1
|
Fragassi A, Greco A, Palomba R. Lubricant Strategies in Osteoarthritis Treatment: Transitioning from Natural Lubricants to Drug Delivery Particles with Lubricant Properties. J Xenobiot 2024; 14:1268-1292. [PMID: 39311151 PMCID: PMC11417909 DOI: 10.3390/jox14030072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/06/2024] [Accepted: 09/13/2024] [Indexed: 09/26/2024] Open
Abstract
Osteoarthritis (OA) is a debilitating joint disease characterized by cartilage degradation, leading to pain and functional impairment. A key contributor to OA progression is the decline in cartilage lubrication. In physiological conditions, synovial fluid (SF) macromolecules like hyaluronic acid (HA), phospholipids, and lubricin play a crucial role in the boundary lubrication of articular cartilage. In early OA, cartilage damage triggers inflammation, altering SF composition and compromising the lubrication layer. This increases friction between mating interfaces, worsening cartilage degradation and local inflammation. Therefore, early-stage restoration of lubrication (by injecting in the joint different classes of compounds and formulations) could alleviate, and potentially reverse, OA progression. In the light of this, a broad variety of lubricants have been investigated for their ability to reduce friction in OA joints and promote cartilage repair in clinical and preclinical studies. This review examines recent advancements in lubricant-based therapy for OA, focusing on natural, bioinspired, and alternative products. Starting from the currently applied therapy, mainly based on natural lubricants as HA, we will present their modified versions, either in hydrogel form or with specific biomimetic moieties with the aim of reducing their clearance from the joint and of enhancing their lubricating properties. Finally, the most advanced and recent formulation, represented by alternative strategies, will be proposed. Particular emphasis will be placed on those ones involving new types of hydrogels, microparticles, nanoparticles, and liposomes, which are currently under investigation in preclinical studies. The potential application of particles and liposomes could foster the transition from natural lubricants to Drug Delivery Systems (DDSs) with lubricant features; transition which could provide more complete OA treatments, by simultaneously providing lubrication replacement and sustained release of different payloads and active agents directly at the joint level. Within each category, we will examine relevant preclinical studies, highlighting challenges and future prospects.
Collapse
Affiliation(s)
- Agnese Fragassi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131 Padova, Italy
| | - Antonietta Greco
- Department of Medicine and Surgery, NanoMedicine Center (NANOMIB), University of Milano-Bicocca, Via Follereau 3, 20854 Vedano al Lambro, Italy
| | - Roberto Palomba
- Laboratory of Nanotechnology for Precision Medicine, Italian Institute of Technology, Via Morego 30, 16163 Genova, Italy
| |
Collapse
|
2
|
Lou Y, Song F, Kang Y, Xu Y. Periodic Mechanical Stress Inhibits the Development of Osteoarthritis via Regulating ATF3-Akt Axis. J Inflamm Res 2023; 16:5613-5628. [PMID: 38046403 PMCID: PMC10693248 DOI: 10.2147/jir.s419186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 10/25/2023] [Indexed: 12/05/2023] Open
Abstract
Purpose The development of osteoarthritis (OA) has been linked to mechanical factors. Studies suggest that periodic mechanical stress (PMS) may be a factor contributing to cartilage repair and the onset of OA. Therefore, this study was designed to explore the effects and underlying mechanisms of PMS on OA development. Patients and Methods Firstly, surgery and interleukin (IL)-1β were used for the establishment of rat/cell models of OA, respectively. Subsequently, activating transcription factor (ATF) 3 expression was knocked down in OA rats, and OA chondrocytes were treated with different heights (0, 1, 2, 4, 8 cm) of PMS or si-ATF. Safranin O staining was used to observe the histological changes in the rat knee joint, and enzyme-linked immunosorbent assay (ELISA) was performed to detect levels of tumor necrosis factor (TNF)-α, IL-6, and IL-8 in vivo and in vitro. Further, the expression of extracellular matrix (ECM) proteins in the rat knee joint was assessed immunohistochemistry. Flow cytometry was used to evaluate chondrocyte apoptosis. Lastly, Western blot was performed to detect the expression of related proteins of the protein kinase B (Akt) signaling pathway and ECM. Results The OA rat model was successfully constructed. Further experiments indicated that the knockdown of ATF3 not only alleviated joint swelling, pain, inflammatory response and pathological damage, but also promoted ECM synthesis and the phosphorylation of Akt in OA rats. In vitro experiments showed that PMS (4 cm) effectively inhibited cell apoptosis, decreased the levels of TNF-α, IL-6 and IL-8, promoted ECM synthesis, and activated the Akt signaling pathway in osteoarthritic chondrocytes. However, ATF3 overexpression reversed the positive effects of PMS on osteoarthritic chondrocytes. Conclusion PMS can effectively inhibit the development of OA, and its protective effects may be attributed to the down-regulation of ATF3 expression and activation of the Akt signaling pathway.
Collapse
Affiliation(s)
- Yi Lou
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, 215006, People’s Republic of China
- Department of Orthopaedics, Shanghai Eastern Hepatobiliary Surgery Hospital, Naval Military Medical University, Shanghai, 201805, People’s Republic of China
| | - Fanglong Song
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, People’s Republic of China
| | - Yifan Kang
- Department of Orthopaedics, Shanghai Eastern Hepatobiliary Surgery Hospital, Naval Military Medical University, Shanghai, 201805, People’s Republic of China
| | - Yaozeng Xu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, 215006, People’s Republic of China
| |
Collapse
|
3
|
Abstract
Immune responses are governed by signals from the tissue microenvironment, and in addition to biochemical signals, mechanical cues and forces arising from the tissue, its extracellular matrix and its constituent cells shape immune cell function. Indeed, changes in biophysical properties of tissue alter the mechanical signals experienced by cells in many disease conditions, in inflammatory states and in the context of ageing. These mechanical cues are converted into biochemical signals through the process of mechanotransduction, and multiple pathways of mechanotransduction have been identified in immune cells. Such pathways impact important cellular functions including cell activation, cytokine production, metabolism, proliferation and trafficking. Changes in tissue mechanics may also represent a new form of 'danger signal' that alerts the innate and adaptive immune systems to the possibility of injury or infection. Tissue mechanics can change temporally during an infection or inflammatory response, offering a novel layer of dynamic immune regulation. Here, we review the emerging field of mechanoimmunology, focusing on how mechanical cues at the scale of the tissue environment regulate immune cell behaviours to initiate, propagate and resolve the immune response.
Collapse
|
4
|
Xu W, Zhu J, Hu J, Xiao L. Engineering the biomechanical microenvironment of chondrocytes towards articular cartilage tissue engineering. Life Sci 2022; 309:121043. [DOI: 10.1016/j.lfs.2022.121043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/24/2022] [Accepted: 10/02/2022] [Indexed: 11/28/2022]
|
5
|
An H, Liu Y, Yi J, Xie H, Li C, Wang X, Chai W. Research progress of cartilage lubrication and biomimetic cartilage lubrication materials. Front Bioeng Biotechnol 2022; 10:1012653. [PMID: 36267457 PMCID: PMC9576862 DOI: 10.3389/fbioe.2022.1012653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Human joints move thousands of times a day. The articular cartilage plays a vital role in joints’ protection. If there is dysfunction in cartilage lubrication, cartilage cannot maintain its normal function. Eventually, the dysfunction may bring about osteoarthritis (OA). Extensive researches have shown that fluid film lubrication, boundary lubrication, and hydration lubrication are three discovered lubrication models at cartilage surface, and analyzing and simulating the mechanism of cartilage lubrication are fundamental to the treatment of OA. This essay concludes recent researches on the progress of cartilage lubrication and biomimetic cartilage, revealing the pathophysiology of cartilage lubrication and updating bio-inspired cartilage lubrication applications.
Collapse
Affiliation(s)
- Haoming An
- Senior Department of Orthopedics, Fourth Medical Center of People’s Liberation Army General Hospital, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
- National Clinical Research Center for Orthopaedics, Sports Medicine and Rehabilitation, Beijing, China
| | - Yubo Liu
- Senior Department of Orthopedics, Fourth Medical Center of People’s Liberation Army General Hospital, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
- National Clinical Research Center for Orthopaedics, Sports Medicine and Rehabilitation, Beijing, China
| | - Jiafeng Yi
- Senior Department of Orthopedics, Fourth Medical Center of People’s Liberation Army General Hospital, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
- National Clinical Research Center for Orthopaedics, Sports Medicine and Rehabilitation, Beijing, China
| | - Hongbin Xie
- Senior Department of Orthopedics, Fourth Medical Center of People’s Liberation Army General Hospital, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
- National Clinical Research Center for Orthopaedics, Sports Medicine and Rehabilitation, Beijing, China
| | - Chao Li
- Senior Department of Orthopedics, Fourth Medical Center of People’s Liberation Army General Hospital, Beijing, China
- National Clinical Research Center for Orthopaedics, Sports Medicine and Rehabilitation, Beijing, China
- *Correspondence: Chao Li, ; Xing Wang, ; Wei Chai,
| | - Xing Wang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- The Institute of Chemistry of the Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Chao Li, ; Xing Wang, ; Wei Chai,
| | - Wei Chai
- Senior Department of Orthopedics, Fourth Medical Center of People’s Liberation Army General Hospital, Beijing, China
- National Clinical Research Center for Orthopaedics, Sports Medicine and Rehabilitation, Beijing, China
- *Correspondence: Chao Li, ; Xing Wang, ; Wei Chai,
| |
Collapse
|
6
|
Pretorius J, Nemat N, Alsayed A, Mustafa A, Hammad Y, Shaju T, Nadeem S. Double-Blind Randomized Controlled Trial Comparing Platelet-Rich Plasma With Intra-Articular Corticosteroid Injections in Patients With Bilateral Knee Osteoarthritis. Cureus 2022; 14:e29744. [PMID: 36324362 PMCID: PMC9617571 DOI: 10.7759/cureus.29744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2022] [Indexed: 11/29/2022] Open
Abstract
Introduction Platelet-rich plasma (PRP) intra-articular injections have gained popularity and are suggested to be more effective and longer lasting than corticosteroid or visco-supplementation therapy. There are few studies comparing PRP with corticosteroid injections and none comparing PRP in patients with bilateral knee osteoarthritis with the patient acting as their own control. Methods We performed a double-blind randomized controlled trial including 29 patients (58 knees) with radiologically confirmed mild-to-moderate bilateral knee osteoarthritis. They were randomized to receive an intra-articular PRP injection into one knee and a methylprednisolone injection with a local anesthetic into the contralateral knee. The primary outcome was measured using the Western Ontario and McMaster Universities Arthritis Index (WOMAC) before the treatment and at six weeks, three months, and six months. Secondary outcome was measured pain with the visual numerical pain rating scale (VNS). Results Corticosteroids and PRP were both effective in improving pain, stiffness, and function at all time points, with maximal improvements at six weeks and three months. PRP scored slightly better than steroid injections at six months; nevertheless, there was no statistically significant difference between corticosteroids and PRP injections (F2,139=0.173, p=0.84). The secondary outcome also delivered the same result with improvement at all time points but no statistically significant difference (F2,139=0.168, p=0.85). Conclusions Both corticosteroids and PRP interventions are effective in improving pain, stiffness, and function in patients with bilateral knee osteoarthritis up to six months with no statistically significant difference between the two.
Collapse
|
7
|
Fludder CJ, Keil BG, Neave MJ. Case report: Morphological changes evident after manual therapy in two cases of late-diagnosed developmental dysplasia of the hip. Front Pediatr 2022; 10:1045812. [PMID: 36776679 PMCID: PMC9909744 DOI: 10.3389/fped.2022.1045812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/28/2022] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Late diagnosed Developmental Dysplasia of the Hip (DDH) is the detection of DDH after 3 months of age and is associated with significantly poorer outcomes than when diagnosed and managed early. Late diagnosed DDH has lower rates of success with bracing, higher rates of surgery and higher rates of complications, including avascular necrosis of the femoral head and early osteoarthritis of the hip. We describe two cases of late-diagnosed DDH which demonstrated changes in femoroacetabular joint morphology on radiographic interpretation after a 6-month trial period of manual therapy. CASE PRESENTATION Two cases (13 and 30 months of age) with late-diagnosed DDH presented to a private chiropractic clinic for conservative, non-bracing management. One case had unilateral DDH and the other bilateral DDH. A trial of manual therapy was utilized over a 6-month period. Both cases demonstrated changes to femoroacetabular morphology as well as improvements in gross motor activity and lower extremity muscle tone. CONCLUSION Manual therapy, as an adjunct or alternative to static bracing, may be of benefit in individuals with late-diagnosed DDH not responding to bracing, and prior to more invasive interventions. Additional cases of manual therapy-based management of this condition are required to inform the design of future trials to investigate this hypothesis.
