1
|
Yagüe-Capilla M, Rudd SG. Understanding the interplay between dNTP metabolism and genome stability in cancer. Dis Model Mech 2024; 17:dmm050775. [PMID: 39206868 PMCID: PMC11381932 DOI: 10.1242/dmm.050775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
The size and composition of the intracellular DNA precursor pool is integral to the maintenance of genome stability, and this relationship is fundamental to our understanding of cancer. Key aspects of carcinogenesis, including elevated mutation rates and induction of certain types of DNA damage in cancer cells, can be linked to disturbances in deoxynucleoside triphosphate (dNTP) pools. Furthermore, our approaches to treat cancer heavily exploit the metabolic interplay between the DNA and the dNTP pool, with a long-standing example being the use of antimetabolite-based cancer therapies, and this strategy continues to show promise with the development of new targeted therapies. In this Review, we compile the current knowledge on both the causes and consequences of dNTP pool perturbations in cancer cells, together with their impact on genome stability. We outline several outstanding questions remaining in the field, such as the role of dNTP catabolism in genome stability and the consequences of dNTP pool expansion. Importantly, we detail how our mechanistic understanding of these processes can be utilised with the aim of providing better informed treatment options to patients with cancer.
Collapse
Affiliation(s)
- Miriam Yagüe-Capilla
- Science For Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Sean G Rudd
- Science For Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden
| |
Collapse
|
2
|
Anda S, Boye E, Schink KO, Grallert B. Cosegregation of asymmetric features during cell division. Open Biol 2021; 11:210116. [PMID: 34343465 PMCID: PMC8331232 DOI: 10.1098/rsob.210116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Cellular asymmetry plays a major role in the ageing and evolution of multicellular organisms. However, it remains unknown how the cell distinguishes 'old' from 'new' and whether asymmetry is an attribute of highly specialized cells or a feature inherent in all cells. Here, we investigate the segregation of three asymmetric features: old and new DNA, the spindle pole body (SPB, the centrosome analogue) and the old and new cell ends, using a simple unicellular eukaryote, Schizosaccharomyces pombe. To our knowledge, this is the first study exploring three asymmetric features in the same cells. We show that of the three chromosomes of S. pombe, chromosome I containing the new parental strand, preferentially segregated to the cells inheriting the old cell end. Furthermore, the new SPB also preferentially segregated to the cells inheriting the old end. Our results suggest that the ability to distinguish 'old' from 'new' and to segregate DNA asymmetrically are inherent features even in simple unicellular eukaryotes.
Collapse
Affiliation(s)
- Silje Anda
- Department of Radiation Biology, Oslo University Hospital, Oslo, Norway
| | - Erik Boye
- Department of Radiation Biology, Oslo University Hospital, Oslo, Norway,Department of Biosciences, University of Oslo, Oslo, Norway
| | - Kay Oliver Schink
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Beata Grallert
- Department of Radiation Biology, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
3
|
Soriano I, Vazquez E, De Leon N, Bertrand S, Heitzer E, Toumazou S, Bo Z, Palles C, Pai CC, Humphrey TC, Tomlinson I, Cotterill S, Kearsey SE. Expression of the cancer-associated DNA polymerase ε P286R in fission yeast leads to translesion synthesis polymerase dependent hypermutation and defective DNA replication. PLoS Genet 2021; 17:e1009526. [PMID: 34228709 PMCID: PMC8284607 DOI: 10.1371/journal.pgen.1009526] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 07/16/2021] [Accepted: 06/11/2021] [Indexed: 12/15/2022] Open
Abstract
Somatic and germline mutations in the proofreading domain of the replicative DNA polymerase ε (POLE-exonuclease domain mutations, POLE-EDMs) are frequently found in colorectal and endometrial cancers and, occasionally, in other tumours. POLE-associated cancers typically display hypermutation, and a unique mutational signature, with a predominance of C > A transversions in the context TCT and C > T transitions in the context TCG. To understand better the contribution of hypermutagenesis to tumour development, we have modelled the most recurrent POLE-EDM (POLE-P286R) in Schizosaccharomyces pombe. Whole-genome sequencing analysis revealed that the corresponding pol2-P287R allele also has a strong mutator effect in vivo, with a high frequency of base substitutions and relatively few indel mutations. The mutations are equally distributed across different genomic regions, but in the immediate vicinity there is an asymmetry in AT frequency. The most abundant base-pair changes are TCT > TAT transversions and, in contrast to human mutations, TCG > TTG transitions are not elevated, likely due to the absence of cytosine methylation in fission yeast. The pol2-P287R variant has an increased sensitivity to elevated dNTP levels and DNA damaging agents, and shows reduced viability on depletion of the Pfh1 helicase. In addition, S phase is aberrant and RPA foci are elevated, suggestive of ssDNA or DNA damage, and the pol2-P287R mutation is synthetically lethal with rad3 inactivation, indicative of checkpoint activation. Significantly, deletion of genes encoding some translesion synthesis polymerases, most notably Pol κ, partially suppresses pol2-P287R hypermutation, indicating that polymerase switching contributes to this phenotype.
Collapse
Affiliation(s)
- Ignacio Soriano
- ZRAB, University of Oxford, Oxford, United Kingdom
- Edinburgh Cancer Research Centre, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| | - Enrique Vazquez
- Genomics Unit, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Nagore De Leon
- ZRAB, University of Oxford, Oxford, United Kingdom
- Edinburgh Cancer Research Centre, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| | | | - Ellen Heitzer
- Institute of Human Genetics, Diagnostic & Research Center for Molecular BioMedicine, Medical University of Graz, Graz, Austria
| | - Sophia Toumazou
- ZRAB, University of Oxford, Oxford, United Kingdom
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Zhihan Bo
- ZRAB, University of Oxford, Oxford, United Kingdom
| | - Claire Palles
- Gastrointestinal Cancer Genetics Laboratory, Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Chen-Chun Pai
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Timothy C. Humphrey
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Ian Tomlinson
- Edinburgh Cancer Research Centre, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| | - Sue Cotterill
- St. George’s, University of London, Cranmer Terrace, Tooting, London, United Kingdom
| | | |
Collapse
|
4
|
Covo S. Genomic Instability in Fungal Plant Pathogens. Genes (Basel) 2020; 11:E421. [PMID: 32295266 PMCID: PMC7230313 DOI: 10.3390/genes11040421] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/29/2020] [Accepted: 04/10/2020] [Indexed: 02/07/2023] Open
Abstract
Fungi and fungal-like organisms (oomycetes) that cause diseases in plants have impacted human communities for centuries and probably from the dawn of agriculture. In modern agriculture, there is a constant race between new strategies to manage fungal plant pathogens and their ability to adapt. An important component in this race is fungal genetic diversity. Mechanisms such as sexual and parasexual recombination that contribute to the creation of novel allele combinations in fungal plant pathogens are briefly discussed in the first part of this review. Advances in genomics have enabled the investigation of chromosomal aberrations of agriculturally important fungal isolates at the nucleotide level. Some of these cases are summarized in the second part of this review; it is claimed that the effect of chromosomal aberrations on pathogenicity should be studied mechanistically. More data on the effect of gene copy number variations on phenotypes that are relevant to agriculture are especially needed. Genome rearrangements through translocations have shaped the genome of fungal plant pathogens by creating lineage-specific chromosome territories encoding for genes participating in plant diseases. Pathogenicity chromosomes are unique cases of such lineage-specific genetic elements, interestingly these chromosomes can be transferred horizontally and thus transforming a non-pathogenic strain to a pathogenic one. The third part of this review describes our attempts to reveal mutators in fungal plant pathogens by identifying fungi that lack important DNA repair genes or respond to DNA damage in an unconventional way. We found that a group of fungal plant pathogens lack conserved genes that are needed for an important Holliday junction resolution pathway. In addition, in Fusarium oxysporum, the rate-limiting step in dNTP production is not induced under DNA replication stress. This is very different from organisms from bacteria to humans. It remains to be seen if these mechanisms promote genetic instability in fungal plant pathogens.
Collapse
Affiliation(s)
- Shay Covo
- Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University, Rehovot 76100001, Israel
| |
Collapse
|
5
|
Wdr70 regulates histone modification and genomic maintenance in fission yeast. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118665. [PMID: 32007529 DOI: 10.1016/j.bbamcr.2020.118665] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/23/2020] [Accepted: 01/29/2020] [Indexed: 11/20/2022]
Abstract
Eukaryotic genomes are packaged into highly condensed chromatin and this repressive chromatin barrier can be overcome by altering the chromatin structure via histone modification enzymes. Here, we report Wdr70 in Schizosaccharomyces pombe (spWdr70) plays important roles in multiple cellular processes including cell cycle progression, chromatin structure and DNA repair. Depletion of Wdr70 gene causes cell cycle delay, hypersensitivity to DNA damage reagents and quick phenotypic changes. Moreover, we observed strong genetic interaction between Wdr70 and genes regulating checkpoint and homologous recombination (HR), pinpointing the function of Wdr70 to DNA end resection. Finally, we show that the function of Wdr70 could be attributed to monoubiquitination of histone H2B (uH2B) in the vicinity of DNA double strand breaks (DSBs). Taken together, our data reveal that Wdr70 and H2B monoubiquitination-dependent chromatin modulation is required for chromatin homeostasis and genetic stability.
Collapse
|
6
|
Cohen R, Milo S, Sharma S, Savidor A, Covo S. Ribonucleotide reductase from Fusarium oxysporum does not Respond to DNA replication stress. DNA Repair (Amst) 2019; 83:102674. [PMID: 31375409 DOI: 10.1016/j.dnarep.2019.102674] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 07/22/2019] [Accepted: 07/22/2019] [Indexed: 12/14/2022]
Abstract
Ribonucleotide reductase (RNR) catalyzes the rate limiting step in dNTP biosynthesis and is tightly regulated at the transcription and activity levels. One of the best characterized responses of yeast to DNA damage is up-regulation of RNR transcription and activity and consequently, elevation of the dNTP pools. Hydroxyurea is a universal inhibitor of RNR that causes S phase arrest. It is used in the clinic to treat certain types of cancers. Here we studied the response of the fungal plant pathogen Fusarium oxysporum to hydroxyurea in order to generate hypotheses that can be used in the future in development of a new class of pesticides. F. oxysporum causes severe damage to more than 100 agricultural crops and specifically threatens banana cultivation world-wide. Although the recovery of F. oxysporum from transient hydroxyurea exposure was similar to the one of Saccharomyces cerevisiae, colony formation was strongly inhibited in F. oxysporum in comparison with S. cerevisiae. As expected, genomic and phosphoproteomic analyses of F. oxysporum conidia (spores) exposed to hydroxyurea showed hallmarks of DNA replication perturbation and activation of recombination. Unexpectedly and strikingly, RNR was not induced by either hydroxyurea or the DNA-damaging agent methyl methanesulfonate as determined at the RNA and protein levels. Consequently, dNTP concentrations were significantly reduced, even in response to a low dose of hydroxyurea. Methyl methanesulfonate treatment did not induce dNTP pools in F. oxysporum, in contrast to the response of RNR and dNTP pools to DNA damage and hydroxyurea in several tested organisms. Our results are important because the lack of a feedback mechanism to increase RNR expression in F. oxysporum is expected to sensitize the pathogen to a fungal-specific ribonucleotide inhibitor. The potential impact of our observations on F. oxysporum genome stability and genome evolution is discussed.
Collapse
Affiliation(s)
- Rotem Cohen
- Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University, Rehovot, 76100, Israel
| | - Shira Milo
- Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University, Rehovot, 76100, Israel
| | - Sushma Sharma
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Alon Savidor
- de Botton Institute for Protein Profiling, the Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Shay Covo
- Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University, Rehovot, 76100, Israel.
| |
Collapse
|
7
|
Long MJC, Hnedzko D, Kim BK, Aye Y. Breaking the Fourth Wall: Modulating Quaternary Associations for Protein Regulation and Drug Discovery. Chembiochem 2019; 20:1091-1104. [PMID: 30589188 PMCID: PMC6499692 DOI: 10.1002/cbic.201800716] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Indexed: 12/13/2022]
Abstract
Protein-protein interactions (PPIs) are an effective means to orchestrate intricate biological processes required to sustain life. Approximately 650 000 PPIs underlie the human interactome; thus underscoring its complexity and the manifold signaling outputs altered in response to changes in specific PPIs. This minireview illustrates the growing arsenal of PPI assemblies and offers insights into how these varied PPI regulatory modalities are relevant to customized drug discovery, with a focus on cancer. First, known and emerging PPIs and PPI-targeted drugs of both natural and synthetic origin are categorized. Building on these discussions, the merits of PPI-guided therapeutics over traditional drug design are discussed. Finally, a compare-and-contrast section for different PPI blockers, with gain-of-function PPI interventions, such as PROTACS, is provided.
Collapse
Affiliation(s)
- Marcus J. C. Long
- 47 Pudding Gate, Bishop Burton, Beverley East Riding of Yorkshire, HU17 8QH, UK
| | - Dziyana Hnedzko
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, 14853, USA
| | - Bo Kyoung Kim
- École Polytechnique Fédérale de Lausanne, Institute of Chemical Sciences and Engineering, 1015, Lausanne, Switzerland
| | - Yimon Aye
- École Polytechnique Fédérale de Lausanne, Institute of Chemical Sciences and Engineering, 1015, Lausanne, Switzerland
- 47 Pudding Gate, Bishop Burton, Beverley East Riding of Yorkshire, HU17 8QH, UK
| |
Collapse
|
8
|
Pai CC, Hsu KF, Durley SC, Keszthelyi A, Kearsey SE, Rallis C, Folkes LK, Deegan R, Wilkins SE, Pfister SX, De León N, Schofield CJ, Bähler J, Carr AM, Humphrey TC. An essential role for dNTP homeostasis following CDK-induced replication stress. J Cell Sci 2019; 132:jcs226969. [PMID: 30674555 PMCID: PMC6451416 DOI: 10.1242/jcs.226969] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 01/02/2019] [Indexed: 02/03/2023] Open
Abstract
Replication stress is a common feature of cancer cells, and thus a potentially important therapeutic target. Here, we show that cyclin-dependent kinase (CDK)-induced replication stress, resulting from Wee1 inactivation, is synthetic lethal with mutations disrupting dNTP homeostasis in fission yeast. Wee1 inactivation leads to increased dNTP demand and replication stress through CDK-induced firing of dormant replication origins. Subsequent dNTP depletion leads to inefficient DNA replication, DNA damage and to genome instability. Cells respond to this replication stress by increasing dNTP supply through histone methyltransferase Set2-dependent MBF-induced expression of Cdc22, the catalytic subunit of ribonucleotide reductase (RNR). Disrupting dNTP synthesis following Wee1 inactivation, through abrogating Set2-dependent H3K36 tri-methylation or DNA integrity checkpoint inactivation results in critically low dNTP levels, replication collapse and cell death, which can be rescued by increasing dNTP levels. These findings support a 'dNTP supply and demand' model in which maintaining dNTP homeostasis is essential to prevent replication catastrophe in response to CDK-induced replication stress.
Collapse
Affiliation(s)
- Chen-Chun Pai
- CRUK-MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, ORCRB, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Kuo-Feng Hsu
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
- Department of Surgery, Tri-Service General Hospital, National Defense Medical Centre, Taipei 114, Taiwan
| | - Samuel C Durley
- CRUK-MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, ORCRB, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Andrea Keszthelyi
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, Sussex, BN1 9RQ, UK
| | - Stephen E Kearsey
- Department of Zoology, University of Oxford, Zoology Research & Administration Building, Mansfield Road, Oxford, OX1 3PS, UK
| | - Charalampos Rallis
- Research Department of Genetics, Evolution & Environment, University College London, London, WC1E 6BT, UK
- School of Health, Sport and Bioscience, University of East London, Stratford Campus, E15 4LZ, London, UK
| | - Lisa K Folkes
- CRUK-MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, ORCRB, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Rachel Deegan
- CRUK-MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, ORCRB, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Sarah E Wilkins
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
| | - Sophia X Pfister
- CRUK-MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, ORCRB, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Nagore De León
- Department of Zoology, University of Oxford, Zoology Research & Administration Building, Mansfield Road, Oxford, OX1 3PS, UK
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
| | - Jürg Bähler
- Research Department of Genetics, Evolution & Environment, University College London, London, WC1E 6BT, UK
| | - Antony M Carr
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, Sussex, BN1 9RQ, UK
| | - Timothy C Humphrey
- CRUK-MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, ORCRB, Roosevelt Drive, Oxford, OX3 7DQ, UK
| |
Collapse
|
9
|
Down-regulation of Cdk1 activity in G1 coordinates the G1/S gene expression programme with genome replication. Curr Genet 2019; 65:685-690. [DOI: 10.1007/s00294-018-00926-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 12/20/2018] [Accepted: 12/22/2018] [Indexed: 02/07/2023]
|
10
|
Rubio A, García-Blanco N, Vázquez-Bolado A, Belén Suárez M, Moreno S. Nutritional cell cycle reprogramming reveals that inhibition of Cdk1 is required for proper MBF-dependent transcription. J Cell Sci 2018; 131:jcs.218743. [PMID: 30154212 DOI: 10.1242/jcs.218743] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 08/20/2018] [Indexed: 01/22/2023] Open
Abstract
In nature, cells and in particular unicellular microorganisms are exposed to a variety of nutritional environments. Fission yeast cells cultured in nitrogen-rich media grow fast, divide with a large size and show a short G1 and a long G2. However, when cultured in nitrogen-poor media, they exhibit reduced growth rate and cell size and a long G1 and a short G2. In this study, we compared the phenotypes of cells lacking the highly conserved cyclin-dependent kinase (Cdk) inhibitor Rum1 and the anaphase-promoting complex/cyclosome (APC/C) activator Ste9 in nitrogen-rich and nitrogen-poor media. Rum1 and Ste9 are dispensable for cell division in nitrogen-rich medium. However, in nitrogen-poor medium they are essential for generating a proper wave of MluI cell-cycle box binding factor (MBF)-dependent transcription at the end of G1, which is crucial for promoting a successful S phase. Mutants lacking Rum1 and Ste9 showed premature entry into S phase and a reduced wave of MBF-dependent transcription, leading to replication stress, DNA damage and G2 cell cycle arrest. This work demonstrates how reprogramming the cell cycle by changing the nutritional environment may reveal new roles for cell cycle regulators.
