• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4636016)   Today's Articles (642)   Subscriber (50091)
For: Zhang ZR, Song B, McCarty NA. State-dependent chemical reactivity of an engineered cysteine reveals conformational changes in the outer vestibule of the cystic fibrosis transmembrane conductance regulator. J Biol Chem 2005;280:41997-2003. [PMID: 16227620 DOI: 10.1074/jbc.m510242200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]  Open
Number Cited by Other Article(s)
1
Zeng ZW, Linsdell P, Pomès R. Molecular dynamics study of Cl- permeation through cystic fibrosis transmembrane conductance regulator (CFTR). Cell Mol Life Sci 2023;80:51. [PMID: 36694009 PMCID: PMC9873711 DOI: 10.1007/s00018-022-04621-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 10/26/2022] [Accepted: 10/31/2022] [Indexed: 01/25/2023]
2
Infield DT, Strickland KM, Gaggar A, McCarty NA. The molecular evolution of function in the CFTR chloride channel. J Gen Physiol 2021;153:212705. [PMID: 34647973 PMCID: PMC8640958 DOI: 10.1085/jgp.202012625] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 08/11/2021] [Accepted: 09/09/2021] [Indexed: 12/13/2022]  Open
3
Cottrill KA, Farinha CM, McCarty NA. The bidirectional relationship between CFTR and lipids. Commun Biol 2020;3:179. [PMID: 32313074 PMCID: PMC7170930 DOI: 10.1038/s42003-020-0909-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 03/23/2020] [Indexed: 02/08/2023]  Open
4
Negoda A, Cowley EA, El Hiani Y, Linsdell P. Conformational change of the extracellular parts of the CFTR protein during channel gating. Cell Mol Life Sci 2018;75:3027-3038. [PMID: 29441426 PMCID: PMC11105745 DOI: 10.1007/s00018-018-2777-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 01/24/2018] [Accepted: 02/08/2018] [Indexed: 12/21/2022]
5
Linsdell P. Architecture and functional properties of the CFTR channel pore. Cell Mol Life Sci 2017;74:67-83. [PMID: 27699452 PMCID: PMC11107662 DOI: 10.1007/s00018-016-2389-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 09/28/2016] [Indexed: 12/12/2022]
6
Structural Changes Fundamental to Gating of the Cystic Fibrosis Transmembrane Conductance Regulator Anion Channel Pore. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016;925:13-32. [PMID: 27311317 DOI: 10.1007/5584_2016_33] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
7
Infield DT, Cui G, Kuang C, McCarty NA. Positioning of extracellular loop 1 affects pore gating of the cystic fibrosis transmembrane conductance regulator. Am J Physiol Lung Cell Mol Physiol 2015;310:L403-14. [PMID: 26684250 DOI: 10.1152/ajplung.00259.2015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 12/16/2015] [Indexed: 02/06/2023]  Open
8
Cui G, McCarty NA. Murine and human CFTR exhibit different sensitivities to CFTR potentiators. Am J Physiol Lung Cell Mol Physiol 2015. [PMID: 26209275 DOI: 10.1152/ajplung.00181.2015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]  Open
9
El Hiani Y, Linsdell P. Conformational changes opening and closing the CFTR chloride channel: insights from cysteine scanning mutagenesis. Biochem Cell Biol 2014;92:481-8. [PMID: 25367045 DOI: 10.1139/bcb-2014-0038] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]  Open
10
Cui G, Rahman KS, Infield DT, Kuang C, Prince CZ, McCarty NA. Three charged amino acids in extracellular loop 1 are involved in maintaining the outer pore architecture of CFTR. ACTA ACUST UNITED AC 2014;144:159-79. [PMID: 25024266 PMCID: PMC4113900 DOI: 10.1085/jgp.201311122] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
11
State-dependent blocker interactions with the CFTR chloride channel: implications for gating the pore. Pflugers Arch 2014;466:2243-55. [DOI: 10.1007/s00424-014-1501-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 03/10/2014] [Accepted: 03/11/2014] [Indexed: 02/06/2023]
12
Linsdell P. Functional architecture of the CFTR chloride channel. Mol Membr Biol 2013;31:1-16. [PMID: 24341413 DOI: 10.3109/09687688.2013.868055] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
13
Rahman KS, Cui G, Harvey SC, McCarty NA. Modeling the conformational changes underlying channel opening in CFTR. PLoS One 2013;8:e74574. [PMID: 24086355 PMCID: PMC3785483 DOI: 10.1371/journal.pone.0074574] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 08/05/2013] [Indexed: 12/22/2022]  Open
14
Wang W, El Hiani Y, Rubaiy HN, Linsdell P. Relative contribution of different transmembrane segments to the CFTR chloride channel pore. Pflugers Arch 2013;466:477-90. [PMID: 23955087 DOI: 10.1007/s00424-013-1317-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 06/18/2013] [Accepted: 06/18/2013] [Indexed: 12/16/2022]
15
Cui G, Freeman CS, Knotts T, Prince CZ, Kuang C, McCarty NA. Two salt bridges differentially contribute to the maintenance of cystic fibrosis transmembrane conductance regulator (CFTR) channel function. J Biol Chem 2013;288:20758-67. [PMID: 23709221 DOI: 10.1074/jbc.m113.476226] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]  Open
16
Chong PA, Kota P, Dokholyan NV, Forman-Kay JD. Dynamics intrinsic to cystic fibrosis transmembrane conductance regulator function and stability. Cold Spring Harb Perspect Med 2013;3:a009522. [PMID: 23457292 DOI: 10.1101/cshperspect.a009522] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
