1
|
Mahanta PJ, Lhouvum K. Plasmodium falciparum proteases as new drug targets with special focus on metalloproteases. Mol Biochem Parasitol 2024; 258:111617. [PMID: 38554736 DOI: 10.1016/j.molbiopara.2024.111617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/15/2024] [Accepted: 03/10/2024] [Indexed: 04/02/2024]
Abstract
Malaria poses a significant global health threat particularly due to the prevalence of Plasmodium falciparum infection. With the emergence of parasite resistance to existing drugs including the recently discovered artemisinin, ongoing research seeks novel therapeutic avenues within the malaria parasite. Proteases are promising drug targets due to their essential roles in parasite biology, including hemoglobin digestion, merozoite invasion, and egress. While exploring the genomic landscape of Plasmodium falciparum, it has been revealed that there are 92 predicted proteases, with only approximately 14 of them having been characterized. These proteases are further distributed among 26 families grouped into five clans: aspartic proteases, cysteine proteases, metalloproteases, serine proteases, and threonine proteases. Focus on metalloprotease class shows further role in organelle processing for mitochondria and apicoplasts suggesting the potential of metalloproteases as viable drug targets. Holistic understanding of the parasite intricate life cycle and identification of potential drug targets are essential for developing effective therapeutic strategies against malaria and mitigating its devastating global impact.
Collapse
Affiliation(s)
| | - Kimjolly Lhouvum
- Department of Biotechnology, National Institute of Technology, Arunachal Pradesh, India.
| |
Collapse
|
2
|
Zhou Z, Huayu M, Mu Y, Tang F, Ge RL. Ubenimex combined with Albendazole for the treatment of Echinococcus multilocularis-induced alveolar echinococcosis in mice. Front Vet Sci 2024; 11:1320308. [PMID: 38585297 PMCID: PMC10995866 DOI: 10.3389/fvets.2024.1320308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 03/05/2024] [Indexed: 04/09/2024] Open
Abstract
Introduction Alveolar echinococcosis (AE) is a parasitic disease caused by E. multilocularis metacestodes and it is highly prevalent in the northern hemisphere. We have previously found that vaccination with E. multilocularis-Leucine aminopeptidase (EM-LAP) could inhibit the growth and invasion of E. multilocularis in host liver, and Ubenimex, a broad-spectrum inhibitor of LAP, could also inhibit E. multilocularis invasion but had a limited effect on the growth and development of E. multilocularis. Methods In this study, the therapeutic effect of Ubenimex combined with Albendazole on AE was evaluated. Mice were intraperitoneally injected with protoscoleces and imaging examination was performed at week 8 and week 16 to detect cyst change. During this period, mice were intraperitoneally injected with Ubenimex and intragastrically administered with Albendazole suspension. At last, the therapeutic effect was evaluated by morphological and pathological examination and liver function. Results The results revealed that the combined treatment could inhibit the growth and infiltration of cysts in BALB/c mice infected with E. multilocularis protoscoleces. The weight, number, invasion and fibrosis of cysts were reduced in mice treated with Ubenimex in combination with Albendazole. The same effect was achieved by the single Ubenimex treatment because of its inhibitory effect on LAP activity, but it was less effective in inhibiting the growth of cysts. The levels of ALT, AST, TBIL, DBIL, ALP, and γ-GT were reduced after the combined treatment, indicating that treatment with both Ubenimex and Albendazole could alleviate liver damage. Discussion This study suggests that the combined treatment with Ubenimex and Albendazole could be a potential therapeutic strategy for E. multilocularis infections.
Collapse
Affiliation(s)
- Zhen Zhou
- Research Center for High Altitude Medicine of Qinghai University, Xining, Qinghai, China
- Key Laboratory of High Altitude Medicine in Qinghai Provincial, Qinghai University, Xining, Qinghai, China
| | - Meiduo Huayu
- Research Center for High Altitude Medicine of Qinghai University, Xining, Qinghai, China
- Key Laboratory of High Altitude Medicine in Qinghai Provincial, Qinghai University, Xining, Qinghai, China
| | - Yalin Mu
- Department of Medical Imaging Center, Qinghai University Affiliated Hospital, Xining, Qinghai, China
| | - Feng Tang
- Research Center for High Altitude Medicine of Qinghai University, Xining, Qinghai, China
- Key Laboratory of High Altitude Medicine in Qinghai Provincial, Qinghai University, Xining, Qinghai, China
| | - Ri-Li Ge
- Research Center for High Altitude Medicine of Qinghai University, Xining, Qinghai, China
- Key Laboratory of High Altitude Medicine in Qinghai Provincial, Qinghai University, Xining, Qinghai, China
| |
Collapse
|
3
|
Aguado ME, Izquierdo M, González-Matos M, Varela AC, Méndez Y, Del Rivero MA, Rivera DG, González-Bacerio J. Parasite Metalo-aminopeptidases as Targets in Human Infectious Diseases. Curr Drug Targets 2023; 24:416-461. [PMID: 36825701 DOI: 10.2174/1389450124666230224140724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/25/2022] [Accepted: 01/02/2023] [Indexed: 02/25/2023]
Abstract
BACKGROUND Parasitic human infectious diseases are a worldwide health problem due to the increased resistance to conventional drugs. For this reason, the identification of novel molecular targets and the discovery of new chemotherapeutic agents are urgently required. Metalo- aminopeptidases are promising targets in parasitic infections. They participate in crucial processes for parasite growth and pathogenesis. OBJECTIVE In this review, we describe the structural, functional and kinetic properties, and inhibitors, of several parasite metalo-aminopeptidases, for their use as targets in parasitic diseases. CONCLUSION Plasmodium falciparum M1 and M17 aminopeptidases are essential enzymes for parasite development, and M18 aminopeptidase could be involved in hemoglobin digestion and erythrocyte invasion and egression. Trypanosoma cruzi, T. brucei and Leishmania major acidic M17 aminopeptidases can play a nutritional role. T. brucei basic M17 aminopeptidase down-regulation delays the cytokinesis. The inhibition of Leishmania basic M17 aminopeptidase could affect parasite viability. L. donovani methionyl aminopeptidase inhibition prevents apoptosis but not the parasite death. Decrease in Acanthamoeba castellanii M17 aminopeptidase activity produces cell wall structural modifications and encystation inhibition. Inhibition of Babesia bovis growth is probably related to the inhibition of the parasite M17 aminopeptidase, probably involved in host hemoglobin degradation. Schistosoma mansoni M17 aminopeptidases inhibition may affect parasite development, since they could participate in hemoglobin degradation, surface membrane remodeling and eggs hatching. Toxoplasma gondii M17 aminopeptidase inhibition could attenuate parasite virulence, since it is apparently involved in the hydrolysis of cathepsin Cs- or proteasome-produced dipeptides and/or cell attachment/invasion processes. These data are relevant to validate these enzymes as targets.
Collapse
Affiliation(s)
- Mirtha E Aguado
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, 10400, Vedado, La Habana, Cuba
| | - Maikel Izquierdo
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, 10400, Vedado, La Habana, Cuba
| | - Maikel González-Matos
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, 10400, Vedado, La Habana, Cuba
| | - Ana C Varela
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, 10400, Vedado, La Habana, Cuba
| | - Yanira Méndez
- Center for Natural Products Research, Faculty of Chemistry, University of Havana, Zapata y G, 10400, La Habana, Cuba
| | - Maday A Del Rivero
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, 10400, Vedado, La Habana, Cuba
| | - Daniel G Rivera
- Center for Natural Products Research, Faculty of Chemistry, University of Havana, Zapata y G, 10400, La Habana, Cuba
| | - Jorge González-Bacerio
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, 10400, Vedado, La Habana, Cuba
- Department of Biochemistry, Faculty of Biology, University of Havana, calle 25 #455 entre I y J, 10400, Vedado, La Habana, Cuba
| |
Collapse
|
4
|
Edgar RCS, Siddiqui G, Hjerrild K, Malcolm TR, Vinh NB, Webb CT, Holmes C, MacRaild CA, Chernih HC, Suen WW, Counihan NA, Creek DJ, Scammells PJ, McGowan S, de Koning-Ward TF. Genetic and chemical validation of Plasmodium falciparum aminopeptidase PfA-M17 as a drug target in the hemoglobin digestion pathway. eLife 2022; 11:e80813. [PMID: 36097817 PMCID: PMC9470162 DOI: 10.7554/elife.80813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/02/2022] [Indexed: 11/18/2022] Open
Abstract
Plasmodium falciparum, the causative agent of malaria, remains a global health threat as parasites continue to develop resistance to antimalarial drugs used throughout the world. Accordingly, drugs with novel modes of action are desperately required to combat malaria. P. falciparum parasites infect human red blood cells where they digest the host's main protein constituent, hemoglobin. Leucine aminopeptidase PfA-M17 is one of several aminopeptidases that have been implicated in the last step of this digestive pathway. Here, we use both reverse genetics and a compound specifically designed to inhibit the activity of PfA-M17 to show that PfA-M17 is essential for P. falciparum survival as it provides parasites with free amino acids for growth, many of which are highly likely to originate from hemoglobin. We further show that loss of PfA-M17 results in parasites exhibiting multiple digestive vacuoles at the trophozoite stage. In contrast to other hemoglobin-degrading proteases that have overlapping redundant functions, we validate PfA-M17 as a potential novel drug target.