Collapse
Affiliation(s)
- Angela Rubio
- Instituto de Biología Funcional y Genómica, CSIC, University of Salamanca, 37007 Salamanca, Spain.,Department of Microbiology and Genetics, University of Salamanca, 37007 Salamanca. Spain
| | - Natalia García-Blanco
- Instituto de Biología Funcional y Genómica, CSIC, University of Salamanca, 37007 Salamanca, Spain.,Department of Microbiology and Genetics, University of Salamanca, 37007 Salamanca. Spain
| | - Alicia Vázquez-Bolado
- Instituto de Biología Funcional y Genómica, CSIC, University of Salamanca, 37007 Salamanca, Spain.,Department of Microbiology and Genetics, University of Salamanca, 37007 Salamanca. Spain
| | - María Belén Suárez
- Instituto de Biología Funcional y Genómica, CSIC, University of Salamanca, 37007 Salamanca, Spain.,Department of Microbiology and Genetics, University of Salamanca, 37007 Salamanca. Spain
| | - Sergio Moreno
- Instituto de Biología Funcional y Genómica, CSIC, University of Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
11
|
Ito-Harashima S, Yagi T. Unique molecular mechanisms for maintenance and alteration of genetic information in the budding yeast Saccharomyces cerevisiae. Genes Environ 2017; 39:28. [PMID: 29213342 PMCID: PMC5709847 DOI: 10.1186/s41021-017-0088-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 10/26/2017] [Indexed: 11/10/2022] Open
Abstract
The high-fidelity transmission of genetic information is crucial for the survival of organisms, the cells of which have the ability to protect DNA against endogenous and environmental agents, including reactive oxygen species (ROS), ionizing radiation, and various chemical compounds. The basis of protection mechanisms has been evolutionarily conserved from yeast to humans; however, each organism often has a specialized mode of regulation that uses different sets of machineries, particularly in lower eukaryotes. The divergence of molecular mechanisms among related organisms has provided insights into the evolution of cellular machineries to a higher architecture. Uncommon characteristics of machineries may also contribute to the development of new applications such as drugs with novel mechanisms of action. In contrast to the cellular properties for maintaining genetic information, living organisms, particularly microbes, inevitably undergo genetic alterations in order to adapt to environmental conditions. The maintenance and alteration of genetic information may be inextricably linked to each other. In this review, we describe recent findings on the unconventional molecular mechanisms of DNA damage response and DNA double-strand break (DSB) repair in the budding yeast Saccharomyces cerevisiae. We also introduce our previous research on genetic and phenotypic instabilities observed in a clonal population of clinically-derived S. cerevisiae. The molecular mechanisms of this case were associated with mutations to generate tyrosine-inserting tRNA-Tyr ochre suppressors and the position effects of mutation frequencies among eight tRNA-Tyr loci dispersed in the genome. Phenotypic variations among different strain backgrounds have also been observed by another type of nonsense suppressor, the aberrant form of the translation termination factor. Nonsense suppressors are considered to be responsible for the genome-wide translational readthrough of termination codons, including natural nonsense codons. The nonsense suppressor-mediated acquisition of phenotypic variations may be advantageous for adaptation to environmental conditions and survival during evolution.
Collapse
Affiliation(s)
- Sayoko Ito-Harashima
- Department of Biological Sciences, Graduate School of Science, Osaka Prefecture University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8570 Japan
| | - Takashi Yagi
- Department of Biological Sciences, Graduate School of Science, Osaka Prefecture University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8570 Japan
| |
Collapse
|
12
|
Choi K, Marek SM. A noncanonical poly(A) RNA polymerase gene affects morphology in Phoma medicaginis. Fungal Genet Biol 2017; 111:47-59. [PMID: 29155068 DOI: 10.1016/j.fgb.2017.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 11/12/2017] [Accepted: 11/14/2017] [Indexed: 12/11/2022]
Abstract
Phoma medicaginis (syn. Ascochyta medicaginicola Qchen & L. Cai) causes spring black stem and leaf spot, an important disease of alfalfa and annual medics. P. medicaginis forms uninucleate conidia in melanized pycnidia and is genetically tractable using Agrobacterium mediated transformation (ATMT), resulting in random integration of T-DNA that occasionally generates pycnidial mutants. The T-DNA tagged mutant, P265 displayed smaller pycnidia and more aerial hyphae than the wild type. A single T-DNA disrupted a putative noncanonical poly(A) RNA polymerase gene, Pmncpap1, which in yeast interacts with ribonucleotide reductase (RNR). As in yeast mutants, P265 showed sensitivity to hydroxyurea (HU), a RNR inhibitor. To characterize the role of Pmncpap1, targeted ΔPmncpap1 mutants were created using a hygromycin selectable marker flanked by 1 Kbp regions of Pmncpap1. ΔPmncpap1 mutants possessed similar morphological features to those of P265. The plasmid for rescue of PmncPAP1, pCAM-Nat1 (nourseothricin selection) was constructed and used to introduce full-length PmncPAP1 into mutants. Rescued P265 showed partial recovery of wild type and the original T-DNA was lost due to homologous integration. To our knowledge, this is the first ncPAP to be examined in a filamentous fungus.