17
Norimatsu Y, Ivetac A, Alexander C, O'Donnell N, Frye L, Sansom MSP, Dawson DC. Locating a plausible binding site for an open-channel blocker, GlyH-101, in the pore of the cystic fibrosis transmembrane conductance regulator. Mol Pharmacol 2012;82:1042-55. [PMID: 22923500 DOI: 10.1124/mol.112.080267] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]  Open
18
Wang W, Linsdell P. Relative movements of transmembrane regions at the outer mouth of the cystic fibrosis transmembrane conductance regulator channel pore during channel gating. J Biol Chem 2012;287:32136-46. [PMID: 22843683 DOI: 10.1074/jbc.m112.385096] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]  Open
19
El Hiani Y, Linsdell P. Role of the juxtamembrane region of cytoplasmic loop 3 in the gating and conductance of the cystic fibrosis transmembrane conductance regulator chloride channel. Biochemistry 2012;51:3971-81. [PMID: 22545782 PMCID: PMC3381012 DOI: 10.1021/bi300065z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
20
Norimatsu Y, Ivetac A, Alexander C, Kirkham J, O’Donnell N, Dawson DC, Sansom MS. Cystic fibrosis transmembrane conductance regulator: a molecular model defines the architecture of the anion conduction path and locates a "bottleneck" in the pore. Biochemistry 2012;51:2199-212. [PMID: 22352759 PMCID: PMC3316148 DOI: 10.1021/bi201888a] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
21
Wang W, Linsdell P. Alternating access to the transmembrane domain of the ATP-binding cassette protein cystic fibrosis transmembrane conductance regulator (ABCC7). J Biol Chem 2012;287:10156-10165. [PMID: 22303012 DOI: 10.1074/jbc.m112.342972] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]  Open
22
Wang W, Linsdell P. Conformational change opening the CFTR chloride channel pore coupled to ATP-dependent gating. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012;1818:851-60. [PMID: 22234285 DOI: 10.1016/j.bbamem.2011.12.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2011] [Revised: 12/21/2011] [Accepted: 12/23/2011] [Indexed: 12/13/2022]
23
Csanády L, Vergani P, Gulyás-Kovács A, Gadsby DC. Electrophysiological, biochemical, and bioinformatic methods for studying CFTR channel gating and its regulation. Methods Mol Biol 2011;741:443-469. [PMID: 21594801 DOI: 10.1007/978-1-61779-117-8_28] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
24
Bai Y, Li M, Hwang TC. Dual roles of the sixth transmembrane segment of the CFTR chloride channel in gating and permeation. ACTA ACUST UNITED AC 2010;136:293-309. [PMID: 20805575 PMCID: PMC2931150 DOI: 10.1085/jgp.201010480] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
25
El Hiani Y, Linsdell P. Changes in accessibility of cytoplasmic substances to the pore associated with activation of the cystic fibrosis transmembrane conductance regulator chloride channel. J Biol Chem 2010;285:32126-40. [PMID: 20675380 DOI: 10.1074/jbc.m110.113332] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]  Open
26
Bargeton B, Kellenberger S. The contact region between three domains of the extracellular loop of ASIC1a is critical for channel function. J Biol Chem 2010;285:13816-26. [PMID: 20215117 DOI: 10.1074/jbc.m109.086843] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]  Open
27
Li MS, Demsey AFA, Qi J, Linsdell P. Cysteine-independent inhibition of the CFTR chloride channel by the cysteine-reactive reagent sodium (2-sulphonatoethyl) methanethiosulphonate. Br J Pharmacol 2009;157:1065-71. [PMID: 19466983 PMCID: PMC2737665 DOI: 10.1111/j.1476-5381.2009.00258.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Revised: 01/15/2009] [Accepted: 02/17/2009] [Indexed: 12/16/2022]  Open
28
Bao HF, Liu L, Self J, Duke BJ, Ueno R, Eaton DC. A synthetic prostone activates apical chloride channels in A6 epithelial cells. Am J Physiol Gastrointest Liver Physiol 2008;295:G234-51. [PMID: 18511742 PMCID: PMC2519861 DOI: 10.1152/ajpgi.00366.2007] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
29
Cui G, Zhang ZR, O'Brien ARW, Song B, McCarty NA. Mutations at arginine 352 alter the pore architecture of CFTR. J Membr Biol 2008;222:91-106. [PMID: 18421494 DOI: 10.1007/s00232-008-9105-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2007] [Accepted: 03/21/2008] [Indexed: 01/11/2023]
30
Fatehi M, Linsdell P. State-dependent Access of Anions to the Cystic Fibrosis Transmembrane Conductance Regulator Chloride Channel Pore. J Biol Chem 2008;283:6102-9. [DOI: 10.1074/jbc.m707736200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]  Open
31
Beck EJ, Yang Y, Yaemsiri S, Raghuram V. Conformational changes in a pore-lining helix coupled to cystic fibrosis transmembrane conductance regulator channel gating. J Biol Chem 2007;283:4957-66. [PMID: 18056267 DOI: 10.1074/jbc.m702235200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]  Open
32
Zhou JJ, Fatehi M, Linsdell P. Direct and indirect effects of mutations at the outer mouth of the cystic fibrosis transmembrane conductance regulator chloride channel pore. J Membr Biol 2007;216:129-42. [PMID: 17673962 DOI: 10.1007/s00232-007-9056-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2007] [Accepted: 06/11/2007] [Indexed: 02/08/2023]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA