1
|
Song Q, Alvarez-Laviada A, Schrup SE, Reilly-O'Donnell B, Entcheva E, Gorelik J. Opto-SICM framework combines optogenetics with scanning ion conductance microscopy for probing cell-to-cell contacts. Commun Biol 2023; 6:1131. [PMID: 37938652 PMCID: PMC10632396 DOI: 10.1038/s42003-023-05509-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 10/26/2023] [Indexed: 11/09/2023] Open
Abstract
We present a novel framework, Opto-SICM, for studies of cellular interactions in live cells with high spatiotemporal resolution. The approach combines scanning ion conductance microscopy, SICM, and cell-type-specific optogenetic interrogation. Light-excitable cardiac fibroblasts (FB) and myofibroblasts (myoFB) were plated together with non-modified cardiomyocytes (CM) and then paced with periodic illumination. Opto-SICM reveals the extent of FB/myoFB-CM cell-cell contacts and the dynamic changes over time not visible by optical microscopy. FB-CM pairs have lower gap junctional expression of connexin-43 and higher contact dynamism compared to myoFB-CM pairs. The responsiveness of CM to pacing via FB/myoFB depends on the dynamics of the contact but not on the area. The non-responding pairs have higher net cell-cell movement at the contact. These findings are relevant to cardiac disease states, where adverse remodeling leads to abnormal electrical excitation of CM. The Opto-SICM framework can be deployed to offer new insights on cellular and subcellular interactions in various cell types, in real-time.
Collapse
Affiliation(s)
- Qianqian Song
- Imperial College London, Du Cane road, W12 0NN, London, UK
| | | | - Sarah E Schrup
- Department of Biomedical Engineering, George Washington University, Washington, DC, USA
| | | | - Emilia Entcheva
- Department of Biomedical Engineering, George Washington University, Washington, DC, USA.
| | - Julia Gorelik
- Imperial College London, Du Cane road, W12 0NN, London, UK.
| |
Collapse
|
2
|
Leask A, Naik A, Stratton RJ. Back to the future: targeting the extracellular matrix to treat systemic sclerosis. Nat Rev Rheumatol 2023; 19:713-723. [PMID: 37789119 DOI: 10.1038/s41584-023-01032-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2023] [Indexed: 10/05/2023]
Abstract
Fibrosis is the excessive deposition of a stable extracellular matrix (ECM); fibrotic tissue is composed principally of highly crosslinked type I collagen and highly contractile myofibroblasts. Systemic sclerosis (SSc) is a multisystem autoimmune connective tissue disease characterized by skin and organ fibrosis. The fibrotic process has been recognized in SSc for >40 years, but drugs with demonstrable efficacy against SSc fibrosis in ameliorating the lung involvement have only recently been identified. Unfortunately, these treatments are ineffective at improving the skin score in patients with SSc. Previous clinical trials in SSc have largely focused on the cross-purposing of anti-inflammatory drugs and the use of immunosuppressive drugs from the transplantation field, which address inflammatory and/or autoimmune processes. Limited examination has taken place of specific anti-fibrotic agents developed through their ability to directly target the ECM in SSc by, for example, alleviating the persistent matrix stiffness and mechanotransduction that might be required for both the initiation and maintenance of fibrosis, including in SSc. However, because of the importance of the ECM in the SSc phenotype, attempts have now been made to identify drugs that specifically target the ECM, including some drugs that are currently under consideration for the treatment of cancer.
Collapse
Affiliation(s)
- Andrew Leask
- College of Dentistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| | - Angha Naik
- College of Dentistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Richard J Stratton
- Centre for Rheumatology and Connective Tissue Diseases, UCL Division of Medicine, London, UK
| |
Collapse
|
3
|
Wang Y, Liu X, Xu Q, Xu W, Zhou X, Lin Z. CCN2 deficiency in smooth muscle cells triggers cell reprogramming and aggravates aneurysm development. JCI Insight 2023; 8:162987. [PMID: 36625347 PMCID: PMC9870081 DOI: 10.1172/jci.insight.162987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 11/17/2022] [Indexed: 01/11/2023] Open
Abstract
Vascular smooth muscle cell (SMC) phenotypic switching is widely recognized as a key mechanism responsible for the pathogenesis of several aortic diseases, such as aortic aneurysm. Cellular communication network factor 2 (CCN2), often upregulated in human pathologies and animal disease models, exerts myriad context-dependent biological functions. However, current understanding of the role of SMC-CCN2 in SMC phenotypic switching and its function in the pathology of abdominal aortic aneurysm (AAA) is lacking. Here, we show that SMC-restricted CCN2 deficiency causes AAA in the infrarenal aorta of angiotensin II-infused (Ang II-infused) hypercholesterolemic mice at a similar anatomic location to human AAA. Notably, the resistance of naive C57BL/6 WT mice to Ang II-induced AAA formation is lost upon silencing of CCN2 in SMC. Furthermore, the pro-AAA phenotype of SMC-CCN2-KO mice is recapitulated in a different model that involves the application of elastase-β-aminopropionitrile. Mechanistically, our findings reveal that CCN2 intersects with TGF-β signaling and regulates SMC marker expression. Deficiency of CCN2 triggers SMC reprograming associated with alterations in Krüppel-like factor 4 and contractile marker expression, and this reprograming likely contributes to the development of AAA in mice. These results identify SMC-CCN2 as potentially a novel regulator of SMC phenotypic switching and AA biology.
Collapse
Affiliation(s)
- Yu Wang
- Cardiology Division, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Xuesong Liu
- Cardiology Division, Emory University School of Medicine, Atlanta, Georgia, USA.,Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Qian Xu
- Cardiology Division, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Wei Xu
- Cardiology Division, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Xianming Zhou
- Cardiology Division, Emory University School of Medicine, Atlanta, Georgia, USA.,Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiyong Lin
- Cardiology Division, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
4
|
Cheng Y, Wang Y, Yin R, Xu Y, Zhang L, Zhang Y, Yang L, Zhao D. Central role of cardiac fibroblasts in myocardial fibrosis of diabetic cardiomyopathy. Front Endocrinol (Lausanne) 2023; 14:1162754. [PMID: 37065745 PMCID: PMC10102655 DOI: 10.3389/fendo.2023.1162754] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 03/20/2023] [Indexed: 04/03/2023] Open
Abstract
Diabetic cardiomyopathy (DCM), a main cardiovascular complication of diabetes, can eventually develop into heart failure and affect the prognosis of patients. Myocardial fibrosis is the main factor causing ventricular wall stiffness and heart failure in DCM. Early control of myocardial fibrosis in DCM is of great significance to prevent or postpone the progression of DCM to heart failure. A growing body of evidence suggests that cardiomyocytes, immunocytes, and endothelial cells involve fibrogenic actions, however, cardiac fibroblasts, the main participants in collagen production, are situated in the most central position in cardiac fibrosis. In this review, we systematically elaborate the source and physiological role of myocardial fibroblasts in the context of DCM, and we also discuss the potential action and mechanism of cardiac fibroblasts in promoting fibrosis, so as to provide guidance for formulating strategies for prevention and treatment of cardiac fibrosis in DCM.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Dong Zhao
- *Correspondence: Longyan Yang, ; Dong Zhao,
| |
Collapse
|
5
|
Wang L, Feng J, Deng Y, Yang Q, Wei Q, Ye D, Rong X, Guo J. CCAAT/Enhancer-Binding Proteins in Fibrosis: Complex Roles Beyond Conventional Understanding. RESEARCH (WASHINGTON, D.C.) 2022; 2022:9891689. [PMID: 36299447 PMCID: PMC9575473 DOI: 10.34133/2022/9891689] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/18/2022] [Indexed: 07/29/2023]
Abstract
CCAAT/enhancer-binding proteins (C/EBPs) are a family of at least six identified transcription factors that contain a highly conserved basic leucine zipper domain and interact selectively with duplex DNA to regulate target gene expression. C/EBPs play important roles in various physiological processes, and their abnormal function can lead to various diseases. Recently, accumulating evidence has demonstrated that aberrant C/EBP expression or activity is closely associated with the onset and progression of fibrosis in several organs and tissues. During fibrosis, various C/EBPs can exert distinct functions in the same organ, while the same C/EBP can exert distinct functions in different organs. Modulating C/EBP expression or activity could regulate various molecular processes to alleviate fibrosis in multiple organs; therefore, novel C/EBPs-based therapeutic methods for treating fibrosis have attracted considerable attention. In this review, we will explore the features of C/EBPs and their critical functions in fibrosis in order to highlight new avenues for the development of novel therapies targeting C/EBPs.
Collapse
Affiliation(s)
- Lexun Wang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jiaojiao Feng
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yanyue Deng
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Qianqian Yang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Quxing Wei
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Dewei Ye
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xianglu Rong
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jiao Guo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
6
|
Targeting CCN2 protects against progressive non-alcoholic steatohepatitis in a preclinical model induced by high-fat feeding and type 2 diabetes. J Cell Commun Signal 2022; 16:447-460. [PMID: 35038159 PMCID: PMC9411483 DOI: 10.1007/s12079-022-00667-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 01/06/2022] [Indexed: 02/06/2023] Open
Abstract
Type 2 diabetes is an independent risk factor for non-alcoholic steatohepatitis (NASH) progression and its mediators have not been resolved. In this study, a pathogenic role of cellular communication network factor 2 (CCN2) protein in NASH pathology, was investigated in an established preclinical NASH model. Male wild type C57BL/6 mice received either Chow or high fat diet (HFD) for 26 weeks, with some mice in each group randomly selected to receive low dose streptozotocin (STZ: 3 i.p. injections, 65 mg/kg) at 15 weeks to induce type 2 diabetes. In the final 10 of the 26 weeks mice from each group were administered i.p. either rabbit anti-CCN2 neutralizing antibody (CCN2Ab) or as control normal rabbit IgG, at a dose of 150 µg per mouse twice/week. NASH developed in the HFD plus diabetes (HFD+DM) group. Administration of CCN2Ab significantly downregulated collagen I and collagen III mRNA induction and prevented pro-inflammatory MCP-1 mRNA induction in HFD+DM mice. At the protein level, CCN2Ab significantly attenuated collagen accumulation by PSR stain and collagen I protein induction in HFD+DM. Phosphorylation of the pro-fibrotic ERK signalling pathway in liver in HFD+DM was attenuated by CCN2Ab treatment. Intrahepatic CCN1 mRNA was induced, whereas CCN3 was downregulated at both the mRNA and protein levels in HFD+DM. CCN3 down-regulation was prevented by CCN2Ab treatment. This in vivo study indicates that CCN2 is a molecular target in NASH with high fat diet and diabetes, and that regulation of ERK signalling is implicated in this process.
Collapse
|
7
|
Yanagihara T, Scallan C, Ask K, Kolb MR. Emerging therapeutic targets for idiopathic pulmonary fibrosis: preclinical progress and therapeutic implications. Expert Opin Ther Targets 2021; 25:939-948. [PMID: 34784834 DOI: 10.1080/14728222.2021.2006186] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Idiopathic pulmonary fibrosis (IPF) is a chronic progressive lung disease with high associated morbidity and mortality. The therapeutic landscape has significantly changed in the last 20 years with two drugs currently approved that have demonstrated the ability to slow disease progression. Despite these developments, survival in IPF is limited, so there is a major interest in therapeutic targets which could serve to open up new therapeutic avenues. AREAS COVERED We review the most recent information regarding drug targets and therapies currently being investigated in preclinical and early-stage clinical trials. EXPERT OPINION The complex pathogenesis of IPF and variability in disease course and response to therapy highlights the importance of a precision approach to therapy. Novel technologies including transcriptomics and the use of serum biomarkers, will become essential tools to guide future drug development and therapeutic decision making particularly as it pertains to combination therapy.
Collapse
Affiliation(s)
- Toyoshi Yanagihara
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of Respiratory Medicine, Hamanomachi Hospital, Fukuoka, Japan
| | - Ciaran Scallan
- Firestone Institute for Respiratory Health, Research Institute at St Joseph's Healthcare, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Kjetil Ask
- Firestone Institute for Respiratory Health, Research Institute at St Joseph's Healthcare, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Martin Rj Kolb
- Firestone Institute for Respiratory Health, Research Institute at St Joseph's Healthcare, Department of Medicine, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
8
|
Abstract
From the clinical standpoint, systemic sclerosis (SSc) is characterized by skin and internal organ fibrosis, diffuse fibroproliferative vascular modifications, and autoimmunity. Clinical presentation and course are highly heterogenous and life expectancy variably affected mostly dependent on lung and heart involvement. SSc touches more women than men with differences in disease severity and environmental exposure. Pathogenetic events originate from altered homeostasis favored by genetic predisposition, environmental cues and a variety of endogenous and exogenous triggers. Epigenetic modifications modulate SSc pathogenesis which strikingly associate profound immune-inflammatory dysregulation, abnormal endothelial cell behavior, and cell trans-differentiation into myofibroblasts. SSc myofibroblasts show enhanced survival and enhanced extracellular matrix deposition presenting altered structure and altered physicochemical properties. Additional cell types of likely pathogenic importance are pericytes, platelets, and keratinocytes in conjunction with their relationship with vessel wall cells and fibroblasts. In SSc, the profibrotic milieu is favored by cell signaling initiated in the one hand by transforming growth factor-beta and related cytokines and in the other hand by innate and adaptive type 2 immune responses. Radical oxygen species and invariant receptors sensing danger participate to altered cell behavior. Conventional and SSc-specific T cell subsets modulate both fibroblasts as well as endothelial cell dysfunction. Beside autoantibodies directed against ubiquitous antigens important for enhanced clinical classification, antigen-specific agonistic autoantibodies may have a pathogenic role. Recent studies based on single-cell RNAseq and multi-omics approaches are revealing unforeseen heterogeneity in SSc cell differentiation and functional states. Advances in system biology applied to the wealth of data generated by unbiased screening are allowing to subgroup patients based on distinct pathogenic mechanisms. Deciphering heterogeneity in pathogenic mechanisms will pave the way to highly needed personalized therapeutic approaches.
Collapse
|
9
|
Elkiki SM, Mansour HH, Anis LM, Gabr HM, Kamal MM. Evaluation of aromatase inhibitor on radiation induced pulmonary fibrosis via TGF- β/Smad 3 and TGF- β/PDGF pathways in rats. Toxicol Mech Methods 2021; 31:538-545. [PMID: 34036875 DOI: 10.1080/15376516.2021.1934765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Radiation-induced pulmonary fibrosis (RIPF) is a known complication in cancer patients after getting thoracic radiotherapy. Aromatase inhibitors (AIs) as anastrozole have been used instead of tamoxifen for adjuvant endocrine treatment of postmenopausal women with hormone sensitive breast cancer. This study is to evaluate the concurrent treatment of anastrozole and RIPF in rats. Twenty four female Wistar rats were distributed into 4 groups: Control (C), Radiation group (R) (total dose 30 Gy in 10 fractions, 5 fractions/week), anastrozole group (A) (0.003 mg/200 g body weight) orally for 14 consecutive days, and Radiation + anastrozole group (R + A). Radiation exposure resulted in a significant increase (p < 0.05) in pulmonary Transforming growth factor-beta 1 (TGF-β), SMAD family member 3 (Smad3), Platelet-derived growth factor (PDGF), malondialdehyde (MDA), Total nitrate/nitrite (NO), interleukin 1β (IL-1β) and interleukin 6 (IL-6) compared to the control group. While, significant decreases (p < 0.05) in superoxide dismutase (SOD) activity, reduced glutathione (GSH) and connective tissue growth factor (CTGF) were observed in lung tissue. These alterations were minimized by anastrozole intervention. Also, anastrozole markedly hindered the lung histopathological changes observed after radiation. Concomitant use of anastrozole with radiation seems to attenuate radiation-induced pulmonary toxicity via TGF-β/Smad 3 and TGF-β/PDGF pathways in rats.
Collapse
Affiliation(s)
- Shereen M Elkiki
- Health Radiation Research Department, National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt
| | - Heba H Mansour
- Health Radiation Research Department, National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt
| | - Lobna M Anis
- Health Radiation Research Department, National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt
| | - Hanan M Gabr
- Health Radiation Research Department, National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt
| | - Mona M Kamal
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
10
|
Hilliard BA, Amin M, Popoff SN, Barbe MF. Force dependent effects of chronic overuse on fibrosis-related genes and proteins in skeletal muscles. Connect Tissue Res 2021; 62:133-149. [PMID: 33030055 PMCID: PMC7718395 DOI: 10.1080/03008207.2020.1828379] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
AIM To examine the chronic effect of force on mRNA and protein expression levels of fibrosis-related genes in flexor digitorum muscles in a rat model of repetitive overuse injury that induces muscle fibrosis at high force levels. MATERIALS AND METHODS Two groups of rats were trained to perform a voluntary repetitive lever-pulling task at either a high (HFHR) or a low force (LFHR) for 18 weeks, while a control group (FRC) performed no task. RNA and protein were prepared from forelimb flexor digitorum muscles. Fibrosis-related gene RNA transcripts were evaluated using quantitative PCR (qPCR) and analyzed using the geometric mean of three housekeeping genes or the mean of each individually as reference. Protein levels were quantified using ELISA, western blot, or immunohistofluorescence. RESULTS Of eight fibrosis-related mRNAs examined, only FGF2 demonstrated a consistent significant increase in the HFHR group, compared to the FRC group. However, protein amounts of collagen type 1, collagen type 3, and TGFβ1 were significantly higher in the HFHR, compared to the FRC and LFHR groups, while CCN2 and FGF2 were higher in both HFHR and LFHR, compared to the FRC group. CONCLUSIONS Our results suggest that there is steady-state transcription of fibrogenic genes in muscles with established fibrosis, implying that post-transcriptional processes are responsible for the increased protein levels of fibrotic factors during muscle overuse conditions. We hypothesize that targeting such pathways represents a valid approach to treat overuse injury. Alternatively, FGF2 gene expression may represent a valid target for therapy.
Collapse
Affiliation(s)
| | - Mamta Amin
- Temple University, Lewis Katz School of Medicine, Philadelphia, PA
| | - Steven N. Popoff
- Temple University, Lewis Katz School of Medicine, Philadelphia, PA
| | - Mary F. Barbe
- Temple University, Lewis Katz School of Medicine, Philadelphia, PA
| |
Collapse
|
11
|
Aujla PK, Kassiri Z. Diverse origins and activation of fibroblasts in cardiac fibrosis. Cell Signal 2020; 78:109869. [PMID: 33278559 DOI: 10.1016/j.cellsig.2020.109869] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 12/21/2022]
Abstract
Cardiac fibroblasts (cFBs) have emerged as a heterogenous cell population. Fibroblasts are considered the main cell source for synthesis of the extracellular matrix (ECM) and as such a dysregulation in cFB function, activity, or viability can lead to disrupted ECM structure or fibrosis. Fibrosis can be initiated in response to different injuries and stimuli, and can be reparative (beneficial) or reactive (damaging). FBs need to be activated to myofibroblasts (MyoFBs) which have augmented capacity in synthesizing ECM proteins, causing fibrosis. In addition to the resident FBs in the myocardium, a number of other cells (pericytes, fibrocytes, mesenchymal, and hematopoietic cells) can transform into MyoFBs, further driving the fibrotic response. Multiple molecules including hormones, cytokines, and growth factors stimulate this process leading to generation of activated MyoFBs. Contribution of different cell types to cFBs and MyoFBs can result in an exponential increase in the number of MyoFBs and an accelerated pro-fibrotic response. Given the diversity of the cell sources, and the array of interconnected signalling pathways that lead to formation of MyoFBs and subsequently fibrosis, identifying a single target to limit the fibrotic response in the myocardium has been challenging. This review article will delineate the importance and relevance of fibroblast heterogeneity in mediating fibrosis in different models of heart failure and will highlight important signalling pathways implicated in myofibroblast activation.
Collapse
Affiliation(s)
- Preetinder K Aujla
- Department of Physiology, Cardiovascular Research Center, University of Alberta, Edmonton, Alberta, Canada
| | - Zamaneh Kassiri
- Department of Physiology, Cardiovascular Research Center, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
12
|
Abnormal expression of connective tissue growth factor and its correlation with fibrogenesis in adenomyosis. Reprod Biomed Online 2020; 42:651-660. [PMID: 33431336 DOI: 10.1016/j.rbmo.2020.11.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/28/2020] [Accepted: 11/09/2020] [Indexed: 11/20/2022]
Abstract
RESEARCH QUESTION Does connective tissue growth factor (CTGF) expression relate to adenomyotic fibrosis and determine the correlation between fibrosis with adenomyosis-associated dysmenorrhoea? DESIGN Protein and mRNA expression of CTGF was detected by Western blots and real-time quantitative polymerase chain reaction in the endometrium of the control group and the eutopic and ectopic endometrium of the adenomyosis group. Collagen fibres and type I collagen in the myometrium were detected by immunohistochemistry and Masson's trichrome staining, and the correlations of CTGF protein and mRNA levels with the degree of fibrosis were analysed. Furthermore, the relationship between the severity of dysmenorrhoea and the degree of fibrosis was determined, and the correlation between uterus size and the degree of fibrosis was also analysed. RESULTS Levels of CTGF mRNA and protein were significantly higher in patients with adenomyosis than in controls, and CTGF mRNA and protein expression in adenomyosis was positively correlated with fibrosis severity (r = 0.57, P < 0.001 and r = 0.39, P = 0.012), which correlated positively with dysmenorrhoea and uterus size (r = 0.42 and r = 0.6, P < 0.002). CONCLUSIONS Increased CTGF may contribute to the occurrence and fibrogenic progression of adenomyosis and may play an important role in dysmenorrhoea. The present study may provide ideas for treating adenomyosis-associated dysmenorrhoea.
Collapse
|
13
|
Leask A. Conjunction junction, what's the function? CCN proteins as targets in fibrosis and cancers. Am J Physiol Cell Physiol 2020; 318:C1046-C1054. [PMID: 32130070 PMCID: PMC7311738 DOI: 10.1152/ajpcell.00028.2020] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/28/2020] [Accepted: 03/03/2020] [Indexed: 12/11/2022]
Abstract
Cellular communication network (CCN) proteins are matricellular proteins that coordinate signaling among extracellular matrix, secreted proteins, and cell surface receptors. Their specific in vivo function is context-dependent, but they play profound roles in pathological conditions, such as fibrosis and cancers. Anti-CCN therapies are in clinical consideration. Only recently, however, has the function of these complex molecules begun to emerge. This review summarizes and interprets our current knowledge regarding these fascinating molecules and provides experimental evidence for their utility as therapeutic targets.
Collapse
Affiliation(s)
- Andrew Leask
- School of Dentistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
14
|
Fu X, Liu Q, Li C, Li Y, Wang L. Cardiac Fibrosis and Cardiac Fibroblast Lineage-Tracing: Recent Advances. Front Physiol 2020; 11:416. [PMID: 32435205 PMCID: PMC7218116 DOI: 10.3389/fphys.2020.00416] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/06/2020] [Indexed: 01/18/2023] Open
Abstract
Cardiac fibrosis is a common pathological change associated with cardiac injuries and diseases. Even though the accumulation of collagens and other extracellular matrix (ECM) proteins may have some protective effects in certain situations, prolonged fibrosis usually negatively affects cardiac function and often leads to deleterious consequences. While the development of cardiac fibrosis involves several cell types, the major source of ECM proteins is cardiac fibroblast. The high plasticity of cardiac fibroblasts enables them to quickly change their behaviors in response to injury and transition between several differentiation states. However, the study of cardiac fibroblasts in vivo was very difficult due to the lack of specific research tools. The development of cardiac fibroblast lineage-tracing mouse lines has greatly promoted cardiac fibrosis research. In this article, we review the recent cardiac fibroblast lineage-tracing studies exploring the origin of cardiac fibroblasts and their complicated roles in cardiac fibrosis, and briefly discuss the translational potential of basic cardiac fibroblast researches.
Collapse
Affiliation(s)
- Xing Fu
- School of Animal Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, United States
| | - Qianglin Liu
- School of Animal Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, United States
| | - Chaoyang Li
- School of Animal Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, United States
| | - Yuxia Li
- School of Animal Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, United States
| | - Leshan Wang
- School of Animal Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, United States
| |
Collapse
|
15
|
Lu M, Yan XF, Si Y, Chen XZ. CTGF Triggers Rat Astrocyte Activation and Astrocyte-Mediated Inflammatory Response in Culture Conditions. Inflammation 2020; 42:1693-1704. [PMID: 31183597 PMCID: PMC6717176 DOI: 10.1007/s10753-019-01029-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
To improve clinical outcomes for patients with traumatic brain injury (TBI), it is necessary to explore the mechanism of traumatic brain injury (TBI)-induced neuroinflammation. Connective tissue growth factors (CTGF) have been reported to be involved in the process of inflammatory response or tissue repair, whereas whether and how CTGF participates in the astrocyte-mediated inflammation after TBI remains unclear. In the present study, the TBI-induced activation of astrocytes and augmentation of inflammatory response were simulated by stimulating rat astrocytes with TGF-β1 or CTGF in cultured conditions. TGF-β1 and CTGF both upregulated the expression of GFAP in astrocytes and facilitated the production of inflammatory cytokines and chemokines. Activation of astrocytes by CTGF is in an autocrine manner. According to the results of Boyden chamber assay, CTGF enhanced the recruitment of peripheral blood mononuclear cells (PBMCs) by reactive astrocytes. Besides, CTGF-mediated activation of astrocytes and augmentation of inflammatory response can be terminated by the inhibitor of ASK1 or p38 and JNK. Thus, our data suggested that CTGF could activate astrocytes in an autocrine manner and promote astrocyte-mediated inflammatory response by triggering the ASK1-p38/JNK-NF-κB/AP-1 pathways in astrocytes. Collectively, our study provided evidence that astrocyte-secreted CTGF serves as an amplifier of neuroinflammatory and could be a potential target for alleviating TBI-induced inflammation.
Collapse
Affiliation(s)
- Ming Lu
- Department of Neurosurgery, The First People's Hospital of Xiaoshan District of Hangzhou City, 199 Shixin South Road, Xiaoshan District, Hangzhou, 311200, China
| | - Xiao-Feng Yan
- Department of Neurosurgery, The First People's Hospital of Xiaoshan District of Hangzhou City, 199 Shixin South Road, Xiaoshan District, Hangzhou, 311200, China.
| | - Yun Si
- Department of Neurosurgery, The First People's Hospital of Xiaoshan District of Hangzhou City, 199 Shixin South Road, Xiaoshan District, Hangzhou, 311200, China
| | - Xin-Zhi Chen
- Department of Neurosurgery, The First People's Hospital of Xiaoshan District of Hangzhou City, 199 Shixin South Road, Xiaoshan District, Hangzhou, 311200, China
| |
Collapse
|
16
|
Cheong ML, Lai TH, Wu WB. Connective tissue growth factor mediates transforming growth factor β-induced collagen expression in human endometrial stromal cells. PLoS One 2019; 14:e0210765. [PMID: 30695033 PMCID: PMC6350958 DOI: 10.1371/journal.pone.0210765] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 01/01/2019] [Indexed: 12/11/2022] Open
Abstract
Background Adenomyosis is a medical condition defined by the abnormal presence of endometrial tissue within the myometrium, in which fibrosis occurs with new collagen deposition and myofibroblast differentiation. In this study, the effect of several mediators and growth factors on collagen expression was investigated on human endometrial stromal cells (fibroblasts) derived from adenomyotic endometrium. Experimental approach RT-PCR, Western blot analysis, pharmacological interventions and siRNA interference were applied to primary cultured human endometrial stromal cells (fibroblasts). Immunohistochemistry was used to analyze protein expression in adenomyotic endometrium tissue specimens. Results Of the tested mediators, transforming growth factor β1 (TGFβ1) and its isoforms were effective to induce collagen and connective tissue growth factor (CTGF) expression. Collagen and CTGF induction by TGFβ1 could be reduced by the inhibitors targeting DNA transcription, protein translation, and Smad2/3 signaling. Interestingly, TGFβ1 induced Smad2/3 phosphorylation and CTGF mRNA expression, but not collagen mRNA expression, suggesting that TGFβ1 mediates collagen expression through CTGF induction and Smad2/3 activation. In parallel, TGFβ1 and CTGF also induced expression of heat shock protein (HSP) 47, a protein required for the synthesis of several types of collagens. However, only CTGF siRNA knockdown, could compromise TGFβ1-induced collagen expression. Finally, the immunohistochemistry revealed vimentin- and α-SMA-positive staining for (myo)fibroblasts, TGFβ1, collagen, and CTGF in the subepithelial stroma region of human adenomyotic endometria. Conclusion and implications We reveal here that TGFβ1, collagen, and CTGF are expressed in the stroma of adenomyotic endometria and demonstrate that TGFβ1 can induce collagen production in endometrium-derived fibroblasts through cellular Smad2/3-dependent signaling pathway and CTGF expression, suggesting that endometrial TGFβ may take part in the pathogenesis of adenomyosis and ectopic endometrium may participate in uterine adenomyosis.
Collapse
Affiliation(s)
- Mei-Leng Cheong
- Department of Obstetrics and Gynecology, Cathay General Hospital, Taipei, Taiwan
- Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Taipei Medical University, Taipei City, Taiwan
| | - Tsung-Hsuan Lai
- Department of Obstetrics and Gynecology, Cathay General Hospital, Taipei, Taiwan
- School of Medicine, Fu-Jen Catholic University, New Taipei City, Taiwan
| | - Wen-Bin Wu
- School of Medicine, Fu-Jen Catholic University, New Taipei City, Taiwan
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu-Jen Catholic University, New Taipei City, Taiwan
- * E-mail:
| |
Collapse
|
17
|
Lecarpentier Y, Gourrier E, Gobert V, Vallée A. Bronchopulmonary Dysplasia: Crosstalk Between PPARγ, WNT/β-Catenin and TGF-β Pathways; The Potential Therapeutic Role of PPARγ Agonists. Front Pediatr 2019; 7:176. [PMID: 31131268 PMCID: PMC6509750 DOI: 10.3389/fped.2019.00176] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 04/16/2019] [Indexed: 12/21/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a serious pulmonary disease which occurs in preterm infants. Mortality remains high due to a lack of effective treatment, despite significant progress in neonatal resuscitation. In BPD, a persistently high level of canonical WNT/β-catenin pathway activity at the canalicular stage disturbs the pulmonary maturation at the saccular and alveolar stages. The excessive thickness of the alveolar wall impairs the normal diffusion of oxygen and carbon dioxide, leading to hypoxia. Transforming growth factor (TGF-β) up-regulates canonical WNT signaling and inhibits the peroxysome proliferator activated receptor gamma (PPARγ). This profile is observed in BPD, especially in animal models. Following a premature birth, hypoxia activates the canonical WNT/TGF-β axis at the expense of PPARγ. This gives rise to the differentiation of fibroblasts into myofibroblasts, which can lead to pulmonary fibrosis that impairs the respiratory function after birth, during childhood and even adulthood. Potential therapeutic treatment could target the inhibition of the canonical WNT/TGF-β pathway and the stimulation of PPARγ activity, in particular by the administration of nebulized PPARγ agonists.
Collapse
Affiliation(s)
- Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l'Est Francilien, Meaux, France
| | - Elizabeth Gourrier
- Service de néonatologie, Grand Hôpital de l'Est Francilien, Meaux, France
| | - Vincent Gobert
- Centre de Recherche Clinique, Grand Hôpital de l'Est Francilien, Meaux, France
| | - Alexandre Vallée
- Diagnosis and Therapeutic Center, Hypertension and Cardiovascular Prevention Unit, Hôtel-Dieu Hospital, AP-HP Paris, Paris-Descartes University, Paris, France
| |
Collapse
|
18
|
Henrot P, Truchetet ME, Fisher G, Taïeb A, Cario M. CCN proteins as potential actionable targets in scleroderma. Exp Dermatol 2018; 28:11-18. [PMID: 30329180 DOI: 10.1111/exd.13806] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 10/01/2018] [Accepted: 10/10/2018] [Indexed: 12/26/2022]
Abstract
Systemic sclerosis (SSc) is a complex autoimmune connective tissue disease combining inflammatory, vasculopathic and fibrotic manifestations. Skin features, which give their name to the disease and are considered as diagnostic as well as prognostic markers, have not been thoroughly investigated in terms of therapeutic targets. CCN proteins (CYR61/CCN1, CTGF/CCN2, NOV/CCN3 and WISP1-2-3 as CCN4-5-6) are a family of secreted matricellular proteins implicated in major cellular processes such as cell growth, migration, differentiation. They have already been implicated in key pathophysiological processes of SSc, namely fibrosis, vasculopathy and inflammation. In this review, we discuss the possible implication of CCN proteins in SSc pathogenesis, with a special focus on skin features, and identify the potential actionable CCN targets.
Collapse
Affiliation(s)
- Pauline Henrot
- University of Bordeaux, Inserm, BMGIC, UMR1035, Bordeaux, France.,Department of Rheumatology, National Reference Center for Rare Diseases, Bordeaux University Hospital, Bordeaux, France
| | - Marie-Elise Truchetet
- Department of Rheumatology, National Reference Center for Rare Diseases, Bordeaux University Hospital, Bordeaux, France.,University of Bordeaux, CNRS, Immunoconcept, UMR 5164, Bordeaux, France
| | - Gary Fisher
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Alain Taïeb
- University of Bordeaux, Inserm, BMGIC, UMR1035, Bordeaux, France.,Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Muriel Cario
- University of Bordeaux, Inserm, BMGIC, UMR1035, Bordeaux, France.,Department of Dermatology and Pediatric Dermatology, National Center for Rare Skin Disorders, Hôpital Saint André, Bordeaux, France
| |
Collapse
|
19
|
Souma K, Shichino S, Hashimoto S, Ueha S, Tsukui T, Nakajima T, Suzuki HI, Shand FHW, Inagaki Y, Nagase T, Matsushima K. Lung fibroblasts express a miR-19a-19b-20a sub-cluster to suppress TGF-β-associated fibroblast activation in murine pulmonary fibrosis. Sci Rep 2018; 8:16642. [PMID: 30413725 PMCID: PMC6226532 DOI: 10.1038/s41598-018-34839-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 10/25/2018] [Indexed: 02/06/2023] Open
Abstract
Lung fibroblasts play a pivotal role in pulmonary fibrosis, a devastating lung disease, by producing extracellular matrix. MicroRNAs (miRNAs) suppress numerous genes post-transcriptionally; however, the roles of miRNAs in activated fibroblasts in fibrotic lungs remain poorly understood. To elucidate these roles, we performed global miRNA-expression profiling of fibroblasts from bleomycin- and silica-induced fibrotic lungs and investigated the functions of miRNAs in activated lung fibroblasts. Clustering analysis of global miRNA-expression data identified miRNA signatures exhibiting increased expression during fibrosis progression. Among these signatures, we found that a miR-19a-19b-20a sub-cluster suppressed TGF-β-induced activation of fibroblasts in vitro. Moreover, to elucidate whether fibroblast-specific intervention against the sub-cluster modulates pathogenic activation of fibroblasts in fibrotic lungs, we intratracheally transferred the sub-cluster-overexpressing fibroblasts into bleomycin-treated lungs. Global transcriptome analysis of the intratracheally transferred fibroblasts revealed that the sub-cluster not only downregulated expression of TGF-β-associated pro-fibrotic genes, including Acta2, Col1a1, Ctgf, and Serpine1, but also upregulated expression of the anti-fibrotic genes Dcn, Igfbp5, and Mmp3 in activated lung fibroblasts. Collectively, these findings indicated that upregulation of the miR-19a-19b-20a sub-cluster expression in lung fibroblasts counteracted TGF-β-associated pathogenic activation of fibroblasts in murine pulmonary fibrosis.
Collapse
Affiliation(s)
- Kunihiko Souma
- Department of Molecular Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shigeyuki Shichino
- Department of Molecular Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute of Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| | - Shinichi Hashimoto
- Department of Molecular Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute of Biomedical Sciences, Tokyo University of Science, Chiba, Japan.,Department of integrative Medicine for Longevity, Graduate School of Medical Sciences, Kanazawa University, Ishikawa, Japan
| | - Satoshi Ueha
- Department of Molecular Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan. .,Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute of Biomedical Sciences, Tokyo University of Science, Chiba, Japan.
| | - Tatsuya Tsukui
- Department of Molecular Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takuya Nakajima
- Department of Molecular Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute of Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| | - Hiroshi I Suzuki
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Francis H W Shand
- Department of Molecular Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yutaka Inagaki
- Center for Matrix Biology and Medicine, Graduate School of Medicine, Tokai University, Kanagawa, Japan
| | - Takahide Nagase
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kouji Matsushima
- Department of Molecular Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute of Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| |
Collapse
|
20
|
Dorn LE, Petrosino JM, Wright P, Accornero F. CTGF/CCN2 is an autocrine regulator of cardiac fibrosis. J Mol Cell Cardiol 2018; 121:205-211. [PMID: 30040954 DOI: 10.1016/j.yjmcc.2018.07.130] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/04/2018] [Accepted: 07/14/2018] [Indexed: 11/18/2022]
Abstract
Cardiac fibrosis is a common pathologic consequence of stress insult to the heart and is characterized by abnormal deposition of fibrotic extracellular matrix that compromises cardiac function. Cardiac fibroblasts are key mediators of fibrotic remodeling and are regulated by secreted stress-response proteins. The matricellular protein connective tissue growth factor (CTGF), or CCN2, is strongly produced by injured cardiomyocytes and although it is considered a pro-fibrotic factor in many organ systems, its role in cardiac fibrosis is controversial. Here we adopted a cell-specific genetic approach to conditionally delete CCN2 in either cardiomyocytes or activated fibroblasts. Fibrosis was induced by angiotensin II-based neurohumoral stimulation, an insult that strongly induces CCN2 expression from cardiomyocytes and to a lesser extent in fibroblasts. Remarkably, only CCN2 deletion from activated fibroblasts inhibited the fibrotic remodeling while deletion from cardiomyocytes (the main source of CCN2 in the heart) had no effects. In vitro experiments revealed that although efficiently secreted by both fibroblasts and cardiomyocytes, only fibroblast-derived CCN2 is proficient in its ability to fully activate fibroblasts. These results overall indicate that although secreted into the extracellular matrix, CCN2 acts in an autocrine fashion. Secretion of CCN2 by cardiomyocytes is not pro-fibrotic, while fibroblast-derived CCN2 can modulate fibrosis in the heart. In conclusion we found that cardiomyocyte-derived CCN2 is dispensable for cardiac fibrosis, while inhibiting CCN2 induction in activated fibroblasts is sufficient to abrogate the cardiac fibrotic response to angiotensin II. Hence, CCN2 is an autocrine factor in the heart.
Collapse
Affiliation(s)
- Lisa E Dorn
- Department of Physiology & Cell Biology, Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University, Wexner Medical Center, Columbus, OH, USA
| | - Jennifer M Petrosino
- Department of Physiology & Cell Biology, Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University, Wexner Medical Center, Columbus, OH, USA
| | - Patrick Wright
- Department of Physiology & Cell Biology, Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University, Wexner Medical Center, Columbus, OH, USA
| | - Federica Accornero
- Department of Physiology & Cell Biology, Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University, Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
21
|
Kanaoka M, Yamaguchi Y, Komitsu N, Feghali-Bostwick CA, Ogawa M, Arima K, Izuhara K, Aihara M. Pro-fibrotic phenotype of human skin fibroblasts induced by periostin via modulating TGF-β signaling. J Dermatol Sci 2018; 90:199-208. [PMID: 29433908 DOI: 10.1016/j.jdermsci.2018.02.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/29/2018] [Accepted: 02/01/2018] [Indexed: 01/09/2023]
Abstract
BACKGROUND Periostin is a matricellular protein that belongs to a class of extracellular matrix (ECM)-related molecules defined by their ability to modulate cell-matrix interactions. We previously reported an elevated level of circulating periostin in patients with systemic sclerosis (SSc) and its association with the severity of skin sclerosis. OBJECTIVE To examine the role of periostin in transforming growth factor (TGF)-β signaling involved in fibrosis. METHODS Levels of periostin were examined in skin and lung fibroblasts obtained from SSc patients. Levels of ECM proteins and pro-fibrotic factors were evaluated in periostin-expressing human skin fibroblasts in the presence or absence of TGF-β. Effects of periostin on the Smad proteins were also evaluated following stimulation with TGF-β by immunoblotting, immunofluorescence staining, and RNA interference. RESULTS Periostin was strongly expressed in skin and lung fibroblasts from SSc patients. Although recombinant periostin alone did not affect ECM protein levels, TGF-β and recombinant periostin treatment or periostin overexpression in skin fibroblasts significantly enhanced the production of ECM proteins. Overexpression of periostin in the presence of TGF-β also augmented expressions of α-smooth muscle actin and early growth response-1 but decreased the level and activity of matrix metalloproteinase 1. Interestingly, the level of Smad 7, a TGF-β-inducible inhibitor of TGF-β signaling, was reduced in periostin-expressing fibroblasts but increased in periostin-silenced fibroblasts. In addition, Smad 7 reduction induced by periostin was partially inhibited in integrin αV-silenced fibroblasts. CONCLUSION Periostin contributes to fibrosis by enhancing TGF-β signaling via Smad 7 inhibition, which may lead to ECM deposition and periostin generation.
Collapse
Affiliation(s)
- Miwa Kanaoka
- Department of Environmental Immuno-Dermatology, Yokohama City University Graduate School of Medicine, Kanagawa, Japan
| | - Yukie Yamaguchi
- Department of Environmental Immuno-Dermatology, Yokohama City University Graduate School of Medicine, Kanagawa, Japan.
| | - Noriko Komitsu
- Department of Environmental Immuno-Dermatology, Yokohama City University Graduate School of Medicine, Kanagawa, Japan
| | - Carol A Feghali-Bostwick
- Division of Rheumatology & Immunology, Medical University of South Carolina, Charleston, SC, USA
| | - Masahiro Ogawa
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, Saga, Japan
| | - Kazuhiko Arima
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, Saga, Japan
| | - Kenji Izuhara
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, Saga, Japan
| | - Michiko Aihara
- Department of Environmental Immuno-Dermatology, Yokohama City University Graduate School of Medicine, Kanagawa, Japan
| |
Collapse
|
22
|
Wang N, Zheng X, Qian J, Yao W, Bai L, Hou G, Qiu X, Li X, Jiang X. Renal sympathetic denervation alleviates myocardial fibrosis following isoproterenol-induced heart failure. Mol Med Rep 2017; 16:5091-5098. [PMID: 28849013 PMCID: PMC5647034 DOI: 10.3892/mmr.2017.7255] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Accepted: 01/20/2017] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to determine if renal sympathetic denervation (RSD) may alleviate isoproterenol-induced left ventricle remodeling, and to identify the underlying mechanism. A total of 70 rats were randomly divided into control (n=15), sham operation (n=15), heart failure (HF) with sham operation (HF + sham; n=20) and HF with treatment (HF + RSD; n=20) groups. The HF model was established by subcutaneous injection of isoproterenol; six weeks later, 1eft ventricular internal diameter at end‑systole (LVIDs), left ventricular systolic posterior wall thickness (LVPWs), 1eft ventricular ejection fraction (LVEF) and left ventricular fractional shortening (LVFS) were measured. Plasma norepinephrine (NE), angiotensin II (Ang II) and aldosterone (ALD) levels were measured by ELISA. Myocardial collagen volume fraction (CVF) was determined by Masson's staining. Reverse transcription‑quantitative polymerase chain reaction was used to determine the mRNA expression levels of ventricular transforming growth factor‑β (TGF‑β), connective tissue growth factor (CTGF) and microRNAs (miRs), including miR‑29b, miR‑30c and miR‑133a. The results demonstrated that LVIDs and LVPWs in the HF + RSD group were significantly decreased compared with the HF + sham group. By contrast, LVFS and LVEF in the HF + RSD group were significantly increased compared with the HF + sham group. RSD significantly reduced the levels of plasma NE, Ang II and ALD. CVF in the HF + RSD group was reduced by 38.1% compared with the HF + sham group. Expression levels of TGF‑β and CTGF were decreased, whereas those of miR‑29b, miR‑30c and miR‑133a were increased, in the HF + RSD group compared with the HF + sham group. These results indicated that RSD alleviates isoproterenol‑induced left ventricle remodeling potentially via downregulation of TGF‑β/CTGF and upregulation of miR‑29b, miR‑30c and miR‑133a. RSD may therefore be an effective non‑drug therapy for the treatment of heart failure.
Collapse
Affiliation(s)
- Neng Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Xiaoxin Zheng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Jin Qian
- Department of Cardiology, Suizhou Hospital, Hubei University of Medicine, Suizhou, Hubei 441300, P.R. China
| | - Wei Yao
- Department of Cardiology, Suizhou Hospital, Hubei University of Medicine, Suizhou, Hubei 441300, P.R. China
| | - Lu Bai
- Department of Cardiology, Suizhou Hospital, Hubei University of Medicine, Suizhou, Hubei 441300, P.R. China
| | - Guo Hou
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Xuan Qiu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Xiaoyan Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Xuejun Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
23
|
Sakai N, Nakamura M, Lipson KE, Miyake T, Kamikawa Y, Sagara A, Shinozaki Y, Kitajima S, Toyama T, Hara A, Iwata Y, Shimizu M, Furuichi K, Kaneko S, Tager AM, Wada T. Inhibition of CTGF ameliorates peritoneal fibrosis through suppression of fibroblast and myofibroblast accumulation and angiogenesis. Sci Rep 2017; 7:5392. [PMID: 28710437 PMCID: PMC5511333 DOI: 10.1038/s41598-017-05624-2] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 05/31/2017] [Indexed: 01/06/2023] Open
Abstract
Peritoneal fibrosis (PF) is a serious complication in various clinical settings, but the mechanisms driving it remain to be fully determined. Connective tissue growth factor (CTGF) is known to regulate fibroblast activities. We therefore examined if CTGF inhibition has anti-fibrotic effects in PF. PF was induced by repetitive intraperitoneal injections of chlorhexidine gluconate (CG) in mice with type I pro-collagen promoter-driven green fluorescent protein (GFP) expression to identify fibroblasts. FG-3019, an anti-CTGF monoclonal antibody, was used to inhibit CTGF. CG-induced PF was significantly attenuated in FG-3019-treated mice. CG challenges induced marked accumulations of proliferating fibroblasts and of myofibroblasts, which were both reduced by FG-3019. Levels of peritoneal CTGF expression were increased by CG challenges, and suppressed in FG-3019-treated mice. FG-3019 treatment also reduced the number of CD31+ vessels and VEGF-A-positive cells in fibrotic peritoneum. In vitro studies using NIH 3T3 fibroblasts and peritoneal mesothelial cells (PMCs) showed that CTGF blockade suppressed TGF-β1-induced fibroblast proliferation and myofibroblast differentiation, PMC mesothelial-to-mesenchymal transition, and VEGF-A production. These findings suggest that the inhibition of CTGF by FG-3019 might be a novel treatment for PF through the regulation of fibroblast and myofibroblast accumulation and angiogenesis.
Collapse
Affiliation(s)
- Norihiko Sakai
- Division of Nephrology, Kanazawa University Hospital, Kanazawa, 920-8641, Japan. .,Division of Blood Purification, Kanazawa University Hospital, Kanazawa, 920-8641, Japan.
| | - Miki Nakamura
- Department of Nephrology and Laboratory Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-8641, Japan
| | | | - Taito Miyake
- Division of Nephrology, Kanazawa University Hospital, Kanazawa, 920-8641, Japan
| | - Yasutaka Kamikawa
- Division of Nephrology, Kanazawa University Hospital, Kanazawa, 920-8641, Japan
| | - Akihiro Sagara
- Division of Nephrology, Kanazawa University Hospital, Kanazawa, 920-8641, Japan
| | - Yasuyuki Shinozaki
- Division of Nephrology, Kanazawa University Hospital, Kanazawa, 920-8641, Japan
| | - Shinji Kitajima
- Division of Nephrology, Kanazawa University Hospital, Kanazawa, 920-8641, Japan
| | - Tadashi Toyama
- Division of Nephrology, Kanazawa University Hospital, Kanazawa, 920-8641, Japan
| | - Akinori Hara
- Division of Nephrology, Kanazawa University Hospital, Kanazawa, 920-8641, Japan
| | - Yasunori Iwata
- Division of Nephrology, Kanazawa University Hospital, Kanazawa, 920-8641, Japan
| | - Miho Shimizu
- Division of Nephrology, Kanazawa University Hospital, Kanazawa, 920-8641, Japan
| | - Kengo Furuichi
- Division of Nephrology, Kanazawa University Hospital, Kanazawa, 920-8641, Japan.,Division of Blood Purification, Kanazawa University Hospital, Kanazawa, 920-8641, Japan
| | - Shuichi Kaneko
- Department of System Biology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-8641, Japan
| | - Andrew M Tager
- Center for Immunology and Inflammatory Diseases, Harvard Medical School, Boston, MA, 02114, USA.,Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Takashi Wada
- Division of Nephrology, Kanazawa University Hospital, Kanazawa, 920-8641, Japan.,Department of Nephrology and Laboratory Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-8641, Japan
| |
Collapse
|
24
|
Atrial myofibroblast activation and connective tissue formation in a porcine model of atrial fibrillation and reduced left ventricular function. Life Sci 2017; 181:1-8. [DOI: 10.1016/j.lfs.2017.05.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 05/12/2017] [Accepted: 05/20/2017] [Indexed: 12/31/2022]
|
25
|
Purohit T, Qin Z, Quan C, Lin Z, Quan T. Smad3-dependent CCN2 mediates fibronectin expression in human skin dermal fibroblasts. PLoS One 2017; 12:e0173191. [PMID: 28267785 PMCID: PMC5340390 DOI: 10.1371/journal.pone.0173191] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 02/16/2017] [Indexed: 01/12/2023] Open
Abstract
The potential involvement of connective tissue growth factor (CCN2/CTGF) in extracellular matrix (ECM) production is recognized. However, the role CCN2 in fibronectin (FN) gene expression has remained incompletely understood and even controversial. Here we report that CCN2 is absolutely necessary for FN expression in primary human skin dermal fibroblasts, the major cells responsible for ECM production in skin. Gain- and loss-of-function approaches demonstrate that CCN2 is an essential component of FN expression in both basal and stimulation by TGF-β signaling, the major regulator of FN expression. CCN2 is significantly induced by Smad3, a critical mediator of TGF-β signaling. CCN2 acts as a downstream mediator of TGF-β/Smad signaling and acting synergistically with TGF-β to regulate FN gene expression. Finally, we observed that CCN2 and FN predominantly expressed in the dermis of normal human skin, stromal tissues of skin squamous cell carcinoma (SCC), and simultaneously induced in wounded human skin in vivo. These findings provide evidence that CCN2 is responsible for mediating the stimulatory effects of TGF-β/Smad on FN gene expression, and attenuation of CCN2 expression may benefit to reduce fibrotic ECM microenvironment in disease skin.
Collapse
Affiliation(s)
- Trupta Purohit
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Zhaoping Qin
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Chunji Quan
- Department of Pathology & Cancer Research Center, Yanbian University Medical College, Yanji, China
| | - Zhenhua Lin
- Department of Pathology & Cancer Research Center, Yanbian University Medical College, Yanji, China
| | - Taihao Quan
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| |
Collapse
|
26
|
Massafra V, Milona A, Vos HR, Burgering BMT, van Mil SWC. Quantitative liver proteomics identifies FGF19 targets that couple metabolism and proliferation. PLoS One 2017; 12:e0171185. [PMID: 28178326 PMCID: PMC5298232 DOI: 10.1371/journal.pone.0171185] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 01/18/2017] [Indexed: 12/14/2022] Open
Abstract
Fibroblast growth factor 19 (FGF19) is a gut-derived peptide hormone that is produced following activation of Farnesoid X Receptor (FXR). FGF19 is secreted and signals to the liver, where it contributes to the homeostasis of bile acid (BA), lipid and carbohydrate metabolism. FGF19 is a promising therapeutic target for the metabolic syndrome and cholestatic diseases, but enthusiasm for its use has been tempered by FGF19-mediated induction of proliferation and hepatocellular carcinoma. To inform future rational design of FGF19-variants, we have conducted temporal quantitative proteomic and gene expression analyses to identify FGF19-targets related to metabolism and proliferation. Mice were fasted for 16 hours, and injected with human FGF19 (1 mg/kg body weight) or vehicle. Liver protein extracts (containing “light” lysine) were mixed 1:1 with a spike-in protein extract from 13C6-lysine metabolically labelled mouse liver (containing “heavy” lysine) and analysed by LC-MS/MS. Our analyses provide a resource of FGF19 target proteins in the liver. 189 proteins were upregulated (≥ 1.5 folds) and 73 proteins were downregulated (≤ -1.5 folds) by FGF19. FGF19 treatment decreased the expression of proteins involved in fatty acid (FA) synthesis, i.e., Fabp5, Scd1, and Acsl3 and increased the expression of Acox1, involved in FA oxidation. As expected, FGF19 increased the expression of proteins known to drive proliferation (i.e., Tgfbi, Vcam1, Anxa2 and Hdlbp). Importantly, many of the FGF19 targets (i.e., Pdk4, Apoa4, Fas and Stat3) have a dual function in both metabolism and cell proliferation. Therefore, our findings challenge the development of FGF19-variants that fully uncouple metabolic benefit from mitogenic potential.
Collapse
Affiliation(s)
- Vittoria Massafra
- Center for Molecular Medicine, UMC Utrecht, Utrecht, The Netherlands
| | - Alexandra Milona
- Center for Molecular Medicine, UMC Utrecht, Utrecht, The Netherlands
| | - Harmjan R. Vos
- Center for Molecular Medicine, UMC Utrecht, Utrecht, The Netherlands
| | | | | |
Collapse
|
27
|
Ruegsegger GN, Toedebusch RG, Braselton JF, Childs TE, Booth FW. Left ventricle transcriptomic analysis reveals connective tissue accumulation associates with initial age-dependent decline in V̇o2peak from its lifetime apex. Physiol Genomics 2016; 49:53-66. [PMID: 27913688 DOI: 10.1152/physiolgenomics.00083.2016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 11/08/2016] [Accepted: 11/28/2016] [Indexed: 12/17/2022] Open
Abstract
Peak oxygen consumption (V̇o2peak) strongly predicts morbidity and mortality better than other established risk factors, yet mechanisms associated with its age-associated decline are unknown. Our laboratory has shown that V̇o2peak first begins to decrease at the same age of 19-20 wk in both sedentary and wheel-running, female Wistar rats (Toedebusch et al., Physiol Genomics 48: 101-115, 2016). Here, we employed a total systemic approach using unsupervised interrogation of mRNA with RNA sequencing. The purpose of our study was to analyze transcriptomic profiles from both sedentary (SED) and wheel-running (RUN) conditions as a strategy to identify pathways in the left ventricle that may contribute to the initial reductions in V̇o2peak occurring between 19 and 27 wk of age. Transcriptomic comparisons were made within both SED and RUN rats between 19 and 27 wk (n = 5-8). Analysis of mRNAs shared in SED and RUN between 19 and 27 wk found 17 upregulated (e.g., Adra1d, Rpl17, Xpo7) and 8 downregulated (e.g., Cdo1, Ctfg, Sfrp1) mRNAs, at 19 wk, respectively. Furthermore, bioinformatics analysis of mRNAs common to SED and RUN produced networks suggestive of increased connective tissue development at 27 vs. 19 wk. Additionally, Ctfg mRNA was negatively associated with V̇o2peak in both SED and RUN (P < 0.05). In summary, transcriptomic analysis revealed mRNAs and networks associated with increased connective tissue development, decreased α-adrenergic activity, and decreased protein translation in the left ventricle that could, in part, potentially influence the initiation of the lifelong reduction in V̇o2peak, independent of physical activity levels.
Collapse
Affiliation(s)
| | - Ryan G Toedebusch
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri
| | - Joshua F Braselton
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri
| | - Thomas E Childs
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri
| | - Frank W Booth
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri; .,Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri.,Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri; and.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| |
Collapse
|
28
|
Pedram A, Razandi M, Narayanan R, Levin ER. Estrogen receptor beta signals to inhibition of cardiac fibrosis. Mol Cell Endocrinol 2016; 434:57-68. [PMID: 27321970 DOI: 10.1016/j.mce.2016.06.018] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 06/14/2016] [Accepted: 06/14/2016] [Indexed: 12/28/2022]
Abstract
Cardiac fibrosis evolves from the cardiac hypertrophic state. In this respect, estrogen and estrogen receptor beta (ERβ) inhibit the effects of cardiac hypertrophic peptides that also stimulate fibrosis. Here we determine details of the anti-fibrotic functions of ERβ. In acutely isolated rat cardiac fibroblasts. E2 or a specific ERβ agonist (βLGND2) blocked angiotensin II (AngII) signaling to fibrosis. This resulted from ERβ activating protein kinase A and AMP kinase, inhibiting both AngII de-phosphorylation of RhoA and the resulting stimulation of Rho kinase. Inhibition of Rho kinase from ERβ signaling resulted in marked decrease of TGFβ expression, connective tissue growth factor production and function, matrix metalloproteinases 2 and 9 expression and activity, and the conversion of fibroblasts to myofibroblasts. Production of collagens I and III were also significantly decreased. Several important aspects were corroborated in-vivo from βLGND2-treated mice that underwent AngII-induced cardiac hypertrophy. Thus, ERβ in cardiac fibroblasts prevents key aspects of cardiac fibrosis development.
Collapse
Affiliation(s)
- Ali Pedram
- Division of Endocrinology, Veterans Affairs Medical Center, Long Beach, Long Beach, CA 90822, United States
| | - Mahnaz Razandi
- Division of Endocrinology, Veterans Affairs Medical Center, Long Beach, Long Beach, CA 90822, United States
| | - Ramesh Narayanan
- Department of Medicine, University of Tennessee, Memphis, TE, 38163, United States
| | - Ellis R Levin
- Division of Endocrinology, Veterans Affairs Medical Center, Long Beach, Long Beach, CA 90822, United States; Departments of Medicine and Biochemistry, University of California, Irvine, Irvine, CA 92717, United States.
| |
Collapse
|
29
|
Cell surface receptors for CCN proteins. J Cell Commun Signal 2016; 10:121-7. [PMID: 27098435 DOI: 10.1007/s12079-016-0324-z] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 04/16/2016] [Indexed: 01/22/2023] Open
Abstract
The CCN family (CYR61; CTGF; NOV; CCN1-6; WISP1-3) of matricellular proteins in mammals is comprised of six homologous members that play important roles in development, inflammation, tissue repair, and a broad range of pathological processes including fibrosis and cancer. Despite considerable effort to search for a high affinity CCN-specific receptor akin to growth factor receptors, no such receptor has been found. Rather, CCNs bind several groups of multi-ligand receptors as characteristic of other matricellular proteins. The most extensively documented among CCN-binding receptors are integrins, including αvβ3, αvβ5, α5β1, α6β1, αIIbβ3, αMβ2, and αDβ2, which mediate diverse CCN functions in various cell types. CCNs also bind cell surface heparan sulfate proteoglycans (HSPGs), low density liproprotein receptor-related proteins (LRPs), and the cation-independent mannose-6-phosphate (M6P) receptor, which are endocytic receptors that may also serve as co-receptors in cooperation with other cell surface receptors. CCNs have also been reported to bind FGFR-2, Notch, RANK, and TrkA, potentially altering the affinities of these receptors for their ligands. The ability of CCNs to bind a multitude of receptors in various cell types may account for the remarkable versatility of their functions, and underscore the diverse signaling pathways that mediate their activities.
Collapse
|
30
|
Zhu Z, Ding J, Tredget EE. The molecular basis of hypertrophic scars. BURNS & TRAUMA 2016; 4:2. [PMID: 27574672 PMCID: PMC4963951 DOI: 10.1186/s41038-015-0026-4] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 12/30/2015] [Indexed: 02/05/2023]
Abstract
Hypertrophic scars (HTS) are caused by dermal injuries such as trauma and burns to the deep dermis, which are red, raised, itchy and painful. They can cause cosmetic disfigurement or contractures if craniofacial areas or mobile region of the skin are affected. Abnormal wound healing with more extracellular matrix deposition than degradation will result in HTS formation. This review will introduce the physiology of wound healing, dermal HTS formation, treatment and difference with keloids in the skin, and it also review the current advance of molecular basis of HTS including the involvement of cytokines, growth factors, and macrophages via chemokine pathway, to bring insights for future prevention and treatment of HTS.
Collapse
Affiliation(s)
- Zhensen Zhu
- Wound Healing Research Group, Division of Plastic and Reconstructive Surgery, University of Alberta, Edmonton, Alberta Canada
- Department of Burn and Reconstructive Surgery, 2nd Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong China
| | - Jie Ding
- Wound Healing Research Group, Division of Plastic and Reconstructive Surgery, University of Alberta, Edmonton, Alberta Canada
| | - Edward E. Tredget
- Wound Healing Research Group, Division of Plastic and Reconstructive Surgery, University of Alberta, Edmonton, Alberta Canada
- Division of Plastic Surgery, Department of Surgery, University of Alberta, Edmonton, Alberta Canada
| |
Collapse
|
31
|
Tracheal Aspirate Levels of the Matricellular Protein SPARC Predict Development of Bronchopulmonary Dysplasia. PLoS One 2015; 10:e0144122. [PMID: 26656750 PMCID: PMC4676701 DOI: 10.1371/journal.pone.0144122] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 11/15/2015] [Indexed: 11/19/2022] Open
Abstract
Background Isolation of tracheal aspirate mesenchymal stromal cells (MSCs) from premature infants has been associated with increased risk of bronchopulmonary dysplasia (BPD). MSCs show high levels of mRNAs encoding matricellular proteins, non-structural extracellular proteins that regulate cell-matrix interactions and participate in tissue remodeling. We hypothesized that lung matricellular protein expression predicts BPD development. Methods We collected tracheal aspirates and MSCs from mechanically-ventilated premature infants during the first week of life. Tracheal aspirate and MSC-conditioned media were analyzed for seven matricellular proteins including SPARC (for Secreted Protein, Acidic, Rich in Cysteine, also called osteonectin) and normalized to secretory component of IgA. A multiple logistic regression model was used to determine whether tracheal aspirate matricellular protein levels were independent predictors of BPD or death, controlling for gestational age (GA) and birth weight (BW). Results We collected aspirates from 89 babies (38 developed BPD, 16 died before 36 wks post-conceptual age). MSC-conditioned media showed no differences in matricellular protein abundance between cells from patients developing BPD and cells from patients who did not. However, SPARC levels were higher in tracheal aspirates from babies with an outcome of BPD or death (p<0.01). Further, our logistic model showed that tracheal aspirate SPARC (p<0.02) was an independent predictor of BPD/death. SPARC deposition was increased in the lungs of patients with BPD. Conclusions In mechanically-ventilated premature infants, tracheal aspirate SPARC levels predicted development of BPD or death. Further study is needed to determine the value of SPARC as a biomarker or therapeutic target in BPD.
Collapse
|
32
|
Lim DH, Kim TE, Kee C. Evaluation of Adenovirus-Mediated Down-Regulation of Connective Tissue Growth Factor on Postoperative Wound Healing After Experimental Glaucoma Surgery. Curr Eye Res 2015; 41:951-6. [PMID: 26554857 DOI: 10.3109/02713683.2015.1082184] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE This study was aimed to determine whether adenovirus-mediated down-regulation of connective tissue growth factor (CTGF) can modulate postoperative scarring in a rabbit receiving simplified glaucoma surgery. METHODS In vitro studies were performed using a replication-deficient recombinant adenovirus that transcribes a small interfering RNA (siRNA) specific to the CTGF gene under the control of the modified CMV promoter. Primary tenon cells from a New Zealand White rabbit were transduced with 10-100 plaque-forming units (pfu) per cell of the viral vector. Seventy-two hours later, CTGF expression was analyzed by Western blot analysis. In vivo studies were conducted using 10 New Zealand White rabbits, which underwent simplified glaucoma surgery and received a postoperative subconjunctival injection of 5 µl suspension of adenovirus carrying shRNA for CTGF (2 × 10(11) pfu/ml) in the right eye, and the same amount of null virus in the left eye. Eyes were enucleated 5 d after the surgery, and immunohistochemical and histological examinations of the surgical outcome were performed. RESULTS Western blot analysis showed that CTGF was depleted to less than 10% of its original level in cells transduced with the adenovirus expressing CTGF-specific siRNA. This demonstrates RNA interference (RNAi)-mediated CTGF inactivation in vitro. Immunohistochemical analysis also showed that CTGF was significantly depleted in eyes transduced with the adenovirus expressing CTGF siRNA. This demonstrates RNAi-mediated CTGF inactivation in vivo. In addition, less scar tissue was observed on histological evaluation in the transduced eyes, demonstrating that inhibition of CTGF expression can modulate the wound healing process after surgery. CONCLUSIONS Down-regulation of CTGF is effective in inhibiting postoperative scarring in vivo. This suggests that RNAi with CTGF siRNA may potentially pave the road for a novel therapeutic strategy to improve glaucoma surgery results.
Collapse
Affiliation(s)
- Dong Hui Lim
- a Department of Ophthalmology, Samsung Medical Center , Sungkyunkwan University School of Medicine , Seoul
| | - Tae Eun Kim
- b Center for Clinical Research , Samsung Biomedical Research Institute, Samsung Medical Center , Seoul , Korea
| | - Changwon Kee
- a Department of Ophthalmology, Samsung Medical Center , Sungkyunkwan University School of Medicine , Seoul.,b Center for Clinical Research , Samsung Biomedical Research Institute, Samsung Medical Center , Seoul , Korea
| |
Collapse
|
33
|
AFAP1 Is a Novel Downstream Mediator of TGF-β1 for CCN2 Induction in Osteoblasts. PLoS One 2015; 10:e0136712. [PMID: 26340021 PMCID: PMC4560384 DOI: 10.1371/journal.pone.0136712] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 08/07/2015] [Indexed: 02/06/2023] Open
Abstract
Background CCN2 acts as an anabolic growth factor to regulate osteoblast differentiation and function. CCN2 is induced by TGF-β1 and acts as a mediator of TGF-β1 induced matrix production in osteoblasts and Src is required for CCN2 induction by TGF-β1; however, the molecular mechanisms that control CCN2 induction in osteoblasts are poorly understood. AFAP1 binds activated forms of Src and can direct the activation of Src in certain cell types, however a role for AFAP1 downstream of TGF-β1 or in osteoblats is undefined. In this study, we investigated the role of AFAP1 for CCN2 induction by TGF-β1 in primary osteoblasts. Results We demonstrated that AFAP1 expression in osteoblasts occurs in a biphasic pattern with maximal expression levels occurring during osteoblast proliferation (~day 3), reduced expression during matrix production/maturation (~day 14–21), an a further increase in expression during mineralization (~day 21). AFAP1 expression is induced by TGF-β1 treatment in osteoblasts during days 7, 14 and 21. In osteoblasts, AFAP1 binds to Src and is required for Src activation by TGF-β1 and CCN2 promoter activity and protein induction by TGF-β1 treatment was impaired using AFAP1 siRNA, indicating the requirement of AFAP1 for CCN2 induction by TGF-β1. We also demonstrated that TGF-β1 induction of extracellular matrix protein collagen XIIa occurs in an AFAP1 dependent fashion. Conclusions This study demonstrates that AFAP1 is an essential downstream signaling component of TGF-β1 for Src activation, CCN2 induction and collagen XIIa in osteoblasts.
Collapse
|
34
|
Jiang N, Wang Y, Yu Z, Hu L, Liu C, Gao X, Zheng S. WISP3 (CCN6) Regulates Milk Protein Synthesis and Cell Growth Through mTOR Signaling in Dairy Cow Mammary Epithelial Cells. DNA Cell Biol 2015; 34:524-33. [DOI: 10.1089/dna.2015.2829] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Nan Jiang
- The Laboratory of Pathophysiology in College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| | - Yu Wang
- The Laboratory of Pathophysiology in College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| | - Zhiqiang Yu
- The Laboratory of Pathophysiology in College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| | - Lijun Hu
- The Laboratory of Pathophysiology in College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| | - Chaonan Liu
- The Laboratory of Pathophysiology in College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| | - Xueli Gao
- The Laboratory of Pathophysiology in College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| | - Shimin Zheng
- The Laboratory of Pathophysiology in College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| |
Collapse
|
35
|
Jeon KI, Phipps RP, Sime PJ, Huxlin KR. Inhibitory effects of PPARγ ligands on TGF-β1-induced CTGF expression in cat corneal fibroblasts. Exp Eye Res 2015; 138:52-8. [PMID: 26142957 DOI: 10.1016/j.exer.2015.06.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 06/24/2015] [Accepted: 06/30/2015] [Indexed: 12/16/2022]
Abstract
Ligands of Peroxisome Proliferator Activated Receptor gamma (PPARγ) possess strong anti-fibrotic properties in the cornea and several other body tissues. In the cornea, we recently showed this class of molecules to prevent stromal myofibroblast differentiation partially by blocking the actions of p38 mitogen-activated protein kinase (MAPK). However, given the important role assigned to connective tissue growth factor (CTGF) in mediating corneal fibrosis, here we asked whether PPARγ ligands also act by affecting transforming growth factor-β (TGF-β) 1-induced expression of CTGF in cultured corneal fibroblasts. Corneal keratocytes were isolated from young, adult cats and early passage cells were exposed to TGF-β1 with or without the PPARγ ligands Rosiglitazone, Troglitazone and 15d-PGJ2. Western blots were used to assay levels of CTGF and alpha smooth muscle actin (αSMA), a marker of myofibroblast differentiation. CTGF siRNA demonstrated a critical role for CTGF in TGF-β1-mediated myofibroblast differentiation, while exogenously applied CTGF potentiated the pro-fibrogenic effects of TGF-β1. TGF-β1-mediated increases in CTGF and αSMA expression were strongly inhibited by all three PPARγ ligands tested, and by a c-jun N-terminal kinase (JNK) inhibitor. However, while extracellular signal-regulated kinase (ERK) 1/2, protein kinase B (AKT) and p38 MAPK inhibitors also blocked TGF-β1-induced αSMA induction, they did not dampen TGF-β1-induced increases in levels of CTGF. Thus, we conclude that PPARγ ligands block TGF-β1-induced increases in CTGF levels in cat corneal fibroblasts. They appear to do this in addition to their anti-fibrotic effect on p38 MAPK, providing a second intracellular pathway by which PPARγ ligands block αSMA induction.
Collapse
Affiliation(s)
- Kye-Im Jeon
- Flaum Eye Institute, University of Rochester, Rochester, NY, USA
| | - Richard P Phipps
- Flaum Eye Institute, University of Rochester, Rochester, NY, USA; Department of Environmental Medicine, University of Rochester, Rochester, NY, USA; Department of Medicine, University of Rochester, Rochester, NY, USA
| | - Patricia J Sime
- Department of Environmental Medicine, University of Rochester, Rochester, NY, USA; Department of Medicine, University of Rochester, Rochester, NY, USA
| | - Krystel R Huxlin
- Flaum Eye Institute, University of Rochester, Rochester, NY, USA; Center for Visual Science, University of Rochester, Rochester, NY, USA.
| |
Collapse
|
36
|
Abstract
Systemic sclerosis is a multisystem disorder with a high associated mortality. The hallmark abnormalities of the disease are in the immune system, vasculature, and connective tissue. Systemic sclerosis occurs in susceptible individuals and is stimulated by initiating events that are poorly understood at present. In order for the disease phenotype to appear there is dysfunction in the homoeostatic mechanisms of immune tolerance, endothelial physiology, and extracellular matrix turnover. The progression of disease is not sequential but requires simultaneous dysfunction in these normal regulatory mechanisms. Better understanding of the interplay of these factors is likely to contribute to improved treatment options.
Collapse
Affiliation(s)
- Edward P Stern
- Centre for Rheumatology, UCL Royal Free Campus, Rowland Hill Street, London NW3 2PF, UK
| | - Christopher P Denton
- Centre for Rheumatology, UCL Royal Free Campus, Rowland Hill Street, London NW3 2PF, UK.
| |
Collapse
|
37
|
Genetic Analysis of Connective Tissue Growth Factor as an Effector of Transforming Growth Factor β Signaling and Cardiac Remodeling. Mol Cell Biol 2015; 35:2154-64. [PMID: 25870108 DOI: 10.1128/mcb.00199-15] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 04/03/2015] [Indexed: 12/31/2022] Open
Abstract
The matricellular secreted protein connective tissue growth factor (CTGF) is upregulated in response to cardiac injury or with transforming growth factor β (TGF-β) stimulation, where it has been suggested to function as a fibrotic effector. Here we generated transgenic mice with inducible heart-specific CTGF overexpression, mice with heart-specific expression of an activated TGF-β mutant protein, mice with heart-specific deletion of Ctgf, and mice in which Ctgf was also deleted from fibroblasts in the heart. Remarkably, neither gain nor loss of CTGF in the heart affected cardiac pathology and propensity toward early lethality due to TGF-β overactivation in the heart. Also, neither heart-specific Ctgf deletion nor CTGF overexpression altered cardiac remodeling and function with aging or after multiple acute stress stimuli. Cardiac fibrosis was also unchanged by modulation of CTGF levels in the heart with aging, pressure overload, agonist infusion, or TGF-β overexpression. However, CTGF mildly altered the overall cardiac response to TGF-β when pressure overload stimulation was applied. CTGF has been proposed to function as a critical TGF-β effector in underlying tissue remodeling and fibrosis throughout the body, although our results suggest that CTGF is of minimal importance and is an unlikely therapeutic vantage point for the heart.
Collapse
|
38
|
Elliott CG, Forbes TL, Leask A, Hamilton DW. Inflammatory microenvironment and tumor necrosis factor alpha as modulators of periostin and CCN2 expression in human non-healing skin wounds and dermal fibroblasts. Matrix Biol 2015; 43:71-84. [PMID: 25779637 DOI: 10.1016/j.matbio.2015.03.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 03/07/2015] [Accepted: 03/08/2015] [Indexed: 12/18/2022]
Abstract
Non-healing skin wounds remain a significant clinical burden, and in recent years, the regulatory role of matricellular proteins in skin healing has received significant attention. Periostin and CCN2 are both upregulated at day 3 post-wounding in murine skin, where they regulate aspects of the proliferative phase of repair including mesenchymal cell infiltration and myofibroblast differentiation. In this study, we examined 1) the wound phenotype and expression patterns of periostin and CCN2 in non-healing skin wounds in humans and 2) the regulation of their expression in wound fibroblasts by tumor necrosis factor α (TNFα) and transforming growth factor-β1 (TGF-β1). Chronic skin wounds had a pro-inflammatory phenotype, characterized by macrophage infiltration, TNFα immunoreactivity, and neutrophil infiltration. Periostin, but not CCN2, was significantly suppressed in non-healing wound edge tissue at the mRNA and protein level compared with non-involved skin. In vitro, human wound edge fibroblasts populations were still able to proliferate and contract collagen gels. Compared to cells from non-involved skin, periostin and α-SMA mRNA levels increased significantly in the presence of TGF-β1 in wound cells and were significantly decreased by TNFα, but not those of Col1A2 or CCN2. In the presence of both TGF-β1 and TNFα, periostin and α-SMA mRNA levels were significantly reduced compared to TGF-β1 treated wound cells. Effects of TGF-β1 and TNFα on gene expression were also more pronounced in wound edge cells compared to non-involved fibroblasts. We conclude that variations in the expression of periostin and CCN2, are related to an inflammatory microenvironment and the presence of TNFα in human chronic wounds.
Collapse
Affiliation(s)
- Christopher G Elliott
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, 1151 Richmond St, London, Ontario N6A 5C1, Canada
| | - Thomas L Forbes
- Division of Vascular Surgery, Schulich School of Medicine and Dentistry, Western University, 1151 Richmond St, London, Ontario N6A 5C1, Canada
| | - Andrew Leask
- Division of Oral Biology, Schulich School of Medicine and Dentistry, Western University, 1151 Richmond St, London, Ontario N6A 5C1, Canada
| | - Douglas W Hamilton
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, 1151 Richmond St, London, Ontario N6A 5C1, Canada; Division of Oral Biology, Schulich School of Medicine and Dentistry, Western University, 1151 Richmond St, London, Ontario N6A 5C1, Canada.
| |
Collapse
|
39
|
Lin X, Wu N, Shi Y, Wang S, Tan K, Shen Y, Dai H, Zhong J. Association between transforming growth factor β1 and atrial fibrillation in essential hypertensive patients. Clin Exp Hypertens 2014; 37:82-7. [PMID: 25496287 DOI: 10.3109/10641963.2014.913600] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Xianru Lin
- Department of Cardiology, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Jinan, China and
| | - Na Wu
- Department of Cardiology, Qingdao Municipal Hospital, Medical College, Qingdao University, Jinan, China
| | - Yue Shi
- Department of Cardiology, Qingdao Municipal Hospital, Medical College, Qingdao University, Jinan, China
| | - Shoudong Wang
- Department of Cardiology, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Jinan, China and
| | - Kai Tan
- Department of Cardiology, Qingdao Municipal Hospital, Medical College, Qingdao University, Jinan, China
| | - Yi Shen
- Department of Cardiology, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Jinan, China and
| | - Hongyan Dai
- Department of Cardiology, Qingdao Municipal Hospital, Medical College, Qingdao University, Jinan, China
| | - Jingquan Zhong
- Department of Cardiology, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Jinan, China and
| |
Collapse
|
40
|
Falke LL, Goldschmeding R, Nguyen TQ. A perspective on anti-CCN2 therapy for chronic kidney disease. Nephrol Dial Transplant 2014; 29 Suppl 1:i30-i37. [PMID: 24493868 DOI: 10.1093/ndt/gft430] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Kidney fibrosis is the common end point of chronic kidney disease independent of aetiology. Currently, no effective therapy exists to reduce kidney fibrosis. CCN2 appears to be an interesting candidate for anti-fibrotic drug targeting, because it holds a central position in the development of kidney fibrosis and interacts with a variety of factors that are involved in the fibrotic response, including transforming growth factor (TGF) β and Bone morphogenetic proteins. Although CCN2 modifies many pathways, it does not appear to have a membrane receptor of its own. Numerous experimental and clinical studies lowering CCN2 bioavailability have shown promising results with minimal adverse side effects. This review aims to provide an overview of the current state of CCN2 research with a focus on anti-fibrotic therapy.
Collapse
Affiliation(s)
- Lucas L Falke
- Department of Pathology, UMC Utrecht, Utrecht, Netherlands
| | | | | |
Collapse
|
41
|
Liang NL, Men R, Zhu Y, Yuan C, Wei Y, Liu X, Yang L. Visfatin: an adipokine activator of rat hepatic stellate cells. Mol Med Rep 2014; 11:1073-8. [PMID: 25351242 DOI: 10.3892/mmr.2014.2795] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Accepted: 09/29/2014] [Indexed: 02/05/2023] Open
Abstract
The present study was conducted to investigate the effects of visfatin on the activation of hepatic stellate cells (HSC) and the possible underlying mechanism. HSC were isolated from the livers of Sprague‑Dawley rats by in situ perfusion of collagenase and pronase and a single‑step density Nycodenz gradient. The culture‑activated cells were serum‑starved and incubated with different concentrations of recombinant visfatin (0, 25, 50, 100 or 200 ng/ml) for 24 h. The expression of α‑smooth muscle actin (α‑SMA), collagen types I and III and connective tissue growth factor (CTGF) were then measured by reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) and western blot analysis. The results demonstrated that 100 and 200 ng/ml concentrations of visfatin induced the expression of α‑SMA in culture‑activated rat HSC, which was accompanied by a significant increase in collagen types I and III, as confirmed by western blot and RT‑qPCR analyses. In addition, treatment of the HSC with certain concentrations of visfatin upregulated the expression of CTGF. These findings suggested that visfatin activated HSC and induced the production of collagen types I and III.
Collapse
Affiliation(s)
- Ning-Lin Liang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Ruoting Men
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yongjun Zhu
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Cong Yuan
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yan Wei
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xiaojing Liu
- Laboratory of Cardiovascular Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Li Yang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
42
|
Liu S, Thompson K, Leask A. CCN2 expression by fibroblasts is not required for cutaneous tissue repair. Wound Repair Regen 2014; 22:119-24. [PMID: 24393160 DOI: 10.1111/wrr.12131] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 10/10/2013] [Indexed: 12/17/2022]
Abstract
The CCN family of matricellular proteins, which includes CCN2 and CCN1, is believed to have a major in vivo role in controlling tissue morphogenesis and repair. In adult skin, the proadhesive matricellular protein connective tissue growth factor (CTGF/CCN2) is specifically up-regulated in fibrosis and wound healing. In mice, CCN2 is required for dermal fibrogenesis, but whether CCN2 is required for cutaneous tissue repair is unknown. To address this question, in this report we subjected adult mice bearing a fibroblast-specific deletion of CCN2 to the dermal punch model of cutaneous tissue repair. Loss of CCN2 did not appreciably affect the kinetics of tissue repair, collagen content, or the number of α-smooth muscle actin-positive cells. CCN1 (cyr61), which has in vitro effect similar to CCN2, is also induced in cutaneous tissue repair. Fibroblast-specific CCN1/CCN2 double knockout mice were also generated; loss of both CCN1 and CCN2 together did not appreciably affect cutaneous tissue repair. However, loss of CCN2 resulted in impaired recruitment of NG2-positive pericyte-like cells to the wound area. Collectively, these results indicate that neither CCN2 nor CCN1 is essential for cutaneous tissue repair; CCN2 appears to be required for recruitment of pericyte-like cells and may represent a specific antifibrotic target.
Collapse
Affiliation(s)
- Shangxi Liu
- Department of Dentistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | | | | |
Collapse
|
43
|
Tsang M, Leask A. CCN2 is required for recruitment of Sox2-expressing cells during cutaneous tissue repair. J Cell Commun Signal 2014; 9:341-6. [PMID: 25326099 DOI: 10.1007/s12079-014-0245-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 09/18/2014] [Indexed: 11/25/2022] Open
Abstract
Connective tissue growth factor (CTGF/CCN2), a member of the CCN family of matricellular proteins is upregulated in both fibrosis as well as tissue repair. Recently, we showed that, in mice, CCN2 expression by fibroblasts was required for dermal fibrogenesis, but not for cutaneous tissue repair. Lineage tracing analysis linked the ability of CCN2 to promote fibrosis to the requirement for CCN2 to recruit cells expressing the progenitor cell marker Sox2 to fibrotic connective tissue and for differentiating these cells into myofibroblasts. Herein, we show that although loss of CCN2 expression by Sox2-expressing cells does not impair cutaneous tissue repair, CCN2 was required for recruitment of cells derived from Sox2-expressing cells to the wound area. Collectively, these results are consistent with the notion that neither CCN2 nor Sox2-expressing progenitor cells are essential for cutaneous tissue repair and that CCN2 represents a specific anti-fibrotic target.
Collapse
Affiliation(s)
- Matthew Tsang
- Departments of Dentistry and Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, Dental Sciences Bldg., London, ON, N6A 5C1, Canada
| | - Andrew Leask
- Departments of Dentistry and Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, Dental Sciences Bldg., London, ON, N6A 5C1, Canada.
| |
Collapse
|
44
|
Hu X, Li N, Tao K, Fang X, Liu J, Wang Y, Wang H, Shi J, Wang Y, Ji P, Cai W, Bai X, Zhu X, Han J, Hu D. Effects of integrin ανβ3 on differentiation and collagen synthesis induced by connective tissue growth factor in human hypertrophic scar fibroblasts. Int J Mol Med 2014; 34:1323-34. [PMID: 25174803 DOI: 10.3892/ijmm.2014.1912] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 08/12/2014] [Indexed: 11/05/2022] Open
Abstract
CCN2 is a matricellular protein that appears to be important in scar formation. CCN2 mediates the pro-fibrotic effects in hypertrophic scars (HTSs) through an unknown mechanism. However, many activities of CCN2 protein are known to be mediated by direct binding to integrin receptors. In this study, we investigated the role of integrin α(ν)β(3) in the differentiation of hypertrophic scar fibroblasts (HTSFs) induced by CCN2. The levels of integrin α(ν)β(3) between normal skin and hypertrophic scar (HTS) tissues were compared, and integrin α(ν)β(3) was found to be upregulated in HTS. CCN2 was shown to induce HTSF differentiation and collagen (COL) synthesis at the mRNA and protein levels. Based on these results, the expression of integrin α(ν)β(3) was upregulated by CCN2 stimulation during HTSF differentiation. Blockade of integrin α(ν)β(3) prevented CCN2-induced HTSF differentiation and COL synthesis. Furthermore, the CCN2-induced increase in contractility of the HTSF in COL lattices was inhibited by integrin α(ν)β(3) blocking antibodies. HTSs were established in a rabbit ear model, and the inhibitor of integrin α(ν)β(3) significantly improved the architecture of the rabbit ear scar. Results of the present study showed that integrin α(ν)β(3) contributes to pro-fibrotic CCN2 signaling. Blocking this pathway may therefore be beneficial for the treatment of HTS.
Collapse
Affiliation(s)
- Xiaolong Hu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Na Li
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Ke Tao
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Xiaobing Fang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Jiaqi Liu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yaojun Wang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Hongtao Wang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Jihong Shi
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yunchuan Wang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Peng Ji
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Weixia Cai
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Xiaozhi Bai
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Xiongxiang Zhu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Juntao Han
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Dahai Hu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
45
|
Aguiar DP, de Farias GC, de Sousa EB, de Mattos Coelho-Aguiar J, Lobo JC, Casado PL, Duarte MEL, Abreu JGR. New strategy to control cell migration and metastasis regulated by CCN2/CTGF. Cancer Cell Int 2014; 14:61. [PMID: 25120383 PMCID: PMC4130434 DOI: 10.1186/1475-2867-14-61] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 06/21/2014] [Indexed: 12/13/2022] Open
Abstract
Connective tissue growth factor (CTGF)/CCN family member 2 (CCN2) is a CCN family member of matricellular signaling modulators. It has been shown that CCN2/CTGF mediates cell adhesion, aggregation and migration in a large variety of cell types, including vascular endothelial cells, fibroblasts, epithelial cells, aortic smooth muscle and also pluripotent stem cells. Others matricellular proteins are capable of interacting with CCN2/CTGF to mediate its function. Cell migration is a key feature for tumor cell invasion and metastasis. CCN2/CTGF seems to be a prognostic marker for cancer. In addition, here we intend to discuss recent discoveries and a new strategy to develop therapies against CCN2/CTGF, in order to treat cancer metastasis.
Collapse
Affiliation(s)
- Diego Pinheiro Aguiar
- Research Division, National Institute of Traumatology and Orthopedics, Rio de Janeiro, RJ, Brazil
| | - Gabriel Correa de Farias
- Research Division, National Institute of Traumatology and Orthopedics, Rio de Janeiro, RJ, Brazil
| | - Eduardo Branco de Sousa
- Research Division, National Institute of Traumatology and Orthopedics, Rio de Janeiro, RJ, Brazil
| | - Juliana de Mattos Coelho-Aguiar
- Program of Cell and Developmental Biology, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Julie Calixto Lobo
- Research Division, National Institute of Traumatology and Orthopedics, Rio de Janeiro, RJ, Brazil
| | - Priscila Ladeira Casado
- Research Division, National Institute of Traumatology and Orthopedics, Rio de Janeiro, RJ, Brazil
| | | | - José Garcia Ribeiro Abreu
- Program of Cell and Developmental Biology, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
46
|
Abstract
Extracellular matrix (ECM) is not only involved in the maintenance of normal physiological tissue but also in interactions with other ECM components, tissue remodeling, and modulating immune responses. The skin provides a distinctive environment characterized by rich fibroblasts producing various ECM proteins, epithelial-mesenchymal interactions, and immune responses induced by external stimuli. Recently, periostin-a matricellular protein-has been highlighted for its pivotal functions in the skin. Analysis of periostin null mice has revealed that periostin contributes to collagen fibrillogenesis, collagen cross-linking, and the formation of ECM meshwork via interactions with other ECM components. Periostin expression is enhanced by mechanical stress or skin injury; this is indicative of the physiologically protective functions of periostin, which promotes wound repair by acting on keratinocytes and fibroblasts. Along with its physiological functions, periostin plays pathogenic roles in skin fibrosis and chronic allergic inflammation. In systemic sclerosis (SSc) patients, periostin levels reflect the severity of skin fibrosis. Periostin null mice have shown reduced skin fibrosis in a bleomycin-induced SSc mouse model, indicating a key role of periostin in fibrosis. Moreover, in atopic dermatitis (AD), attenuated AD phenotype has been observed in periostin null mice in a house dust mite extract-induced AD mouse model. Th2 cytokine-induced periostin acts on keratinocytes to produce inflammatory cytokines that further enhance the Th2 response, thereby sustaining and amplifying chronic allergic inflammation. Thus, periostin is deeply involved in the pathogenesis of AD and other inflammation-related disorders affecting the skin. Understanding the dynamic actions of periostin would be key to dissecting pathogenesis of skin-related diseases and to developing novel therapeutic strategies.
Collapse
Affiliation(s)
- Yukie Yamaguchi
- Department of Environmental Immuno-Dermatology, Yokohama City University Graduate School of Medicine, Kanagawa, Japan
| |
Collapse
|
47
|
Thompson K, Murphy-Marshman H, Leask A. ALK5 inhibition blocks TGFβ-induced CCN1 expression in human foreskin fibroblasts. J Cell Commun Signal 2014; 8:59-63. [PMID: 24567145 DOI: 10.1007/s12079-014-0229-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Accepted: 02/05/2014] [Indexed: 11/25/2022] Open
Abstract
The potent profibrotic cytokine TGFβ induces connective tissue growth factor (CCN2/CTGF) is induced in fibroblasts in a fashion sensitive to SB-431542, a specific pharmacological inhibitor of TGFβ type I receptor (ALK5). In several cell types, TGFβ induces CCN1 but suppresses CCN3, which opposes CCN1/CCN2 activities. However, whether SB-431542 alters TGFβ-induced CCN1 or CCN3 in human foreskin fibroblasts in unclear. Here we show that TGFβ induces CCN1 but suppresses CCN3 expression in human foreskin fibroblasts in a SB-431542-sensitive fashion. These results emphasize that CCN1/CCN2 and CCN3 are reciprocally regulated and support the notion that blocking ALK5 or addition of CCN3 may be useful anti-fibrotic approaches.
Collapse
Affiliation(s)
- Katherine Thompson
- Department of Dentistry, University of Western Ontario, London, ON, Canada, N6A 5C1
| | | | | |
Collapse
|
48
|
Abstract
Mesenchymal cells play a role in controlling the number of hair follicles. However, the precise molecules involved are unclear. Absence in mesenchymal cells of the expression of the secreted matricellular protein CTGF/CCN2 results in an increased number of hair follicles, concomitant with increased β-catenin activity. It is critical to understand how stem cell activity is regulated during regeneration. Hair follicles constitute an important model for organ regeneration because, throughout adult life, they undergo cyclical regeneration. Hair follicle stem cells—epithelial cells located in the follicle bulge—are activated by periodic β-catenin activity, which is regulated not only by epithelial-derived Wnt, but also, through as-yet-undefined mechanisms, the surrounding dermal microenvironment. The matricellular protein connective tissue growth factor (CCN2) is secreted into the microenvironment and acts as a multifunctional signaling modifier. In adult skin, CCN2 is largely absent but is unexpectedly restricted to the dermal papillae and outer root sheath. Deletion of CCN2 in dermal papillae and the outer root sheath results in a shortened telogen-phase length and elevated number of hair follicles. Recombinant CCN2 causes decreased β-catenin stability in keratinocytes. In vivo, loss of CCN2 results in elevated numbers of K15-positive epidermal stem cells that possess elevated β-catenin levels and β-catenin–dependent reporter gene expression. These results indicate that CCN2 expression by dermal papillae cells is a physiologically relevant suppressor of hair follicle formation by destabilization of β-catenin and suggest that CCN2 normally acts to maintain stem cell quiescence.
Collapse
Affiliation(s)
- Shangxi Liu
- Departments of Dentistry and Physiology and Pharmacology, University of Western Ontario, London, ON N6A 5C1, Canada
| | | |
Collapse
|
49
|
van Rooyen BA, Schäfer G, Leaner VD, Parker MI. Tumour cells down-regulate CCN2 gene expression in co-cultured fibroblasts in a Smad7- and ERK-dependent manner. Cell Commun Signal 2013; 11:75. [PMID: 24090133 PMCID: PMC3850759 DOI: 10.1186/1478-811x-11-75] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 09/25/2013] [Indexed: 11/13/2022] Open
Abstract
Background Recent studies have revealed that interactions between tumour cells and the surrounding stroma play an important role in facilitating tumour growth and invasion. Stromal fibroblasts produce most of the extracellular matrix components found in the stroma. The aim of this study was to investigate mechanisms involved in tumour cell-mediated regulation of extracellular matrix and adhesion molecules in co-cultured fibroblasts. To this end, microarray analysis was performed on CCD-1068SK human fibroblast cells after direct co-culture with MDA-MB-231 human breast tumour cells. Results We found that the expression of both connective tissue growth factor (CTGF/CCN2) and type I collagen was negatively regulated in CCD-1068SK fibroblast cells under direct co-culture conditions. Further analysis revealed that Smad7, a known negative regulator of the Smad signalling pathway involved in CCN2 promoter regulation, was increased in directly co-cultured fibroblasts. Inhibition of Smad7 expression in CCD-1068SK fibroblasts resulted in increased CCN2 expression, while Smad7 overexpression had the opposite effect. Silencing CCN2 gene expression in fibroblasts led, in turn, to a decrease in type I collagen mRNA and protein levels. ERK signalling was also shown to be impaired in CCD-1068SK fibroblasts after direct co-culture with MDA-MB-231 tumour cells, with Smad7 overexpression in fibroblasts leading to a similar decrease in ERK activity. These effects were not, however, seen in fibroblasts that were indirectly co-cultured with tumour cells. Conclusion We therefore conclude that breast cancer cells require close contact with fibroblasts in order to upregulate Smad7 which, in turn, leads to decreased ERK signalling resulting in diminished expression of the stromal proteins CCN2 and type I collagen.
Collapse
Affiliation(s)
- Beverley A van Rooyen
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Anzio Rd Observatory, Cape Town 7925, South Africa.
| | | | | | | |
Collapse
|
50
|
Kim SW, Kim HW, Huang W, Okada M, Welge JA, Wang Y, Ashraf M. Cardiac stem cells with electrical stimulation improve ischaemic heart function through regulation of connective tissue growth factor and miR-378. Cardiovasc Res 2013; 100:241-51. [PMID: 24067999 DOI: 10.1093/cvr/cvt192] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
AIMS In this study, we investigated whether pre-conditioning (PC) by electrical stimulation (EleS) induces cytoprotective effect on cardiac stem cells (CSCs) and determined its underlying molecular mechanisms. METHODS AND RESULTS Sca-1(+) CSCs were isolated from male C57BL6 mice (12 weeks) hearts. PC of CSCs with EleS ((EleS)CSCs) was carried out for 3 h at 1.5 V followed by exposure to 300 µM H2O2 for 5 h. Cytoprotective effects and cell adhesion ability were significantly increased by EleS as evaluated by transferase-mediated dUTP nick-end labelling (TUNEL), lactate dehydrogenase (LDH) release assay, and adhesion assay. EleS increased phosphorylation of AKT, focal adhesion kinase (FAK), and glycogen synthase kinase (GSK3β), as well as decreased caspase-3 cleavage. Interestingly, inhibition of AKT or FAK abolished the pro-survival effects of EleS. We found that connective tissue growth factor (Ctgf) was responsible for EleS-induced CSC survival and adhesion.The survival rate of (EleS)CSCs after transplantation in the infarcted myocardium was significantly increased together with improvement in cardiac function. Importantly, knockdown of Ctgf abolished EleS-induced cytoprotective effects and recovery of cardiac function. Furthermore, we identified miR-378 as a potential Ctgf regulator in (EleS)CSCs. CONCLUSION EleS enhanced CSC survival in vitro and in vivo as well as functional recovery of the ischaemic heart through an AKT/FAK/CTGF signalling pathway. It is suggested that Ctgf and miR-378 are novel therapeutic targets for stem cell-based therapy.
Collapse
|