multiprotein complex, as shown for erythropoiesis. Consistent with this, we find that scl morphants cannot be rescued by a non-Lmo2–binding form of Scl but can be rescued by non-DNA–binding forms, suggesting tethering to target genes through DNA-binding partners linked via Lmo2. Interestingly, unlike other hematopoietic regulators, the Scl/Lmo2 complex does not appear to autoregulate, as neither gene's expression is affected by depletion of the other. Thus, expression of these critical regulators is dependent on continued expression of upstream regulators, which may include cell-extrinsic signals.
Collapse
Affiliation(s)
- Lucy J Patterson
- Weatherall Institute of Molecular Medicine, Oxford University, John Radcliffe Hospital, Headington, Oxford, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
20
|
Brunet de la Grange P, Armstrong F, Duval V, Rouyez MC, Goardon N, Romeo PH, Pflumio F. Low SCL/TAL1 expression reveals its major role in adult hematopoietic myeloid progenitors and stem cells. Blood 2006; 108:2998-3004. [PMID: 16849639 DOI: 10.1182/blood-2006-05-022988] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Stem cell leukemia/T cell acute leukemia 1 (SCL/TAL1) plays a key role in the development of murine primitive hematopoiesis but its functions in adult definitive hematopoiesis are still unclear. Using lentiviral delivery of TAL1-directed shRNA in human hematopoietic cells, we show that decreased expression of TAL1 induced major disorders at different levels of adult hematopoietic cell development. Erythroid and myeloid cell production in cultures was dramatically decreased in TAL1-directed shRNA-expressing cells, whereas lymphoid B-cell development was normal. These results confirm the role of TAL1 in the erythroid compartment and show TLA1's implication in the function of myeloid committed progenitors. Moreover, long-term cultures and transplantation of TAL1-directed shRNA-expressing CD34+ cells into irradiated nonobese diabetic-severe combined immunodeficient (NOD-SCID) mice led to dramatically low levels of human cells of all lineages including the B-lymphoid lineage, strongly suggesting that TAL1 has a role in the early commitment of hematopoietic stem cells (HSCs) in humans. Cultures and transplantation experiments performed with mouse Sca1+ cells gave identical results. Altogether, these observations definitively show that TAL1 participates in the regulation of hematopoiesis from HSCs to myeloid progenitors, and pinpoint TAL1 as a master protein of human and murine adult hematopoiesis.
Collapse
|