Collapse
Affiliation(s)
- Rebecca CS Edgar
- School of Medicine, Deakin UniversityGeelongAustralia
- The Institute for Mental and Physical Health and Clinical Translation, Deakin UniversityGeelongAustralia
| | - Ghizal Siddiqui
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash UniversityParkvilleAustralia
| | | | - Tess R Malcolm
- Biomedicine Discovery Institute and Department of Microbiology, Monash UniversityClaytonAustralia
- Centre to Impact AMR, Monash UniversityMelbourneAustralia
| | - Natalie B Vinh
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash UniversityParkvilleAustralia
| | - Chaille T Webb
- Biomedicine Discovery Institute and Department of Microbiology, Monash UniversityClaytonAustralia
- Centre to Impact AMR, Monash UniversityMelbourneAustralia
| | - Clare Holmes
- CSIRO Australian Centre for Disease PreparednessGeelongAustralia
| | - Christopher A MacRaild
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash UniversityParkvilleAustralia
| | - Hope C Chernih
- School of Medicine, Deakin UniversityGeelongAustralia
- The Institute for Mental and Physical Health and Clinical Translation, Deakin UniversityGeelongAustralia
| | - Willy W Suen
- CSIRO Australian Centre for Disease PreparednessGeelongAustralia
| | - Natalie A Counihan
- School of Medicine, Deakin UniversityGeelongAustralia
- The Institute for Mental and Physical Health and Clinical Translation, Deakin UniversityGeelongAustralia
| | - Darren J Creek
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash UniversityParkvilleAustralia
| | - Peter J Scammells
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash UniversityParkvilleAustralia
| | - Sheena McGowan
- Biomedicine Discovery Institute and Department of Microbiology, Monash UniversityClaytonAustralia
- Centre to Impact AMR, Monash UniversityMelbourneAustralia
| | - Tania F de Koning-Ward
- School of Medicine, Deakin UniversityGeelongAustralia
- The Institute for Mental and Physical Health and Clinical Translation, Deakin UniversityGeelongAustralia
| |
Collapse
|
5
|
Hoff CC, Azevedo MF, Thurler AB, Maluf SEC, Melo PMS, del Rivero MA, González-Bacerio J, Carmona AK, Budu A, Gazarini ML. Overexpression of Plasmodium falciparum M1 Aminopeptidase Promotes an Increase in Intracellular Proteolysis and Modifies the Asexual Erythrocytic Cycle Development. Pathogens 2021; 10:pathogens10111452. [PMID: 34832608 PMCID: PMC8618464 DOI: 10.3390/pathogens10111452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 11/05/2021] [Accepted: 11/06/2021] [Indexed: 11/16/2022] Open
Abstract
Plasmodium falciparum, the most virulent of the human malaria parasite, is responsible for high mortality rates worldwide. We studied the M1 alanyl-aminopeptidase of this protozoan (PfA-M1), which is involved in the final stages of hemoglobin cleavage, an essential process for parasite survival. Aiming to help in the rational development of drugs against this target, we developed a new strain of P. falciparum overexpressing PfA-M1 without the signal peptide (overPfA-M1). The overPfA-M1 parasites showed a 2.5-fold increase in proteolytic activity toward the fluorogenic substrate alanyl-7-amido-4-methylcoumarin, in relation to the wild-type group. Inhibition studies showed that overPfA-M1 presented a lower sensitivity against the metalloaminopeptidase inhibitor bestatin and to other recombinant PfA-M1 inhibitors, in comparison with the wild-type strain, indicating that PfA-M1 is a target for the in vitro antimalarial activity of these compounds. Moreover, overPfA-M1 parasites present a decreased in vitro growth, showing a reduced number of merozoites per schizont, and also a decrease in the iRBC area occupied by the parasite in trophozoite and schizont forms when compared to the controls. Interestingly, the transgenic parasite displays an increase in the aminopeptidase activity toward Met-, Ala-, Leu- and Arg-7-amido-4-methylcoumarin. We also investigated the potential role of calmodulin and cysteine proteases in PfA-M1 activity. Taken together, our data show that the overexpression of PfA-M1 in the parasite cytosol can be a suitable tool for the screening of antimalarials in specific high-throughput assays and may be used for the identification of intracellular molecular partners that modulate their activity in P. falciparum.
Collapse
Affiliation(s)
- Carolina C. Hoff
- Department of Biosciences, Federal University of São Paulo, Santos 11015-020, Brazil; (C.C.H.); (M.F.A.)
| | - Mauro F. Azevedo
- Department of Biosciences, Federal University of São Paulo, Santos 11015-020, Brazil; (C.C.H.); (M.F.A.)
| | - Adriana B. Thurler
- Department of Biophysics, Federal University of São Paulo, São Paulo 04039-032, Brazil; (A.B.T.); (S.E.C.M.); (P.M.S.M.); (A.K.C.)
| | - Sarah El Chamy Maluf
- Department of Biophysics, Federal University of São Paulo, São Paulo 04039-032, Brazil; (A.B.T.); (S.E.C.M.); (P.M.S.M.); (A.K.C.)
| | - Pollyana M. S. Melo
- Department of Biophysics, Federal University of São Paulo, São Paulo 04039-032, Brazil; (A.B.T.); (S.E.C.M.); (P.M.S.M.); (A.K.C.)
| | - Maday Alonso del Rivero
- Center for Protein Studies, Faculty of Biology, University of Havana, Vedado, La Habana 10400, Cuba; (M.A.d.R.); (J.G.-B.)
| | - Jorge González-Bacerio
- Center for Protein Studies, Faculty of Biology, University of Havana, Vedado, La Habana 10400, Cuba; (M.A.d.R.); (J.G.-B.)
| | - Adriana K. Carmona
- Department of Biophysics, Federal University of São Paulo, São Paulo 04039-032, Brazil; (A.B.T.); (S.E.C.M.); (P.M.S.M.); (A.K.C.)
| | - Alexandre Budu
- Department of Biophysics, Federal University of São Paulo, São Paulo 04039-032, Brazil; (A.B.T.); (S.E.C.M.); (P.M.S.M.); (A.K.C.)
- Correspondence: (A.B.); (M.L.G.)
| | - Marcos L. Gazarini
- Department of Biosciences, Federal University of São Paulo, Santos 11015-020, Brazil; (C.C.H.); (M.F.A.)
- Correspondence: (A.B.); (M.L.G.)
| |
Collapse
|
6
|
Silva JV, Santos SDS, Machini MT, Giarolla J. Neglected tropical diseases and infectious illnesses: potential targeted peptides employed as hits compounds in drug design. J Drug Target 2020; 29:269-283. [PMID: 33059502 DOI: 10.1080/1061186x.2020.1837843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Neglected Tropical Diseases (NTDs) and infectious illnesses, such as malaria, tuberculosis and Zika fever, represent a major public health concern in many countries and regions worldwide, especially in developing ones. They cause thousands of deaths per year, and certainly compromise the life of affected patients. The drugs available for therapy are toxic, have considerable adverse effects, and are obsolete, especially with respect to resistance. In this context, targeted peptides are considered promising in the design of new drugs, since they have specific action and reduced toxicity. Indeed, there is a rising interest in these targeted compounds within the pharmaceutical industry, proving their importance to the Pharmaceutical Sciences field. Many have been approved by the Food and Drug Administration (FDA) to be used as medicines, plus there are more than 300 peptides currently in clinical trials. The main purpose of this review is to show the most promising potential targeted peptides acting as hits molecules in NTDs and other infectious illnesses. We hope to contribute to the discovery of medicines in this relatively neglected area, which will be extremely useful in improving the health of many suffering people.
Collapse
Affiliation(s)
- João Vitor Silva
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Soraya da Silva Santos
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - M Teresa Machini
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Jeanine Giarolla
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
7
|
To kill a piroplasm: genetic technologies to advance drug discovery and target identification in Babesia. Int J Parasitol 2019; 49:153-163. [DOI: 10.1016/j.ijpara.2018.09.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 09/07/2018] [Accepted: 09/19/2018] [Indexed: 12/26/2022]
|
8
|
Expression, Tissue Localization and Serodiagnostic Potential of Echinococcus granulosus Leucine Aminopeptidase. Int J Mol Sci 2018; 19:ijms19041063. [PMID: 29614002 PMCID: PMC5979522 DOI: 10.3390/ijms19041063] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 03/20/2018] [Accepted: 03/24/2018] [Indexed: 12/11/2022] Open
Abstract
Echinococcus granulosus is the causative agent of cystic echinococcosis (CE), a widespread parasitic zoonosis. Leucine aminopeptidases (LAPs) of the M17 peptidase family have important functions in regulating the balance of catabolism and anabolism, cell maintenance, growth and defense. In this study, we presented a bioinformatic characterization and experimentally determined the tissue distribution characteristics of E. granulosus LAP (Eg-LAP), and explored its potential value for diagnosis of CE in sheep based on indirect ELISA. Through fluorescence immunohistochemistry, we found that Eg-LAP was present in the tegument and hooks of PSCs, the whole germinal layer and adult worm parenchymatous tissue. Western blotting results revealed that the recombinant protein could be identified using E. granulosus-infected sheep serum. The diagnostic value of this recombinant protein was assessed by indirect ELISA, and compared with indirect ELISA based on hydatid fluid antigen. The sensitivity and specificity rEgLAP-ELISA were 95.8% (23/24) and 79.09% (87/110), respectively, while using hydatid fluid as antigen showed the values 41.7% (10/24) and 65.45% (72/110). This is the first report concerning leucine aminopeptidase from E. granulosus, and the results showed that Eg-LAP belong to M17 peptidase families, and that it is involved in important biological function of E. granulosus. Furthermore, rEg-LAP is appropriate for diagnosing and monitoring CE in sheep in field. Development of a rapid test using rEg-LAP to diagnose sheep CE deserves further study.