Collapse
|
8
|
McDonough RC, Price C. Targeted Activation of GPCR-Mediated Ca 2+ Signaling Drives Enhanced Cartilage-Like Matrix Formation. Tissue Eng Part A 2021; 28:405-419. [PMID: 34693731 PMCID: PMC9271335 DOI: 10.1089/ten.tea.2021.0078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Intracellular calcium ([Ca2+]i) signaling is a critical regulator of chondrogenesis, chondrocyte differentiation, and cartilage development. Calcium (Ca2+) signaling is known to direct processes that govern chondrocyte gene expression, protein synthesis, cytoskeletal remodeling, and cell fate. Control of chondrocyte/chondroprogenitor Ca2+ signaling has been attempted through mechanical and/or pharmacological activation of endogenous Ca2+ signaling transducers; however, such approaches can lack specificity and/or precision regarding Ca2+ activation mechanisms. Synthetic signaling platforms permitting precise and selective Ca2+ signal transduction can improve dissection of the roles that [Ca2+]i signaling play in chondrocyte behavior. One such platform is the chemogenetic hM3Dq DREADD (designer receptor exclusively activated by designer drugs) that activates [Ca2+]i signaling via the Gαq-PLCβ-IP3-ER pathway upon clozapine N-oxide (CNO) administration. We previously demonstrated hM3Dq's ability to precisely and synthetically initiate robust [Ca2+]i transients and oscillatory [Ca2+]i signaling in chondrocyte-like ATDC5 cells. Here, we investigate the effects that long-term CNO stimulatory culture have on hM3Dq [Ca2+]i signaling dynamics, proliferation, and protein deposition in 2D ATDC5 cultures. Long-term culturing under repeated CNO stimulation modified the temporal dynamics of hM3Dq [Ca2+]i signaling, increased cell proliferation, and enhanced matrix production in a CNO dose- and frequency-dependent manner, and triggered the formation of cell condensations that developed aligned, anisotropic neotissue structures rich in cartilaginous proteoglycans and collagens, all in the absence of differentiation inducers. This study demonstrated Gαq-GPCR-mediated [Ca2+]i signaling involvement in chondroprogenitor proliferation and cartilage-like matrix production, and established hM3Dq as a powerful tool for elucidating the role of GPCR-mediated Ca2+ signaling in chondrogenesis and chondrocyte differentiation.
Collapse
Affiliation(s)
- Ryan C McDonough
- University of Delaware, 5972, Biomedical Engineering, 161 Colburn Lab, Newark, Delaware, United States, 19716-5600;
| | - Christopher Price
- University of Delaware, 5972, Biomedical Engineering, Newark, Delaware, United States;
| |
Collapse
|
9
|
Li Y, Yuan Z, Yang H, Zhong H, Peng W, Xie R. Recent Advances in Understanding the Role of Cartilage Lubrication in Osteoarthritis. Molecules 2021; 26:6122. [PMID: 34684706 PMCID: PMC8540456 DOI: 10.3390/molecules26206122] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/04/2021] [Accepted: 10/06/2021] [Indexed: 01/15/2023] Open
Abstract
The remarkable lubrication properties of normal articular cartilage play an essential role in daily life, providing almost frictionless movements of joints. Alterations of cartilage surface or degradation of biomacromolecules within synovial fluid increase the wear and tear of the cartilage and hence determining the onset of the most common joint disease, osteoarthritis (OA). The irreversible and progressive degradation of articular cartilage is the hallmark of OA. Considering the absence of effective options to treat OA, the mechanosensitivity of chondrocytes has captured attention. As the only embedded cells in cartilage, the metabolism of chondrocytes is essential in maintaining homeostasis of cartilage, which triggers motivations to understand what is behind the low friction of cartilage and develop biolubrication-based strategies to postpone or even possibly heal OA. This review firstly focuses on the mechanism of cartilage lubrication, particularly on boundary lubrication. Then the mechanotransduction (especially shear stress) of chondrocytes is discussed. The following summarizes the recent development of cartilage-inspired biolubricants to highlight the correlation between cartilage lubrication and OA. One might expect that the restoration of cartilage lubrication at the early stage of OA could potentially promote the regeneration of cartilage and reverse its pathology to cure OA.
Collapse
Affiliation(s)
- Yumei Li
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, China; (Y.L.); (H.Y.); (H.Z.)
- School of Basic Medicine, Gannan Medical University, Ganzhou 341000, China
| | - Zhongrun Yuan
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China;
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| | - Hui Yang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, China; (Y.L.); (H.Y.); (H.Z.)
- Jiangxi Province Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou 341000, China
- School of Medical Information Engineering, Gannan Medical University, Ganzhou 341000, China
| | - Haijian Zhong
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, China; (Y.L.); (H.Y.); (H.Z.)
- Jiangxi Province Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou 341000, China
- School of Medical Information Engineering, Gannan Medical University, Ganzhou 341000, China
| | - Weijie Peng
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, China; (Y.L.); (H.Y.); (H.Z.)
- Jiangxi Province Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou 341000, China
| | - Renjian Xie
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, China; (Y.L.); (H.Y.); (H.Z.)
- Jiangxi Province Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou 341000, China
- School of Medical Information Engineering, Gannan Medical University, Ganzhou 341000, China
| |
Collapse
|
10
|
Vernerey FJ, Lalitha Sridhar S, Muralidharan A, Bryant SJ. Mechanics of 3D Cell-Hydrogel Interactions: Experiments, Models, and Mechanisms. Chem Rev 2021; 121:11085-11148. [PMID: 34473466 DOI: 10.1021/acs.chemrev.1c00046] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hydrogels are highly water-swollen molecular networks that are ideal platforms to create tissue mimetics owing to their vast and tunable properties. As such, hydrogels are promising cell-delivery vehicles for applications in tissue engineering and have also emerged as an important base for ex vivo models to study healthy and pathophysiological events in a carefully controlled three-dimensional environment. Cells are readily encapsulated in hydrogels resulting in a plethora of biochemical and mechanical communication mechanisms, which recapitulates the natural cell and extracellular matrix interaction in tissues. These interactions are complex, with multiple events that are invariably coupled and spanning multiple length and time scales. To study and identify the underlying mechanisms involved, an integrated experimental and computational approach is ideally needed. This review discusses the state of our knowledge on cell-hydrogel interactions, with a focus on mechanics and transport, and in this context, highlights recent advancements in experiments, mathematical and computational modeling. The review begins with a background on the thermodynamics and physics fundamentals that govern hydrogel mechanics and transport. The review focuses on two main classes of hydrogels, described as semiflexible polymer networks that represent physically cross-linked fibrous hydrogels and flexible polymer networks representing the chemically cross-linked synthetic and natural hydrogels. In this review, we highlight five main cell-hydrogel interactions that involve key cellular functions related to communication, mechanosensing, migration, growth, and tissue deposition and elaboration. For each of these cellular functions, recent experiments and the most up to date modeling strategies are discussed and then followed by a summary of how to tune hydrogel properties to achieve a desired functional cellular outcome. We conclude with a summary linking these advancements and make the case for the need to integrate experiments and modeling to advance our fundamental understanding of cell-matrix interactions that will ultimately help identify new therapeutic approaches and enable successful tissue engineering.
Collapse
Affiliation(s)
- Franck J Vernerey
- Department of Mechanical Engineering, University of Colorado at Boulder, 1111 Engineering Drive, Boulder, Colorado 80309-0428, United States.,Materials Science and Engineering Program, University of Colorado at Boulder, 4001 Discovery Drive, Boulder, Colorado 80309-613, United States
| | - Shankar Lalitha Sridhar
- Department of Mechanical Engineering, University of Colorado at Boulder, 1111 Engineering Drive, Boulder, Colorado 80309-0428, United States
| | - Archish Muralidharan
- Materials Science and Engineering Program, University of Colorado at Boulder, 4001 Discovery Drive, Boulder, Colorado 80309-613, United States
| | - Stephanie J Bryant
- Materials Science and Engineering Program, University of Colorado at Boulder, 4001 Discovery Drive, Boulder, Colorado 80309-613, United States.,Department of Chemical and Biological Engineering, University of Colorado at Boulder, 3415 Colorado Avenue, Boulder, Colorado 80309-0596, United States.,BioFrontiers Institute, University of Colorado at Boulder, 3415 Colorado Avenue, Boulder, Colorado 80309-0596, United States
| |
Collapse
|
11
|
Ishizuka S, Yamamoto M, Hirouchi H, Yotsuya M, Ohkubo M, Sato M, Abe S. Muscle-Bone Relationship in Temporomandibular Joint Disorders after Partial Discectomy. J Oral Biosci 2021; 63:436-443. [PMID: 34555528 DOI: 10.1016/j.job.2021.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/07/2021] [Accepted: 09/10/2021] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Temporomandibular joint osteoarthritis (TMJ-OA) causes degenerative changes in TMJ tissues. The inter-tissue crosstalk that exacerbates illness and organic changes in bone secondary to TMJ-OA potentially affects the muscles; therefore, patients with a muscular disease might also suffer from bone disease. However, knowledge gaps exist concerning muscle pathology at the onset of TMJ-OA. In this study, we documented the pathogeneses of the bone and muscle at the onset of TMJ-OA using a mouse model. METHODS We performed a partial resection of the TMJ disk to establish a mouse model of TMJ-OA. After the onset of TMJ-OA, we performed various measurements at 8, 12, and 16 weeks post-surgery in the defined groups. RESULTS The volume of the mandibular head in the TMJ-OA group was significantly greater than that in the control group. The temporal muscles in the TMJ-OA group were significantly deformed compared with those in the control group; however, between-group comparisons did not reveal significant differences in the mandibular head or temporal muscles after surgery. Therefore, we hypothesized that the degree of mandibular head hypertrophy would alter the temporal muscles. A subsequent analysis of the correlation between the bone and muscle confirmed that the deformity of the temporal muscle increased with increasing hypertrophy of the mandibular head. Temporal and masseter muscle contact was observed in 25% of surgical groups. CONCLUSIONS This study demonstrates that TMJ-OA progressed when organic changes occurred in bones and muscles, supporting the symbiotic relationship between bones and muscles.
Collapse
Affiliation(s)
- Satoshi Ishizuka
- Department of Anatomy, Tokyo Dental College, 2-9-18 Kanda-misakicho, Tokyo, 101-0061, Japan; Tokyo Dental College Research Branding Project, 2-9-18 Kanda-misakicho, Tokyo, 101-0061, Japan.
| | - Masahito Yamamoto
- Department of Anatomy, Tokyo Dental College, 2-9-18 Kanda-misakicho, Tokyo, 101-0061, Japan; Tokyo Dental College Research Branding Project, 2-9-18 Kanda-misakicho, Tokyo, 101-0061, Japan.
| | - Hidetomo Hirouchi
- Department of Anatomy, Tokyo Dental College, 2-9-18 Kanda-misakicho, Tokyo, 101-0061, Japan.
| | - Mamoru Yotsuya
- Tokyo Dental College Research Branding Project, 2-9-18 Kanda-misakicho, Tokyo, 101-0061, Japan; Department of Fixed Prosthodontics, 2-9-18 Kanda-misakicho, Tokyo, 101-0061, Japan.
| | - Mai Ohkubo
- Tokyo Dental College Research Branding Project, 2-9-18 Kanda-misakicho, Tokyo, 101-0061, Japan; Department of Oral Health and Clinical Science, Division of Dysphagia Rehabilitation, 2-9-18 Kanda-misakicho, Tokyo, 101-0061, Japan.
| | - Masaki Sato
- Tokyo Dental College Research Branding Project, 2-9-18 Kanda-misakicho, Tokyo, 101-0061, Japan; Laboratory of Biology, 2-9-18 Kanda-misakicho, Tokyo, 101-0061, Japan.
| | - Shinichi Abe
- Department of Anatomy, Tokyo Dental College, 2-9-18 Kanda-misakicho, Tokyo, 101-0061, Japan; Tokyo Dental College Research Branding Project, 2-9-18 Kanda-misakicho, Tokyo, 101-0061, Japan.
| |
Collapse
|
12
|
Biointerface Materials for Cellular Adhesion: Recent Progress and Future Prospects. ACTUATORS 2020. [DOI: 10.3390/act9040137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
While many natural instances of adhesion between cells and biological macromolecules have been elucidated, understanding how to mimic these adhesion events remains to be a challenge. Discovering new biointerface materials that can provide an appropriate environment, and in some cases, also providing function similar to the body’s own extracellular matrix, would be highly beneficial to multiple existing applications in biomedical and biological engineering, and provide the necessary insight for the advancement of new technology. Such examples of current applications that would benefit include biosensors, high-throughput screening and tissue engineering. From a mechanical perspective, these biointerfaces would function as bioactuators that apply focal adhesion points onto cells, allowing them to move and migrate along a surface, making biointerfaces a very relevant application in the field of actuators. While it is evident that great strides in progress have been made in the area of synthetic biointerfaces, we must also acknowledge their current limitations as described in the literature, leading to an inability to completely function and dynamically respond like natural biointerfaces. In this review, we discuss the methods, materials and, possible applications of biointerface materials used in the current literature, and the trends for future research in this area.
Collapse
|
13
|
Gamez C, Schneider-Wald B, Bieback K, Schuette A, Büttner S, Hafner M, Gretz N, Schwarz ML. Compression Bioreactor-Based Mechanical Loading Induces Mobilization of Human Bone Marrow-Derived Mesenchymal Stromal Cells into Collagen Scaffolds In Vitro. Int J Mol Sci 2020; 21:ijms21218249. [PMID: 33158020 PMCID: PMC7672606 DOI: 10.3390/ijms21218249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/30/2020] [Accepted: 10/31/2020] [Indexed: 11/16/2022] Open
Abstract
Articular cartilage (AC) is an avascular tissue composed of scattered chondrocytes embedded in a dense extracellular matrix, in which nourishment takes place via the synovial fluid at the surface. AC has a limited intrinsic healing capacity, and thus mainly surgical techniques have been used to relieve pain and improve function. Approaches to promote regeneration remain challenging. The microfracture (MF) approach targets the bone marrow (BM) as a source of factors and progenitor cells to heal chondral defects in situ by opening small holes in the subchondral bone. However, the original function of AC is not obtained yet. We hypothesize that mechanical stimulation can mobilize mesenchymal stromal cells (MSCs) from BM reservoirs upon MF of the subchondral bone. Thus, the aim of this study was to compare the counts of mobilized human BM-MSCs (hBM-MSCs) in alginate-laminin (alginate-Ln) or collagen-I (col-I) scaffolds upon intermittent mechanical loading. The mechanical set up within an established bioreactor consisted of 10% strain, 0.3 Hz, breaks of 10 s every 180 cycles for 24 h. Contrary to previous findings using porcine MSCs, no significant cell count was found for hBM-MSCs into alginate-Ln scaffolds upon mechanical stimulation (8 ± 5 viable cells/mm3 for loaded and 4 ± 2 viable cells/mm3 for unloaded alginate-Ln scaffolds). However, intermittent mechanical stimulation induced the mobilization of hBM-MSCs into col-I scaffolds 10-fold compared to the unloaded col-I controls (245 ± 42 viable cells/mm3 vs. 22 ± 6 viable cells/mm3, respectively; p-value < 0.0001). Cells that mobilized into the scaffolds by mechanical loading did not show morphological changes. This study confirmed that hBM-MSCs can be mobilized in vitro from a reservoir toward col-I but not alginate-Ln scaffolds upon intermittent mechanical loading, against gravity.
Collapse
Affiliation(s)
- Carolina Gamez
- Section for Experimental Orthopaedics and Trauma Surgery, Orthopaedics and Trauma Surgery Centre, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (C.G.); (B.S.-W.); (A.S.)
| | - Barbara Schneider-Wald
- Section for Experimental Orthopaedics and Trauma Surgery, Orthopaedics and Trauma Surgery Centre, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (C.G.); (B.S.-W.); (A.S.)
| | - Karen Bieback
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Service Baden Württemberg—Hessen, 68167 Mannheim, Germany;
| | - Andy Schuette
- Section for Experimental Orthopaedics and Trauma Surgery, Orthopaedics and Trauma Surgery Centre, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (C.G.); (B.S.-W.); (A.S.)
| | - Sylvia Büttner
- Department for Statistical Analysis, Faculty of Medicine Mannheim, Heidelberg University, 68167 Mannheim, Germany;
| | - Mathias Hafner
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, 68163 Mannheim, Germany;
- Institute of Medical Technology, Heidelberg University & Mannheim University of Applied Sciences, 68163 Mannheim, Germany
| | - Norbert Gretz
- Medical Research Centre, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany;
| | - Markus L. Schwarz
- Section for Experimental Orthopaedics and Trauma Surgery, Orthopaedics and Trauma Surgery Centre, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (C.G.); (B.S.-W.); (A.S.)
- Correspondence: ; Tel.: +49-621-383-4569
| |
Collapse
|
14
|
Freire MRDM, da Silva PMC, Azevedo AR, Silva DS, da Silva RBB, Cardoso JC. Comparative Effect between Infiltration of Platelet-rich Plasma and the Use of Corticosteroids in the Treatment of Knee Osteoarthritis: A Prospective and Randomized Clinical Trial. Rev Bras Ortop 2020; 55:551-556. [PMID: 33093718 PMCID: PMC7575359 DOI: 10.1016/j.rbo.2018.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 01/04/2018] [Indexed: 11/16/2022] Open
Abstract
Objectives This study aimed to analyze the efficacy of platelet-rich plasma obtained from the peripheral, autologous blood of the patients in pain complaints reduction and functional improvement of knee osteoarthritis compared with the standard treatment with injectable corticosteroid, such as triamcinolone. Methods The patients were followed-up clinically at the preinfiltrative visit, with quantitative evaluation using the Knee Society Score (KSS), the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) score, and the Kellgren and Lawrence scales. In addition, they were reevaluated with the same scales after 1 month and 6 months of intervention with 2.5 mL of triamcinolone acetate or 5 mL of platelet-rich plasma. The study was performed on 50 patients with knee osteoarthritis treated at the Medical Specialty Center and randomly divided into equivalent samples for each therapy. Results The present study verified the reduction of pain scores, such as the WOMAC score, and elevations of functional scales, such as the KSS, evidenced in 180 days when using platelet-rich plasma, a therapy that uses the autologous blood of the patient and has fewer side effects. Conclusion Although both platelet-rich plasma and corticosteroid therapies have been shown to be effective in the reduction pain complaints and functional recovery, there was a statistically significant difference between them at 180 days. According to the results obtained, platelet-rich plasma presented longer-lasting effects within 180 days in the treatment of knee osteoarthritis.
Collapse
Affiliation(s)
| | | | - Arthur Rangel Azevedo
- Instituto de Assistência Médica ao Servidor Público Estadual de São Paulo (Iamspe), São Paulo, SP, Brazil
| | | | | | | |
Collapse
|
15
|
Shegaf A, Speirs A. Cartilage Biomechanical Response Differs Under Physiological Biaxial Loads and Uniaxial Cyclic Compression. J Biomech Eng 2020; 142:054501. [PMID: 31825078 DOI: 10.1115/1.4045661] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Indexed: 07/25/2024]
Abstract
The main function of articular cartilage is to distribute loads and provide low friction for the opposing surfaces in synovial joints. Biphasic lubrication provided by high fluid load support due to relative motion of the contact surfaces has been widely accepted as the main lubrication mode in diarthrodial joints. However, assessment of chondrocyte response to mechanical loads typically employed nonphysiological uniaxial loads with static contact area. This study aimed to introduce a more physiologically relevant loading protocol for in vitro mechanobiological testing of cartilage explants. Finite element analysis was conducted to examine the biomechanical response of cartilage to two different loading regimes, biaxial loading, that permits migrating contact area, and unconfined uniaxial cyclic compression, traditionally used in mechanobiological experiments. Results predicted in this study showed that continuous tissue rehydration provided by relative surface motion maintained constant fluid pressure and tissue strains through the simulation. On the contrary, due to rapid tissue consolidation predicted in cyclic compression simulation, fluid pressure and transverse strain were reduced by 19% and 26%, respectively. Furthermore, relative surface motion simulation resulted in depth-dependent distribution of fluid pressure and tissue strains while unconfined uniaxial cyclic compression produced nearly uniform fluid pressure through the depth but higher at the center of the sample. Based on the results obtained from this study and since sliding contact occurs in vivo, this physiological loading mode should be considered in assessing biomechanical and mechanobiological cartilage behavior.
Collapse
Affiliation(s)
- Ali Shegaf
- Department of Mechanical and Aerospace Engineering, Carleton University, 1125 Colonel By Drive, MC, Rm. 3037, Ottawa, ON K1S 5B6, Canada
| | - Andrew Speirs
- Department of Mechanical and Aerospace Engineering, Carleton University, 1125 Colonel By Drive, CB, Rm. 3203, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
16
|
Biotribology of Synovial Cartilage: A New Method for Visualization of Lubricating Film and Simultaneous Measurement of the Friction Coefficient. MATERIALS 2020; 13:ma13092075. [PMID: 32366009 PMCID: PMC7254223 DOI: 10.3390/ma13092075] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/23/2020] [Accepted: 04/27/2020] [Indexed: 11/23/2022]
Abstract
A healthy natural synovial joint is very important for painless active movement of the natural musculoskeletal system. The right functioning of natural synovial joints ensures well lubricated contact surfaces with a very low friction coefficient and wear of cartilage tissue. The present paper deals with a new method for visualization of lubricating film with simultaneous measurements of the friction coefficient. This can contribute to better understanding of lubricating film formation in a natural synovial joint. A newly developed device, a reciprocating tribometer, is used to allow for simultaneous measurement of friction forces with contact visualization by fluorescence microscopy. The software allowing for snaps processing and subsequent evaluation of fluorescence records is developed. The evaluation software and the follow-up evaluation procedure are also described. The experiments with cartilage samples and model synovial fluid are carried out, and the new software is applied to provide their evaluation. The primary results explaining a connection between lubrication and friction are presented. The results show a more significant impact of albumin proteins on the lubrication process, whereas its clusters create a more stable lubrication layer. A decreasing trend of protein cluster count, which corresponds to a decrease in the thickness of the lubrication film, is found in all experiments. The results highlight a deeper connection between the cartilage friction and the lubrication film formation, which allows for better understanding of the cartilage lubrication mechanism.
Collapse
|
17
|
Bonnevie ED, Bonassar LJ. A Century of Cartilage Tribology Research Is Informing Lubrication Therapies. J Biomech Eng 2020; 142:031004. [PMID: 31956901 DOI: 10.1115/1.4046045] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Indexed: 07/25/2024]
Abstract
Articular cartilage is one of the most unique materials found in nature. This tissue's ability to provide low friction and low wear over decades of constant use is not surpassed, as of yet, by any synthetic materials. Lubrication of the body's joints is essential to mammalian locomotion, but breakdown and degeneration of cartilage is the leading cause of severe disability in the industrialized world. In this paper, we review how theories of cartilage lubrication have evolved over the past decades and connect how theories of cartilage lubrication have been translated to lubrication-based therapies. Here, we call upon these historical perspectives and highlight the open questions in cartilage lubrication research. Additionally, these open questions within the field's understanding of natural lubrication mechanisms reveal strategic directions for lubrication therapy.
Collapse
Affiliation(s)
- Edward D Bonnevie
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, 151 Weill Hall, 526 Campus Road, Ithaca, NY 14850
| | - Lawrence J Bonassar
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, 151 Weill Hall, 526 Campus Road, Ithaca, NY 14850; Meinig School of Biomedical Engineering, Cornell University, 151 Weill Hall, 526 Campus Road, Ithaca, NY 14850
| |
Collapse
|
18
|
Graham BT, Moore AC, Burris DL, Price C. Detrimental effects of long sedentary bouts on the biomechanical response of cartilage to sliding. Connect Tissue Res 2020; 61:375-388. [PMID: 31910694 DOI: 10.1080/03008207.2019.1673382] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Purpose/Aim: Epidemiological evidence suggests, contrary to popular mythos, that increased exercise/joint activity does not place articular cartilage at increased risk of disease, but instead promotes joint health. One explanation for this might be activity-induced cartilage rehydration; where joint articulation drives restoration of tissue hydration, thickness, and dependent tribomechanical outcomes (e.g., load support, stiffness, and lubricity) lost to joint loading. However, there have been no studies investigating how patterning of intermittent articulation influences the hydration and biomechanical functions of cartilage.Materials and Methods: Here we leveraged the convergent stationary contact area (cSCA) testing configuration and its unique ability to drive tribological rehydration, to elucidate how intermittency of activity affects the biomechanical functions of bovine stifle cartilage under well-controlled sliding conditions that have been designed to model a typical "day" of human joint activity.Results: For a fixed volume of "daily" activity (30 min) and sedentary time (60 min), breaking up intermittent activity into longer and less-frequent bouts (corresponding to longer continuous sedentary periods) resulted in the exposure of articular cartilage to markedly greater strains, losses of interstitial pressure, and friction coefficients.Conclusions: These results demonstrated that the regularity of ex vivo activity regimens, specifically the duration of sedentary bouts, had a dominant effect on the biomechanical functions of articular cartilage. In more practical terms, the results suggest that brief but regular movement patterns (e.g., every hour) may be biomechanically preferred to long and infrequent movement patterns (e.g., a long walk after a sedentary day) when controlling for daily activity volume (e.g., 30 min).
Collapse
Affiliation(s)
- Brian T Graham
- Department of Mechanical Engineering, University of Delaware, Newark, DE, USA
| | - Axel C Moore
- Department of Biomedical Engineering, University of Delaware, Newark, DE, USA
| | - David L Burris
- Department of Mechanical Engineering, University of Delaware, Newark, DE, USA.,Department of Biomedical Engineering, University of Delaware, Newark, DE, USA
| | - Christopher Price
- Department of Mechanical Engineering, University of Delaware, Newark, DE, USA.,Department of Biomedical Engineering, University of Delaware, Newark, DE, USA
| |
Collapse
|
19
|
Lima MVV, Freire ADO, Sousa ELF, Vale AAM, Lopes AJO, Vasconcelos CC, Lima-Aragão MVV, Serra HO, Liberio RNMG, dos Santos APSDA, Silva GEB, da Rocha CQ, Moreira Lima FCV, Cartágenes MDSDS, Garcia JBS. Therapeutic Use of Scoparia dulcis Reduces the Progression of Experimental Osteoarthritis. Molecules 2019; 24:molecules24193474. [PMID: 31557835 PMCID: PMC6803828 DOI: 10.3390/molecules24193474] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/07/2019] [Accepted: 09/10/2019] [Indexed: 11/20/2022] Open
Abstract
Pain is recognized as one of the main symptoms in knee osteoarthritis and is the main reason why patients seek medical attention. Scoparia dulcis has been popularly used to relieve discomfort caused by various painful conditions. The objective of the study is to evaluate the analgesic and anti-inflammatory effect of the crude extract of S. dulcis, in an experimental model of osteoarthritis. The experiment was performed with Wistar rats divided into 4 groups with 5 animals each: healthy, saline, crude extract, and meloxicam groups. Knee osteoarthritis was induced by intra-articular injection of sodium mono-iodoacetate. First, clinical parameters of pain were assessed at days 0, 5, 10, 15, and 20 after induction. Second, the potential cyclooxygenase inhibition was evaluated, and the cytokines of the synovial fluid were quantified. An in silico test and Molecular Docking tests were performed. A histopathological evaluation was made on articular cartilage with safranin O staining. The results showed that a 15-day treatment with crude extract reduced edema, spontaneous pain, peripheral nociceptive activity, and proinflammatory cytokines in the synovial fluid. The highest inhibition of cyclooxygenase 2 in the crude extract occurred at 50 µg/mL. The crude extract of S. dulcis presents therapeutic potential for the treatment of osteoarthritis due to its anti-inflammatory and anti-nociceptive action.
Collapse
Affiliation(s)
- Marcus Vinícius Viégas Lima
- Centro de Ciências Biológicas e da Saúde, Universidade Federal do Maranhão, São Luís 65080-805, Brazil; (A.d.O.F.); (E.L.F.S.); (A.A.M.V.); (A.J.O.L.); (C.C.V.); (R.N.M.G.L.); (A.P.S.d.A.d.S.); (G.E.B.S.)
- Universidade Ceuma, São Luís 65075-120, Brazil
- Correspondence: (M.V.V.L.); (M.d.S.d.S.C.); (J.B.S.G.); Tel.: +55-(98)-3272-9527 (M.V.V.L.)
| | - Abner de Oliveira Freire
- Centro de Ciências Biológicas e da Saúde, Universidade Federal do Maranhão, São Luís 65080-805, Brazil; (A.d.O.F.); (E.L.F.S.); (A.A.M.V.); (A.J.O.L.); (C.C.V.); (R.N.M.G.L.); (A.P.S.d.A.d.S.); (G.E.B.S.)
| | - Emerson Lucas Frazão Sousa
- Centro de Ciências Biológicas e da Saúde, Universidade Federal do Maranhão, São Luís 65080-805, Brazil; (A.d.O.F.); (E.L.F.S.); (A.A.M.V.); (A.J.O.L.); (C.C.V.); (R.N.M.G.L.); (A.P.S.d.A.d.S.); (G.E.B.S.)
| | - André Alvares Marques Vale
- Centro de Ciências Biológicas e da Saúde, Universidade Federal do Maranhão, São Luís 65080-805, Brazil; (A.d.O.F.); (E.L.F.S.); (A.A.M.V.); (A.J.O.L.); (C.C.V.); (R.N.M.G.L.); (A.P.S.d.A.d.S.); (G.E.B.S.)
| | - Alberto Jorge Oliveira Lopes
- Centro de Ciências Biológicas e da Saúde, Universidade Federal do Maranhão, São Luís 65080-805, Brazil; (A.d.O.F.); (E.L.F.S.); (A.A.M.V.); (A.J.O.L.); (C.C.V.); (R.N.M.G.L.); (A.P.S.d.A.d.S.); (G.E.B.S.)
- Universidade Federal do Maranhão, Coordenação de Ciências Naturais, Campus Bacabal, São Luís 65080-80, Brazil
| | - Cleydlenne Costa Vasconcelos
- Centro de Ciências Biológicas e da Saúde, Universidade Federal do Maranhão, São Luís 65080-805, Brazil; (A.d.O.F.); (E.L.F.S.); (A.A.M.V.); (A.J.O.L.); (C.C.V.); (R.N.M.G.L.); (A.P.S.d.A.d.S.); (G.E.B.S.)
| | - Mônica Virginia Viégas Lima-Aragão
- Centro de Ciências Biológicas e da Saúde, Universidade Federal do Maranhão, São Luís 65080-805, Brazil; (A.d.O.F.); (E.L.F.S.); (A.A.M.V.); (A.J.O.L.); (C.C.V.); (R.N.M.G.L.); (A.P.S.d.A.d.S.); (G.E.B.S.)
| | | | - Rosane Nassar Meireles Guerra Liberio
- Centro de Ciências Biológicas e da Saúde, Universidade Federal do Maranhão, São Luís 65080-805, Brazil; (A.d.O.F.); (E.L.F.S.); (A.A.M.V.); (A.J.O.L.); (C.C.V.); (R.N.M.G.L.); (A.P.S.d.A.d.S.); (G.E.B.S.)
| | - Ana Paula Silva de Azevedo dos Santos
- Centro de Ciências Biológicas e da Saúde, Universidade Federal do Maranhão, São Luís 65080-805, Brazil; (A.d.O.F.); (E.L.F.S.); (A.A.M.V.); (A.J.O.L.); (C.C.V.); (R.N.M.G.L.); (A.P.S.d.A.d.S.); (G.E.B.S.)
| | - Gyl Eanes Barros Silva
- Centro de Ciências Biológicas e da Saúde, Universidade Federal do Maranhão, São Luís 65080-805, Brazil; (A.d.O.F.); (E.L.F.S.); (A.A.M.V.); (A.J.O.L.); (C.C.V.); (R.N.M.G.L.); (A.P.S.d.A.d.S.); (G.E.B.S.)
- Hospital Universitário Presidente Dutra, São Luís 65020-070, Brazil;
| | | | | | - Maria do Socorro de Sousa Cartágenes
- Centro de Ciências Biológicas e da Saúde, Universidade Federal do Maranhão, São Luís 65080-805, Brazil; (A.d.O.F.); (E.L.F.S.); (A.A.M.V.); (A.J.O.L.); (C.C.V.); (R.N.M.G.L.); (A.P.S.d.A.d.S.); (G.E.B.S.)
- Correspondence: (M.V.V.L.); (M.d.S.d.S.C.); (J.B.S.G.); Tel.: +55-(98)-3272-9527 (M.V.V.L.)
| | - João Batista Santos Garcia
- Centro de Ciências Biológicas e da Saúde, Universidade Federal do Maranhão, São Luís 65080-805, Brazil; (A.d.O.F.); (E.L.F.S.); (A.A.M.V.); (A.J.O.L.); (C.C.V.); (R.N.M.G.L.); (A.P.S.d.A.d.S.); (G.E.B.S.)
- Correspondence: (M.V.V.L.); (M.d.S.d.S.C.); (J.B.S.G.); Tel.: +55-(98)-3272-9527 (M.V.V.L.)
| |
Collapse
|
20
|
Sharifi N, Gharravi AM. Shear bioreactors stimulating chondrocyte regeneration, a systematic review. Inflamm Regen 2019; 39:16. [PMID: 31410225 PMCID: PMC6686520 DOI: 10.1186/s41232-019-0105-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 07/03/2019] [Indexed: 01/02/2023] Open
Abstract
It is commonly accepted that the mechanical stimuli are important factors in the maintenance of normal structure and function of the articular cartilage. Despite extensive efforts, the cellular mechanisms underlying the responses of articular chondrocytes to mechanical stresses are not well understood. In the present review, different types of shear bioreactor and potential mechanisms that mediate and regulate the effect of shear on chondrocyte are discussed. For this review, the search of the literature was done in the PubMed, Scopus, Web of sciences databases to identify papers reporting data about shear on chondrocyte. Keywords “shear, chondrocyte, cartilage, bioreactor” were used. Studies published until the first of March 2018 were considered in this paper. The review focused on the experimental studies conducted the effect of shear stress on cartilage tissue in vivo and in vitro. In this review, both experimental studies referring to human and animal tissues were taken into account. The following articles were excluded: reviews, meta-analysis, duplicate records, letters, and papers that did not add significant information. Mechanism of shear stress on chondrocyte, briefly can be hypothesized as (1) altered expression of aggrecan and collagen type II, (2) altered cartilage oligomeric matrix protein (COMP) serum levels, consequently, organizing the arrangement binding of glycosaminoglycans, integrins, and collagen, (3) induction of apoptosis signals, (4) altered expression of integrin.
Collapse
Affiliation(s)
- Negar Sharifi
- 1Student Research Committee, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Anneh Mohammad Gharravi
- 2Tissue Engineering and Stem Cells Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| |
Collapse
|
21
|
Graceffa V, Vinatier C, Guicheux J, Stoddart M, Alini M, Zeugolis DI. Chasing Chimeras - The elusive stable chondrogenic phenotype. Biomaterials 2018; 192:199-225. [PMID: 30453216 DOI: 10.1016/j.biomaterials.2018.11.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 11/02/2018] [Accepted: 11/09/2018] [Indexed: 12/27/2022]
Abstract
The choice of the best-suited cell population for the regeneration of damaged or diseased cartilage depends on the effectiveness of culture conditions (e.g. media supplements, three-dimensional scaffolds, mechanical stimulation, oxygen tension, co-culture systems) to induce stable chondrogenic phenotype. Herein, advances and shortfalls in in vitro, preclinical and clinical setting of various in vitro microenvironment modulators on maintaining chondrocyte phenotype or directing stem cells towards chondrogenic lineage are critically discussed. Chondrocytes possess low isolation efficiency, limited proliferative potential and rapid phenotypic drift in culture. Mesenchymal stem cells are relatively readily available, possess high proliferation potential, exhibit great chondrogenic differentiation capacity, but they tend to acquire a hypertrophic phenotype when exposed to chondrogenic stimuli. Embryonic and induced pluripotent stem cells, despite their promising in vitro and preclinical data, are still under-investigated. Although a stable chondrogenic phenotype remains elusive, recent advances in in vitro microenvironment modulators are likely to develop clinically- and commercially-relevant therapies in the years to come.
Collapse
Affiliation(s)
- Valeria Graceffa
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Claire Vinatier
- INSERMU1229, Regenerative Medicine and Skeleton (RMeS), University of Nantes, UFR Odontologie & CHU Nantes, PHU 4 OTONN, 44042 Nantes, France
| | - Jerome Guicheux
- INSERMU1229, Regenerative Medicine and Skeleton (RMeS), University of Nantes, UFR Odontologie & CHU Nantes, PHU 4 OTONN, 44042 Nantes, France
| | - Martin Stoddart
- AO Research Institute, Clavadelerstrasse 8, 7270 Davos, Switzerland
| | - Mauro Alini
- AO Research Institute, Clavadelerstrasse 8, 7270 Davos, Switzerland
| | - Dimitrios I Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland.
| |
Collapse
|
22
|
Rodrigues TA, Freire AO, Bonfim BF, Cartágenes MSS, Garcia JBS. Strontium ranelate as a possible disease-modifying osteoarthritis drug: a systematic review. Braz J Med Biol Res 2018; 51:e7440. [PMID: 29924137 PMCID: PMC6040865 DOI: 10.1590/1414-431x20187440] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 05/02/2018] [Indexed: 12/20/2022] Open
Abstract
Considering that osteoarthritis (OA) is the most prevalent joint disease worldwide, multiple pharmacological treatments have been proposed to alter the articular structure with potential benefit in the progression of the disease. The so-called disease-modifying OA drugs have been frequently investigated but conclusive findings are rare. Strontium ranelate (SrRan) is a drug usually prescribed to treat osteoporosis, with proven effects in decreasing the risk of fractures and possible effect in reducing the progression of OA. The objective of this review was to demonstrate the current panorama of knowledge on the use of SrRan in clinical and experimental models, clarifying its mechanisms of action and describing possible anti-nociceptive and anti-inflammatory effects. The systematic review was based on the PRISMA statement and included articles that are indexed in scientific databases. Fifteen studies were included: seven pre-clinical and eight clinical studies. Despite the limited number of studies, the results suggest a positive effect of SrRan in patients with OA, through changes in functional capacity and reduction of progression of morphological parameters and joint degradation, with moderate quality of evidence for those clinical outcomes. Novel studies are necessary to elucidate the molecular targets of SrRan, focusing on anti-inflammatory effects and histological changes promoted by SrRan, which seemed to reduce the progression of OA in the experimental and clinical studies.
Collapse
Affiliation(s)
- T A Rodrigues
- Centro de Ciências Biológicas e da Saúde, Universidade Federal do Maranhão, São Luís, MA, Brasil
| | - A O Freire
- Centro de Ciências Biológicas e da Saúde, Universidade Federal do Maranhão, São Luís, MA, Brasil
| | - B F Bonfim
- Centro de Ciências Biológicas e da Saúde, Universidade Federal do Maranhão, São Luís, MA, Brasil
| | - M S S Cartágenes
- Centro de Ciências Biológicas e da Saúde, Universidade Federal do Maranhão, São Luís, MA, Brasil
| | - J B S Garcia
- Centro de Ciências Biológicas e da Saúde, Universidade Federal do Maranhão, São Luís, MA, Brasil
| |
Collapse
|
23
|
Polo-Corrales L, Ramirez-Vick J, Feria-Diaz JJ. Recent Advances in Biophysical stimulation of MSC for bone regeneration. ACTA ACUST UNITED AC 2018. [DOI: 10.17485/ijst/2018/v11i15/121405] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
24
|
A novel bioreactor system for biaxial mechanical loading enhances the properties of tissue-engineered human cartilage. Sci Rep 2017; 7:16997. [PMID: 29208903 PMCID: PMC5717235 DOI: 10.1038/s41598-017-16523-x] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 11/13/2017] [Indexed: 11/15/2022] Open
Abstract
The ex vivo engineering of autologous cartilage tissues has the potential to revolutionize the clinical management of joint disorders. Yet, high manufacturing costs and variable outcomes associated with tissue-engineered implants are still limiting their application. To improve clinical outcomes and facilitate a wider use of engineered tissues, automated bioreactor systems capable of enhancing and monitoring neotissues are required. Here, we developed an innovative system capable of applying precise uni- or biaxial mechanical stimulation to developing cartilage neotissues in a tightly controlled and automated fashion. The bioreactor allows for simple control over the loading parameters with a user-friendly graphical interface and is equipped with a load cell for monitoring tissue maturation. Applying our bioreactor, we demonstrate that human articular chondrocytes encapsulated in hydrogels composed of gelatin methacryloyl (GelMA) and hyaluronic acid methacrylate (HAMA) respond to uni- and biaxial mechanical stimulation by upregulation of hyaline cartilage-specific marker genes. We further demonstrate that intermittent biaxial mechanostimulation enhances accumulation of hyaline cartilage-specific extracellular matrix. Our study underlines the stimulatory effects of mechanical loading on the biosynthetic activity of human chondrocytes in engineered constructs and the need for easy-to-use, automated bioreactor systems in cartilage tissue engineering.
Collapse
|
25
|
Zhang M, Yang H, Lu L, Wan X, Zhang J, Zhang H, Liu X, Huang X, Xiao G, Wang M. Matrix replenishing by BMSCs is beneficial for osteoarthritic temporomandibular joint cartilage. Osteoarthritis Cartilage 2017; 25:1551-1562. [PMID: 28532603 DOI: 10.1016/j.joca.2017.05.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 04/24/2017] [Accepted: 05/03/2017] [Indexed: 02/02/2023]
Abstract
OBJECTIVES The present goal was to explore whether matrix replenishment is the primary requirement for osteoarthritic (OA) cartilage. METHODS Cells isolated from the superficial and deep zone cartilage of a pig temporomandibular joint (TMJ) were exposed to fluid flow shear stress (FFSS). Differences in matrix production and cellular differentiation were detected. Unilateral anterior crossbite (UAC) was applied to C57BL/6J female mice. Green fluorescent protein-labeled exogenous bone marrow stromal cells (GFP-BMSCs) were injected weekly into TMJs, starting from 3 weeks of UAC stimulation and continuing for 4-, 8- and 12-weeks. Another GFP-BMSCs injection UAC group stopped receiving injections for 4-weeks after 8-weeks of injections. Assessments were focused on morphological alterations in UAC mouse TMJ cartilage, the expression levels of DAP3, an anoikis marker, CD163, a scavenger receptor family member, and ki67, a proliferation indicator. RESULTS FFSS down-regulated type-II collagen expression but stimulated terminal differentiation in cells isolated from deep zone cartilage. It down-regulated aggrecan expression but up-regulated type I collagen in cells isolated from both superficial and deep zones. UAC caused matrix loss and anoikis and enhanced scavenging activity in deep zone chondrocytes without affecting cell proliferation. Superficial fibrillation was obvious in the late stage. Weekly injections of BMSCs largely restored these changes. The implanted BMSCs expressed a high level of CD163 protein but did not show remarkable cell proliferation. Terminating the supply of exogenous BMSCs reversed the restorative effects. CONCLUSIONS Scavenging the degraded matrix and replenishing the fibrosis-developmental matrix are the primary requirements for the repair of OA cartilage.
Collapse
Affiliation(s)
- M Zhang
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, The Fourth Military Medical University, 145 Changle West Road, Xi'an, China
| | - H Yang
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, The Fourth Military Medical University, 145 Changle West Road, Xi'an, China
| | - L Lu
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, The Fourth Military Medical University, 145 Changle West Road, Xi'an, China
| | - X Wan
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, The Fourth Military Medical University, 145 Changle West Road, Xi'an, China
| | - J Zhang
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, The Fourth Military Medical University, 145 Changle West Road, Xi'an, China
| | - H Zhang
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, The Fourth Military Medical University, 145 Changle West Road, Xi'an, China
| | - X Liu
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, The Fourth Military Medical University, 145 Changle West Road, Xi'an, China
| | - X Huang
- Department of Biology, The Fourth Military Medical University, 17 Changle West Road, Xi'an, China
| | - G Xiao
- Department of Biology, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, China; Department of Biochemistry, Rush University Medical Center, Chicago, IL 60612, USA
| | - M Wang
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, The Fourth Military Medical University, 145 Changle West Road, Xi'an, China.
| |
Collapse
|
26
|
Salinas D, Minor CA, Carlson RP, McCutchen CN, Mumey BM, June RK. Combining Targeted Metabolomic Data with a Model of Glucose Metabolism: Toward Progress in Chondrocyte Mechanotransduction. PLoS One 2017; 12:e0168326. [PMID: 28056047 PMCID: PMC5215894 DOI: 10.1371/journal.pone.0168326] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 11/30/2016] [Indexed: 11/19/2022] Open
Abstract
Osteoarthritis is a debilitating disease likely involving altered metabolism of the chondrocytes in articular cartilage. Chondrocytes can respond metabolically to mechanical loads via cellular mechanotransduction, and metabolic changes are significant because they produce the precursors to the tissue matrix necessary for cartilage health. However, a comprehensive understanding of how energy metabolism changes with loading remains elusive. To improve our understanding of chondrocyte mechanotransduction, we developed a computational model to calculate the rate of reactions (i.e. flux) across multiple components of central energy metabolism based on experimental data. We calculated average reaction flux profiles of central metabolism for SW1353 human chondrocytes subjected to dynamic compression for 30 minutes. The profiles were obtained solving a bounded variable linear least squares problem, representing the stoichiometry of human central energy metabolism. Compression synchronized chondrocyte energy metabolism. These data are consistent with dynamic compression inducing early time changes in central energy metabolism geared towards more active protein synthesis. Furthermore, this analysis demonstrates the utility of combining targeted metabolomic data with a computational model to enable rapid analysis of cellular energy utilization.
Collapse
Affiliation(s)
- Daniel Salinas
- Computer Science, Montana State University, Bozeman, MT United States of America
| | - Cody A. Minor
- Mathematics, Montana State University, Bozeman, MT United States of America
| | - Ross P. Carlson
- Chemical & Biological Engineering, Montana State University, Bozeman, MT United States of America
| | - Carley N. McCutchen
- Mechanical & Industrial Engineering, Montana State University, Bozeman, MT United States of America
| | - Brendan M. Mumey
- Computer Science, Montana State University, Bozeman, MT United States of America
| | - Ronald K. June
- Mechanical & Industrial Engineering, Montana State University, Bozeman, MT United States of America
- Department of Cell Biology & Neurosciences, Montana State University, Bozeman, MT United States of America
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, WA United States of America
- * E-mail:
| |
Collapse
|
27
|
Trevino RL, Stoia J, Laurent MP, Pacione CA, Chubinskaya S, Wimmer MA. ESTABLISHING A LIVE CARTILAGE-ON-CARTILAGE INTERFACE FOR TRIBOLOGICAL TESTING. ACTA ACUST UNITED AC 2016; 9:1-11. [PMID: 29242820 DOI: 10.1016/j.biotri.2016.11.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Mechano-biochemical wear encompasses the tribological interplay between biological and mechanical mechanisms responsible for cartilage wear and degradation. The aim of this study was to develop and start validating a novel tribological testing system, which better resembles the natural joint environment through incorporating a live cartilage-on-cartilage articulating interface, joint specific kinematics, and the application of controlled mechanical stimuli for the measurement of biological responses in order to study the mechano-biochemical wear of cartilage. The study entailed two parts. In Part 1, the novel testing rig was used to compare two bearing systems: (a) cartilage articulating against cartilage (CoC) and (b) metal articulating against cartilage (MoC). The clinically relevant MoC, which is also a common tribological interface for evaluating cartilage wear, should produce more wear to agree with clinical observations. In Part II, the novel testing system was used to determine how wear is affected by tissue viability in live and dead CoC articulations. For both parts, bovine cartilage explants were harvested and tribologically tested for three consecutive days. Wear was defined as release of glycosaminoglycans into the media and as evaluation of the tissue structure. For Part I, we found that the live CoC articulation did not cause damage to the cartilage, to the extent of being comparable to the free swelling controls, whereas the MoC articulation caused decreased cell viability, extracellular matrix disruption, and increased wear when compared to CoC, and consistent with clinical data. These results provided confidence that this novel testing system will be adequate to screen new biomaterials for articulation against cartilage, such as in hemiarthroplasty. For Part II, the live and dead cartilage articulation yielded similar wear as determined by the release of proteoglycans and aggrecan fragments, suggesting that keeping the cartilage alive may not be essential for short term wear tests. However, the biosynthesis of glycosaminoglycans was significantly higher due to live CoC articulation than due to the corresponding live free swelling controls, indicating that articulation stimulated cell activity. Moving forward, the cell response to mechanical stimuli and the underlying mechano-biochemical wear mechanisms need to be further studied for a complete picture of tissue degradation.
Collapse
Affiliation(s)
- Robert L Trevino
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL
| | - Jonathan Stoia
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL
| | - Michel P Laurent
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL
| | - Carol A Pacione
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL
| | - Susan Chubinskaya
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL.,Department of Pediatrics, Rush University Medical Center, Chicago, IL
| | - Markus A Wimmer
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL.,Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL
| |
Collapse
|
28
|
Rhee J, Park SH, Kim SK, Kim JH, Ha CW, Chun CH, Chun JS. Inhibition of BATF/JUN transcriptional activity protects against osteoarthritic cartilage destruction. Ann Rheum Dis 2016; 76:427-434. [PMID: 27147707 PMCID: PMC5284350 DOI: 10.1136/annrheumdis-2015-208953] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Revised: 03/12/2016] [Accepted: 04/17/2016] [Indexed: 12/29/2022]
Abstract
OBJECTIVE The basic leucine zipper transcription factor, ATF-like (BATF), a member of the Activator protein-1 family, promotes transcriptional activation or repression, depending on the interacting partners (JUN-B or C-JUN). Here, we investigated whether the BATF/JUN complex exerts regulatory effects on catabolic and anabolic gene expression in chondrocytes and contributes to the pathogenesis of osteoarthritis (OA). METHODS Primary cultured mouse chondrocytes were treated with proinflammatory cytokines (interleukin-1β, IL-6 or tumour necrosis factor-α) or infected with adenoviruses carrying the Batf gene (Ad-Batf). Expression of BATF and JUN was examined in human and mouse experimental OA cartilage samples. Experimental OA in mice was induced by destabilisation of the medial meniscus or intra-articular injection of Ad-Batf. The chromatin immunoprecipitation assay was used to examine the binding of BATF and JUN to the promoter regions of candidate genes. RESULTS Overexpression of BATF, which forms a heterodimeric complex with JUN-B and C-JUN, induced upregulation of matrix-degrading enzymes and downregulation of cartilage matrix molecules in chondrocytes. BATF expression in mouse joint tissues promoted OA cartilage destruction, and conversely, knockout of Batf in mice suppressed experimental OA. Pharmacological inhibition of BATF/JUN transcriptional activity reduced the expression of matrix-degrading enzymes and protected against experimental OA in mice. CONCLUSIONS BATF/JUN-B and BATF/C-JUN complexes play important roles in OA cartilage destruction through regulating anabolic and catabolic gene expression in chondrocytes. Our findings collectively support the utility of BATF as a therapeutic target for OA.
Collapse
Affiliation(s)
- Jinseol Rhee
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Seo-Hee Park
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Seul-Ki Kim
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Jin-Hong Kim
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea.,School of Biological Sciences, College of Natural Sciences, Seoul National University, Gwanak-gu, Seoul, Korea
| | - Chul-Won Ha
- Department of Orthopedic Surgery, Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, SungKyunKwan University School of Medicine, Seoul, Korea.,Department of Health Sciences and Technology, SAIHST, SungKyunKwan University, Seoul, South Korea
| | - Churl-Hong Chun
- Department of Orthopedic Surgery, Wonkwang University School of Medicine, Iksan, Korea
| | - Jang-Soo Chun
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea
| |
Collapse
|
29
|
Hyaluronic Acid Suppresses the Expression of Metalloproteinases in Osteoarthritic Cartilage Stimulated Simultaneously by Interleukin 1β and Mechanical Load. PLoS One 2016; 11:e0150020. [PMID: 26934732 PMCID: PMC4774918 DOI: 10.1371/journal.pone.0150020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 02/08/2016] [Indexed: 12/05/2022] Open
Abstract
Purpose In patients with osteoarthritis (OA), intraarticular injection of hyaluronic acid (HA) frequently results in reduced pain and improved function for prolonged periods of time, i.e. more than 6 months. However, the mechanisms underlying these effects are not fully understood. Our underlying hypothesis is that HA modifies the enzymatic breakdown of joint tissues. Methods To test this hypothesis, we examined osteochondral cylinders from 12 OA patients. In a bioreactor, these samples were stimulated by interleukin 1β (Il1ß) (2 ng/ml) plus mechanical load (2.0 Mpa at 0.5 Hz horizontal and 0.1 Hz vertical rotation), thus the experimental setup recapitulated both catabolic and anabolic clues of the OA joint. Results Upon addition of HA at either 1 or 3 mg/ml, we observed a significant suppression of expression of metalloproteinase (MMP)-13. A more detailed analysis based on the Kellgren and Lawrence (K&L) OA grade, showed a much greater degree of suppression of MMP-13 expression in grade IV as compared to grade II OA. In contrast to the observed MMP-13 suppression, treatment with HA resulted in a suppression of MMP-1 expression only at 1 mg/ml HA, while MMP-2 expression was not significantly affected by either HA concentration. Conclusion Together, these data suggest that under concurrent catabolic and anabolic stimulation, HA exhibits a pronounced suppressive effect on MMP-13. In the long-run these findings may benefit the development of treatment strategies aimed at blocking tissue degradation in OA patients.
Collapse
|
30
|
Correro-Shahgaldian MR, Introvigne J, Ghayor C, Weber FE, Gallo LM, Colombo V. Properties and Mechanobiological Behavior of Bovine Nasal Septum Cartilage. Ann Biomed Eng 2015; 44:1821-31. [PMID: 26502171 DOI: 10.1007/s10439-015-1481-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 10/03/2015] [Indexed: 12/23/2022]
Abstract
Bovine nasal septum (BNS) is a source of non-load bearing hyaline cartilage. Little information is available on its mechanical and biological properties. The aim of this work was to assess the characteristics of BNS cartilage and investigate its behavior in in vitro mechanobiological experiments. Mechanical tests, biochemical assays, and microscopic assessment were performed for tissue characterization. Compressions tests showed that the tissue is viscoelastic, although values of elastic moduli differ from the ones of other cartilaginous tissues. Water content was 78 ± 1.4%; glycosaminoglycans and collagen contents-measured by spectrophotometric assay and hydroxyproline assay-were 39 ± 5% and 25 ± 2.5% of dry weight, respectively. Goldner's Trichrome staining and transmission electron microscopy proved isotropic cells distribution and results of earlier cell division. Furthermore, gene expression was measured after uniaxial compression, showing variations depending on compression time as well as trends depending on equilibration time. In conclusion, BNS has been characterized at several levels, revealing that bovine nasal tissue is regionally homogeneous. Results suggest that, under certain conditions, BNS could be used to perform in vitro cartilage loading experiments.
Collapse
Affiliation(s)
- Maria Rita Correro-Shahgaldian
- Clinic for Masticatory Disorders, Removable Prosthodontics and Special Care, Center for Dental Medicine, University of Zurich, Plattenstrasse 11, 8032, Zurich, Switzerland.,Oral Biotechnology & Bioengineering, Department of Cranio-Maxillofacial Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Jasmin Introvigne
- Clinic for Masticatory Disorders, Removable Prosthodontics and Special Care, Center for Dental Medicine, University of Zurich, Plattenstrasse 11, 8032, Zurich, Switzerland
| | - Chafik Ghayor
- Oral Biotechnology & Bioengineering, Department of Cranio-Maxillofacial Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Franz E Weber
- Oral Biotechnology & Bioengineering, Department of Cranio-Maxillofacial Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Luigi M Gallo
- Clinic for Masticatory Disorders, Removable Prosthodontics and Special Care, Center for Dental Medicine, University of Zurich, Plattenstrasse 11, 8032, Zurich, Switzerland
| | - Vera Colombo
- Clinic for Masticatory Disorders, Removable Prosthodontics and Special Care, Center for Dental Medicine, University of Zurich, Plattenstrasse 11, 8032, Zurich, Switzerland.
| |
Collapse
|
31
|
Schätti OR, Marková M, Torzilli PA, Gallo LM. Mechanical Loading of Cartilage Explants with Compression and Sliding Motion Modulates Gene Expression of Lubricin and Catabolic Enzymes. Cartilage 2015; 6:185-93. [PMID: 26175864 PMCID: PMC4481391 DOI: 10.1177/1947603515581680] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVE Translation of the contact zone in articulating joints is an important component of joint kinematics, yet rarely investigated in a biological context. This study was designed to investigate how sliding contact areas affect cartilage mechanobiology. We hypothesized that higher sliding speeds would lead to increased extracellular matrix mechanical stress and the expression of catabolic genes. DESIGN A cylindrical Teflon indenter was used to apply 50 or 100 N normal forces at 10, 40, or 70 mm/s sliding speed. Mechanical parameters were correlated with gene expressions using a multiple linear regression model. RESULTS In both loading groups there was no significant effect of sliding speed on any of the mechanical parameters (strain, stress, modulus, tangential force). However, an increase in vertical force (from 50 to 100 N) led to a significant increase in extracellular matrix strain and stress. For 100 N, significant correlations between gene expression and mechanical parameters were found for TIMP-3 (r(2) = 0.89), ADAMTS-5 (r(2) = 0.73), and lubricin (r(2) = 0.73). CONCLUSIONS The sliding speeds applied do not have an effect on the mechanical response of the cartilage, this could be explained by a partial attainment of the "elastic limit" at and above a sliding speed of 10 mm/s. Nevertheless, we still found a relationship between sliding speed and gene expression when the tissue was loaded with 100 N normal force. Thus despite the absence of speed-dependent mechanical changes (strain, stress, modulus, tangential force), the sliding speed had an influence on gene expression.
Collapse
Affiliation(s)
- Oliver R. Schätti
- Laboratory of Physiology and Biomechanics of the Masticatory System, Center for Oral Medicine, Dental and Maxillo-Facial Surgery, University of Zurich, Plattenstrasse, Zurich, Switzerland,Institute for Biomechanics, Swiss Federal Institute of Technology, ETH Zentrum, Zurich, Switzerland,Laboratory for Soft Tissue Research, Hospital for Special Surgery, New York, NY, USA
| | - Michala Marková
- Laboratory of Physiology and Biomechanics of the Masticatory System, Center for Oral Medicine, Dental and Maxillo-Facial Surgery, University of Zurich, Plattenstrasse, Zurich, Switzerland,Laboratory of Biomechanics, Department of Mechanics, Biomechanics and Mechatronics, Faculty of Mechanical Engineering, Czech Technical University in Prague, Czech Republic
| | - Peter A. Torzilli
- Laboratory for Soft Tissue Research, Hospital for Special Surgery, New York, NY, USA
| | - Luigi M. Gallo
- Laboratory of Physiology and Biomechanics of the Masticatory System, Center for Oral Medicine, Dental and Maxillo-Facial Surgery, University of Zurich, Plattenstrasse, Zurich, Switzerland
| |
Collapse
|
32
|
Xie X, Ulici V, Alexander PG, Jiang Y, Zhang C, Tuan RS. Platelet-Rich Plasma Inhibits Mechanically Induced Injury in Chondrocytes. Arthroscopy 2015; 31:1142-50. [PMID: 25769480 DOI: 10.1016/j.arthro.2015.01.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 12/11/2014] [Accepted: 01/09/2015] [Indexed: 02/02/2023]
Abstract
PURPOSE To investigate the effect of platelet-rich plasma (PRP) on mechanically injured chondrocytes. METHODS PRP from bovine whole blood was activated to prepare platelet-rich plasma releasate (PRPr). Bovine articular chondrocytes were subjected to 16%, 0.5-Hz biaxial cyclic tensile strain (CTS) for 48 hours and cultured for another 24 hours without cell stretching as an in vitro model of mechanically injured chondrocytes. Culture medium in the 3 PRP- and CTS-treated groups was supplemented with 10% PRPr at the start of CTS, after 24 hours of CTS, and after 48 hours of CTS, respectively. Gene expression levels of type II collagen, aggrecan, matrix metalloproteinase (MMP)-3, MMP-13, inducible nitric oxide synthase, and cyclooxygenase 2 were quantitatively evaluated. Changes in the content of nitric oxide (NO), prostaglandin E2 (PGE2), MMP-3, and tissue inhibitor of metalloproteinase 1 in the culture medium were also measured. RESULTS PRPr increased type II collagen and aggrecan messenger RNA expression; diminished CTS-dependent up-regulation of MMP-3, inducible nitric oxide synthase, and cyclooxygenase 2 gene expression; and reduced CTS-induced overproduction of NO and PGE2 when PRPr was applied early at the start of CTS. The addition of PRPr after 24 hours of CTS only inhibited MMP-3 gene up-regulation and the increase of NO and PGE2 induced by CTS. These changes were not observed when PRPr was supplemented after 48 hours of CTS. PRPr mitigated the increased MMP-3 production and decreased tissue inhibitor of metalloproteinase 1 secretion resulting from CTS in a time-dependent manner. CONCLUSIONS PRP treatment ameliorated multiple CTS-mediated catabolic and inflammatory responses in chondrocytes. More beneficial effects were observed with early PRP application. CLINICAL RELEVANCE Intra-articular PRP injections at the beginning of strenuous exercises may be used to protect chondrocytes from mechanical injury, thus preventing joints from increased wear.
Collapse
Affiliation(s)
- Xuetao Xie
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, U.S.A.; Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Veronica Ulici
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, U.S.A
| | - Peter G Alexander
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, U.S.A
| | - Yangzi Jiang
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, U.S.A
| | - Changqing Zhang
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Rocky S Tuan
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, U.S.A..
| |
Collapse
|
33
|
Bleuel J, Zaucke F, Brüggemann GP, Heilig J, Wolter ML, Hamann N, Firner S, Niehoff A. Moderate cyclic tensile strain alters the assembly of cartilage extracellular matrix proteins in vitro. J Biomech Eng 2015; 137:061009. [PMID: 25782164 DOI: 10.1115/1.4030053] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Indexed: 12/16/2022]
Abstract
Mechanical loading influences the structural and mechanical properties of articular cartilage. The cartilage matrix protein collagen II essentially determines the tensile properties of the tissue and is adapted in response to loading. The collagen II network is stabilized by the collagen II-binding cartilage oligomeric matrix protein (COMP), collagen IX, and matrilin-3. However, the effect of mechanical loading on these extracellular matrix proteins is not yet understood. Therefore, the aim of this study was to investigate if and how chondrocytes assemble the extracellular matrix proteins collagen II, COMP, collagen IX, and matrilin-3 in response to mechanical loading. Primary murine chondrocytes were applied to cyclic tensile strain (6%, 0.5 Hz, 30 min per day at three consecutive days). The localization of collagen II, COMP, collagen IX, and matrilin-3 in loaded and unloaded cells was determined by immunofluorescence staining. The messenger ribo nucleic acid (mRNA) expression levels and synthesis of the proteins were analyzed using reverse transcription-polymerase chain reaction (RT-PCR) and western blots. Immunofluorescence staining demonstrated that the pattern of collagen II distribution was altered by loading. In loaded chondrocytes, collagen II containing fibrils appeared thicker and strongly co-stained for COMP and collagen IX, whereas the collagen network from unloaded cells was more diffuse and showed minor costaining. Further, the applied load led to a higher amount of COMP in the matrix, determined by western blot analysis. Our results show that moderate cyclic tensile strain altered the assembly of the extracellular collagen network. However, changes in protein amount were only observed for COMP, but not for collagen II, collagen IX, or matrilin-3. The data suggest that the adaptation to mechanical loading is not always the result of changes in RNA and/or protein expression but might also be the result of changes in matrix assembly and structure.
Collapse
|
34
|
Correro-Shahgaldian MR, Ghayor C, Spencer ND, Weber FE, Gallo LM. A Model System of the Dynamic Loading Occurring in Synovial Joints: The Biological Effect of Plowing on Pristine Cartilage. Cells Tissues Organs 2015; 199:364-72. [DOI: 10.1159/000375294] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2015] [Indexed: 11/19/2022] Open
|
35
|
Heck TAM, Wilson W, Foolen J, Cilingir AC, Ito K, van Donkelaar CC. A tissue adaptation model based on strain-dependent collagen degradation and contact-guided cell traction. J Biomech 2014; 48:823-31. [PMID: 25560271 DOI: 10.1016/j.jbiomech.2014.12.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2014] [Indexed: 02/02/2023]
Abstract
Soft biological tissues adapt their collagen network to the mechanical environment. Collagen remodeling and cell traction are both involved in this process. The present study presents a collagen adaptation model which includes strain-dependent collagen degradation and contact-guided cell traction. Cell traction is determined by the prevailing collagen structure and is assumed to strive for tensional homeostasis. In addition, collagen is assumed to mechanically fail if it is over-strained. Care is taken to use principally measurable and physiologically meaningful relationships. This model is implemented in a fibril-reinforced biphasic finite element model for soft hydrated tissues. The versatility and limitations of the model are demonstrated by corroborating the predicted transient and equilibrium collagen adaptation under distinct mechanical constraints against experimental observations from the literature. These experiments include overloading of pericardium explants until failure, static uniaxial and biaxial loading of cell-seeded gels in vitro and shortening of periosteum explants. In addition, remodeling under hypothetical conditions is explored to demonstrate how collagen might adapt to small differences in constraints. Typical aspects of all essentially different experimental conditions are captured quantitatively or qualitatively. Differences between predictions and experiments as well as new insights that emerge from the present simulations are discussed. This model is anticipated to evolve into a mechanistic description of collagen adaptation, which may assist in developing load-regimes for functional tissue engineered constructs, or may be employed to improve our understanding of the mechanisms behind physiological and pathological collagen remodeling.
Collapse
Affiliation(s)
- T A M Heck
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - W Wilson
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - J Foolen
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - A C Cilingir
- Mechanical Engineering Department, Sakarya University, Sakarya, Turkey
| | - K Ito
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - C C van Donkelaar
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
| |
Collapse
|
36
|
Progression of Gene Expression Changes following a Mechanical Injury to Articular Cartilage as a Model of Early Stage Osteoarthritis. ARTHRITIS 2014; 2014:371426. [PMID: 25478225 PMCID: PMC4248372 DOI: 10.1155/2014/371426] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 10/29/2014] [Indexed: 01/17/2023]
Abstract
An impact injury model of early stage osteoarthritis (OA) progression was developed using a mechanical insult to an articular cartilage surface to evaluate differential gene expression changes over time and treatment. Porcine patellae with intact cartilage surfaces were randomized to one of three treatments: nonimpacted control, axial impaction (2000 N), or a shear impaction (500 N axial, with tangential displacement to induce shear forces). After impact, the patellae were returned to culture for 0, 3, 7, or 14 days. At the appropriate time point, RNA was extracted from full-thickness cartilage slices at the impact site. Quantitative real-time PCR was used to evaluate differential gene expression for 18 OA related genes from four categories: cartilage matrix, degradative enzymes and inhibitors, inflammatory response and signaling, and cell apoptosis. The shear impacted specimens were compared to the axial impacted specimens and showed that shear specimens more highly expressed type I collagen (Col1a1) at the early time points. In addition, there was generally elevated expression of degradative enzymes, inflammatory response genes, and apoptosis markers at the early time points. These changes suggest that the more physiologically relevant shear loading may initially be more damaging to the cartilage and induces more repair efforts after loading.
Collapse
|
37
|
Low-frequency high-magnitude mechanical strain of articular chondrocytes activates p38 MAPK and induces phenotypic changes associated with osteoarthritis and pain. Int J Mol Sci 2014; 15:14427-41. [PMID: 25196344 PMCID: PMC4159860 DOI: 10.3390/ijms150814427] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 08/12/2014] [Accepted: 08/14/2014] [Indexed: 01/07/2023] Open
Abstract
Osteoarthritis (OA) is a debilitating joint disorder resulting from an incompletely understood combination of mechanical, biological, and biochemical processes. OA is often accompanied by inflammation and pain, whereby cytokines associated with chronic OA can up-regulate expression of neurotrophic factors such as nerve growth factor (NGF). Several studies suggest a role for cytokines and NGF in OA pain, however the effects of changing mechanical properties in OA tissue on chondrocyte metabolism remain unclear. Here, we used high-extension silicone rubber membranes to examine if high mechanical strain (HMS) of primary articular chondrocytes increases inflammatory gene expression and promotes neurotrophic factor release. HMS cultured chondrocytes displayed up-regulated NGF, TNFα and ADAMTS4 gene expression while decreasing TLR2 expression, as compared to static controls. HMS culture increased p38 MAPK activity compared to static controls. Conditioned medium from HMS dynamic cultures, but not static cultures, induced significant neurite sprouting in PC12 cells. The increased neurite sprouting was accompanied by consistent increases in PC12 cell death. Low-frequency high-magnitude mechanical strain of primary articular chondrocytes in vitro drives factor secretion associated with degenerative joint disease and joint pain. This study provides evidence for a direct link between cellular strain, secretory factors, neo-innervation, and pain in OA pathology.
Collapse
|
38
|
Rezende MUD, Campos GCD, Pailo AF. Current concepts in osteoarthritis. ACTA ORTOPEDICA BRASILEIRA 2014; 21:120-2. [PMID: 24453655 PMCID: PMC3861968 DOI: 10.1590/s1413-78522013000200010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 01/05/2013] [Indexed: 02/07/2023]
Abstract
Osteoarthritis (OA), the most common form of joint disease, affects mainly the hips, knees, hands and feet, leading to severe disability and loss of quality of life, particularly in the elderly population. Its importance grows every year with the aging of the population, with a large increase in the elderly population compared to younger patients. The progressive understanding of the pathophysiology of OA, the perception that the process is not purely mechanical and / or aging, and clarification of the inflammatory pathways involved led recently to the clinical application of various drugs and other measures. This update aims to expose the current concepts on the pathophysiology and treatment of OA.
Collapse
|
39
|
Abstract
Mechanical factors play a crucial role in the development of articular cartilage in vivo. In this regard, tissue engineers have sought to leverage native mechanotransduction pathways to enhance in vitro stem cell-based cartilage repair strategies. However, a thorough understanding of how individual mechanical factors influence stem cell fate is needed to predictably and effectively utilize this strategy of mechanically-induced chondrogenesis. This article summarizes some of the latest findings on mechanically stimulated chondrogenesis, highlighting several new areas of interest, such as the effects of mechanical stimulation on matrix maintenance and terminal differentiation, as well as the use of multifactorial bioreactors. Additionally, the roles of individual biophysical factors, such as hydrostatic or osmotic pressure, are examined in light of their potential to induce mesenchymal stem cell chondrogenesis. An improved understanding of biomechanically-driven tissue development and maturation of stem cell-based cartilage replacements will hopefully lead to the development of cell-based therapies for cartilage degeneration and disease.
Collapse
|
40
|
Improved outcomes with combined autologous chondrocyte implantation and patellofemoral osteotomy versus isolated autologous chondrocyte implantation. Arthroscopy 2013; 29:566-74. [PMID: 23312875 DOI: 10.1016/j.arthro.2012.10.008] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 09/21/2012] [Accepted: 10/06/2012] [Indexed: 02/02/2023]
Abstract
PURPOSE To compare clinical outcomes of patients undergoing isolated patellofemoral autologous chondrocyte implantation (ACI) and ACI combined with patellofemoral realignment. METHODS A systematic review was performed by use of PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines/checklist. We searched PubMed, CINAHL (Cumulative Index to Nursing and Allied Health Literature), SportDiscus, and the Cochrane Central Register of Controlled Trials databases from 1946 through February 2012 to determine whether a difference exists in outcomes of combined ACI and osteotomy versus isolated ACI (minimum 2 years' follow-up). Studies were included only if outcomes were reported separately for both isolated ACI and combined ACI and osteotomy. All ACI generations were eligible for inclusion. Patellofemoral osteotomies eligible for inclusion were anteriorization, medialization, or anteromedialization. All patient-, limb-, and defect-specific characteristics were assessed. All reported clinical scores, radiographic and histologic outcomes, and complications/reoperations were analyzed. Risk of bias was assessed within all studies. RESULTS Eleven studies (10 Level III or IV evidence) (366 subjects) were included. Of the defects treated, 78% were located on the patella and 22% on the trochlea. The mean subject age was 33.3 years. Twenty-three percent of subjects underwent concomitant osteotomy. The mean length of follow-up was 4.2 years. Significant (P < .05) improvements in patients undergoing both isolated ACI and combined ACI and osteotomy for patellofemoral chondral defects were observed in all studies. Three studies directly compared isolated ACI and combined ACI and osteotomy, with significantly (P < .05) greater improvements shown in patients undergoing combined osteotomy and ACI (International Knee Documentation Committee subjective score, Lysholm score, Knee Injury and Osteoarthritis Outcome Score, Tegner score, modified Cincinnati score, Short Form 12 score, and Short Form 36 score). There was no significant difference between groups in the rate of postoperative complications overall. CONCLUSIONS This review showed statistically significant improvements in patients undergoing both isolated ACI and ACI combined with osteotomy for patellofemoral chondral defects in all studies. When individual studies compared these 2 groups (3 studies), significantly greater improvements in multiple clinical outcomes in subjects undergoing ACI combined with osteotomy were observed. There was no significant difference in the rate of total complications between groups. LEVEL OF EVIDENCE Level IV, systematic review of studies with minimum Level IV evidence, retrospective case series.
Collapse
|
41
|
Sinthuvanich C, Haines-Butterick LA, Nagy KJ, Schneider JP. Iterative design of peptide-based hydrogels and the effect of network electrostatics on primary chondrocyte behavior. Biomaterials 2012; 33:7478-88. [PMID: 22841922 PMCID: PMC3600380 DOI: 10.1016/j.biomaterials.2012.06.097] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 06/29/2012] [Indexed: 11/22/2022]
Abstract
Iterative peptide design was used to generate two peptide-based hydrogels to study the effect of network electrostatics on primary chondrocyte behavior. MAX8 and HLT2 peptides have formal charge states of +7 and +5 per monomer, respectively. These peptides undergo triggered folding and self-assembly to afford hydrogel networks having similar rheological behavior and local network morphologies, yet different electrostatic character. Each gel can be used to directly encapsulate and syringe-deliver cells. The influence of network electrostatics on cell viability after encapsulation and delivery, extracellular matrix deposition, gene expression, and the bulk mechanical properties of the gel-cell constructs as a function of culture time was assessed. The less electropositive HLT2 gel provides a microenvironment more conducive to chondrocyte encapsulation, delivery, and phenotype maintenance. Cell viability was higher for this gel and although a moderate number of cells dedifferentiated to a fibroblast-like phenotype, many retained their chondrocytic behavior. As a result, gel-cell constructs prepared with HLT2, cultured under static in vitro conditions, contained more GAG and type II collagen resulting in mechanically superior constructs. Chondrocytes delivered in the more electropositive MAX8 gel experienced a greater degree of cell death during encapsulation and delivery and the remaining viable cells were less prone to maintain their phenotype. As a result, MAX8 gel-cell constructs had fewer cells, of which a limited number were capable of laying down cartilage-specific ECM.
Collapse
Affiliation(s)
- Chomdao Sinthuvanich
- Chemical Biology Laboratory, National Cancer Institute, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | | | - Katelyn J. Nagy
- Chemical Biology Laboratory, National Cancer Institute, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Joel P. Schneider
- Chemical Biology Laboratory, National Cancer Institute, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| |
Collapse
|
42
|
Whitney NP, Lamb AC, Louw TM, Subramanian A. Integrin-mediated mechanotransduction pathway of low-intensity continuous ultrasound in human chondrocytes. ULTRASOUND IN MEDICINE & BIOLOGY 2012; 38:1734-43. [PMID: 22920546 PMCID: PMC3438336 DOI: 10.1016/j.ultrasmedbio.2012.06.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 06/05/2012] [Accepted: 06/07/2012] [Indexed: 05/11/2023]
Abstract
Chondrocytes are mechanosensitive cells that require mechanical stimulation for proper growth and function in in vitro culture systems. Ultrasound (US) has emerged as a technique to deliver mechanical stress; however, the intracellular signaling components of the mechanotransduction pathways that transmit the extracellular mechanical stimulus to gene regulatory mechanisms are not fully defined. We evaluated a possible integrin/mitogen-activated protein kinase (MAPK) mechanotransduction pathway using Western blotting with antibodies targeting specific phosphorylation sites on intracellular signaling proteins. US stimulation of chondrocytes induced phosphorylation of focal adhesion kinase (FAK), Src, p130 Crk-associated substrate (p130Cas), CrkII and extracellular-regulated kinase (Erk). Furthermore, pre-incubation with inhibitors of integrin receptors, Src and MAPK/Erk kinase (MEK) reduced US-induced Erk phosphorylation levels, indicating integrins and Src are upstream of Erk in an US-mediated mechanotransduction pathway. These findings suggest US signals through integrin receptors to the MAPK/Erk pathway via a mechanotransduction pathway involving FAK, Src, p130Cas and CrkII.
Collapse
Affiliation(s)
- Nicholas P. Whitney
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA 68588-0643
| | - Allyson C. Lamb
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA 68588-0643
| | - Tobias M. Louw
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA 68588-0643
| | - Anuradha Subramanian
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA 68588-0643
- Correspondence: Department of Chemical & Biomolecular Engineering, University of Nebraska-Lincoln, 207L Othmer Hall, 820 N. 16th St., Lincoln, NE 68588-0643, USA., Phone: (402)-472-3463 Fax: (402)-472-6989,
| |
Collapse
|
43
|
Gorth DJ, Mauck RL, Chiaro JA, Mohanraj B, Hebela NM, Dodge GR, Elliott DM, Smith LJ. IL-1ra delivered from poly(lactic-co-glycolic acid) microspheres attenuates IL-1β-mediated degradation of nucleus pulposus in vitro. Arthritis Res Ther 2012; 14:R179. [PMID: 22863285 PMCID: PMC3580573 DOI: 10.1186/ar3932] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 08/03/2012] [Indexed: 02/06/2023] Open
Abstract
Introduction Inflammation plays a key role in the progression of intervertebral disc degeneration, a condition strongly implicated as a cause of lower back pain. The objective of this study was to investigate the therapeutic potential of poly(lactic-co-glycolic acid) (PLGA) microspheres loaded with interleukin-1 receptor antagonist (IL-1ra) for sustained attenuation of interleukin-1 beta (IL-1β) mediated degradative changes in the nucleus pulposus (NP), using an in vitro model. Methods IL-1ra was encapsulated in PLGA microspheres and release kinetics were determined over 35 days. NP agarose constructs were cultured to functional maturity and treated with combinations of IL-1β and media conditioned with IL-1ra released from microspheres at intervals for up to 20 days. Construct mechanical properties, glycosaminoglycan content, nitrite production and mRNA expression of catabolic mediators were compared to properties for untreated constructs using unpaired Student's t-tests. Results IL-1ra release kinetics were characterized by an initial burst release reducing to a linear release over the first 10 days. IL-1ra released from microspheres attenuated the degradative effects of IL-1β as defined by mechanical properties, glycosaminoglycans (GAG) content, nitric oxide production and mRNA expression of inflammatory mediators for 7 days, and continued to limit functional degradation for up to 20 days. Conclusions In this study, we successfully demonstrated that IL-1ra microspheres can attenuate the degradative effects of IL-1β on the NP for extended periods. This therapeutic strategy may be appropriate for treating early-stage, cytokine-mediated disc degeneration. Ongoing studies are focusing on testing IL-1ra microspheres in an in vivo model of disc degeneration, as a prelude to clinical translation.
Collapse
|
44
|
Dynamic compression of chondrocyte-agarose constructs reveals new candidate mechanosensitive genes. PLoS One 2012; 7:e36964. [PMID: 22615857 PMCID: PMC3355169 DOI: 10.1371/journal.pone.0036964] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 04/16/2012] [Indexed: 11/19/2022] Open
Abstract
Articular cartilage is physiologically exposed to repeated loads. The mechanical properties of cartilage are due to its extracellular matrix, and homeostasis is maintained by the sole cell type found in cartilage, the chondrocyte. Although mechanical forces clearly control the functions of articular chondrocytes, the biochemical pathways that mediate cellular responses to mechanical stress have not been fully characterised. The aim of our study was to examine early molecular events triggered by dynamic compression in chondrocytes. We used an experimental system consisting of primary mouse chondrocytes embedded within an agarose hydrogel; embedded cells were pre-cultured for one week and subjected to short-term compression experiments. Using Western blots, we demonstrated that chondrocytes maintain a differentiated phenotype in this model system and reproduce typical chondrocyte-cartilage matrix interactions. We investigated the impact of dynamic compression on the phosphorylation state of signalling molecules and genome-wide gene expression. After 15 min of dynamic compression, we observed transient activation of ERK1/2 and p38 (members of the mitogen-activated protein kinase (MAPK) pathways) and Smad2/3 (members of the canonical transforming growth factor (TGF)-β pathways). A microarray analysis performed on chondrocytes compressed for 30 min revealed that only 20 transcripts were modulated more than 2-fold. A less conservative list of 325 modulated genes included genes related to the MAPK and TGF-β pathways and/or known to be mechanosensitive in other biological contexts. Of these candidate mechanosensitive genes, 85% were down-regulated. Down-regulation may therefore represent a general control mechanism for a rapid response to dynamic compression. Furthermore, modulation of transcripts corresponding to different aspects of cellular physiology was observed, such as non-coding RNAs or primary cilium. This study provides new insight into how chondrocytes respond to mechanical forces.
Collapse
|
45
|
Johnson LA, Sauder KL, Rodansky ES, Simpson RU, Higgins PDR. CARD-024, a vitamin D analog, attenuates the pro-fibrotic response to substrate stiffness in colonic myofibroblasts. Exp Mol Pathol 2012; 93:91-8. [PMID: 22542712 DOI: 10.1016/j.yexmp.2012.04.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 03/01/2012] [Accepted: 04/10/2012] [Indexed: 12/16/2022]
Abstract
Intestinal fibrosis is one of the major complications of Crohn's disease (CD) for which there are no effective pharmacological therapies. Vitamin D deficiency is common in CD, though it is not known whether this is a contributing factor to fibrosis, or simply a consequence of the disease itself. In CD, fibrosis is mediated mainly by activated intestinal myofibroblasts during remodeling of extracellular matrix in response to wound healing. We investigated the effects of CARD-024 (1-alpha-hydroxyvitamin D5), a vitamin D analog with minimal hypercalcemic effects, on the pro-fibrotic response of intestinal myofibroblasts to two fibrogenic stimuli: TGFβ stimulation and culture on a physiologically stiff matrix. TGFβ stimulated a fibrogenic phenotype in Ccd-18co colonic myofibroblasts, characterized by an increase in actin stress fibers and mature focal adhesions, and increased αSMA protein expression, while CARD-024 repressed αSMA protein expression in a dose-dependent manner. Culture of colonic myofibroblasts on physiological high stiffness substrates induced morphological changes with increased actin stress fibers and focal adhesion staining, induction of αSMA protein expression, FAK phosphorylation, induction of fibrogenic genes, and repression of COX-2 and IL-1β. CARD-024 treatment repressed the stiffness-induced morphological features including stellate cell morphology and the maturation of focal adhesions. CARD-024 repressed the stiffness-mediated induction of αSMA protein expression, FAK phosphorylation, and MLCK and ET-1 gene expression. In addition, CARD-024 partially stimulated members of the COX-2/IL-1β inflammatory pathway. In summary, CARD-024 attenuated the pro-fibrotic response of colonic myofibroblasts to high matrix stiffness, suggesting that vitamin D analogs such as CARD-024 may ameliorate intestinal fibrosis.
Collapse
Affiliation(s)
- Laura A Johnson
- University of Michigan, Department of Internal Medicine, Ann Arbor, MI 48109-0682, United States
| | | | | | | | | |
Collapse
|
46
|
Ganguly K, McRury ID, Goodwin PM, Morgan RE, Augé WK. Targeted In Situ Biosynthetic Transcriptional Activation in Native Surface-Level Human Articular Chondrocytes during Lesion Stabilization. Cartilage 2012; 3:141-55. [PMID: 26069627 PMCID: PMC4297128 DOI: 10.1177/1947603511426881] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVE Safe articular cartilage lesion stabilization is an important early surgical intervention advance toward mitigating articular cartilage disease burden. While short-term chondrocyte viability and chondrosupportive matrix modification have been demonstrated within tissue contiguous to targeted removal of damaged articular cartilage, longer term tissue responses require evaluation to further clarify treatment efficacy. The purpose of this study was to examine surface chondrocyte responses within contiguous tissue after lesion stabilization. METHODS Nonablation radiofrequency lesion stabilization of human cartilage explants obtained during knee replacement was performed for surface fibrillation. Time-dependent chondrocyte viability, nuclear morphology and cell distribution, and temporal response kinetics of matrix and chaperone gene transcription indicative of differentiated chondrocyte function were evaluated in samples at intervals to 96 hours after treatment. RESULTS Subadjacent surface articular cartilage chondrocytes demonstrated continued viability for 96 hours after treatment, a lack of increased nuclear fragmentation or condensation, persistent nucleic acid production during incubation reflecting cellular assembly behavior, and transcriptional up-regulation of matrix and chaperone genes indicative of retained biosynthetic differentiated cell function. CONCLUSIONS The results of this study provide further evidence of treatment efficacy and suggest the possibility to manipulate or induce cellular function, thereby recruiting local chondrocytes to aid lesion recovery. Early surgical intervention may be viewed as a tissue rescue, allowing articular cartilage to continue displaying biological responses appropriate to its function rather than converting to a tissue ultimately governed by the degenerative material property responses of matrix failure. Early intervention may positively impact the late changes and reduce disease burden of damaged articular cartilage.
Collapse
Affiliation(s)
| | | | | | | | - Wayne K. Augé
- NuOrtho Surgical Inc., Fall River, MA, USA,Center for Orthopaedic and Sports Performance Research Inc., Santa Fe, NM, USA
| |
Collapse
|
47
|
Current concepts for rehabilitation and return to sport after knee articular cartilage repair in the athlete. J Orthop Sports Phys Ther 2012; 42:254-73. [PMID: 22383103 DOI: 10.2519/jospt.2012.3665] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Articular cartilage injury is observed with increasing frequency in both elite and amateur athletes and results from the significant acute and chronic joint stress associated with impact sports. Left untreated, articular cartilage defects can lead to chronic joint degeneration and athletic and functional disability. Treatment of articular cartilage defects in the athletic population presents a therapeutic challenge due to the high mechanical demands of athletic activity. Several articular cartilage repair techniques have been shown to successfully restore articular cartilage surfaces and allow athletes to return to high-impact sports. Postoperative rehabilitation is a critical component of the treatment process for athletic articular cartilage injury and should take into consideration the biology of the cartilage repair technique, cartilage defect characteristics, and each athlete's sport-specific demands to optimize functional outcome. Systematic, stepwise rehabilitation with criteria-based progression is recommended for an individualized rehabilitation of each athlete not only to achieve initial return to sport at the preinjury level but also to continue sports participation and reduce risk for reinjury or joint degeneration under the high mechanical demands of athletic activity.
Collapse
|
48
|
McNary SM, Athanasiou KA, Reddi AH. Engineering lubrication in articular cartilage. TISSUE ENGINEERING PART B-REVIEWS 2012; 18:88-100. [PMID: 21955119 DOI: 10.1089/ten.teb.2011.0394] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Despite continuous progress toward tissue engineering of functional articular cartilage, significant challenges still remain. Advances in morphogens, stem cells, and scaffolds have resulted in enhancement of the bulk mechanical properties of engineered constructs, but little attention has been paid to the surface mechanical properties. In the near future, engineered tissues will be able to withstand and support the physiological compressive and tensile forces in weight-bearing synovial joints such as the knee. However, there is an increasing realization that these tissue-engineered cartilage constructs will fail without the optimal frictional and wear properties present in native articular cartilage. These characteristics are critical to smooth, pain-free joint articulation and a long-lasting, durable cartilage surface. To achieve optimal tribological properties, engineered cartilage therapies will need to incorporate approaches and methods for functional lubrication. Steady progress in cartilage lubrication in native tissues has pushed the pendulum and warranted a shift in the articular cartilage tissue-engineering paradigm. Engineered tissues should be designed and developed to possess both tribological and mechanical properties mirroring natural cartilage. In this article, an overview of the biology and engineering of articular cartilage structure and cartilage lubrication will be presented. Salient progress in lubrication treatments such as tribosupplementation, pharmacological, and cell-based therapies will be covered. Finally, frictional assays such as the pin-on-disk tribometer will be addressed. Knowledge related to the elements of cartilage lubrication has progressed and, thus, an opportune moment is provided to leverage these advances at a critical step in the development of mechanically and tribologically robust, biomimetic tissue-engineered cartilage. This article is intended to serve as the first stepping stone toward future studies in functional tissue engineering of articular cartilage that begins to explore and incorporate methods of lubrication.
Collapse
Affiliation(s)
- Sean M McNary
- Department of Orthopaedic Surgery, Lawrence Ellison Center for Tissue Regeneration and Repair, School of Medicine, University of California, Davis, Sacramento, California, USA
| | | | | |
Collapse
|
49
|
Notochordal cells protect nucleus pulposus cells from degradation and apoptosis: implications for the mechanisms of intervertebral disc degeneration. Arthritis Res Ther 2011; 13:R215. [PMID: 22206702 PMCID: PMC3334668 DOI: 10.1186/ar3548] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 12/14/2011] [Accepted: 12/29/2011] [Indexed: 01/21/2023] Open
Abstract
Introduction The relative resistance of non-chondrodystrophic (NCD) canines to degenerative disc disease (DDD) may be due to a combination of anabolic and anti-catabolic factors secreted by notochordal cells within the intervertebral disc (IVD) nucleus pulposus (NP). Factors known to induce DDD include interleukin-1 beta (IL-1ß) and/or Fas-Ligand (Fas-L). Therefore we evaluated the ability of notochordal cell conditioned medium (NCCM) to protect NP cells from IL-1ß and IL-1ß +FasL-mediated cell death and degeneration. Methods We cultured bovine NP cells with IL-1ß or IL-1ß+FasL under hypoxic serum-free conditions (3.5% O2) and treated the cells with either serum-free NCCM or basal medium (Advanced DMEM/F-12). We used flow cytometry to evaluate cell death and real-time (RT-)PCR to determine the gene expression of aggrecan, collagen 2, and link protein, mediators of matrix degradation ADAMTS-4 and MMP3, the matrix protection molecule TIMP1, the cluster of differentiation (CD)44 receptor, the inflammatory cytokine IL-6 and Ank. We then determined the expression of specific apoptotic pathways in bovine NP cells by characterizing the expression of activated caspases-3, -8 and -9 in the presence of IL-1ß+FasL when cultured with NCCM, conditioned medium obtained using bovine NP cells (BCCM), and basal medium all supplemented with 2% FBS. Results NCCM inhibits bovine NP cell death and apoptosis via suppression of activated caspase-9 and caspase-3/7. Furthermore, NCCM protects NP cells from the degradative effects of IL-1ß and IL-1ß+Fas-L by up-regulating the expression of anabolic/matrix protective genes (aggrecan, collagen type 2, CD44, link protein and TIMP-1) and down-regulating matrix degrading genes such as MMP-3. Expression of ADAMTS-4, which encodes a protein for aggrecan remodeling, is increased. NCCM also protects against IL-1+FasL-mediated down-regulation of Ank expression. Furthermore, NP cells treated with NCCM in the presence of IL-1ß+Fas-L down-regulate the expression of IL-6 by almost 50%. BCCM does not mediate cell death/apoptosis in target bovine NP cells. Conclusions Notochordal cell-secreted factors suppress NP cell death by inhibition of activated caspase-9 and -3/7 activity and by up-regulating genes contributing anabolic activity and matrix protection of the IVD NP. Harnessing the restorative powers of the notochordal cell could lead to novel cellular and molecular strategies in the treatment of DDD.
Collapse
|
50
|
Smith LJ, Chiaro JA, Nerurkar NL, Cortes DH, Horava SD, Hebela NM, Mauck RL, Dodge GR, Elliott DM. Nucleus pulposus cells synthesize a functional extracellular matrix and respond to inflammatory cytokine challenge following long-term agarose culture. Eur Cell Mater 2011; 22:291-301. [PMID: 22102324 PMCID: PMC3424069 DOI: 10.22203/ecm.v022a22] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Intervertebral disc degeneration is characterized by a cascade of cellular, biochemical and structural changes that may lead to functional impairment and low back pain. Interleukin-1 beta (IL-1β) is strongly implicated in the etiology of disc degeneration, however there is currently no direct evidence linking IL-1β upregulation to downstream biomechanical changes. The objective of this study was to evaluate long-term agarose culture of nucleus pulposus (NP) cells as a potential in vitro model system to investigate this. Bovine NP cells were cultured in agarose for 49 days in a defined medium containing transforming growth factor-beta 3, after which both mechanical properties and composition were evaluated and compared to native NP. The mRNA levels of NP cell markers were compared to those of freshly isolated NP cells. Glycosaminoglycan (GAG) content, aggregate modulus and hydraulic permeability of mature constructs were similar to native NP, and aggrecan and SOX9 mRNA levels were not significantly different from freshly isolated cells. To investigate direct links between IL-1β and biomechanical changes, mature agarose constructs were treated with IL-1β, and effects on biomechanical properties, extracellular matrix composition and mRNA levels were quantified. IL-1β treatment resulted in upregulation of a disintegrin and metalloproteinase with thrombospondin motifs 4, matrix metalloproteinase-13 and inducible nitric oxide sythase, decreased GAG and modulus, and increased permeability. To evaluate the model as a test platform for therapeutic intervention, co-treatment with IL-1β and IL-1 receptor antagonist (IL-1ra) was evaluated. IL-1ra significantly attenuated degradative changes induced by IL-1β. These results suggest that this in vitro model represents a reliable and cost-effective platform for evaluating new therapies for disc degeneration.
Collapse
|