1
|
Jaime-Sánchez E, Lara-Ramírez EE, López-Ramos JE, Ramos-González EJ, Cisneros-Méndez AL, Oropeza-Valdez JJ, Zenteno-Cuevas R, Martínez-Aguilar G, Bastian Y, Castañeda-Delgado JE, Serrano CJ, Enciso-Moreno JA. Potential molecular patterns for tuberculosis susceptibility in diabetic patients with poor glycaemic control: a pilot study. Mol Genet Genomics 2024; 299:60. [PMID: 38801463 DOI: 10.1007/s00438-024-02139-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 04/06/2024] [Indexed: 05/29/2024]
Abstract
Type 2 diabetes (DM2) is an increasingly prevalent disease that challenges tuberculosis (TB) control strategies worldwide. It is significant that DM2 patients with poor glycemic control (PDM2) are prone to developing tuberculosis. Furthermore, elucidating the molecular mechanisms that govern this susceptibility is imperative to address this problem. Therefore, a pilot transcriptomic study was performed. Human blood samples from healthy controls (CTRL, HbA1c < 6.5%), tuberculosis (TB), comorbidity TB-DM2, DM2 (HbA1c 6.5-8.9%), and PDM2 (HbA1c > 10%) groups (n = 4 each) were analyzed by differential expression using microarrays. We use a network strategy to identify potential molecular patterns linking the differentially expressed genes (DEGs) specific for TB-DM2 and PDM2 (p-value < 0.05, fold change > 2). We define OSM, PRKCD, and SOCS3 as key regulatory genes (KRGs) that modulate the immune system and related pathways. RT-qPCR assays confirmed upregulation of OSM, PRKCD, and SOCS3 genes (p < 0.05) in TB-DM2 patients (n = 18) compared to CTRL, DM2, PDM2, or TB groups (n = 17, 19, 15, and 9, respectively). Furthermore, OSM, PRKCD, and SOCS3 were associated with PDM2 susceptibility pathways toward TB-DM2 and formed a putative protein-protein interaction confirmed in STRING. Our results reveal potential molecular patterns where OSM, PRKCD, and SOCS3 are KRGs underlying the compromised immune response and susceptibility of patients with PDM2 to develop tuberculosis. Therefore, this work paved the way for fundamental research of new molecular targets in TB-DM2. Addressing their cellular implications, and the impact on the diagnosis, treatment, and clinical management of TB-DM2 could help improve the strategy to end tuberculosis for this vulnerable population.
Collapse
Affiliation(s)
- Elena Jaime-Sánchez
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa, Tamaulipas, México
- Área de Ciencias de La Salud, Universidad Autónoma de Zacatecas, Carretera Zacatecas-Guadalajara, Zacatecas, México
- Unidad de Investigación Biomédica de Zacatecas, IMSS, Zacatecas, México
| | - Edgar E Lara-Ramírez
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa, Tamaulipas, México
- Unidad de Investigación Biomédica de Zacatecas, IMSS, Zacatecas, México
| | - Juan Ernesto López-Ramos
- Academia de Ciencias Químico-Biológicas, Instituto Politécnico Nacional, Centro de Estudios Científicos y Tecnológicos No. 18, Zacatecas, México
| | | | | | - Juan José Oropeza-Valdez
- Human Systems Biology Laboratory. Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
| | | | | | - Yadira Bastian
- Instituto de Física, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Julio Enrique Castañeda-Delgado
- Unidad de Investigación Biomédica de Zacatecas, IMSS, Zacatecas, México
- Investigador por Mexico/Catedras CONAHCYT, Consejo nacional de Humanidades, Ciencias y Tecnologias, Ciudad de Mexico, México
- Consejo Nacional de Ciencia y Tecnologia, CONACYT, Ciudad de Mexico, México
| | | | - José Antonio Enciso-Moreno
- Unidad de Investigación Biomédica de Zacatecas, IMSS, Zacatecas, México.
- Facultad de Química, Cerro de Las Campanas S/N, Universidad Autónoma de Querétaro, Colonia Las Campanas, Centro Universitario, C.P. 76010, Querétaro, México.
| |
Collapse
|
2
|
Schwartz LS, Young KA, Stearns TM, Boyer N, Mujica KD, Trowbridge JJ. Transcriptional and functional consequences of Oncostatin M signaling on young Dnmt3a-mutant hematopoietic stem cells. Exp Hematol 2024; 130:104131. [PMID: 38000729 PMCID: PMC10922717 DOI: 10.1016/j.exphem.2023.11.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023]
Abstract
Age-associated clonal hematopoiesis (CH) occurs due to somatic mutations accrued in hematopoietic stem cells (HSCs) that confer a selective growth advantage in the context of aging. The mechanisms by which CH-mutant HSCs gain this advantage with aging are not comprehensively understood. Using unbiased transcriptomic approaches, we identified Oncostatin M (OSM) signaling as a candidate contributor to age-related Dnmt3a-mutant CH. We found that Dnmt3a-mutant HSCs from young adult mice (3-6 months old) subjected to acute OSM stimulation do not demonstrate altered proliferation, apoptosis, hematopoietic engraftment, or myeloid differentiation. Dnmt3a-mutant HSCs from young mice do transcriptionally upregulate an inflammatory cytokine network in response to acute in vitro OSM stimulation as evidenced by significant upregulation of the genes encoding IL-6, IL-1β, and TNFα. OSM-stimulated Dnmt3a-mutant HSCs also demonstrate upregulation of the anti-inflammatory genes Socs3, Atf3, and Nr4a1. In the context of an aged bone marrow (BM) microenvironment, Dnmt3a-mutant HSCs upregulate proinflammatory genes but not the anti-inflammatory genes Socs3, Atf3, and Nr4a1. The results from our studies suggest that aging may exhaust the regulatory mechanisms that HSCs employ to resolve inflammatory states in response to factors such as OSM.
Collapse
Affiliation(s)
- Logan S Schwartz
- The Jackson Laboratory, Bar Harbor, ME; School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA
| | | | | | | | | | - Jennifer J Trowbridge
- The Jackson Laboratory, Bar Harbor, ME; School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA.
| |
Collapse
|
3
|
Ravelojaona M, Girouard J, Kana Tsapi ES, Chambers M, Vaillancourt C, Van Themsche C, Thornton CA, Reyes-Moreno C. Oncostatin M and STAT3 Signaling Pathways Support Human Trophoblast Differentiation by Inhibiting Inflammatory Stress in Response to IFNγ and GM-CSF. Cells 2024; 13:229. [PMID: 38334621 PMCID: PMC10854549 DOI: 10.3390/cells13030229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/10/2024] Open
Abstract
Interleukin-6 (IL-6) superfamily cytokines play critical roles during human pregnancy by promoting trophoblast differentiation, invasion, and endocrine function, and maintaining embryo immunotolerance and protection. In contrast, the unbalanced activity of pro-inflammatory factors such as interferon gamma (IFNγ) and granulocyte-macrophage colony-stimulating factor (GM-CSF) at the maternal-fetal interface have detrimental effects on trophoblast function and differentiation. This study demonstrates how the IL-6 cytokine family member oncostatin M (OSM) and STAT3 activation regulate trophoblast fusion and endocrine function in response to pro-inflammatory stress induced by IFNγ and GM-CSF. Using human cytotrophoblast-like BeWo (CT/BW) cells, differentiated in villous syncytiotrophoblast (VST/BW) cells, we show that beta-human chorionic gonadotrophin (βhCG) production and cell fusion process are affected in response to IFNγ or GM-CSF. However, those effects are abrogated with OSM by modulating the activation of IFNγ-STAT1 and GM-CSF-STAT5 signaling pathways. OSM stimulation enhances the expression of STAT3, the phosphorylation of STAT3 and SMAD2, and the induction of negative regulators of inflammation (e.g., IL-10 and TGFβ1) and cytokine signaling (e.g., SOCS1 and SOCS3). Using STAT3-deficient VST/BW cells, we show that STAT3 expression is required for OSM to regulate the effects of IFNγ in βhCG and E-cadherin expression. In contrast, OSM retains its modulatory effect on GM-CSF-STAT5 pathway activation even in STAT3-deficient VST/BW cells, suggesting that OSM uses STAT3-dependent and -independent mechanisms to modulate the activation of pro-inflammatory pathways IFNγ-STAT1 and GM-CSF-STAT5. Moreover, STAT3 deficiency in VST/BW cells leads to the production of both a large amount of βhCG and an enhanced expression of activated STAT5 induced by GM-CSF, independently of OSM, suggesting a key role for STAT3 in βhCG production and trophoblast differentiation through STAT5 modulation. In conclusion, our study describes for the first time the critical role played by OSM and STAT3 signaling pathways to preserve and regulate trophoblast biological functions during inflammatory stress.