Collapse
|
9
|
Zheng J, Chen Y, Li Z, Cao S, Zhang Z, Jia H. Translationally controlled tumor protein is required for the fast growth of
Toxoplasma gondii
and maintenance of its intracellular development. FASEB J 2018; 32:906-919. [DOI: 10.1096/fj.201700994r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Jun Zheng
- State Key Laboratory of Veterinary BiotechnologyHarbin Veterinary Research InstituteChinese Academy of Agricultural SciencesHarbinChina
| | - Yaping Chen
- State Key Laboratory of Veterinary BiotechnologyHarbin Veterinary Research InstituteChinese Academy of Agricultural SciencesHarbinChina
| | - Zhaoran Li
- State Key Laboratory of Veterinary BiotechnologyHarbin Veterinary Research InstituteChinese Academy of Agricultural SciencesHarbinChina
| | - Shinuo Cao
- State Key Laboratory of Veterinary BiotechnologyHarbin Veterinary Research InstituteChinese Academy of Agricultural SciencesHarbinChina
| | - Zhaoxia Zhang
- State Key Laboratory of Veterinary BiotechnologyHarbin Veterinary Research InstituteChinese Academy of Agricultural SciencesHarbinChina
| | - Honglin Jia
- State Key Laboratory of Veterinary BiotechnologyHarbin Veterinary Research InstituteChinese Academy of Agricultural SciencesHarbinChina
| |
Collapse
|
10
|
Peng CT, Liu L, Li CC, He LH, Li T, Shen YL, Gao C, Wang NY, Xia Y, Zhu YB, Song YJ, Lei Q, Yu LT, Bao R. Structure-Function Relationship of Aminopeptidase P from Pseudomonas aeruginosa. Front Microbiol 2017; 8:2385. [PMID: 29259588 PMCID: PMC5723419 DOI: 10.3389/fmicb.2017.02385] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 11/20/2017] [Indexed: 02/05/2023] Open
Abstract
PepP is a virulence-associated gene in Pseudomonas aeruginosa, making it an attractive target for anti-P. aeruginosa drug development. The encoded protein, aminopeptidases P (Pa-PepP), is a type of X-prolyl peptidase that possesses diverse biological functions. The crystal structure verified its canonical pita-bread fold and functional tetrameric assembly, and the functional studies measured the influences of different metal ions on the activity. A trimetal manganese cluster was observed at the active site, elucidating the mechanism of inhibition by metal ions. Additionally, a loop extending from the active site appeared to be important for specific large-substrate binding. Based on the structural comparison and bacterial invasion assays, we showed that this non-conserved surface loop was critical for P. aeruginosa virulence. Taken together, these findings can extend our understanding of the catalytic mechanism and virulence-related functions of Pa-PepP and provide a solid foundation for the design of specific inhibitors against pathogenic-bacterial infections.
Collapse
Affiliation(s)
- Cui-Ting Peng
- Pharmaceutical and Biological Engineering Department, School of Chemical Engineering, Sichuan University, Chengdu, China,Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Li Liu
- Pharmaceutical and Biological Engineering Department, School of Chemical Engineering, Sichuan University, Chengdu, China,Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Chang-Cheng Li
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Li-Hui He
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Tao Li
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Ya-Lin Shen
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Chao Gao
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Ning-Yu Wang
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China,School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Yong Xia
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Yi-Bo Zhu
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Ying-Jie Song
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Qian Lei
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Luo-Ting Yu
- Pharmaceutical and Biological Engineering Department, School of Chemical Engineering, Sichuan University, Chengdu, China,Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China,*Correspondence: Rui Bao, Luo-Ting Yu,
| | - Rui Bao
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China,*Correspondence: Rui Bao, Luo-Ting Yu,
| |
Collapse
|
11
|
González-Bacerio J, Maluf SEC, Méndez Y, Pascual I, Florent I, Melo PMS, Budu A, Ferreira JC, Moreno E, Carmona AK, Rivera DG, Alonso Del Rivero M, Gazarini ML. KBE009: An antimalarial bestatin-like inhibitor of the Plasmodium falciparum M1 aminopeptidase discovered in an Ugi multicomponent reaction-derived peptidomimetic library. Bioorg Med Chem 2017; 25:4628-4636. [PMID: 28728898 DOI: 10.1016/j.bmc.2017.06.047] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 06/23/2017] [Accepted: 06/27/2017] [Indexed: 10/19/2022]
Abstract
Malaria is a global human parasitic disease mainly caused by the protozoon Plasmodium falciparum. Increased parasite resistance to current drugs determines the relevance of finding new treatments against new targets. A novel target is the M1 alanyl-aminopeptidase from P. falciparum (PfA-M1), which is essential for parasite development in human erythrocytes and is inhibited by the pseudo-peptide bestatin. In this work, we used a combinatorial multicomponent approach to produce a library of peptidomimetics and screened it for the inhibition of recombinant PfA-M1 (rPfA-M1) and the in vitro growth of P. falciparum erythrocytic stages (3D7 and FcB1 strains). Dose-response studies with selected compounds allowed identifying the bestatin-based peptidomimetic KBE009 as a submicromolar rPfA-M1 inhibitor (Ki=0.4μM) and an in vitro antimalarial compound as potent as bestatin (IC50=18μM; without promoting erythrocyte lysis). At therapeutic-relevant concentrations, KBE009 is selective for rPfA-M1 over porcine APN (a model of these enzymes from mammals), and is not cytotoxic against HUVEC cells. Docking simulations indicate that this compound binds PfA-M1 without Zn2+ coordination, establishing mainly hydrophobic interactions and showing a remarkable shape complementarity with the active site of the enzyme. Moreover, KBE009 inhibits the M1-type aminopeptidase activity (Ala-7-amido-4-methylcoumarin substrate) in isolated live parasites with a potency similar to that of the antimalarial activity (IC50=82μM), strongly suggesting that the antimalarial effect is directly related to the inhibition of the endogenous PfA-M1. These results support the value of this multicomponent strategy to identify PfA-M1 inhibitors, and make KBE009 a promising hit for drug development against malaria.
Collapse
Affiliation(s)
- Jorge González-Bacerio
- Centro de Estudio de Proteínas, Facultad de Biología, Universidad de La Habana, Calle 25 #455 entre I y J, 10400, Vedado, La Habana, Cuba.
| | - Sarah El Chamy Maluf
- Departamento de Biofísica, Universidade Federal de São Paulo, Rua Pedro de Toledo, 669, 7 andar, 04039-032, Vila Mariana, São Paulo, Brazil.
| | - Yanira Méndez
- Centro de Estudio de Productos Naturales, Facultad de Química, Universidad de La Habana, Zapata y G, 10400 La Habana, Cuba.
| | - Isel Pascual
- Centro de Estudio de Proteínas, Facultad de Biología, Universidad de La Habana, Calle 25 #455 entre I y J, 10400, Vedado, La Habana, Cuba.
| | - Isabelle Florent
- Unité Molécules de Communication et Adaptation des Microorganismes, (MCAM, UMR 7245), Sorbonne Universités, Muséum National Histoire Naturelle, CNRS, CP 52, 57 Rue Cuvier, 75005 Paris, France.
| | - Pollyana M S Melo
- Departamento de Biofísica, Universidade Federal de São Paulo, Rua Pedro de Toledo, 669, 7 andar, 04039-032, Vila Mariana, São Paulo, Brazil.
| | - Alexandre Budu
- Departamento de Biofísica, Universidade Federal de São Paulo, Rua Pedro de Toledo, 669, 7 andar, 04039-032, Vila Mariana, São Paulo, Brazil.
| | - Juliana C Ferreira
- Departamento de Biofísica, Universidade Federal de São Paulo, Rua Pedro de Toledo, 669, 7 andar, 04039-032, Vila Mariana, São Paulo, Brazil.
| | - Ernesto Moreno
- Centro de Inmunología Molecular, Calle 15 esq. 216, Siboney, Playa, La Habana, Cuba; Universidad de Medellín, Carrera 87 #30-65, Medellín, Colombia.
| | - Adriana K Carmona
- Departamento de Biofísica, Universidade Federal de São Paulo, Rua Pedro de Toledo, 669, 7 andar, 04039-032, Vila Mariana, São Paulo, Brazil.
| | - Daniel G Rivera
- Centro de Estudio de Productos Naturales, Facultad de Química, Universidad de La Habana, Zapata y G, 10400 La Habana, Cuba.
| | - Maday Alonso Del Rivero
- Centro de Estudio de Proteínas, Facultad de Biología, Universidad de La Habana, Calle 25 #455 entre I y J, 10400, Vedado, La Habana, Cuba.
| | - Marcos L Gazarini
- Departamento de Biociências, Universidade Federal de São Paulo, R. Silva Jardim, 136, 11015-020, Vila Mathias, Santos, São Paulo, Brazil.
| |
Collapse
|
12
|
Roy KK. Targeting the active sites of malarial proteases for antimalarial drug discovery: approaches, progress and challenges. Int J Antimicrob Agents 2017; 50:287-302. [PMID: 28668681 DOI: 10.1016/j.ijantimicag.2017.04.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 04/12/2017] [Accepted: 04/27/2017] [Indexed: 02/08/2023]
Abstract
Malaria is an infectious disease causing vast mortality and morbidity worldwide. Although antimalarial drugs are effective in several parts of the world, there is a serious threat to malaria control as malaria parasites are continuously developing widespread resistance against currently available antimalarial drugs, including artemisinin. Such widespread antimalarial drug resistance confirms the need to improve the efficacy of existing or new drugs as well as to develop alternative treatments through the identification of novel drug targets and the development of candidate drugs. Similar to proteases in other parasitic diseases such as leishmaniasis, schistosomiasis, Chagas disease and African sleeping sickness, malarial proteases constitute the major virulence factors in malaria. Malarial proteases belong to several classes and many of them have been targeted for the design and discovery of antimalarial agents. This review summarises the approaches, progress and challenges in the design of small-molecule inhibitors as antimalarial drugs targeting the inhibition of various malarial proteases.
Collapse
Affiliation(s)
- Kuldeep K Roy
- National Institute of Pharmaceutical Education and Research (NIPER), 4 Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India.
| |
Collapse
|
13
|
Characterization of aspartyl aminopeptidase from Toxoplasma gondii. Sci Rep 2016; 6:34448. [PMID: 27678060 PMCID: PMC5039622 DOI: 10.1038/srep34448] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 09/13/2016] [Indexed: 12/14/2022] Open
Abstract
Aminopeptidases have emerged as new promising drug targets for the development of novel anti-parasitic drugs. An aspartyl aminopeptidase-like gene has been identified in the Toxoplasma gondii genome (TgAAP), although its function remains unknown. In this study, we characterized TgAAP and performed functional analysis of the gene product. Firstly, we expressed a functional recombinant TgAAP (rTgAAP) protein in Escherichia coli, and found that it required metal ions for activity and showed a substrate preference for N-terminal acidic amino acids Glu and Asp. Then, we evaluated the function and drug target potential of TgAAP using the CRISPR/Cas9 knockout system. Western blotting demonstrated the deletion of TgAAP in the knockout strain. Indirect immunofluorescence analysis showed that TgAAP was localized in the cytoplasm of the wild-type parasite, but was not expressed in the knockout strain. Phenotype analysis revealed that TgAAP knockout inhibited the attachment/invasion, replication, and substrate-specific activity in T. gondii. Finally, the activity of drug CID 23724194, previously described as targeting Plasmodium and malarial parasite AAP, was tested against rTgAAP and the parasite. Overall, TgAAP knockout affected the growth of T. gondii but did not completely abolish parasite replication and growth. Therefore, TgAAP may comprise a useful adjunct drug target of T. gondii.