Collapse
Affiliation(s)
- Kihyuck Choi
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, USA; Department of Applied Bioscience, Dong-A University, Busan, Republic of Korea.
| | - Stephen M Marek
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, USA
| |
Collapse
|
13
|
Pai CC, Kishkevich A, Deegan RS, Keszthelyi A, Folkes L, Kearsey SE, De León N, Soriano I, de Bruin RAM, Carr AM, Humphrey TC. Set2 Methyltransferase Facilitates DNA Replication and Promotes Genotoxic Stress Responses through MBF-Dependent Transcription. Cell Rep 2017; 20:2693-2705. [PMID: 28903048 PMCID: PMC5608972 DOI: 10.1016/j.celrep.2017.08.058] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 06/10/2017] [Accepted: 08/17/2017] [Indexed: 11/24/2022] Open
Abstract
Chromatin modification through histone H3 lysine 36 methylation by the SETD2 tumor suppressor plays a key role in maintaining genome stability. Here, we describe a role for Set2-dependent H3K36 methylation in facilitating DNA replication and the transcriptional responses to both replication stress and DNA damage through promoting MluI cell-cycle box (MCB) binding factor (MBF)-complex-dependent transcription in fission yeast. Set2 loss leads to reduced MBF-dependent ribonucleotide reductase (RNR) expression, reduced deoxyribonucleoside triphosphate (dNTP) synthesis, altered replication origin firing, and a checkpoint-dependent S-phase delay. Accordingly, prolonged S phase in the absence of Set2 is suppressed by increasing dNTP synthesis. Furthermore, H3K36 is di- and tri-methylated at these MBF gene promoters, and Set2 loss leads to reduced MBF binding and transcription in response to genotoxic stress. Together, these findings provide new insights into how H3K36 methylation facilitates DNA replication and promotes genotoxic stress responses in fission yeast.
Collapse
Affiliation(s)
- Chen-Chun Pai
- CRUK-MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, UK.
| | - Anastasiya Kishkevich
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6B, UK
| | - Rachel S Deegan
- CRUK-MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Andrea Keszthelyi
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, Sussex BN1 9RQ, UK
| | - Lisa Folkes
- CRUK-MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Stephen E Kearsey
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - Nagore De León
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - Ignacio Soriano
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | | | - Antony M Carr
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, Sussex BN1 9RQ, UK
| | - Timothy C Humphrey
- CRUK-MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, UK.
| |
Collapse
|
14
|
Boronat S, Domènech A, Carmona M, García-Santamarina S, Bañó MC, Ayté J, Hidalgo E. Lack of a peroxiredoxin suppresses the lethality of cells devoid of electron donors by channelling electrons to oxidized ribonucleotide reductase. PLoS Genet 2017. [PMID: 28640807 PMCID: PMC5501661 DOI: 10.1371/journal.pgen.1006858] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The thioredoxin and glutaredoxin pathways are responsible of recycling several enzymes which undergo intramolecular disulfide bond formation as part of their catalytic cycles such as the peroxide scavengers peroxiredoxins or the enzyme ribonucleotide reductase (RNR). RNR, the rate-limiting enzyme of deoxyribonucleotide synthesis, is an essential enzyme relying on these electron flow cascades for recycling. RNR is tightly regulated in a cell cycle-dependent manner at different levels, but little is known about the participation of electron donors in such regulation. Here, we show that cytosolic thioredoxins Trx1 and Trx3 are the primary electron donors for RNR in fission yeast. Unexpectedly, trx1 transcript and Trx1 protein levels are up-regulated in a G1-to-S phase-dependent manner, indicating that the supply of electron donors is also cell cycle-regulated. Indeed, genetic depletion of thioredoxins triggers a DNA replication checkpoint ruled by Rad3 and Cds1, with the final goal of up-regulating transcription of S phase genes and constitutive RNR synthesis. Regarding the thioredoxin and glutaredoxin cascades, one combination of gene deletions is synthetic lethal in fission yeast: cells lacking both thioredoxin reductase and cytosolic dithiol glutaredoxin. We have isolated a suppressor of this lethal phenotype: a mutation at the Tpx1-coding gene, leading to a frame shift and a loss-of-function of Tpx1, the main client of electron donors. We propose that in a mutant strain compromised in reducing equivalents, the absence of an abundant and competitive substrate such as the peroxiredoxin Tpx1 has been selected as a lethality suppressor to favor RNR function at the expense of the non-essential peroxide scavenging function, to allow DNA synthesis and cell growth. The essential enzyme ribonucleotide reductase (RNR), the rate-limiting enzyme of deoxyribonucleotide synthesis, relies on the thioredoxin and glutaredoxin electron flow cascades for recycling. RNR is tightly regulated in a cell cycle-dependent manner at different levels. Here, we show that cytosolic thioredoxin Trx1 is the primary electron donor for RNR in fission yeast, and that trx1 transcript and protein levels are up-regulated at G1-to-S phase transition. Genetic depletion of thioredoxins triggers the DNA replication checkpoint up-regulating RNR synthesis. Furthermore, deletion of the genes coding for thioredoxin reductase and dithiol glutaredoxin is synthetic lethal, and we show that a loss-of-function mutation at the peroxiredoxin Tpx1-coding gene acts as a genetic suppressor. We propose that in a mutant strain compromised in reducing equivalents, the absence of an abundant and competitive substrate of redoxins, the peroxiredoxin Tpx1, has been selected as a lethality suppressor to favor channeling of electrons to the essential RNR.
Collapse
Affiliation(s)
- Susanna Boronat
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, Barcelona, Spain
| | - Alba Domènech
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, Barcelona, Spain
| | - Mercè Carmona
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, Barcelona, Spain
| | | | - M. Carmen Bañó
- Departamento de Bioquímica y Biología Molecular, Universitat de València, Valencia, Spain
| | - José Ayté
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, Barcelona, Spain
- * E-mail: (EH); (JA)
| | - Elena Hidalgo
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, Barcelona, Spain
- * E-mail: (EH); (JA)
| |
Collapse
|
15
|
Fleck O, Fahnøe U, Løvschal KV, Gasasira MFU, Marinova IN, Kragelund BB, Carr AM, Hartsuiker E, Holmberg C, Nielsen O. Deoxynucleoside Salvage in Fission Yeast Allows Rescue of Ribonucleotide Reductase Deficiency but Not Spd1-Mediated Inhibition of Replication. Genes (Basel) 2017; 8:E128. [PMID: 28441348 PMCID: PMC5448002 DOI: 10.3390/genes8050128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 04/10/2017] [Accepted: 04/20/2017] [Indexed: 12/12/2022] Open
Abstract
In fission yeast, the small, intrinsically disordered protein S-phase delaying protein 1 (Spd1) blocks DNA replication and causes checkpoint activation at least in part, by inhibiting the enzyme ribonucleotide reductase, which is responsible for the synthesis of DNA. The CRL4Cdt2 E3 ubiquitin ligase mediates degradation of Spd1 and the related protein Spd2 at S phase of the cell cycle. We have generated a conditional allele of CRL4Cdt2, by expressing the highly unstable substrate-recruiting protein Cdt2 from a repressible promoter. Unlike Spd1, Spd2 does not regulate deoxynucleotide triphosphate (dNTP) pools; yet we find that Spd1 and Spd2 together inhibit DNA replication upon Cdt2 depletion. To directly test whether this block of replication was solely due to insufficient dNTP levels, we established a deoxy-nucleotide salvage pathway in fission yeast by expressing the human nucleoside transporter human equilibrative nucleoside transporter 1 (hENT1) and the Drosophila deoxynucleoside kinase. We present evidence that this salvage pathway is functional, as 2 µM of deoxynucleosides in the culture medium is able to rescue the growth of two different temperature-sensitive alleles controlling ribonucleotide reductase. However, salvage completely failed to rescue S phase delay, checkpoint activation, and damage sensitivity, which was caused by CRL4Cdt2 inactivation, suggesting that Spd1-in addition to repressing dNTP synthesis-together with Spd2, can inhibit other replication functions. We propose that this inhibition works at the point of the replication clamp proliferating cell nuclear antigen, a co-factor for DNA replication.
Collapse
Affiliation(s)
- Oliver Fleck
- Cell Cycle and Genome Stability Group, Department of Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark.
- North West Cancer Research Institute, Bangor University, Bangor, Gwynedd LL57 2UW, UK.
| | - Ulrik Fahnøe
- Cell Cycle and Genome Stability Group, Department of Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark.
| | - Katrine Vyff Løvschal
- Cell Cycle and Genome Stability Group, Department of Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark.
| | | | - Irina N Marinova
- Cell Cycle and Genome Stability Group, Department of Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark.
| | - Birthe B Kragelund
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark.
| | - Antony M Carr
- Genome Damage and Stability Centre, University of Sussex, Brighton BN1 9RQ, UK.
| | - Edgar Hartsuiker
- North West Cancer Research Institute, Bangor University, Bangor, Gwynedd LL57 2UW, UK.
| | - Christian Holmberg
- Cell Cycle and Genome Stability Group, Department of Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark.
| | - Olaf Nielsen
- Cell Cycle and Genome Stability Group, Department of Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark.
| |
Collapse
|
16
|
The Intra-S Checkpoint Responses to DNA Damage. Genes (Basel) 2017; 8:genes8020074. [PMID: 28218681 PMCID: PMC5333063 DOI: 10.3390/genes8020074] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 02/08/2017] [Accepted: 02/08/2017] [Indexed: 02/03/2023] Open
Abstract
Faithful duplication of the genome is a challenge because DNA is susceptible to damage by a number of intrinsic and extrinsic genotoxins, such as free radicals and UV light. Cells activate the intra-S checkpoint in response to damage during S phase to protect genomic integrity and ensure replication fidelity. The checkpoint prevents genomic instability mainly by regulating origin firing, fork progression, and transcription of G1/S genes in response to DNA damage. Several studies hint that regulation of forks is perhaps the most critical function of the intra-S checkpoint. However, the exact role of the checkpoint at replication forks has remained elusive and controversial. Is the checkpoint required for fork stability, or fork restart, or to prevent fork reversal or fork collapse, or activate repair at replication forks? What are the factors that the checkpoint targets at stalled replication forks? In this review, we will discuss the various pathways activated by the intra-S checkpoint in response to damage to prevent genomic instability.
Collapse
|
17
|
Kato T, Ahmad S, Park EY. Functional Analysis of Ribonucleotide Reductase from Cordyceps militaris Expressed in Escherichia coli. Appl Biochem Biotechnol 2017; 182:1307-1317. [PMID: 28074332 DOI: 10.1007/s12010-017-2400-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 01/03/2017] [Indexed: 01/18/2023]
Abstract
Cordyceps militaris produces cordycepin (3'-deoxyadenosine), which has various activities, including anti-oxidant, anti-tumoral, anti-viral, and anti-inflammatory. Ribonucleotide reductase (RNR) seems to be a candidate to produce cordycepin in C. militaris because RNR catalyzes the reduction of nucleotides to 2'-deoxynucleotides, whose structures are similar to that of cordycepin. However, the role of RNR has not been confirmed yet. In this study, complementary DNAs (cDNAs) of C. militaris RNR (CmRNR) large and small subunits (CmR1 and CmR2) were cloned from C. militaris NBRC9787 to investigate the function of CmRNR for its cordycepin production. C. militaris NBRC9787 began to produce cordycepin when grown in a liquid surface culture in medium composed of glucose and yeast extract for 15 days. CmR1 cDNA and CmR2 cDNA were obtained from its genomic DNA and from total RNA extracted from its mycelia after cultivation for 21 days, respectively. Recombinant CmR1 and CmR2 were expressed individually in Escherichia coli and purified. Purified recombinant CmR1 and CmR2 showed RNR activity toward adenosine diphosphate (ADP) only when two subunits were mixed but only show the reduction of ADP to 2'-deoxyADP. These results indicate that the pathway from ADP to 3'deoxyADP via CmRNR does not exist in C. militaris and cordycepin production in C. militaris may be mediated by other enzymes.