Collapse
Affiliation(s)
- Marion Ravelojaona
- Groupe de Recherche en Signalisation Cellulaire (GRSC), Département de Biologie Médicale, Université du Québec à Trois-Rivières, 3351 Boul. des Forges, Trois-Rivières, QC G8Z 4M3, Canada
- Centre de Recherche Interuniversitaire en Reproduction et Développement-Réseau Québécois en Reproduction (CIRD-RQR), Université de Montréal, St-Hyacinthe, QC J2S 2M2, Canada;
- Regroupement Intersectoriel de Recherche en Santé de l’Université du Québec (RISUQ), Université du Québec, Québec, QC G1K 9H7, Canada
| | - Julie Girouard
- Groupe de Recherche en Signalisation Cellulaire (GRSC), Département de Biologie Médicale, Université du Québec à Trois-Rivières, 3351 Boul. des Forges, Trois-Rivières, QC G8Z 4M3, Canada
- Centre de Recherche Interuniversitaire en Reproduction et Développement-Réseau Québécois en Reproduction (CIRD-RQR), Université de Montréal, St-Hyacinthe, QC J2S 2M2, Canada;
- Regroupement Intersectoriel de Recherche en Santé de l’Université du Québec (RISUQ), Université du Québec, Québec, QC G1K 9H7, Canada
| | - Emmanuelle Stella Kana Tsapi
- Groupe de Recherche en Signalisation Cellulaire (GRSC), Département de Biologie Médicale, Université du Québec à Trois-Rivières, 3351 Boul. des Forges, Trois-Rivières, QC G8Z 4M3, Canada
| | | | - Cathy Vaillancourt
- Centre de Recherche Interuniversitaire en Reproduction et Développement-Réseau Québécois en Reproduction (CIRD-RQR), Université de Montréal, St-Hyacinthe, QC J2S 2M2, Canada;
- Regroupement Intersectoriel de Recherche en Santé de l’Université du Québec (RISUQ), Université du Québec, Québec, QC G1K 9H7, Canada
- Centre Armand Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Laval, QC H7V 1B7, Canada
| | - Céline Van Themsche
- Groupe de Recherche en Signalisation Cellulaire (GRSC), Département de Biologie Médicale, Université du Québec à Trois-Rivières, 3351 Boul. des Forges, Trois-Rivières, QC G8Z 4M3, Canada
- Centre de Recherche Interuniversitaire en Reproduction et Développement-Réseau Québécois en Reproduction (CIRD-RQR), Université de Montréal, St-Hyacinthe, QC J2S 2M2, Canada;
- Regroupement Intersectoriel de Recherche en Santé de l’Université du Québec (RISUQ), Université du Québec, Québec, QC G1K 9H7, Canada
| | | | - Carlos Reyes-Moreno
- Groupe de Recherche en Signalisation Cellulaire (GRSC), Département de Biologie Médicale, Université du Québec à Trois-Rivières, 3351 Boul. des Forges, Trois-Rivières, QC G8Z 4M3, Canada
- Centre de Recherche Interuniversitaire en Reproduction et Développement-Réseau Québécois en Reproduction (CIRD-RQR), Université de Montréal, St-Hyacinthe, QC J2S 2M2, Canada;
- Regroupement Intersectoriel de Recherche en Santé de l’Université du Québec (RISUQ), Université du Québec, Québec, QC G1K 9H7, Canada
| |
Collapse
|
4
|
Schwartz LS, Young KA, Stearns TM, Boyer N, Mujica KD, Trowbridge JJ. Oncostatin M is a Master Regulator of an Inflammatory Network in Dnmt3a -Mutant Hematopoietic Stem Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.12.548764. [PMID: 37502912 PMCID: PMC10369995 DOI: 10.1101/2023.07.12.548764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Age-associated clonal hematopoiesis (CH) occurs due to somatic mutations accrued in hematopoietic stem cells (HSCs) that confer a selective advantage in the context of aging. The mechanisms by which CH-mutant HSCs gain this advantage with aging are not comprehensively understood. Using unbiased transcriptomic approaches, we identify Oncostatin M (OSM) signaling as a candidate contributor to aging-driven Dnmt3a -mutant CH. We find that Dnmt3a -mutant HSCs from young mice do not functionally respond to acute OSM stimulation with respect to proliferation, apoptosis, hematopoietic engraftment, or myeloid differentiation. However, young Dnmt3a -mutant HSCs transcriptionally upregulate an inflammatory cytokine network in response to acute OSM stimulation including genes encoding IL-6, IL-1β and TNFα. In addition, OSM-stimulated Dnmt3a -mutant HSCs upregulate the anti-inflammatory genes Socs3, Atf3 and Nr4a1 , creating a negative feedback loop limiting sustained activation of the inflammatory network. In the context of an aged bone marrow (BM) microenvironment with chronically elevated levels of OSM, Dnmt3a -mutant HSCs upregulate pro-inflammatory genes but do not upregulate Socs3, Atf3 and Nr4a1 . Together, our work suggests that chronic inflammation with aging exhausts the regulatory mechanisms in young CH-mutant HSCs that resolve inflammatory states, and that OSM is a master regulator of an inflammatory network that contributes to age-associated CH.
Collapse
|
5
|
Chevreau R, Ghazale H, Ripoll C, Chalfouh C, Delarue Q, Hemonnot-Girard AL, Mamaeva D, Hirbec H, Rothhut B, Wahane S, Perrin FE, Noristani HN, Guerout N, Hugnot JP. RNA Profiling of Mouse Ependymal Cells after Spinal Cord Injury Identifies the Oncostatin Pathway as a Potential Key Regulator of Spinal Cord Stem Cell Fate. Cells 2021; 10:cells10123332. [PMID: 34943841 PMCID: PMC8699053 DOI: 10.3390/cells10123332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/30/2021] [Accepted: 11/05/2021] [Indexed: 01/31/2023] Open
Abstract
Ependymal cells reside in the adult spinal cord and display stem cell properties in vitro. They proliferate after spinal cord injury and produce neurons in lower vertebrates but predominantly astrocytes in mammals. The mechanisms underlying this glial-biased differentiation remain ill-defined. We addressed this issue by generating a molecular resource through RNA profiling of ependymal cells before and after injury. We found that these cells activate STAT3 and ERK/MAPK signaling post injury and downregulate cilia-associated genes and FOXJ1, a central transcription factor in ciliogenesis. Conversely, they upregulate 510 genes, seven of them more than 20-fold, namely Crym, Ecm1, Ifi202b, Nupr1, Rbp1, Thbs2 and Osmr—the receptor for oncostatin, a microglia-specific cytokine which too is strongly upregulated after injury. We studied the regulation and role of Osmr using neurospheres derived from the adult spinal cord. We found that oncostatin induced strong Osmr and p-STAT3 expression in these cells which is associated with reduction of proliferation and promotion of astrocytic versus oligodendrocytic differentiation. Microglial cells are apposed to ependymal cells in vivo and co-culture experiments showed that these cells upregulate Osmr in neurosphere cultures. Collectively, these results support the notion that microglial cells and Osmr/Oncostatin pathway may regulate the astrocytic fate of ependymal cells in spinal cord injury.
Collapse
Affiliation(s)
- Robert Chevreau
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34295 Montpellier, France; (R.C.); (H.G.); (C.R.); (A.L.H.-G.); (H.H.); (B.R.)
| | - Hussein Ghazale
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34295 Montpellier, France; (R.C.); (H.G.); (C.R.); (A.L.H.-G.); (H.H.); (B.R.)
| | - Chantal Ripoll
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34295 Montpellier, France; (R.C.); (H.G.); (C.R.); (A.L.H.-G.); (H.H.); (B.R.)
| | - Chaima Chalfouh
- EA3830 GRHV, Institute for Research and Innovation in Biomedicine (IRIB), Normandie Université, UNIROUEN, 76000 Rouen, France; (C.C.); (Q.D.); (N.G.)
| | - Quentin Delarue
- EA3830 GRHV, Institute for Research and Innovation in Biomedicine (IRIB), Normandie Université, UNIROUEN, 76000 Rouen, France; (C.C.); (Q.D.); (N.G.)
| | - Anne Laure Hemonnot-Girard
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34295 Montpellier, France; (R.C.); (H.G.); (C.R.); (A.L.H.-G.); (H.H.); (B.R.)
| | - Daria Mamaeva
- Institut des Neurosciences de Montpellier, Université de Montpellier, INSERM, 34295 Montpellier, France;
| | - Helene Hirbec
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34295 Montpellier, France; (R.C.); (H.G.); (C.R.); (A.L.H.-G.); (H.H.); (B.R.)
| | - Bernard Rothhut
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34295 Montpellier, France; (R.C.); (H.G.); (C.R.); (A.L.H.-G.); (H.H.); (B.R.)
| | - Shalaka Wahane
- Departments of Neurobiology and Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA;
| | - Florence Evelyne Perrin
- Department of Biology, University of Montpellier, INSERM MMDN, EPHE, 34295 Montpellier, France;
- Institut Universitaire de France (IUF), 75231 Paris, France
| | - Harun Najib Noristani
- Shriners Hospitals Pediatric Research Center and Center for Neural Repair, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA;
| | - Nicolas Guerout
- EA3830 GRHV, Institute for Research and Innovation in Biomedicine (IRIB), Normandie Université, UNIROUEN, 76000 Rouen, France; (C.C.); (Q.D.); (N.G.)
| | - Jean Philippe Hugnot
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34295 Montpellier, France; (R.C.); (H.G.); (C.R.); (A.L.H.-G.); (H.H.); (B.R.)
- Correspondence:
| |
Collapse
|
6
|
Role of JAK-STAT Pathway in Broiler Chicks Fed with Chestnut Tannins. Animals (Basel) 2021; 11:ani11020337. [PMID: 33572892 PMCID: PMC7911350 DOI: 10.3390/ani11020337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/24/2021] [Accepted: 01/25/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Current bans on the use of antibiotics in livestock feed have led to increasing demand for alternatives to antibiotics (ATA). One popular alternative is chestnut tannins (ChT). While there is growing evidence of the immune benefits of using phytobiotics, such as ChT, there is currently minimal information on the effect of tannins on the immune pathway of the host. A previous study discovered a large upregulation of IL-6 in broiler chicks at day 6 when provided with 1% ChT from hatch. In regard to potential immune modulation, ChT appear to influence host immunity via an IL-6 mediated response, which could be beneficial in host defenses against pathogens at the early stages of broiler growth and development. A critical pathway identified in the regulation of the immune system is the JAK-STAT signaling pathway. The role of JAK-STAT pathway is altered by the addition of ChT in the diet. By demonstrating the changes in the kinome of the broiler model, the information in this study will provide further insights into potential ATA to improve poultry health. Abstract The objective of this study was to identify the phosphorylation events associated with host immunity with the inclusion of chestnut tannins (ChT) in the diet. A total of 200 male day-of-hatch Cobb 500 chicks were randomly assigned to two treatment groups, totaling 50 chicks per pen per experiment (this study was repeated two times). The treatments were as follows: (1) control feed—normal starter feed (n = 50), and (2) 1% ChT inclusion feed (n = 50). The ceca were collected on each necropsy day for analysis via (1) a peptide array to provide tissue immunometabolism information from the host, and (2) quantitative PCR for mRNA expression. Of the top three immune pathways, the data identified the T-cell receptor signaling pathway, the chemokine signaling pathway, and the JAK-STAT signaling pathway. The results showed significantly altered phosphorylation of JAK and STAT peptides within the JAK-STAT pathway. These results support the mRNA expression data with the upregulated IL-6 response, due to the significant phosphorylation of IL6ST, JAK, and STAT peptides. In regard to immune modulation, ChT appear to influence host immunity via an IL-6 mediated response which could be beneficial in host defenses against pathogens at the early stages of broiler growth and development. Therefore, it is suggested that the role of the JAK-STAT pathway is altered by including ChT in the diet.
Collapse
|
7
|
Oncostatin M: A mysterious cytokine in cancers. Int Immunopharmacol 2020; 90:107158. [PMID: 33187910 DOI: 10.1016/j.intimp.2020.107158] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/04/2020] [Accepted: 10/26/2020] [Indexed: 02/07/2023]
Abstract
Oncostatin M (OSM), as a member of the Interleukin-6 family cytokines, plays a significant role in inflammation, autoimmunity, and cancers. It is mainly secreted by T lymphocytes, neutrophils, and macrophages and was initially introduced as anti-cancer agent. However, in some cases, it promotes cancer progression. Overexpression of OSM and OSM receptor has been detected in various cancers including colon cancer, breast cancer, pancreatic cancer, myeloma, brain tumors, chronic lymphocytic leukemia, and hepatoblastoma. STAT3 is the main downstream signaling molecule of OSM, which operates the leading role in modifications of cancer cells and enhancing cell growth, invasion, survival, and all other hallmarks of cancer cells. However, due to the presence of multiple signaling pathways, it can act contradictory in some cancers. In this review, we will discuss the emerging roles of OSM in cancer and elucidate its function in tumor control or progression and finally discuss therapeutic approaches designed to manipulate this cytokine in cancer.
Collapse
|
8
|
Young PY, Mueller TF, Sis B, Churchill TA, Khadaroo RG. Oncostatin M Plays a Critical Role in Survival after Acute Intestinal Ischemia: Reperfusion Injury. Surg Infect (Larchmt) 2020; 21:799-806. [PMID: 32379547 DOI: 10.1089/sur.2019.193] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Background: Acute intestinal ischemia-reperfusion injury (AIIRI) is a devastating clinical condition relevant to multiple diseases processes, including sepsis, trauma, transplantation, and burns. An AIIRI is a contributor to the development of multiple organ dysfunction syndrome (MODS). Oncostatin M (OSM)/oncostatin M receptor (OSMR) signaling is an unrecognized and novel candidate pathway for the mediation of MODS. In this study, we hypothesized that OSM mediates the injury mechanism of AIIRI leading to MODS. Methods: Wild-type (WT) and OSMR-knockout (OSMR-/-) C57BL/6 mice underwent AIIRI using a well-established model of selective occlusion of the superior mesenteric artery (SMA). Serum cytokine concentrations were measured using a multiplex detection system. Further tissue analysis was conducted with polymerase chain reaction, enzyme-linked immunosorbent assay, Western blots, and histologic review. Results: Survival was significantly higher in WT than in OSMR-/- groups at 30 minutes of ischemia with 2 hours of reperfusion (100% versus 42.9%; P = 0.015). No significant differences in the degree of local intestinal injury was seen in the two groups. In contrast, the degree of lung injury, as evidenced by myeloperixodase activity, was lower in OSMR-/- animals in the early AIIRI groups. There was a greater degree of renal dysfunction in OSMR-/- mice. Oncostatin M mediated interleukin (IL)-10 upregulation, with WT animals having significantly lower IL-10 concentrations (52.04 ± 23.06 pg/mL versus 324.37 ± 140.35 pg/mL; P = 0.046). Conclusion: Oncostatin M signalling is essential during acute intestinal ischemia-reperfusion injury. An OSMR deficiency results in decreased early lung injury but increased renal dysfunction. There was a significantly increased mortality rate after AIIRI in mice with OSMR deficiency. Augmentation of OSM may be a novel immunomodulatory strategy for AIIRI.
Collapse
Affiliation(s)
- Pang Y Young
- Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Thomas F Mueller
- Department of Medicine, and Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Banu Sis
- Department of Laboratory Medicine and Pathology and Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Thomas A Churchill
- Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Rachel G Khadaroo
- Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada.,Department of Division of Critical Care Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
9
|
West NR, Owens BMJ, Hegazy AN. The oncostatin M-stromal cell axis in health and disease. Scand J Immunol 2018; 88:e12694. [DOI: 10.1111/sji.12694] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 06/15/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Nathaniel R. West
- Department of Cancer Immunology; Genentech; South San Francisco California
| | - Benjamin M. J. Owens
- Somerville College; University of Oxford; Oxford UK
- EUSA Pharma; Hemel Hempstead UK
| | - Ahmed N. Hegazy
- Division of Gastroenterology, Infectiology, and Rheumatology; Charité Universitätsmedizin; Berlin Germany
- Deutsches Rheuma-Forschungszentrum; ein Institut der Leibniz-Gemeinschaft; Berlin Germany
| |
Collapse
|
10
|
Hergovits S, Mais C, Haan C, Costa‐Pereira AP, Hermanns HM. Oncostatin M induces RIG-I and MDA5 expression and enhances the double-stranded RNA response in fibroblasts. J Cell Mol Med 2017; 21:3087-3099. [PMID: 28560754 PMCID: PMC5661242 DOI: 10.1111/jcmm.13221] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 04/03/2017] [Indexed: 12/31/2022] Open
Abstract
Interleukin (IL)-6-type cytokines have no direct antiviral activity; nevertheless, they display immune-modulatory functions. Oncostatin M (OSM), a member of the IL-6 family, has recently been shown to induce a distinct number of classical interferon stimulated genes (ISG). Most of them are involved in antigen processing and presentation. However, induction of retinoic acid-inducible gene (RIG)-I-like receptors (RLR) has not been investigated. Here we report that OSM has the capability to induce the expression of the DExD/H-Box RNA helicases RIG-I and melanoma differentiation antigen 5 (MDA5) as well as of the transcription factors interferon regulatory factor (IRF)1, IRF7 and IRF9 in primary fibroblasts. Induction of the helicases depends on tyrosine as well as serine phosphorylation of STAT1. Moreover, we could show that the OSM-induced STAT1 phosphorylation is predominantly counter-regulated by a strong STAT3-dependent SOCS3 induction, as Stat3 as well as Socs3 knock-down results in an enhanced and prolonged helicase and IRF expression. Other factors involved in regulation of STAT1 or IRF1 activity, like protein tyrosine phosphatase, non-receptor type 2 (PTPN2), promyelocytic leukaemia protein (PML) or small ubiquitin-related modifier 1 (SUMO1), play a minor role in OSM-mediated induction of RLR. Remarkably, OSM and interferon-γ (IFN-γ) synergize to mediate transcription of RLR and pre-treatment of fibroblasts with OSM fosters the type I interferon production in response to a subsequent encounter with double-stranded RNA. Together, these findings suggest that the OSM-induced JAK/STAT1 signalling is implicated in virus protection of non-professional immune cells and may cooperate with interferons to enhance RLR expression in these cells.
Collapse
MESH Headings
- Cell Line, Tumor
- DEAD Box Protein 58/antagonists & inhibitors
- DEAD Box Protein 58/genetics
- DEAD Box Protein 58/immunology
- Fibroblasts/cytology
- Fibroblasts/drug effects
- Fibroblasts/metabolism
- Gene Expression Regulation
- Humans
- Immunity, Innate
- Interferon Regulatory Factor-1/genetics
- Interferon Regulatory Factor-1/immunology
- Interferon Regulatory Factor-7/genetics
- Interferon Regulatory Factor-7/immunology
- Interferon-Induced Helicase, IFIH1/antagonists & inhibitors
- Interferon-Induced Helicase, IFIH1/genetics
- Interferon-Induced Helicase, IFIH1/immunology
- Interferon-Stimulated Gene Factor 3, gamma Subunit/genetics
- Interferon-Stimulated Gene Factor 3, gamma Subunit/immunology
- Interferon-gamma/pharmacology
- Interleukin-6/pharmacology
- Leukemia Inhibitory Factor/pharmacology
- Leukemia Inhibitory Factor Receptor alpha Subunit/genetics
- Leukemia Inhibitory Factor Receptor alpha Subunit/immunology
- Lipopolysaccharides/pharmacology
- Lung/cytology
- Lung/drug effects
- Lung/metabolism
- Oncostatin M/pharmacology
- Osteoblasts/cytology
- Osteoblasts/drug effects
- Osteoblasts/metabolism
- Primary Cell Culture
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Receptors, Immunologic
- STAT1 Transcription Factor/genetics
- STAT1 Transcription Factor/immunology
- STAT3 Transcription Factor/genetics
- STAT3 Transcription Factor/immunology
- Signal Transduction
- Skin/cytology
- Skin/drug effects
- Skin/metabolism
- Suppressor of Cytokine Signaling 3 Protein/genetics
- Suppressor of Cytokine Signaling 3 Protein/immunology
Collapse
Affiliation(s)
- Sabine Hergovits
- Medical Clinic and Policlinic IIDivision of HepatologyUniversity Hospital WürzburgWürzburgGermany
| | - Christine Mais
- Medical Clinic and Policlinic IIDivision of HepatologyUniversity Hospital WürzburgWürzburgGermany
| | - Claude Haan
- University of LuxembourgLife Sciences Research Unit‐Signal Transduction LaboratoryBelvauxLuxembourg
| | | | - Heike M. Hermanns
- Medical Clinic and Policlinic IIDivision of HepatologyUniversity Hospital WürzburgWürzburgGermany
| |
Collapse
|
11
|
Son HJ, Lee SH, Lee SY, Kim EK, Yang EJ, Kim JK, Seo HB, Park SH, Cho ML. Oncostatin M Suppresses Activation of IL-17/Th17 via SOCS3 Regulation in CD4+ T Cells. THE JOURNAL OF IMMUNOLOGY 2017; 198:1484-1491. [PMID: 28093521 DOI: 10.4049/jimmunol.1502314] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 12/13/2016] [Indexed: 12/20/2022]
Abstract
Oncostatin M (OSM) is a pleiotropic cytokine and a member of the IL-6 family. It has both proinflammatory and anti-inflammatory functions and is involved in the activation of STAT3 and STAT5. Rheumatoid arthritis is an autoimmune disease that causes chronic and excessive inflammation. Rheumatoid arthritis can lead to induction of Th17 cells, which express IL-17. The aim of this study was to measure the effects of OSM on the proliferation of regulatory T cells and Th17 cells from mice. IL-2 immune complex suppressed the development of collagen-induced arthritis in mice and altered the regulatory T/Th17 cell balance by increasing OSM expression. OSM mitigated the proliferation of Th17 cells and decreased the expression of IL-17 and IL-21. It promoted the activation of suppressor of cytokine signaling 3 (SOCS3), STAT3, and STAT5. Inhibition of SOCS3, STAT3, and STAT5 lessened the OSM-induced reduction in proliferation of Th17 cells. These observations suggest that OSM can inhibit Th17 differentiation by reciprocally controlling SOCS3, STAT3, and STAT5.
Collapse
Affiliation(s)
- Hye-Jin Son
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul 137-701, South Korea; and
| | - Seung Hoon Lee
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul 137-701, South Korea; and
| | - Seon-Yeong Lee
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul 137-701, South Korea; and
| | - Eun-Kyung Kim
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul 137-701, South Korea; and
| | - Eun-Ji Yang
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul 137-701, South Korea; and
| | - Jae-Kyung Kim
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul 137-701, South Korea; and
| | - Hyeon-Beom Seo
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul 137-701, South Korea; and
| | - Sung-Hwan Park
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul 137-701, South Korea; and
| | - Mi-La Cho
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul 137-701, South Korea; and .,Laboratory of Immune Network, Conversant Research Consortium in Immunologic Disease, College of Medicine, The Catholic University of Korea, Seoul 137-701, South Korea
| |
Collapse
|
12
|
Rolvering C, Zimmer AD, Kozar I, Hermanns HM, Letellier E, Vallar L, Nazarov PV, Nicot N, Ginolhac A, Haan S, Behrmann I, Haan C. Crosstalk between different family members: IL27 recapitulates IFNγ responses in HCC cells, but is inhibited by IL6-type cytokines. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1864:516-526. [PMID: 27939431 DOI: 10.1016/j.bbamcr.2016.12.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 12/02/2016] [Accepted: 12/07/2016] [Indexed: 01/10/2023]
Abstract
Interleukin-27 (IL27) is a type-I-cytokine of the IL6/IL12 family predominantly secreted by activated macrophages and dendritic cells. In the liver, IL27 expression was observed to be upregulated in patients with hepatitis B, and sera of hepatocellular carcinoma (HCC) patients contain significantly elevated levels of IL27 compared to healthy controls or patients with hepatitis and/or liver cirrhosis. In this study, we show that IL27 induces STAT1 and STAT3 phosphorylation in 5 HCC lines and 3 different types of non-transformed liver cells. We were especially interested in the relevance of the IL27-induced STAT3 activation in liver cells. Thus, we compared the IL27 responses with those induced by IFNγ (STAT1-dominated response) or IL6-type cytokines (IL6, hyper-IL6 (hy-IL6) or OSM) (STAT3-dominated response) by microarray analysis and find that in HCC cells, IL27 induces an IFNγ-like, STAT1-dependent transcriptional response, but we do not find an effective STAT3-dependent response. Validation experiments corroborate the finding from the microarray evaluation. Interestingly, the availability of STAT1 seems critical in the shaping of the IL27 response, as the siRNA knock-down of STAT1 revealed the ability of IL27 to induce the acute-phase protein γ-fibrinogen, a typical IL6 family characteristic. Moreover, we describe a crosstalk between the signaling of IL6-type cytokines and IL27: responses to the gp130-engaging cytokine IL27 (but not those to IFNs) can be inhibited by IL6-type cytokine pre-stimulation, likely by a SOCS3-mediated mechanism. Thus, IL27 recapitulates IFNγ responses in liver cells, but differs from IFNγ by its sensitivity to SOCS3 inhibition.
Collapse
Affiliation(s)
- Catherine Rolvering
- University of Luxembourg, Life Sciences Research Unit - Signal Transduction Laboratory, 6, Avenue du Swing, L4367 Belvaux, Luxembourg.
| | - Andreas D Zimmer
- University of Luxembourg, Life Sciences Research Unit - Signal Transduction Laboratory, 6, Avenue du Swing, L4367 Belvaux, Luxembourg.
| | - Ines Kozar
- University of Luxembourg, Life Sciences Research Unit - Signal Transduction Laboratory, 6, Avenue du Swing, L4367 Belvaux, Luxembourg.
| | - Heike M Hermanns
- University Hospital Würzburg, Medical Clinic II, Division of Hepatology, Grombühlstr. 12, D-97080 Würzburg, Germany.
| | - Elisabeth Letellier
- University of Luxembourg, Life Sciences Research Unit - Molecular Disease Mechanisms Laboratory, 6, Avenue du Swing, L4367 Belvaux, Luxembourg.
| | - Laurent Vallar
- Genomics Research Laboratory, Dept. of Oncology, Luxembourg Institute of Health, 84 Val Fleuri, L1526 Luxembourg, Luxembourg.
| | - Petr V Nazarov
- Genomics Research Laboratory, Dept. of Oncology, Luxembourg Institute of Health, 84 Val Fleuri, L1526 Luxembourg, Luxembourg.
| | - Nathalie Nicot
- Genomics Research Laboratory, Dept. of Oncology, Luxembourg Institute of Health, 84 Val Fleuri, L1526 Luxembourg, Luxembourg.
| | - Aurélien Ginolhac
- University of Luxembourg, Life Sciences Research Unit - Bioinformatics Core Facility, 6, Avenue du Swing, L4367 Belvaux, Luxembourg.
| | - Serge Haan
- University of Luxembourg, Life Sciences Research Unit - Molecular Disease Mechanisms Laboratory, 6, Avenue du Swing, L4367 Belvaux, Luxembourg.
| | - Iris Behrmann
- University of Luxembourg, Life Sciences Research Unit - Signal Transduction Laboratory, 6, Avenue du Swing, L4367 Belvaux, Luxembourg.
| | - Claude Haan
- University of Luxembourg, Life Sciences Research Unit - Signal Transduction Laboratory, 6, Avenue du Swing, L4367 Belvaux, Luxembourg.
| |
Collapse
|
13
|
Hermanns HM. Oncostatin M and interleukin-31: Cytokines, receptors, signal transduction and physiology. Cytokine Growth Factor Rev 2015. [DOI: 10.1016/j.cytogfr.2015.07.006] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
14
|
Goyden J, Tawara K, Hedeen D, Willey JS, Thom Oxford J, Jorcyk CL. The Effect of OSM on MC3T3-E1 Osteoblastic Cells in Simulated Microgravity with Radiation. PLoS One 2015; 10:e0127230. [PMID: 26030441 PMCID: PMC4452373 DOI: 10.1371/journal.pone.0127230] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 04/12/2015] [Indexed: 12/20/2022] Open
Abstract
Bone deterioration is a challenge in long-term spaceflight with significant connections to patients experiencing disuse bone loss. Prolonged unloading and radiation exposure, defining characteristics of space travel, have both been associated with changes in inflammatory signaling via IL-6 class cytokines in bone. While there is also evidence for perturbed IL-6 class signaling in spaceflight, there has been scant examination of the connections between microgravity, radiation, and inflammatory stimuli in bone. Our lab and others have shown that the IL-6 class cytokine oncostatin M (OSM) is an important regulator of bone remodeling. We hypothesize that simulated microgravity alters osteoblast OSM signaling, contributing to the decoupling of osteolysis and osteogenesis in bone homeostasis. To test this hypothesis, we induced OSM signaling in murine MC3T3-E1 pre-osteoblast cells cultured in modeled microgravity using a rotating wall vessel bioreactor with and without exposure to radiation typical of a solar particle event. We measured effects on inflammatory signaling, osteoblast activity, and mineralization. Results indicated time dependent interactions among all conditions in the regulation of IL-6 production. Furthermore, OSM induced the transcription of OSM receptor ß, IL 6 receptor α subunits, collagen α1(I), osteocalcin, sclerostin, RANKL, and osteoprotegerin. Measurements of osteoid mineralization suggest that the spatial organization of the osteoblast environment is an important consideration in understanding bone formation. Taken together, these results support a role for altered OSM signaling in the mechanism of microgravity-induced bone loss.
Collapse
Affiliation(s)
- Jake Goyden
- Department of Biological Sciences, Boise State University, 1910 University Drive, Boise, Idaho 83725, United States of America
| | - Ken Tawara
- Department of Biological Sciences, Boise State University, 1910 University Drive, Boise, Idaho 83725, United States of America
| | - Danielle Hedeen
- Department of Biological Sciences, Boise State University, 1910 University Drive, Boise, Idaho 83725, United States of America
| | - Jeffrey S. Willey
- Department of Radiation Oncology, and the Comprehensive Cancer Center, Wake Forest School of Medicine, 1 Medical Center Blvd, Winston-Salem, North Carolina, 27157, United States of America
| | - Julia Thom Oxford
- Department of Biological Sciences, Boise State University, 1910 University Drive, Boise, Idaho 83725, United States of America
- Biomolecular Research Center, Boise State University 1910 University Drive, Boise, Idaho 83725, United States of America
| | - Cheryl L. Jorcyk
- Department of Biological Sciences, Boise State University, 1910 University Drive, Boise, Idaho 83725, United States of America
- Biomolecular Research Center, Boise State University 1910 University Drive, Boise, Idaho 83725, United States of America
- * E-mail:
| |
Collapse
|
15
|
Lörchner H, Pöling J, Gajawada P, Hou Y, Polyakova V, Kostin S, Adrian-Segarra JM, Boettger T, Wietelmann A, Warnecke H, Richter M, Kubin T, Braun T. Myocardial healing requires Reg3β-dependent accumulation of macrophages in the ischemic heart. Nat Med 2015; 21:353-62. [PMID: 25751817 DOI: 10.1038/nm.3816] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Accepted: 02/06/2015] [Indexed: 12/14/2022]
Abstract
Cardiac healing after myocardial ischemia depends on the recruitment and local expansion of myeloid cells, particularly macrophages. Here we identify Reg3β as an essential regulator of macrophage trafficking to the damaged heart. Using mass spectrometry-based secretome analysis, we found that dedifferentiating cardiomyocytes release Reg3β in response to the cytokine OSM, which signals through Jak1 and Stat3. Loss of Reg3β led to a large decrease in the number of macrophages in the ischemic heart, accompanied by increased ventricular dilatation and insufficient removal of neutrophils. This defect in neutrophil removal in turn caused enhanced matrix degradation, delayed collagen deposition and increased susceptibility to cardiac rupture. Our data indicate that OSM, acting through distinct intracellular pathways, regulates both cardiomyocyte dedifferentiation and cardiomyocyte-dependent regulation of macrophage trafficking. Release of OSM from infiltrating neutrophils and macrophages initiates a positive feedback loop in which OSM-induced production of Reg3β in cardiomyocytes attracts additional OSM-secreting macrophages. The activity of the feedback loop controls the degree of macrophage accumulation in the heart, which is instrumental in myocardial healing.
Collapse
Affiliation(s)
- Holger Lörchner
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Jochen Pöling
- 1] Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany. [2] Department of Cardiac Surgery, Schüchtermann-Clinic, Bad Rothenfelde, Germany
| | - Praveen Gajawada
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Yunlong Hou
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Viktoria Polyakova
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Sawa Kostin
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Juan M Adrian-Segarra
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Thomas Boettger
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Astrid Wietelmann
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Henning Warnecke
- Department of Cardiac Surgery, Schüchtermann-Clinic, Bad Rothenfelde, Germany
| | - Manfred Richter
- Department of Cardiac Surgery, Kerckhoff-Klinik, Bad Nauheim, Germany
| | - Thomas Kubin
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Thomas Braun
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| |
Collapse
|
16
|
Ehlting C, Böhmer O, Hahnel MJ, Thomas M, Zanger UM, Gaestel M, Knoefel WT, Schulte Am Esch J, Häussinger D, Bode JG. Oncostatin M regulates SOCS3 mRNA stability via the MEK-ERK1/2-pathway independent of p38(MAPK)/MK2. Cell Signal 2015; 27:555-67. [PMID: 25562430 DOI: 10.1016/j.cellsig.2014.12.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Revised: 12/13/2014] [Accepted: 12/28/2014] [Indexed: 12/22/2022]
Abstract
The induction of suppressor of cytokine signalling (SOCS)3 expression context dependently involves regulation of SOCS3 transcript stability as previously demonstrated for MAPK activated protein kinase (MK)2-dependent regulation of SOCS3 expression by TNFα (Ehlting et al., 2007). In how far the IL-6-type cytokine OSM, which in contrast to IL-6 is a strong activator of p38(MAPK)/MK2 signalling, also involves regulation of transcript stability and activation of MK2 to induce SOCS3 expression is unclear. In contrast to IL-6, OSM induces SOCS3 expression in murine fibroblasts and in primary human and murine hepatocytes, but not in macrophages because the latter lack the OSM receptor (OSMR)β subunit. Evidence is provided that regulation of OSM-induced expression of SOCS3 involves MEK1- and Erk1/2-mediated stabilization of the SOCS3 transcript. Consistently, OSM-induced stabilization of the SOCS3 transcript is impaired in the presence of inhibitors that specifically block activation of MEK1/2 (U0126) and ERK1/2 (FR180204) or upon knock-down of ERK1/2 expression using specific siRNA. As a potential target site that integrates the stability regulating effect of OSM and OSM-induced activation of MEK1/2 and ERK1/2 a region containing three copies of a pentameric AUUUA motif located within position 2422 and 2541 in closed proximity to the 3' UTR of the SOCS3 transcript has been identified. Unexpectedly, activation of the p38(MAPK)/MK2 pathway, which apart from STAT3 and ERK1/2, is also strongly activated by OSM in human and murine hepatocytes and murine fibroblasts is dispensable for stabilization of the SOCS3 transcript as suggested from inhibitor studies using the p38(MAPK) inhibitor SB203580 or from the analysis of MK2-deficient hepatocytes. However, analysis of MK2-deficient macrophages and hepatocytes revealed that, although MK2 is dispensable for regulation of OSM-induced SOCS3 expression, MK2 is essential for LPS-induced OSM production in macrophages and limits the overall availability of the OSMRβ subunit in hepatocytes. Thus MK2 plays a role for the induction and sensing of OSM-mediated intercellular signalling between macrophages and hepatocytes during LPS-induced inflammation.
Collapse
Affiliation(s)
- Christian Ehlting
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, University Hospital, Heinrich Heine University of Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Oliver Böhmer
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, University Hospital, Heinrich Heine University of Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Maximilian J Hahnel
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, University Hospital, Heinrich Heine University of Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Maria Thomas
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, 70376 Stuttgart, Germany
| | - Ulrich M Zanger
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, 70376 Stuttgart, Germany
| | - Matthias Gaestel
- Institute of Physiological Chemistry, Hannover Medical School, 30623 Hannover, Germany
| | - Wolfram T Knoefel
- Department of Surgery (A), Medical Faculty, University Hospital, Heinrich Heine University of Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Jan Schulte Am Esch
- Department of Surgery (A), Medical Faculty, University Hospital, Heinrich Heine University of Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Dieter Häussinger
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, University Hospital, Heinrich Heine University of Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Johannes G Bode
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, University Hospital, Heinrich Heine University of Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany.
| |
Collapse
|
17
|
Proctor CJ, Macdonald C, Milner JM, Rowan AD, Cawston TE. A computer simulation approach to assessing therapeutic intervention points for the prevention of cytokine-induced cartilage breakdown. Arthritis Rheumatol 2014; 66:979-89. [PMID: 24757149 PMCID: PMC4033570 DOI: 10.1002/art.38297] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 11/21/2013] [Indexed: 12/21/2022]
Abstract
Objective To use a novel computational approach to examine the molecular pathways involved in cartilage breakdown and to use computer simulation to test possible interventions for reducing collagen release. Methods We constructed a computational model of the relevant molecular pathways using the Systems Biology Markup Language, a computer-readable format of a biochemical network. The model was constructed using our experimental data showing that interleukin-1 (IL-1) and oncostatin M (OSM) act synergistically to up-regulate collagenase protein levels and activity and initiate cartilage collagen breakdown. Simulations were performed using the COPASI software package. Results The model predicted that simulated inhibition of JNK or p38 MAPK, and overexpression of tissue inhibitor of metalloproteinases 3 (TIMP-3) led to a reduction in collagen release. Overexpression of TIMP-1 was much less effective than that of TIMP-3 and led to a delay, rather than a reduction, in collagen release. Simulated interventions of receptor antagonists and inhibition of JAK-1, the first kinase in the OSM pathway, were ineffective. So, importantly, the model predicts that it is more effective to intervene at targets that are downstream, such as the JNK pathway, rather than those that are close to the cytokine signal. In vitro experiments confirmed the effectiveness of JNK inhibition. Conclusion Our study shows the value of computer modeling as a tool for examining possible interventions by which to reduce cartilage collagen breakdown. The model predicts that interventions that either prevent transcription or inhibit the activity of collagenases are promising strategies and should be investigated further in an experimental setting.
Collapse
Affiliation(s)
- C J Proctor
- MRC-Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing and Newcastle University, Newcastle upon Tyne, UK
| | | | | | | | | |
Collapse
|
18
|
Richards CD. The enigmatic cytokine oncostatin m and roles in disease. ISRN INFLAMMATION 2013; 2013:512103. [PMID: 24381786 PMCID: PMC3870656 DOI: 10.1155/2013/512103] [Citation(s) in RCA: 154] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 09/29/2013] [Indexed: 12/11/2022]
Abstract
Oncostatin M is a secreted cytokine involved in homeostasis and in diseases involving chronic inflammation. It is a member of the gp130 family of cytokines that have pleiotropic functions in differentiation, cell proliferation, and hematopoetic, immunologic, and inflammatory networks. However, Oncostatin M also has activities novel to mediators of this cytokine family and others and may have fundamental roles in mechanisms of inflammation in pathology. Studies have explored Oncostatin M functions in cancer, bone metabolism, liver regeneration, and conditions with chronic inflammation including rheumatoid arthritis, lung and skin inflammatory disease, atherosclerosis, and cardiovascular disease. This paper will review Oncostatin M biology in a historical fashion and focus on its unique activities, in vitro and in vivo, that differentiate it from other cytokines and inspire further study or consideration in therapeutic approaches.
Collapse
Affiliation(s)
- Carl D. Richards
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine, McMaster University, 1280 Main Street, West, Hamilton, ON, Canada L8S 4K1
| |
Collapse
|
19
|
Abstract
Suppressors of cytokine signaling 3 (SOCS3) has been shown to be an important and non-redundant feedback inhibitor of several cytokines including leukemia inhibitory factor, IL-6, IL-11, Ciliary neurotrophic factor (CNTF), leptin, and granulocyte colony-stimulating factor (G-CSF). Loss of SOCS3 in vivo has profound effects on placental development, inflammation, fat-induced weight gain, and insulin sensitivity. SOCS3 expression is induced by Janus kinase (JAK)/signal transducers and activators of transcription (STAT) signaling and it then binds to specific cytokine receptors (including gp130, G-CSF, and leptin receptors). SOCS3 then inhibits JAK/STAT signaling in two distinct ways. First, SOCS3 is able to directly inhibit the catalytic activity of JAK1, JAK2, or TYK2 while remaining bound to the cytokine receptor. Second, SOCS3 recruits elongins B/C and Cullin5 to generate an E3 ligase that ubiquitinates both JAK and cytokine receptor targeting them for proteasomal degradation. Detailed in vivo studies have revealed that SOCS3 action not only limits the duration of cytokine signaling to prevent overactivity but it is also important in maintaining the specificity of cytokine signaling.
Collapse
Affiliation(s)
- Jeffrey J Babon
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia.
| | | |
Collapse
|
20
|
White UA, Stewart WC, Stephens JM. Gp130 cytokines exert differential patterns of crosstalk in adipocytes both in vitro and in vivo. Obesity (Silver Spring) 2011; 19:903-10. [PMID: 21164505 PMCID: PMC3080457 DOI: 10.1038/oby.2010.293] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Glycoprotein 130 (Gp130) cytokines are involved in the regulation of numerous biological processes, including hematopoiesis, immune response, inflammation, cardiovascular action, and neuronal survival. These cytokines share gp130 as a common signal transducer in their receptor complex and typically activate signal transducer and activator of transcription (STAT) 3. Studies have shown that several gp130 cytokines have differential effects on both adipogenesis and insulin-stimulated glucose uptake. Yet, the complex interactions of these cytokines in adipose tissue have not been studied. Gp130 cytokines are differentially regulated in multiple tissues due to the presence of additional receptor components that are required for signaling, including the leukemia inhibitory factor receptor (LIFR). Previous studies from our laboratory highlighted the ability of specific gp130 cytokines to crosstalk in adipocytes that correlated with LIFR degradation. Crosstalk is defined as the ability of one cytokine to modulate the signaling of another cytokine. Our novel studies reveal that white adipose tissue is highly responsive to gp130 cytokines, and we provide the first evidence that these cytokines can exert inhibitory crosstalk in adipose tissue in vivo. Moreover, several gp130 cytokines that use the LIFR, including cardiotrophin-1 (CT-1), LIF, and human oncostatin M (hOSM), can alter the subsequent signaling of other family members in adipocytes both in vitro and in vivo. Our data also show that murine OSM and neuropoietin do not crosstalk in the same manner as other gp130 cytokines, which likely results from their inability to activate the LIFR. Overall, we have observed distinctive patterns of crosstalk signaling by gp130 cytokines in adipocytes in vitro and in vivo and demonstrate the crosstalk is not dependent on new protein synthesis or extracellular-signal-regulated kinase activation.
Collapse
Affiliation(s)
- Ursula A. White
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| | - William C. Stewart
- Department of Biology, Middle Tennessee State University, Murfreesboro, Tennessee, USA
| | - Jacqueline M. Stephens
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| |
Collapse
|
21
|
Knobelspies H, Zeidler J, Hekerman P, Bamberg-Lemper S, Becker W. Mechanism of attenuation of leptin signaling under chronic ligand stimulation. BMC BIOCHEMISTRY 2010; 11:2. [PMID: 20059770 PMCID: PMC2821298 DOI: 10.1186/1471-2091-11-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2009] [Accepted: 01/08/2010] [Indexed: 01/04/2023]
Abstract
Background Leptin is an adipocyte-derived hormone that acts via its hypothalamic receptor (LEPRb) to regulate energy balance. A downstream effect essential for the weight-regulatory action of leptin is the phosphorylation and activation of the latent transcription factor STAT3 by LEPRb-associated Janus kinases (JAKs). Obesity is typically associated with chronically elevated leptin levels and a decreased ability of LEPRb to activate intracellular signal transduction pathways (leptin resistance). Here we have studied the roles of the intracellular tyrosine residues in the negative feedback regulation of LEPRb-signaling under chronic leptin stimulation. Results Mutational analysis showed that the presence of either Tyr985 and Tyr1077 in the intracellular domain of LEPRb was sufficient for the attenuation of STAT3 phosphorylation, whereas mutation of both tyrosines rendered LEPRb resistant to feedback regulation. Overexpression and RNA interference-mediated downregulation of suppressor of cytokine signaling 3 (SOCS3) revealed that both Tyr985 and Tyr1077 were capable of supporting the negative modulatory effect of SOCS3 in reporter gene assays. In contrast, the inhibitory effect of SOCS1 was enhanced by the presence of Tyr985 but not Tyr1077. Finally, the reduction of the STAT-phosphorylating activity of the LEPRb complex after 2 h of leptin stimulation was not accompanied by the dephosphorylation or degradation of LEPRb or the receptor-associated JAK molecule, but depended on Tyr985 and/or Tyr1077. Conclusions Both Tyr985 and Tyr1077 contribute to the negative regulation of LEPRb signaling. The inhibitory effects of SOCS1 and SOCS3 differ in the dependence on the tyrosine residues in the intracellular domain of LEPRb.
Collapse
Affiliation(s)
- Holger Knobelspies
- Institute of Pharmacology and Toxicology, Medical Faculty of the RWTH Aachen University, Wendlingweg 2, 52074 Aachen, Germany
| | | | | | | | | |
Collapse
|
22
|
Pardo-Saganta A, Latasa MU, Castillo J, Alvarez-Asiain L, Perugorría MJ, Sarobe P, Rodriguez-Ortigosa CM, Prieto J, Berasain C, Santamaría M, Avila MA. The epidermal growth factor receptor ligand amphiregulin is a negative regulator of hepatic acute-phase gene expression. J Hepatol 2009; 51:1010-20. [PMID: 19815304 DOI: 10.1016/j.jhep.2009.06.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Revised: 06/09/2009] [Accepted: 06/25/2009] [Indexed: 01/20/2023]
Abstract
BACKGROUND/AIMS The modulation of the hepatic acute-phase reaction (APR) that occurs during inflammation and liver regeneration is important for allowing normal hepatocellular proliferation and the restoration of homeostasis. Activation of acute-phase protein (APP) gene expression by interleukin-6 (IL-6)-type cytokines is thought to be counteracted by growth factors released during hepatic inflammation and regeneration. The epidermal growth factor receptor (EGFR) ligand amphiregulin (AR) is readily induced by inflammatory signals and plays a nonredundant protective role during liver injury. In this paper, we investigated the role of AR as a modulator of liver APP gene expression. METHODS Expression of APP genes was measured in the livers of AR(+/+) and AR(-/-)mice during inflammation and regeneration and in cultured liver cells treated with AR and oncostatin M (OSM). Crosstalk between AR and OSM signalling was studied. RESULTS APP genes were overexpressed in the livers of AR(-/-) mice during inflammation and hepatocellular regeneration. In cultured AR-null hepatocytes and human hepatocellular carcinoma (HCC) cells after AR knockdown, APP gene expression is enhanced. AR counteracts OSM-triggered signal transducer and activator of transcription 3 signalling in hepatocytes and attenuates APP gene transcription. CONCLUSIONS Our data support the relevance of EGFR-mediated signalling in the modulation of cytokine-activated pathways. We have identified AR as a key regulator of hepatic APP gene expression during inflammation and liver regeneration.
Collapse
Affiliation(s)
- Ana Pardo-Saganta
- Division of Hepatology and Gene Therapy, CIMA, University of Navarra, Avda. Pio XII n. 55, 31008 Pamplona, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Barclay JL, Anderson ST, Waters MJ, Curlewis JD. SOCS3 as a tumor suppressor in breast cancer cells, and its regulation by PRL. Int J Cancer 2009; 124:1756-66. [DOI: 10.1002/ijc.24172] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
24
|
Intragraft TNF Receptor Signaling Contributes to Activation of Innate and Adaptive Immunity in a Renal Allograft Model. Transplantation 2009; 87:178-88. [DOI: 10.1097/tp.0b013e3181938971] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
25
|
Abstract
Cytokine signaling via a restricted number of Jak-Stat pathways positively and negatively regulates all cell types involved in the initiation, propagation, and resolution of inflammation. Here, we focus on Jak-Stat signaling in three major cell types involved in inflammatory responses: T cells, neutrophils, and macrophages. We summarize how the Jak-Stat pathways in these cells are negatively regulated by the Suppressor of cytokine signaling (Socs) proteins. We emphasize that common Jak-Stat-Socs signaling modules can have diverse developmental, pro- and anti-inflammatory outcomes depending on the cytokine receptor activated and which genes are accessible at a given time in a cell's life. Because multiple components of Jak-Stat-Socs pathways are mutated or closely associated with human inflammatory diseases, and cytokine-based therapies are increasingly deployed to treat inflammation, understanding cytokine signaling will continue to advance our ability to manipulate chronic and acute inflammatory diseases.
Collapse
Affiliation(s)
- John J O'Shea
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20852, USA.
| | | |
Collapse
|
26
|
Hintzen C, Evers C, Lippok BE, Volkmer R, Heinrich PC, Radtke S, Hermanns HM. Box 2 region of the oncostatin M receptor determines specificity for recruitment of Janus kinases and STAT5 activation. J Biol Chem 2008; 283:19465-77. [PMID: 18430728 DOI: 10.1074/jbc.m710157200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human and murine oncostatin M (OSM) induce their bioactivities through a heterodimeric receptor complex consisting of gp130 and the OSM receptor (OSMR), which initiates a signaling pathway involving Janus kinases (JAKs) and transcription factors of the signal transducers and activators of transcription (STAT) family. In contrast to the signal transducing receptor subunit gp130, the OSMR allows strong activation of STAT5B. The underlying molecular mechanism, however, remained unclear. Here we demonstrate that the human and murine OSM receptors use distinct mechanisms for STAT5B activation. The human receptor contains a STAT5B recruiting tyrosine motif (Tyr837/Tyr839) C-terminal to the box 1/2 region, which is absent in the mouse receptor. In contrast, the murine receptor initiates STAT5 activation directly via the receptor bound Janus kinases. Intriguingly, the murine receptor preferentially recruits JAK2, whereas the human receptor seems to have a higher affinity for JAK1. We identify a single amino acid (Phe820) in the human receptor that is responsible for this preference. Exchange by the murine counterpart (Cys815) allows recruitment of JAK2 by the human receptor and consequently activation of STAT5B independently of receptor tyrosine motifs. STAT5B interacts directly with JAK2 only in response to activation of the murine OSMR or the mutated human OSMR. Additionally, we show that OSM-induced STAT1 phosphorylation occurs independently of receptor tyrosine motifs and is mediated directly by Janus kinases, whereas the two C-terminally located tyrosine residues Tyr917/Tyr945 of the OSMR are crucial for STAT3 activation.
Collapse
Affiliation(s)
- Christoph Hintzen
- Institut für Biochemie, Universitätsklinikum RWTH Aachen, Pauwelsstrasse 30, 52074 Aachen, Germany
| | | | | | | | | | | | | |
Collapse
|
27
|
Zheng C, Yang R, Han Z, Zhou B, Liang L, Lu M. TPO-independent megakaryocytopoiesis. Crit Rev Oncol Hematol 2008; 65:212-22. [PMID: 18093840 DOI: 10.1016/j.critrevonc.2007.11.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2006] [Revised: 06/19/2007] [Accepted: 11/08/2007] [Indexed: 12/25/2022] Open
Abstract
Megakaryocytopoiesis is a continuous developmental process of platelet production. In this process, a complex network of hemopoietic growth factors are involved, among which TPO (thrombopoietin) is the most thoroughly investigated regulator of MKs (megakaryocytes). In addition to TPO, other regulators also have non-negligible effects on megakaryocytopoiesis. The majority of their effects are independent of TPO signaling. To date, TPO-independent megakaryocytopoiesis forms a regulatory system that includes four signals and (an) unknown signaling pathway(s). These four pathways are the gp 130 (glycoprotein 130)-dependent signaling pathway, the Notch pathway, NMDA (N-methyl-d-aspartate) receptor-mediated signaling, and the SDF-1 (stromal cell-derived factor-1)/FGF-4 (fibroblast growth factor-4) paradigm. Understanding of the TPO-independent regulatory system is important because the system may offer additional opportunities to understand the developmental process and the mechanisms of disorders characterized by abnormal MK and platelet production, such as thrombocytopenia and thrombocythemia, and to advance the development of therapeutics.
Collapse
Affiliation(s)
- Cuiling Zheng
- State Key Laboratory of Experimental Hematology, Institute of Hematology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, PR China
| | | | | | | | | | | |
Collapse
|
28
|
Dierssen U, Beraza N, Lutz HH, Liedtke C, Ernst M, Wasmuth HE, Trautwein C. Molecular Dissection of gp130-dependent Pathways in Hepatocytes during Liver Regeneration. J Biol Chem 2008; 283:9886-95. [DOI: 10.1074/jbc.m705483200] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
29
|
Kurdi M, Booz GW. Can the protective actions of JAK-STAT in the heart be exploited therapeutically? Parsing the regulation of interleukin-6-type cytokine signaling. J Cardiovasc Pharmacol 2007; 50:126-41. [PMID: 17703129 DOI: 10.1097/fjc.0b013e318068dd49] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Activation of the transcription factor signal transducers and activators of transcription (STAT) 3 is a defining feature of the interleukin (IL)-6 family of cytokines, which include IL-6, leukemia inhibitory factor, and cardiotrophin-1. These cytokines, as well as STAT3 activation, have been shown to be protective for cardiac myocytes and necessary for ischemia preconditioning. However, the mechanisms that regulate IL-6-type cytokine signaling in cardiac myocytes are largely unexplored. We propose that the protective character of IL-6-type cytokine signaling in cardiac myocytes is determined principally by three mechanisms: redox status of the nonreceptor tyrosine kinase Janus kinase 1 (JAK) 1 that activates STAT3, phosphorylation of STAT3 within the transcriptional activation domain on serine 727, and STAT3-mediated induction of suppressor of cytokine signaling (SOCS) 3 that terminates IL-6-type cytokine signaling. Moreover, we hypothesize that hyperactivation of the JAK kinases, particularly JAK2, mismatched STAT3 serine-tyrosine phosphorylation or heightened STAT3 transcriptional activity, and SOCS3 induction may ultimately prove detrimental. Here we summarize recent evidence that supports this hypothesis, as well as additional possible mechanisms of JAK-STAT regulation. Understanding how IL-6-type cytokine signaling is regulated in cardiac myocytes has great significance for exploiting the therapeutic potential of these cytokines and the phenomenon of preconditioning.
Collapse
Affiliation(s)
- Mazen Kurdi
- Division of Molecular Cardiology, Cardiovascular Research Institute, College of Medicine, The Texas A&M University System Health Science Center, College Station, TX 76504, USA
| | | |
Collapse
|
30
|
Abstract
Universal and essential to cytokine receptor signaling, the JAK-STAT pathway is one of the best understood signal transduction cascades. Almost 40 cytokine receptors signal through combinations of four JAK and seven STAT family members, suggesting commonality across the JAK-STAT signaling system. Despite intense study, there remain substantial gaps in understanding how the cascades are activated and regulated. Using the examples of the IL-6 and IL-10 receptors, I will discuss how diverse outcomes in gene expression result from regulatory events that effect the JAK1-STAT3 pathway, common to both receptors. I also consider receptor preferences by different STATs and interpretive problems in the use of STAT-deficient cells and mice. Finally, I consider how the suppressor of cytokine signaling (SOCS) proteins regulate the quality and quantity of STAT signals from cytokine receptors. New data suggests that SOCS proteins introduce additional diversity into the JAK-STAT pathway by adjusting the output of activated STATs that alters downstream gene activation.
Collapse
Affiliation(s)
- Peter J Murray
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38104, USA.
| |
Collapse
|
31
|
Sutherland KD, Lindeman GJ, Visvader JE. The molecular culprits underlying precocious mammary gland involution. J Mammary Gland Biol Neoplasia 2007; 12:15-23. [PMID: 17323120 DOI: 10.1007/s10911-007-9034-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mammary gland involution, characterized by extensive apoptosis and structural remodelling of the gland, is the process by which the gland is returned to the pre-pregnant state. A key advantage of the mammary gland is the ability to synchronize involution through forced weaning, thus allowing the dissection of biochemical pathways involved in the involution process. Over the past few years, significant advances have been made in understanding the signaling pathways and downstream effectors that regulate epithelial cell apoptosis in the first phase of involution, and the importance of matrix metalloproteinases and their inhibitors in both phases of involution. The precise nature of the triggers for apoptosis, however, and the ultimate perpetrators of cell death are not yet clear. This review focuses on genes whose perturbation, either by targeted deletion or overexpression in transgenic mouse models, leads to precocious involution. The accumulating data point to a complex network of signal transduction pathways that synergize to regulate apoptosis in the involuting mammary gland.
Collapse
Affiliation(s)
- Kate D Sutherland
- VBCRC Laboratory, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3050, Australia
| | | | | |
Collapse
|
32
|
Orth JHC, Aktories K, Kubatzky KF. Modulation of host cell gene expression through activation of STAT transcription factors by Pasteurella multocida toxin. J Biol Chem 2006; 282:3050-7. [PMID: 17150962 DOI: 10.1074/jbc.m609018200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The Pasteurella multocida toxin (PMT) is highly mitogenic and has potential carcinogenic properties. PMT causes porcine atrophic rhinitis that is characterized by bone resorption and loss of nasal turbinates, but experimental nasal infection also leads to excess proliferation of bladder epithelial cells. PMT acts intracellularly and activates phospholipase C-linked signals and MAPK pathways via the heterotrimeric Galpha(q) and Galpha(12/13) proteins. We found that PMT induces activation of STAT proteins, and we identified STAT1, STAT3, and STAT5 as new targets of PMT-induced Galpha(q) signaling. Inhibition of Janus kinases completely abolished STAT activation. PMT-dependent STAT phosphorylation remained constitutive for at least 18 h. PMT caused down-regulation of the expression of the suppressor of cytokine signaling-3, indicating a novel mechanism to maintain activation of STATs. Moreover, stimulation of Swiss 3T3 cells with PMT increased transcription of the cancer-associated STAT-dependent gene cyclooxygenase-2. Because constitutive activation of STATs has been found in a number of cancers, our findings offer a new mechanism for a carcinogenic role of PMT.
Collapse
Affiliation(s)
- Joachim H C Orth
- Institut für Experimentelle and Klinische Pharmakologie and Toxikologie, Albert-Ludwigs-Universität, Albertstrasse 25, D-79104 Freiburg, Germany
| | | | | |
Collapse
|
33
|
Chattopadhyay S, Tracy E, Liang P, Robledo O, Rose-John S, Baumann H. Interleukin-31 and oncostatin-M mediate distinct signaling reactions and response patterns in lung epithelial cells. J Biol Chem 2006; 282:3014-26. [PMID: 17148439 DOI: 10.1074/jbc.m609655200] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Lung epithelial cells are primary targets of oncostatin M (OSM) and, to a lower degree, of interleukin (IL)-6 and IL-31, all members of the IL-6 cytokine family. The OSM receptor (OSMR) signals through activation of STAT and mitogen-activated protein kinase pathways to induce genes encoding differentiated cell functions, reduce cell-cell interaction, and suppress cell proliferation. IL-31 functions through the heteromeric IL-31 receptor, which shares with OSMR the OSMRbeta subunit, but does not engage gp130, the common subunit of all other IL-6 cytokine receptors. Because the response of epithelial cells to IL-31 is unknown, the action of IL-31 was characterized in the human alveolar epithelial cell line A549 in which the expression of the ligand-binding IL-31Ralpha subunit was increased. IL-31 initiated signaling that differed from other IL-6 cytokines by the particularly strong recruitment of the STAT3, ERK, JNK, and Akt pathways. IL-31 was highly effective in suppressing proliferation by altering expression of cell cycle proteins, including up-regulation of p27(Kip1) and down-regulation of cyclin B1, CDC2, CDK6, MCM4, and retinoblastoma. A single STAT3 recruitment site (Tyr-721) in the cytoplasmic domain of IL-31Ralpha exerts a dominant function in the entire receptor complex and is critical for gene induction, morphological changes, and growth inhibition. The data suggest that inflammatory and immune reactions involving activated T-cells regulate functions of epithelial cells by IL-6 cytokines through receptor-defined signaling reactions.
Collapse
Affiliation(s)
- Souvik Chattopadhyay
- Department of Molecular and Cellular Biology and Cancer Genetics, Roswell Park Cancer Institute, Buffalo, New York 14263, USA
| | | | | | | | | | | |
Collapse
|
34
|
Sutherland KD, Vaillant F, Alexander WS, Wintermantel TM, Forrest NC, Holroyd SL, McManus EJ, Schutz G, Watson CJ, Chodosh LA, Lindeman GJ, Visvader JE. c-myc as a mediator of accelerated apoptosis and involution in mammary glands lacking Socs3. EMBO J 2006; 25:5805-15. [PMID: 17139252 PMCID: PMC1698901 DOI: 10.1038/sj.emboj.7601455] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2006] [Accepted: 10/31/2006] [Indexed: 02/07/2023] Open
Abstract
Suppressor of cytokine signalling (SOCS) proteins are critical attenuators of cytokine-mediated signalling in diverse tissues. To determine the importance of Socs3 in mammary development, we generated mice in which Socs3 was deleted in mammary epithelial cells. No overt phenotype was evident during pregnancy and lactation, indicating that Socs3 is not a key physiological regulator of prolactin signalling. However, Socs3-deficient mammary glands exhibited a profound increase in epithelial apoptosis and tissue remodelling, resulting in precocious involution. This phenotype was accompanied by augmented Stat3 activation and a marked increase in the level of c-myc. Moreover, induction of c-myc before weaning using an inducible transgenic model recapitulated the Socs3 phenotype, and elevated expression of likely c-myc target genes, E2F-1, Bax and p53, was observed. Our data establish Socs3 as a critical attenuator of pro-apoptotic pathways that act in the developing mammary gland and provide evidence that c-myc regulates apoptosis during involution.
Collapse
Affiliation(s)
- Kate D Sutherland
- VBCRC Laboratory, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Victoria, Australia
| | - François Vaillant
- VBCRC Laboratory, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Warren S Alexander
- Cancer & Haematology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Tim M Wintermantel
- Molecular Biology of the Cell I, German Cancer Research Centre, Heidelberg, Germany
| | - Natasha C Forrest
- VBCRC Laboratory, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Sheridan L Holroyd
- VBCRC Laboratory, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Edward J McManus
- Cancer & Haematology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Gunther Schutz
- Molecular Biology of the Cell I, German Cancer Research Centre, Heidelberg, Germany
| | - Christine J Watson
- Mammary Apoptosis and Development Group, Department of Pathology, University of Cambridge, Cambridge, UK
| | - Lewis A Chodosh
- Abramson Family Cancer Research Institute, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Geoffrey J Lindeman
- VBCRC Laboratory, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Jane E Visvader
- VBCRC Laboratory, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- VBCRC Laboratory, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3050, Australia. Tel.: +61 3 9345 2494; Fax: 61 3 9347 0852; E-mail:
| |
Collapse
|