Collapse
|
14
|
Independent amino acid residues in the S2 pocket of falcipain-3 determine its specificity for P2 residues in substrates. Mol Biochem Parasitol 2015; 202:11-22. [DOI: 10.1016/j.molbiopara.2015.09.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 09/24/2015] [Accepted: 09/28/2015] [Indexed: 12/23/2022]
|
15
|
Chemical and genetic validation of thiamine utilization as an antimalarial drug target. Nat Commun 2013; 4:2060. [PMID: 23804074 DOI: 10.1038/ncomms3060] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 05/28/2013] [Indexed: 11/08/2022] Open
Abstract
Thiamine is metabolized into an essential cofactor for several enzymes. Here we show that oxythiamine, a thiamine analog, inhibits proliferation of the malaria parasite Plasmodium falciparum in vitro via a thiamine-related pathway and significantly reduces parasite growth in a mouse malaria model. Overexpression of thiamine pyrophosphokinase (the enzyme that converts thiamine into its active form, thiamine pyrophosphate) hypersensitizes parasites to oxythiamine by up to 1,700-fold, consistent with oxythiamine being a substrate for thiamine pyrophosphokinase and its conversion into an antimetabolite. We show that parasites overexpressing the thiamine pyrophosphate-dependent enzymes oxoglutarate dehydrogenase and pyruvate dehydrogenase are up to 15-fold more resistant to oxythiamine, consistent with the antimetabolite inactivating thiamine pyrophosphate-dependent enzymes. Our studies therefore validate thiamine utilization as an antimalarial drug target and demonstrate that a single antimalarial can simultaneously target several enzymes located within distinct organelles.
Collapse
|
16
|
Tjhin ET, Staines HM, van Schalkwyk DA, Krishna S, Saliba KJ. Studies with the Plasmodium falciparum hexokinase reveal that PfHT limits the rate of glucose entry into glycolysis. FEBS Lett 2013; 587:3182-7. [PMID: 23954294 DOI: 10.1016/j.febslet.2013.07.052] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 07/25/2013] [Accepted: 07/31/2013] [Indexed: 12/16/2022]
Abstract
To characterise plasmodial glycolysis, we generated two transgenic Plasmodium falciparum lines, one expressing P. falciparum hexokinase (PfHK) tagged with GFP (3D7-PfHK(GFP)) and another overexpressing native PfHK (3D7-PfHK(+)). Contrary to previous reports, we propose that PfHK is cytosolic. The glucose analogue, 2-deoxy-d-glucose (2-DG) was nearly 2-fold less toxic to 3D7-PfHK(+) compared with control parasites, supporting PfHK as a potential drug target. Although PfHK activity was higher in 3D7-PfHK(+), they accumulated phospho-[(14)C]2-DG at the same rate as control parasites. Transgenic parasites overexpressing the parasite's glucose transporter (PfHT) accumulated phospho-[(14)C]2-DG at a higher rate, consistent with glucose transport limiting glucose entry into glycolysis.
Collapse
Affiliation(s)
- Erick T Tjhin
- Research School of Biology, College of Medicine, Biology and Environment, The Australian National University, Canberra, ACT 0200, Australia
| | | | | | | | | |
Collapse
|
17
|
Krishnamoorthy M, Achary A. Exploration of Sitagliptin as a potential inhibitor for the M1 Alanine aminopeptidase enzyme in Plasmodium falciparum using computational docking. Bioinformation 2013; 9:293-8. [PMID: 23559748 PMCID: PMC3607188 DOI: 10.6026/97320630009293] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 03/11/2013] [Accepted: 03/12/2013] [Indexed: 11/23/2022] Open
Abstract
Plasmodium falciparum has limited capacity for de novo amino acid synthesis and rely on degradation of host hemoglobin to maintain protein metabolism and synthesis of proteins. M1 alanine aminopeptidase enzyme of the parasite involved in the terminal degradation of host hemoglobin was subjected to in silico screening with low molecular weight protease inhibitors. The km (avg) of the enzyme M1 alanine aminopeptidase for the substrate DL - Alanine β Napthylamide Hydrochloride was estimated as 322.05µM. The molecular interactions between the enzyme and the substrate and the mechanism of enzyme action were analyzed which paved way for inhibition strategies. Among all the inhibitors screened, Sitagliptin was found to be most potent inhibitor with ki of 0.152 µM in its best orientation whereas the ki(avg) was 2.0055 µM. The ki of Sitagliptin is lower than the km of M1 alanine aminopeptidase for the substrate DL - Alanine β Napthylamide Hydrochloride (322.05 µM) and Ki of the known inhibitor Bestatin. Therefore Sitagliptin may serve as a potent competitive inhibitor of the enzyme M1 alanine aminopeptidase of Plasmodium falciparum.
Collapse
Affiliation(s)
- Mohana Krishnamoorthy
- Department of Biotechnology, Kamaraj College of Engineering and Technology, Virudhunagar
| | - Anant Achary
- Department of Biotechnology, Kamaraj College of Engineering and Technology, Virudhunagar
| |
Collapse
|
18
|
Deprez-Poulain R, Flipo M, Piveteau C, Leroux F, Dassonneville S, Florent I, Maes L, Cos P, Deprez B. Structure-activity relationships and blood distribution of antiplasmodial aminopeptidase-1 inhibitors. J Med Chem 2012; 55:10909-17. [PMID: 23176597 DOI: 10.1021/jm301506h] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Malaria is a severe infectious disease that causes between 655,000 and 1.2 million deaths annually. To overcome the resistance to current drugs, new biological targets are needed for drug development. Aminopeptidase M1 (PfAM1), a zinc metalloprotease, has been proposed as a new drug target to fight malaria. Herein, we disclosed the structure-activity relationships of a selective family of hydroxamate PfAM1 inhibitors based on the malonic template. In particular, we performed a "fluoro-scanning" around hit 1 that enlightened the key positions of the halogen for activity. The docking of the best inhibitor 2 is consistent with in vitro results. The stability of 2 was evaluated in microsomes, in plasma, and toward glutathione. The in vivo distribution study performed with the nanomolar hydroxamate inhibitor 2 (BDM14471) revealed that it reaches its site of action. However, it fails to kill the parasite at concentrations relevant to the enzymatic inhibitory potency, suggesting that killing the parasite remains a challenge for potent and druglike catalytic-site binding PfAM1 inhibitors. In all, this study provides important insights for the design of inhibitors of PfAM1 and the validity of this target.
Collapse
Affiliation(s)
- Rebecca Deprez-Poulain
- INSERM U761, Biostructures and Drug Discovery and Faculté de Pharmacie, Université Lille Nord de France, 3 rue du Pr Laguesse, Lille F-59000, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
The leucine aminopeptidase of Staphylococcus aureus is secreted and contributes to biofilm formation. Int J Infect Dis 2012; 16:e375-81. [DOI: 10.1016/j.ijid.2012.01.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 01/10/2012] [Accepted: 01/18/2012] [Indexed: 01/22/2023] Open
|
20
|
The aminopeptidase inhibitor CHR-2863 is an orally bioavailable inhibitor of murine malaria. Antimicrob Agents Chemother 2012; 56:3244-9. [PMID: 22450967 DOI: 10.1128/aac.06245-11] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Malaria remains a significant risk in many areas of the world, with resistance to the current antimalarial pharmacopeia an ever-increasing problem. The M1 alanine aminopeptidase (PfM1AAP) and M17 leucine aminopeptidase (PfM17LAP) are believed to play a role in the terminal stages of digestion of host hemoglobin and thereby generate a pool of free amino acids that are essential for parasite growth and development. Here, we show that an orally bioavailable aminopeptidase inhibitor, CHR-2863, is efficacious against murine malaria.
Collapse
|
21
|
Comparative biochemical and functional properties of two leucine aminopeptidases of Clonorchis sinensis. Mol Biochem Parasitol 2012; 182:17-26. [DOI: 10.1016/j.molbiopara.2011.11.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 11/18/2011] [Accepted: 11/21/2011] [Indexed: 11/21/2022]
|
22
|
Poreba M, McGowan S, Skinner-Adams TS, Trenholme KR, Gardiner DL, Whisstock JC, To J, Salvesen GS, Dalton JP, Drag M. Fingerprinting the substrate specificity of M1 and M17 aminopeptidases of human malaria, Plasmodium falciparum. PLoS One 2012; 7:e31938. [PMID: 22359643 PMCID: PMC3281095 DOI: 10.1371/journal.pone.0031938] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Accepted: 01/18/2012] [Indexed: 11/22/2022] Open
Abstract
Background Plasmodium falciparum, the causative agent of human malaria, expresses two aminopeptidases, PfM1AAP and PfM17LAP, critical to generating a free amino acid pool used by the intraerythrocytic stage of the parasite for proteins synthesis, growth and development. These exopeptidases are potential targets for the development of a new class of anti-malaria drugs. Methodology/Principal Findings To define the substrate specificity of recombinant forms of these two malaria aminopeptidases we used a new library consisting of 61 fluorogenic substrates derived both from natural and unnatural amino acids. We obtained a detailed substrate fingerprint for recombinant forms of the enzymes revealing that PfM1AAP exhibits a very broad substrate tolerance, capable of efficiently hydrolyzing neutral and basic amino acids, while PfM17LAP has narrower substrate specificity and preferentially cleaves bulky, hydrophobic amino acids. The substrate library was also exploited to profile the activity of the native aminopeptidases in soluble cell lysates of P. falciparum malaria. Conclusions/Significance This data showed that PfM1AAP and PfM17LAP are responsible for majority of the aminopeptidase activity in these extracts. These studies provide specific substrate and mechanistic information important for understanding the function of these aminopeptidases and could be exploited in the design of new inhibitors to specifically target these for anti-malaria treatment.
Collapse
Affiliation(s)
- Marcin Poreba
- Division of Medicinal Chemistry and Microbiology, Faculty of Chemistry, Wroclaw University of Technology, Wroclaw, Poland
| | - Sheena McGowan
- Department of Biochemistry and Molecular Biology and Australian Research Council Centre of Excellence in Structural and Functional Microbial Genomics, Monash University, Clayton, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Tina S. Skinner-Adams
- Malaria Biology Laboratory, Queensland Institute of Medical Research, Brisbane, Queensland, Australia
- Griffith Medical Research College, Joint Program of Griffith University and the Queensland Institute of Medical Research, Brisbane, Queensland, Australia
- School of Medicine, The University of Queensland, Royal Brisbane Hospital, Brisbane, Queensland, Australia
| | - Katharine R. Trenholme
- Malaria Biology Laboratory, Queensland Institute of Medical Research, Brisbane, Queensland, Australia
- Griffith Medical Research College, Joint Program of Griffith University and the Queensland Institute of Medical Research, Brisbane, Queensland, Australia
- School of Medicine, The University of Queensland, Royal Brisbane Hospital, Brisbane, Queensland, Australia
| | - Donald L. Gardiner
- Malaria Biology Laboratory, Queensland Institute of Medical Research, Brisbane, Queensland, Australia
- Griffith Medical Research College, Joint Program of Griffith University and the Queensland Institute of Medical Research, Brisbane, Queensland, Australia
- School of Medicine, The University of Queensland, Royal Brisbane Hospital, Brisbane, Queensland, Australia
| | - James C. Whisstock
- Department of Biochemistry and Molecular Biology and Australian Research Council Centre of Excellence in Structural and Functional Microbial Genomics, Monash University, Clayton, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Joyce To
- Institute of Parasitology, McGill University, Sainte Anne de Bellevue, Quebec, Canada
| | - Guy S. Salvesen
- Program in Apoptosis and Cell Death Research, Sanford Burnham Medical Research Institute, La Jolla, California, United States of America
| | - John P. Dalton
- Institute of Parasitology, McGill University, Sainte Anne de Bellevue, Quebec, Canada
- * E-mail: (JD); (MD)
| | - Marcin Drag
- Division of Medicinal Chemistry and Microbiology, Faculty of Chemistry, Wroclaw University of Technology, Wroclaw, Poland
- Program in Apoptosis and Cell Death Research, Sanford Burnham Medical Research Institute, La Jolla, California, United States of America
- * E-mail: (JD); (MD)
| |
Collapse
|
23
|
The recombinant gut-associated M17 leucine aminopeptidase in combination with different adjuvants confers a high level of protection against Fasciola hepatica infection in sheep. Vaccine 2011; 29:9057-63. [PMID: 21939713 DOI: 10.1016/j.vaccine.2011.09.020] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 08/17/2011] [Accepted: 09/07/2011] [Indexed: 11/21/2022]
Abstract
Fasciola hepatica M17 leucine aminopeptidase (FhLAP) is thought to play a role in catabolizing peptides generated by the concerted activity of gut-associated endopeptidases on host polypeptides, thus releasing amino acids to be used in protein anabolism. In this study, a recombinant functional form of this homo hexameric metallopeptidase produced in Escherichia coli was used in combination with adjuvants of different types in a vaccination trial in Corriedale sheep against experimental challenge with F. hepatica metacercariae. The experimental assay consisted of 6 groups of 10 animals; 5 of the groups (1-5) were subcutaneously inoculated at weeks 0 and 4 with 100 μg of rFhLAP mixed with Freund's complete plus incomplete adjuvant (group 1), Alum (group 2), Adyuvac 50 (group 3), DEAE-D (group 4) and Ribi (group 5); the adjuvant control group (group 6) received Freund's adjuvant. Two weeks after the booster, the sheep were orally challenged with 200 metacercariae. Immunization with rFhLAP induced significant reduction in fluke burdens in all vaccinated groups: 83.8% in the Freund's group, 86.7% in the Alum group, 74.4% in the Adyuvac 50 group, 49.8% in the Ribi group and 49.5% in the DEAE-D group compared to the adjuvant control group. Morphometric analysis of recovered liver flukes showed no significant size modifications in the different vaccination groups. All vaccine preparations elicited specific IgG, IgG1 and IgG2 responses. This study shows that a liver fluke vaccine based on rFhLAP combined with different adjuvants significantly reduced worm burden in a ruminant species that was high in animals that received the enzyme along with the commercially approved adjuvants Alum and Adyuvac 50.
Collapse
|
24
|
Bhosale M, Kadthur JC, Nandi D. Roles of Salmonella enterica serovar Typhimurium encoded Peptidase N during systemic infection of Ifnγ-/- mice. Immunobiology 2011; 217:354-62. [PMID: 21813203 DOI: 10.1016/j.imbio.2011.07.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Accepted: 07/05/2011] [Indexed: 11/19/2022]
Abstract
Pathogen encoded peptidases are known to be important during infection; however, their roles in modulating host responses in immunocompromised individuals are not well studied. The roles of S. typhimurium (WT) encoded Peptidase N (PepN), a major aminopeptidase and sole M1 family member, was studied in mice lacking Interferon-γ (IFNγ), a cytokine important for immunity. S. typhimurium lacking pepN (ΔpepN) displays enhanced colony forming units (CFU) compared to WT in peripheral organs during systemic infection in C57BL/6 mice. However, Ifnγ(-/-) mice show higher CFU compared to C57BL/6 mice, resulting in lower fold differences between WT and ΔpepN. Concomitantly, reintroduction of pepN in ΔpepN (ΔpepN/pepN) reduces CFU, demonstrating pepN-dependence. Interestingly, expression of a catalytically inactive PepN (ΔpepN/E298A) also lowers CFU, demonstrating that the decrease in CFU is independent of the catalytic activity of PepN. In addition, three distinct differences are observed between infection of C57BL/6 and Ifnγ(-/-) mice: First, serum amounts of TNFα and IL1β post infection are significantly lower in Ifnγ(-/-) mice. Second, histological analysis of C57BL/6 mice reveals that damage in spleen and liver upon infection with WT or ΔpepN is greater compared to ΔpepN/pepN or ΔpepN/E298A. On the other hand, Ifnγ(-/-) mice are highly susceptible to organ damage by all strains of S. typhimurium used in this study. Finally, greater survival of C57BL/6, but not Ifnγ(-/-) mice, is observed upon infection with ΔpepN/pepN or ΔpepN/E298A. Overall, the roles of the host encoded IFNγ during infection with S. typhimurium strains with varying degrees of virulence are highlighted.
Collapse
Affiliation(s)
- Manoj Bhosale
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | | | | |
Collapse
|
25
|
Ragheb D, Dalal S, Bompiani KM, Ray WK, Klemba M. Distribution and biochemical properties of an M1-family aminopeptidase in Plasmodium falciparum indicate a role in vacuolar hemoglobin catabolism. J Biol Chem 2011; 286:27255-65. [PMID: 21659511 DOI: 10.1074/jbc.m111.225318] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Aminopeptidases catalyze N-terminal peptide bond hydrolysis and occupy many diverse roles across all domains of life. Here we present evidence that an M1-family aminopeptidase, PfA-M1, has been recruited to specialized roles in the human malaria parasite Plasmodium falciparum. PfA-M1 is abundant in two subcellular compartments in asexual intraerythrocytic parasites; that is, the food vacuole, where the catabolism of host hemoglobin takes place, and the nucleus. A unique N-terminal extension contributes to the observed dual targeting by providing a signal peptide and putative alternate translation initiation sites. PfA-M1 exists as two major isoforms, a nuclear 120-kDa species and a processed species consisting of a complex of 68- and 35-kDa fragments. PfA-M1 is both stable and active at the acidic pH of the food vacuole lumen. Determination of steady-state kinetic parameters for both aminoacyl-β-naphthylamide and unmodified dipeptide substrates over the pH range 5.0-8.5 reveals that k(cat) is relatively insensitive to pH, whereas K(m) increases at pH values below 6.5. At the pH of the food vacuole lumen (5.0-5.5), the catalytic efficiency of PfA-M1 remains high. Consistent with the kinetic data, the affinity of peptidic competitive inhibitors is diminished at acidic pH. Together, these results support a catalytic role for PfA-M1 in the food vacuole and indicate the importance of evaluating the potency of peptidic inhibitors at physiologically relevant pH values. They also suggest a second, distinct function for this enzyme in the parasite nucleus.
Collapse
Affiliation(s)
- Daniel Ragheb
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
| | | | | | | | | |
Collapse
|
26
|
Molecular cloning and characterization of a M17 leucine aminopeptidase of Cryptosporidium parvum. Parasitology 2011; 138:682-90. [DOI: 10.1017/s0031182011000199] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
SUMMARYLeucine aminopeptidases (LAPs) are a group of metalloexopeptidases that catalyse the sequential removal of amino acids from the N-termini of polypeptides or proteins. They play an important role in regulating the balance between catabolism and anabolism in living cells. LAPs of apicomplexa parasitic protozoa have been intensively investigated due to their crucial roles in parasite biology as well as their potentials as drug targets. In this study, we identified an M17 leucine aminopeptidase of Cryptosporidium parvum (CpLAP) and characterized the biochemical properties of the recombinant protein. Multiple sequence alignment of the deduced amino acid sequence of CpLAP with those of other organisms revealed that typical amino acid residues essential for metal binding and active-site formation in M17 LAPs were well conserved in CpLAP. Recombinant CpLAP shared similar biochemical properties such as optimal pH, stability at neutral pHs, and metal-binding characteristics with other characterized LAPs. The enzyme showed a marked preference for Leu and its activity was effectively inhibited by bestatin. These results collectively suggest that CpLAP is a typical member of the M17 LAP family and may play an important role in free amino acid regulation in the parasite.
Collapse
|
27
|
Zhong ZR, Zhou HB, Li XY, Luo QL, Song XR, Wang W, Wen HQ, Yu L, Wei W, Shen JL. Serological proteome-oriented screening and application of antigens for the diagnosis of Schistosomiasis japonica. Acta Trop 2010; 116:1-8. [PMID: 20451489 DOI: 10.1016/j.actatropica.2010.04.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Revised: 04/26/2010] [Accepted: 04/29/2010] [Indexed: 12/12/2022]
Abstract
Schistosomiasis remains a major parasitic disease, with 200 million people infected and 779 million people at risk worldwide. The lack of reliable diagnostic techniques makes this disease difficult to control. In an attempt to discover useful candidates for the diagnosis of schistosomiasis, proteomics in combination with western blotting were employed in this study. This serological proteome assay yielded more than 30 immunodominant spots. Ten of these spots were precisely matched with a homologous two-dimensional electrophoresis (2-DE) gel and successfully identified by LC/MS-MS as corresponding to four different proteins. Of these proteins, SjLAP and SjFBPA were successfully expressed, and their recombinant protein products were further applied in the diagnosis of human Schistosomiasis japonica using ELISA. The ELISA results revealed sensitivities of 98.1% and 87.8% for acute and chronic schistosomiasis with rSjLAP and 100% and 84.7% with rSjFBPA, whereas the assays showed a specificity of 96.7% with both recombinant proteins. After treatment with praziquantel, the titres of the antibodies against both antigens declined significantly (P<0.001). Our data therefore suggest that these antibody-oriented recombinant proteins had a high efficacy for the diagnosis of S. japonica, and 2-DE based screening followed by LC/MS-MS has promising potential in the screening of candidate antigens for the diagnosis of schistosomiasis.
Collapse
|
28
|
Lee JY, Song SM, Seok JW, Jha BK, Eun-Taek Han, Song HO, Yu HS, Hong Y, Kong HH, Chung DI. M17 leucine aminopeptidase of the human malaria parasite Plasmodium vivax. Mol Biochem Parasitol 2010; 170:45-8. [DOI: 10.1016/j.molbiopara.2009.11.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Revised: 11/11/2009] [Accepted: 11/11/2009] [Indexed: 10/20/2022]
|
29
|
Gardiner DL, Skinner-Adams TS, Brown CL, Andrews KT, Stack CM, McCarthy JS, Dalton JP, Trenholme KR. Plasmodium falciparum: new molecular targets with potential for antimalarial drug development. Expert Rev Anti Infect Ther 2010; 7:1087-98. [PMID: 19883329 DOI: 10.1586/eri.09.93] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Malaria remains one of the world's most devastating infectious diseases. Drug resistance to all classes of antimalarial agents has now been observed, highlighting the need for new agents that act against novel parasite targets. The complete sequencing of the Plasmodium falciparum genome has allowed the identification of new molecular targets within the parasite that may be amenable to chemotherapeutic intervention. In this review, we investigate four possible targets for the future development of new classes of antimalarial agents. These targets include histone deacetylase, the aspartic proteases or plasmepsins, aminopeptidases and the purine salvage enzyme hypoxanthine-xanthine-guanine phosphoribosyltransferase.
Collapse
Affiliation(s)
- Donald L Gardiner
- Malaria Biology Laboratory, Queensland Institute of Medical Research, 300 Herston Road, Herston, QLD 4006, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Drag M, Bogyo M, Ellman JA, Salvesen GS. Aminopeptidase fingerprints, an integrated approach for identification of good substrates and optimal inhibitors. J Biol Chem 2009; 285:3310-8. [PMID: 19948737 DOI: 10.1074/jbc.m109.060418] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Aminopeptidases process the N-terminal amino acids of target substrates by sequential cleavage of one residue at a time. They are found in all cell compartments of prokaryotes and eukaryotes, being implicated in the major proteolytic events of cell survival, defense, growth, and development. We present a new approach for the fast and reliable evaluation of the substrate specificity of individual aminopeptidases. Using solid phase chemistry with the 7-amino-4-carbamoylmethylcoumarin fluorophore, we have synthesized a library of 61 individual natural and unnatural amino acids substrates, chosen to cover a broad spectrum of the possible interactions in the S1 pocket of this type of protease. As proof of concept, we determined the substrate specificity of human, pig, and rat orthologs of aminopeptidase N (CD13), a highly conserved cell surface protease that inactivates enkephalins and other bioactive peptides. Our data reveal a large and hydrophobic character for the S1 pocket of aminopeptidase N that is conserved with aminopeptidase Ns. Our approach, which can be applied in principle to all aminopeptidases, yields useful information for the design of specific inhibitors, and more importantly, reveals a relationship between the kinetics of substrate hydrolysis and the kinetics of enzyme inhibition.
Collapse
Affiliation(s)
- Marcin Drag
- Apoptosis and Cell Death Research Program, the Burnham Institute for Medical Research, La Jolla, California 92037, USA.
| | | | | | | |
Collapse
|
31
|
Skinner-Adams TS, Stack CM, Trenholme KR, Brown CL, Grembecka J, Lowther J, Mucha A, Drag M, Kafarski P, McGowan S, Whisstock JC, Gardiner DL, Dalton JP. Plasmodium falciparum neutral aminopeptidases: new targets for anti-malarials. Trends Biochem Sci 2009; 35:53-61. [PMID: 19796954 DOI: 10.1016/j.tibs.2009.08.004] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Revised: 08/05/2009] [Accepted: 08/05/2009] [Indexed: 11/19/2022]
Abstract
The neutral aminopeptidases M1 alanyl aminopeptidase (PfM1AAP) and M17 leucine aminopeptidase (PfM17LAP) of the human malaria parasite Plasmodium falciparum are targets for the development of novel anti-malarial drugs. Although the functions of these enzymes remain unknown, they are believed to act in the terminal stages of haemoglobin degradation, generating amino acids essential for parasite growth and development. Inhibitors of both enzymes are lethal to P. falciparum in culture and kill the murine malaria P. chabaudi in vivo. Recent biochemical, structural and functional studies provide the substrate specificity and mechanistic binding data needed to guide the development of more potent anti-malarial drugs. Together with biological studies, these data form the rationale for choosing PfM1AAP and PfM17LAP as targets for anti-malarial development.
Collapse
Affiliation(s)
- Tina S Skinner-Adams
- Malaria Biology Laboratory, Queensland Institute of Medical Research, Herston, QLD 4006, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Maric S, Donnelly SM, Robinson MW, Skinner-Adams T, Trenholme KR, Gardiner DL, Dalton JP, Stack CM, Lowther J. The M17 leucine aminopeptidase of the malaria parasite Plasmodium falciparum: importance of active site metal ions in the binding of substrates and inhibitors. Biochemistry 2009; 48:5435-9. [PMID: 19408962 DOI: 10.1021/bi9003638] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The M17 leucine aminopeptidase of the intraerythrocytic stages of the malaria parasite Plasmodium falciparum (PfLAP) plays a role in releasing amino acids from host hemoglobin that are used for parasite protein synthesis, growth, and development. This enzyme represents a target at which new antimalarials could be designed since metalloaminopeptidase inhibitors prevent the growth of the parasites in vitro and in vivo. A study on the metal ion binding characteristics of recombinant P. falciparum M17 leucine aminopeptidase (rPfLAP) shows that the active site of this exopeptidase contains two metal-binding sites, a readily exchangeable site (site 1) and a tight binding site (site 2). The enzyme retains activity when the metal ion is removed from site 1, while removal of metal ions from both sites results in an inactive apoenzyme that cannot be reactivated by the addition of divalent metal cations. The metal ion at site 1 is readily exchangeable with several divalent metal ions and displays a preference in the order of preference Zn(2+) > Mn(2+) > Co(2+) > Mg(2+). While it is likely that native PfLAP contains a Zn(2+) in site 2, the metal ion located in site 1 may be dependent on the type and concentration of metal ions in the cytosolic compartment of the parasite. Importantly, the type of metal ion present at site 1 influences not only the catalytic efficiency of the enzyme for peptide substrates but also the mode of binding by bestatin, a metal-chelating inhibitor of M17 aminopeptidases with antimalarial activity.
Collapse
Affiliation(s)
- Selma Maric
- Institute for the Biotechnology of Infectious Diseases (IBID), University of Technology Sydney (UTS), Level 6, Building 4, Corner of Thomas and Harris Street, Ultimo, Sydney, NSW 2007, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Ragheb D, Bompiani K, Dalal S, Klemba M. Evidence for catalytic roles for Plasmodium falciparum aminopeptidase P in the food vacuole and cytosol. J Biol Chem 2009; 284:24806-15. [PMID: 19574214 DOI: 10.1074/jbc.m109.018424] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The metalloenzyme aminopeptidase P catalyzes the hydrolysis of amino acids from the amino termini of peptides with a prolyl residue in the second position. The human malaria parasite Plasmodium falciparum expresses a homolog of aminopeptidase P during its asexual intraerythrocytic cycle. P. falciparum aminopeptidase P (PfAPP) shares with mammalian cytosolic aminopeptidase P a three-domain, homodimeric organization and is most active with Mn(II) as the cofactor. A distinguishing feature of PfAPP is a 120-amino acid amino-terminal extension that appears to be removed from the mature protein. PfAPP is present in the food vacuole and cytosol of the parasite, a distribution that suggests roles in vacuolar hemoglobin catabolism and cytosolic peptide turnover. To evaluate the plausibility of these putative functions, the stability and kinetic properties of recombinant PfAPP were evaluated at the acidic pH of the food vacuole and at the near-neutral pH of the cytosol. PfAPP exhibited high stability at 37 degrees C in the pH range 5.0-7.5. In contrast, recombinant human cytosolic APP1 was unstable and formed a high molecular weight aggregate at acidic pH. At both acidic and slightly basic pH values, PfAPP efficiently hydrolyzed the amino-terminal X-Pro bond of the nonapeptide bradykinin and of two globin pentapeptides that are potential in vivo substrates. These results provide support for roles for PfAPP in peptide catabolism in both the food vacuole and the cytosol and suggest that PfAPP has evolved a dual distribution in response to the metabolic needs of the intraerythrocytic parasite.
Collapse
Affiliation(s)
- Daniel Ragheb
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
| | | | | | | |
Collapse
|
34
|
Structural basis for the inhibition of the essential Plasmodium falciparum M1 neutral aminopeptidase. Proc Natl Acad Sci U S A 2009; 106:2537-42. [PMID: 19196988 DOI: 10.1073/pnas.0807398106] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Plasmodium falciparum parasites are responsible for the major global disease malaria, which results in >2 million deaths each year. With the rise of drug-resistant malarial parasites, novel drug targets and lead compounds are urgently required for the development of new therapeutic strategies. Here, we address this important problem by targeting the malarial neutral aminopeptidases that are involved in the terminal stages of hemoglobin digestion and essential for the provision of amino acids used for parasite growth and development within the erythrocyte. We characterize the structure and substrate specificity of one such aminopeptidase, PfA-M1, a validated drug target. The X-ray crystal structure of PfA-M1 alone and in complex with the generic inhibitor, bestatin, and a phosphinate dipeptide analogue with potent in vitro and in vivo antimalarial activity, hPheP[CH(2)]Phe, reveals features within the protease active site that are critical to its function as an aminopeptidase and can be exploited for drug development. These results set the groundwork for the development of antimalarial therapeutics that target the neutral aminopeptidases of the parasite.
Collapse
|
35
|
Keeping it simple: an easy method for manipulating the expression levels of malaria proteins. Trends Parasitol 2009; 25:4-7. [DOI: 10.1016/j.pt.2008.09.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Revised: 09/18/2008] [Accepted: 09/24/2008] [Indexed: 11/21/2022]
|
36
|
Song SM, Park JH, Kim J, Kim SI, Hong YC, Kong HH, Chung DI. Identification and characterization of Paragonimus westermani leucine aminopeptidase. Parasitol Int 2008; 57:334-41. [DOI: 10.1016/j.parint.2008.02.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Revised: 02/02/2008] [Accepted: 02/11/2008] [Indexed: 11/28/2022]
|
37
|
Chemical target validation studies of aminopeptidase in malaria parasites using alpha-aminoalkylphosphonate and phosphonopeptide inhibitors. Antimicrob Agents Chemother 2008; 52:3221-8. [PMID: 18458130 DOI: 10.1128/aac.01327-07] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During its intraerythrocytic phase, the most lethal human malarial parasite, Plasmodium falciparum, digests host cell hemoglobin as a source of some of the amino acids required for its own protein synthesis. A number of parasite endopeptidases (including plasmepsins and falcipains) process the globin into small peptides. These peptides appear to be further digested to free amino acids by aminopeptidases, enzymes that catalyze the sequential cleavage of N-terminal amino acids from peptides. Aminopeptidases are classified into different evolutionary families according to their sequence motifs and preferred substrates. The aminopeptidase inhibitor bestatin can disrupt parasite development, suggesting that this group of enzymes might be a chemotherapeutic target. Two bestatin-susceptible aminopeptidase activities, associated with gene products belonging to the M1 and M17 families, have been described in blood-stage P. falciparum parasites, but it is not known whether one or both are required for parasite development. To establish whether inhibition of the M17 aminopeptidase is sufficient to confer antimalarial activity, we evaluated 35 aminoalkylphosphonate and phosphonopeptide compounds designed to be specific inhibitors of M17 aminopeptidases. The compounds had a range of activities against cultured P. falciparum parasites with 50% inhibitory concentrations down to 14 muM. Some of the compounds were also potent inhibitors of parasite aminopeptidase activity, though it appeared that many were capable of inhibiting the M1 as well as the M17 enzyme. There was a strong correlation between the potencies of the compounds against whole parasites and against the enzyme, suggesting that M17 and/or M1 aminopeptidases may be valid antimalarial drug targets.
Collapse
|
38
|
Rudenskaya YA, Aseev VV, Rudenskaya GN. Endocellular aminopeptidase from Astasia longa. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2008. [DOI: 10.1134/s1068162008030084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
39
|
Skinner-Adams TS, Lowther J, Teuscher F, Stack CM, Grembecka J, Mucha A, Kafarski P, Trenholme KR, Dalton JP, Gardiner DL. Identification of Phosphinate Dipeptide Analog Inhibitors Directed against the Plasmodium falciparum M17 Leucine Aminopeptidase as Lead Antimalarial Compounds. J Med Chem 2007; 50:6024-31. [DOI: 10.1021/jm070733v] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tina S. Skinner-Adams
- Malaria Biology Laboratory, Queensland Institute of Medical Research, 300 Herston Road, Herston, Queensland, 4029, Australia, Department of Medicine, Central Medical Division, University of Queensland, Brisbane, 4072, Australia, Institute for the Biotechnology of Infectious Diseases, University of Technology Sydney, Corner of Thomas and Harris Street, Ultimo, Sydney, NSW 2007, Australia, Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22904,
| | - Jonathan Lowther
- Malaria Biology Laboratory, Queensland Institute of Medical Research, 300 Herston Road, Herston, Queensland, 4029, Australia, Department of Medicine, Central Medical Division, University of Queensland, Brisbane, 4072, Australia, Institute for the Biotechnology of Infectious Diseases, University of Technology Sydney, Corner of Thomas and Harris Street, Ultimo, Sydney, NSW 2007, Australia, Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22904,
| | - Franka Teuscher
- Malaria Biology Laboratory, Queensland Institute of Medical Research, 300 Herston Road, Herston, Queensland, 4029, Australia, Department of Medicine, Central Medical Division, University of Queensland, Brisbane, 4072, Australia, Institute for the Biotechnology of Infectious Diseases, University of Technology Sydney, Corner of Thomas and Harris Street, Ultimo, Sydney, NSW 2007, Australia, Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22904,
| | - Colin M. Stack
- Malaria Biology Laboratory, Queensland Institute of Medical Research, 300 Herston Road, Herston, Queensland, 4029, Australia, Department of Medicine, Central Medical Division, University of Queensland, Brisbane, 4072, Australia, Institute for the Biotechnology of Infectious Diseases, University of Technology Sydney, Corner of Thomas and Harris Street, Ultimo, Sydney, NSW 2007, Australia, Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22904,
| | - Jolanta Grembecka
- Malaria Biology Laboratory, Queensland Institute of Medical Research, 300 Herston Road, Herston, Queensland, 4029, Australia, Department of Medicine, Central Medical Division, University of Queensland, Brisbane, 4072, Australia, Institute for the Biotechnology of Infectious Diseases, University of Technology Sydney, Corner of Thomas and Harris Street, Ultimo, Sydney, NSW 2007, Australia, Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22904,
| | - Artur Mucha
- Malaria Biology Laboratory, Queensland Institute of Medical Research, 300 Herston Road, Herston, Queensland, 4029, Australia, Department of Medicine, Central Medical Division, University of Queensland, Brisbane, 4072, Australia, Institute for the Biotechnology of Infectious Diseases, University of Technology Sydney, Corner of Thomas and Harris Street, Ultimo, Sydney, NSW 2007, Australia, Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22904,
| | - Pawel Kafarski
- Malaria Biology Laboratory, Queensland Institute of Medical Research, 300 Herston Road, Herston, Queensland, 4029, Australia, Department of Medicine, Central Medical Division, University of Queensland, Brisbane, 4072, Australia, Institute for the Biotechnology of Infectious Diseases, University of Technology Sydney, Corner of Thomas and Harris Street, Ultimo, Sydney, NSW 2007, Australia, Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22904,
| | - Katharine R. Trenholme
- Malaria Biology Laboratory, Queensland Institute of Medical Research, 300 Herston Road, Herston, Queensland, 4029, Australia, Department of Medicine, Central Medical Division, University of Queensland, Brisbane, 4072, Australia, Institute for the Biotechnology of Infectious Diseases, University of Technology Sydney, Corner of Thomas and Harris Street, Ultimo, Sydney, NSW 2007, Australia, Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22904,
| | - John P. Dalton
- Malaria Biology Laboratory, Queensland Institute of Medical Research, 300 Herston Road, Herston, Queensland, 4029, Australia, Department of Medicine, Central Medical Division, University of Queensland, Brisbane, 4072, Australia, Institute for the Biotechnology of Infectious Diseases, University of Technology Sydney, Corner of Thomas and Harris Street, Ultimo, Sydney, NSW 2007, Australia, Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22904,
| | - Donald L. Gardiner
- Malaria Biology Laboratory, Queensland Institute of Medical Research, 300 Herston Road, Herston, Queensland, 4029, Australia, Department of Medicine, Central Medical Division, University of Queensland, Brisbane, 4072, Australia, Institute for the Biotechnology of Infectious Diseases, University of Technology Sydney, Corner of Thomas and Harris Street, Ultimo, Sydney, NSW 2007, Australia, Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22904,
| |
Collapse
|
40
|
Dalal S, Klemba M. Roles for two aminopeptidases in vacuolar hemoglobin catabolism in Plasmodium falciparum. J Biol Chem 2007; 282:35978-87. [PMID: 17895246 DOI: 10.1074/jbc.m703643200] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
During the erythrocytic stage of its life cycle, the human malaria parasite Plasmodium falciparum catabolizes large quantities of host-cell hemoglobin in an acidic organelle, the food vacuole. A current model for the catabolism of globin-derived oligopeptides invokes peptide transport out of the food vacuole followed by hydrolysis to amino acids by cytosolic aminopeptidases. To test this model, we have examined the roles of four parasite aminopeptidases during the erythrocytic cycle. Localization of tagged aminopeptidases, coupled with biochemical analysis of enriched food vacuoles, revealed the presence of amino acid-generating pathways in the food vacuole as well as the cytosol. Based on the localization data and in vitro assays, we propose a specific role for one of the plasmodial enzymes, aminopeptidase P, in the catabolism of proline-containing peptides in both the vacuole and the cytosol. We establish an apparent requirement for three of the four aminopeptidases (including the two food vacuole enzymes) for efficient parasite proliferation. To gain insight into the impact of aminopeptidase inhibition on parasite development, we examined the effect of the presence of amino acids in the culture medium of the parasite on the toxicity of the aminopeptidase inhibitor bestatin. The ability of bestatin to block parasite replication was only slightly affected when 19 of 20 amino acids were withdrawn from the medium, indicating that exogenous amino acids cannot compensate for the loss of aminopeptidase activity. Together, these results support the development of aminopeptidase inhibitors as novel chemotherapeutics directed against malaria.
Collapse
Affiliation(s)
- Seema Dalal
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
| | | |
Collapse
|
41
|
Teuscher F, Lowther J, Skinner-Adams TS, Spielmann T, Dixon MWA, Stack CM, Donnelly S, Mucha A, Kafarski P, Vassiliou S, Gardiner DL, Dalton JP, Trenholme KR. The M18 aspartyl aminopeptidase of the human malaria parasite Plasmodium falciparum. J Biol Chem 2007; 282:30817-26. [PMID: 17720817 DOI: 10.1074/jbc.m704938200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A member of the M18 family of aspartyl aminopeptidases is expressed by all intra-erythrocytic stages of the human malaria parasite Plasmodium falciparum (PfM18AAP), with highest expression levels in rings. Functionally active recombinant enzyme, rPfM18AAP, and native enzyme in cytosolic extracts of malaria parasites are 560-kDa octomers that exhibit optimal activity at neutral pH and require the presence of metal ions to maintain enzymatic activity and stability. Like the human aspartyl aminopeptidase, the exopeptidase activity of PfM18AAP is exclusive to N-terminal acidic amino acids, glutamate and aspartate, making this enzyme of particular interest and suggesting that it may function alongside the malaria cytosolic neutral aminopeptidases in the release of amino acids from host hemoglobin-derived peptides. Whereas immunocytochemical studies using transgenic P. falciparum parasites show that PfM18AAP is expressed in the cytosol, immunoblotting experiments revealed that the enzyme is also trafficked out of the parasite into the surrounding parasitophorous vacuole. Antisense-mediated knockdown of PfM18AAP results in a lethal phenotype as a result of significant intracellular damage and validates this enzyme as a target at which novel antimalarial drugs could be directed. Novel phosphinic derivatives of aspartate and glutamate showed modest inhibition of rPfM18AAP but did not inhibit malaria growth in culture. However, we were able to draw valuable observations concerning the structure-activity relationship of these inhibitors that can be employed in future inhibitor optimization studies.
Collapse
Affiliation(s)
- Franka Teuscher
- Malaria Biology Laboratory, The Queensland Institute of Medical Research, 300 Herston Rd, Herston, Brisbane, Queensland 4006, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Flipo M, Beghyn T, Leroux V, Florent I, Deprez BP, Deprez-Poulain RF. Novel Selective Inhibitors of the Zinc Plasmodial Aminopeptidase PfA-M1 as Potential Antimalarial Agents. J Med Chem 2007; 50:1322-34. [PMID: 17326615 DOI: 10.1021/jm061169b] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Proteases that are expressed during the erythocytic stage of Plasmodium falciparum are newly explored drug targets for the treatment of malaria. We report here the discovery of potent inhibitors of PfA-M1, a metallo-aminopeptidase of the parasite. These compounds are based on a malonic hydroxamic template and present a very good selectivity toward neutral aminopeptidase (APN-CD13), a related protease in mammals. Structure-activity relationships in these series are described. Further optimization of the best inhibitor yielded a nanomolar, selective inhibitor of PfA-M1. This inhibitor displays good physicochemical and pharmacokinetic properties and a promising antimalarial activity.
Collapse
Affiliation(s)
- Marion Flipo
- Inserm, U761, Biostructures and Drug Discovery, Lille F-59006 France
| | | | | | | | | | | |
Collapse
|
43
|
Stack CM, Lowther J, Cunningham E, Donnelly S, Gardiner DL, Trenholme KR, Skinner-Adams TS, Teuscher F, Grembecka J, Mucha A, Kafarski P, Lua L, Bell A, Dalton JP. Characterization of the Plasmodium falciparum M17 Leucyl Aminopeptidase. J Biol Chem 2007; 282:2069-80. [PMID: 17107951 DOI: 10.1074/jbc.m609251200] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Amino acids generated from the catabolism of hemoglobin by intra-erythrocytic malaria parasites are not only essential for protein synthesis but also function in maintaining an osmotically stable environment, and creating a gradient by which amino acids that are rare or not present in hemoglobin are drawn into the parasite from host serum. We have proposed that a Plasmodium falciparum M17 leucyl aminopeptidase (PfLAP) generates and regulates the internal pool of free amino acids and therefore represents a target for novel antimalarial drugs. This enzyme has been expressed in insect cells as a functional 320-kDa homo-hexamer that is optimally active at neutral or alkaline pH, is dependent on metal ions for activity, and exhibits a substrate preference for N-terminally exposed hydrophobic amino acids, particularly leucine. PfLAP is produced by all stages in the intra-erythrocytic developmental cycle of malaria but was most highly expressed by trophozoites, a stage at which hemoglobin degradation and parasite protein synthesis are elevated. The enzyme was located by immunohistochemical methods and by transfecting malaria cells with a PfLAP-green fluorescent protein construct, to the cytosolic compartment of the cell at all developmental stages, including segregated merozoites. Amino acid dipeptide analogs, such as bestatin and its derivatives, are potent inhibitors of the protease and also block the growth of P. falciparum malaria parasites in culture. This study provides a biochemical basis for the antimalarial activity of aminopeptidase inhibitors. Availability of functionally active recombinant PfLAP, coupled with a simple enzymatic readout, will aid medicinal chemistry and/or high throughput approaches for the future design/discovery of new antimalarial drugs.
Collapse
Affiliation(s)
- Colin M Stack
- Institute for the Biotechnology of Infectious Diseases, University of Technology Sydney, Level 6, Building 4, Corner of Thomas and Harris Street, Ultimo, Sydney, New South Wales 2007, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Skinner-Adams TS, Andrews KT, Melville L, McCarthy J, Gardiner DL. Synergistic interactions of the antiretroviral protease inhibitors saquinavir and ritonavir with chloroquine and mefloquine against Plasmodium falciparum in vitro. Antimicrob Agents Chemother 2006; 51:759-62. [PMID: 17088482 PMCID: PMC1797772 DOI: 10.1128/aac.00840-06] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The antimalarial activity of several antiretroviral protease inhibitor combinations was investigated. Data demonstrate that ritonavir and saquinavir behave synergistically with chloroquine and mefloquine. These data, and interactions with pepstatin-A, E-64, and bestatin, suggest that human immunodeficiency virus protease inhibitors do not target digestive-vacuole plasmepsins.
Collapse
Affiliation(s)
- T S Skinner-Adams
- University of Queensland, Department of Medicine, Brisbane, Australia.
| | | | | | | | | |
Collapse
|
45
|
Chen X, Chong CR, Shi L, Yoshimoto T, Sullivan DJ, Liu JO. Inhibitors of Plasmodium falciparum methionine aminopeptidase 1b possess antimalarial activity. Proc Natl Acad Sci U S A 2006; 103:14548-53. [PMID: 16983082 PMCID: PMC1599997 DOI: 10.1073/pnas.0604101103] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
With >1 million deaths annually, mostly among children in sub-Saharan Africa, malaria poses one of the most critical challenges in medicine today. Although introduction of the artemisinin class of antimalarial drugs has offered a temporary solution to the problem of drug resistance, new antimalarial drugs are needed to ensure effective control of the disease in the future. Herein, we have investigated members of the methionine aminopeptidase family as potential antimalarial targets. The Plasmodium falciparum methionine aminopeptidase 1b (PfMetAP1b), one of four MetAP proteins encoded in the P. falciparum genome, was cloned, overexpressed, purified, and used to screen a 175,000-compound library for inhibitors. A family of structurally related inhibitors containing a 2-(2-pyridinyl)-pyrimidine core was identified. Structure/activity studies led to the identification of a potent PfMetAP1b inhibitor, XC11, with an IC(50) of 112 nM. XC11 was highly selective for PfMetAP1b and did not exhibit significant cytotoxicity against primary human fibroblasts. Most importantly, XC11 inhibited the proliferation of P. falciparum strains 3D7 [chloroquine (CQ)-sensitive] and Dd2 (multidrug-resistant) in vitro and is active in mouse malaria models for both CQ-sensitive and CQ-resistant strains. These results suggest that PfMetAP1b is a promising target and XC11 is an important lead compound for the development of novel antimalarial drugs.
Collapse
Affiliation(s)
- Xiaochun Chen
- Departments of *Pharmacology and Molecular Sciences and
| | | | - Lirong Shi
- The Malaria Research Institute, W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205; and
| | - Tadashi Yoshimoto
- School of Pharmaceutical Sciences, Nagasaki University, Nagasaki 852-8521, Japan
| | - David J. Sullivan
- The Malaria Research Institute, W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205; and
| | - Jun O. Liu
- Departments of *Pharmacology and Molecular Sciences and
- Oncology and
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
46
|
Gardiner DL, Good MF. A case of 'hit-and-run' in Plasmodium genetics. Trends Parasitol 2006; 22:493-5. [PMID: 16971181 DOI: 10.1016/j.pt.2006.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2006] [Revised: 07/25/2006] [Accepted: 08/30/2006] [Indexed: 11/28/2022]
Abstract
The ability to genetically manipulate species of the genus Plasmodium, some of which are causative organisms of malaria, has seen significant advances in the past 13 years. However, one major tool that has been lacking is the ability to undertake reverse genetics and 'hit-and-run' mutagenesis. This deficiency has been addressed in the Plasmodium berghei model.
Collapse
Affiliation(s)
- Donald L Gardiner
- Queensland Institute of Medical Research, Herston, 4006 Queensland, Australia
| | | |
Collapse
|