Collapse
Affiliation(s)
- Tatsuya Kato
- Laboratory of Biotechnology, Department of Applied Biological Chemistry, Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
- Laboratory of Biotechnology, Green Chemistry Research Division, Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya Suruga-ku, Shizuoka, 422-8529, Japan
- Laboratory of Biotechnology, Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Suparmin Ahmad
- Laboratory of Biotechnology, Department of Applied Biological Chemistry, Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Enoch Y Park
- Laboratory of Biotechnology, Department of Applied Biological Chemistry, Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.
- Laboratory of Biotechnology, Green Chemistry Research Division, Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya Suruga-ku, Shizuoka, 422-8529, Japan.
- Laboratory of Biotechnology, Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.
| |
Collapse
|
18
|
The Cell Killing Mechanisms of Hydroxyurea. Genes (Basel) 2016; 7:genes7110099. [PMID: 27869662 PMCID: PMC5126785 DOI: 10.3390/genes7110099] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 11/03/2016] [Accepted: 11/09/2016] [Indexed: 11/23/2022] Open
Abstract
Hydroxyurea is a well-established inhibitor of ribonucleotide reductase that has a long history of scientific interest and clinical use for the treatment of neoplastic and non-neoplastic diseases. It is currently the staple drug for the management of sickle cell anemia and chronic myeloproliferative disorders. Due to its reversible inhibitory effect on DNA replication in various organisms, hydroxyurea is also commonly used in laboratories for cell cycle synchronization or generating replication stress. However, incubation with high concentrations or prolonged treatment with low doses of hydroxyurea can result in cell death and the DNA damage generated at arrested replication forks is generally believed to be the direct cause. Recent studies in multiple model organisms have shown that oxidative stress and several other mechanisms may contribute to the majority of the cytotoxic effect of hydroxyurea. This review aims to summarize the progress in our understanding of the cell-killing mechanisms of hydroxyurea, which may provide new insights towards the improvement of chemotherapies that employ this agent.
Collapse
|
19
|
Global Fitness Profiling Identifies Arsenic and Cadmium Tolerance Mechanisms in Fission Yeast. G3-GENES GENOMES GENETICS 2016; 6:3317-3333. [PMID: 27558664 PMCID: PMC5068951 DOI: 10.1534/g3.116.033829] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Heavy metals and metalloids such as cadmium [Cd(II)] and arsenic [As(III)] are widespread environmental toxicants responsible for multiple adverse health effects in humans. However, the molecular mechanisms underlying metal-induced cytotoxicity and carcinogenesis, as well as the detoxification and tolerance pathways, are incompletely understood. Here, we use global fitness profiling by barcode sequencing to quantitatively survey the Schizosaccharomyces pombe haploid deletome for genes that confer tolerance of cadmium or arsenic. We identified 106 genes required for cadmium resistance and 110 genes required for arsenic resistance, with a highly significant overlap of 36 genes. A subset of these 36 genes account for almost all proteins required for incorporating sulfur into the cysteine-rich glutathione and phytochelatin peptides that chelate cadmium and arsenic. A requirement for Mms19 is explained by its role in directing iron–sulfur cluster assembly into sulfite reductase as opposed to promoting DNA repair, as DNA damage response genes were not enriched among those required for cadmium or arsenic tolerance. Ubiquinone, siroheme, and pyridoxal 5′-phosphate biosynthesis were also identified as critical for Cd/As tolerance. Arsenic-specific pathways included prefoldin-mediated assembly of unfolded proteins and protein targeting to the peroxisome, whereas cadmium-specific pathways included plasma membrane and vacuolar transporters, as well as Spt–Ada–Gcn5-acetyltransferase (SAGA) transcriptional coactivator that controls expression of key genes required for cadmium tolerance. Notable differences are apparent with corresponding screens in the budding yeast Saccharomyces cerevisiae, underscoring the utility of analyzing toxic metal defense mechanisms in both organisms.
Collapse
|
20
|
Jang S, Zhou X, Ahn J. Substrate Specificity of SAMHD1 Triphosphohydrolase Activity Is Controlled by Deoxyribonucleoside Triphosphates and Phosphorylation at Thr592. Biochemistry 2016; 55:5635-5646. [PMID: 27588835 DOI: 10.1021/acs.biochem.6b00627] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The sterile alpha motif (SAM) and histidine-aspartate (HD) domain containing protein 1 (SAMHD1) constitute a triphosphohydrolase that converts deoxyribonucleoside triphosphates (dNTPs) into deoxyribonucleosides and triphosphates. SAMHD1 exists in multiple states. The monomer and apo- or GTP-bound dimer are catalytically inactive. Binding of dNTP at allosteric site 2 (AS2), adjacent to GTP-binding allosteric site 1 (AS1), induces formation of the tetramer, the catalytically active form. We have developed an enzyme kinetic assay, tailored to control specific dNTP binding at each site, allowing us to determine the kinetic binding parameters of individual dNTPs at both the AS2 and catalytic sites for all possible combinations of dNTP binding at both sites. Here, we show that the apparent Km values of dNTPs at AS2 vary in the order of dCTP < dGTP < dATP < dTTP. Interestingly, dCTP binding at AS2 significantly reduces the dCTP hydrolysis rate, which is restored to a rate comparable to that of other dNTPs upon dGTP, dATP, or dTTP binding at AS2. Strikingly, a phosphomimetic mutant, Thr592Asp SAMHD1 as well as phospho-Thr592, show a significantly altered substrate specificity, with the rate of dCTP hydrolysis being selectively reduced regardless of which dNTP binds at AS2. Furthermore, cyclin A2 binding at the C-terminus of SAMHD1 induces the disassembly of the SAMHD1 tetramer, suggesting an additional layer of SAMHD1 activity modulation by cyclin A2/CDK2 kinase. Together, our results reveal multiple allosteric mechanisms for controlling the rate of dNTP destruction by SAMHD1.
Collapse
Affiliation(s)
- Sunbok Jang
- Department of Structural Biology, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania 15260, United States
| | - Xiaohong Zhou
- Department of Structural Biology, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania 15260, United States
| | - Jinwoo Ahn
- Department of Structural Biology, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
21
|
Ruan K, Yamamoto TG, Asakawa H, Chikashige Y, Masukata H, Haraguchi T, Hiraoka Y. Meiotic nuclear movements in fission yeast are regulated by the transcription factor Mei4 downstream of a Cds1-dependent replication checkpoint pathway. Genes Cells 2014; 20:160-72. [PMID: 25492408 PMCID: PMC4359684 DOI: 10.1111/gtc.12207] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 10/29/2014] [Indexed: 12/30/2022]
Abstract
In meiosis, the fission yeast nucleus displays an elongated morphology, moving back and forth within the cell; these nuclear movements continue for approximately 2 h before meiotic nuclear divisions. Meiotic DNA replication occurs in an early phase of the nuclear movements and is followed by meiotic prophase. Here we report that in mutants deficient in meiotic DNA replication, the duration of nuclear movements is strikingly prolonged to four to 5 h. We found that this prolongation was caused by the Cds1-dependent replication checkpoint, which represses expression of the mei4+ gene encoding a meiosis-specific transcription factor. In the absence of Mei4, nuclear movements persisted for more than 8 h. In contrast, overproduction of Mei4 accelerated termination of nuclear movements to approximately 30 min. These results show that Mei4 is involved in the termination of nuclear movements and that Mei4-mediated regulatory pathways link a DNA replication checkpoint to the termination of nuclear movements.
Collapse
Affiliation(s)
- Kun Ruan
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, 565-0871, Japan
| | | | | | | | | | | | | |
Collapse
|
22
|
Meurisse J, Bacquin A, Richet N, Charbonnier JB, Ochsenbein F, Peyroche A. Hug1 is an intrinsically disordered protein that inhibits ribonucleotide reductase activity by directly binding Rnr2 subunit. Nucleic Acids Res 2014; 42:13174-85. [PMID: 25378334 PMCID: PMC4245953 DOI: 10.1093/nar/gku1095] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Rad53 is a conserved protein kinase with a central role in DNA damage response and nucleotide metabolism. We observed that the expression of a dominant-lethal form of RAD53 leads to significant expression changes for at least 16 genes, including the RNR3 and the HUG1 genes, both of which are involved in the control of nucleotide metabolism. We established by multiple biophysical and biochemical approaches that Hug1 is an intrinsically disordered protein that directly binds to the small RNR subunit Rnr2. We characterized the surface of interaction involved in Hug1 binding to Rnr2, and we thus defined a new binding region to Rnr2. Moreover, we show that Hug1 is deleterious to cell growth in the context of reduced RNR activity. This inhibitory effect of Hug1 on RNR activity depends on the binding of Hug1 to Rnr2. We propose a model in which Hug1 modulates Rnr2-Rnr1 association by binding Rnr2. We show that Hug1 accumulates under various physiological conditions of high RNR induction. Hence, both the regulation and the mode of action of Hug1 are different from those of the small protein inhibitors Dif1 and Sml1, and Hug1 can be considered as a regulator for fine-tuning of RNR activity.
Collapse
Affiliation(s)
- Julie Meurisse
- CEA, iBiTecS, SBIGeM, Gif-sur-Yvette, F-91191, France CNRS-Université Paris Sud, FRE 3377, Gif-sur-Yvette, F-91191, France
| | - Agathe Bacquin
- CEA, iBiTecS, SBIGeM, Gif-sur-Yvette, F-91191, France CNRS-Université Paris Sud, FRE 3377, Gif-sur-Yvette, F-91191, France
| | - Nicolas Richet
- CEA, iBiTecS, SBSM, Laboratoire de Biologie Structurale et Radiobiologie, Gif-sur-Yvette, F-91191, France CNRS, UMR8221, Gif-sur-Yvette, F-91191, France
| | - Jean-Baptiste Charbonnier
- CEA, iBiTecS, SBSM, Laboratoire de Biologie Structurale et Radiobiologie, Gif-sur-Yvette, F-91191, France CNRS, UMR8221, Gif-sur-Yvette, F-91191, France
| | - Françoise Ochsenbein
- CEA, iBiTecS, SBSM, Laboratoire de Biologie Structurale et Radiobiologie, Gif-sur-Yvette, F-91191, France CNRS, UMR8221, Gif-sur-Yvette, F-91191, France
| | - Anne Peyroche
- CEA, iBiTecS, SBIGeM, Gif-sur-Yvette, F-91191, France CNRS-Université Paris Sud, FRE 3377, Gif-sur-Yvette, F-91191, France
| |
Collapse
|
23
|
Sastre-Moreno G, Sánchez A, Esteban V, Blanco L. ATP insertion opposite 8-oxo-deoxyguanosine by Pol4 mediates error-free tolerance in Schizosaccharomyces pombe. Nucleic Acids Res 2014; 42:9821-37. [PMID: 25106870 PMCID: PMC4150805 DOI: 10.1093/nar/gku711] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
7,8-Dihydro-8-oxo-deoxyguanosine (8oxodG) is a highly premutagenic DNA lesion due to its ability to mispair with adenine. Schizosaccharomyces pombe lacks homologs for relevant enzymes that repair 8oxodG, which suggests that this lesion could be persistent and must be tolerated. Here we show that SpPol4, the unique PolX in fission yeast, incorporates ATP opposite 8oxodG almost exclusively when all nucleotides (ribos and deoxys) are provided at physiological concentrations. Remarkably, this SpPol4-specific reaction could also occur during the NHEJ of DSBs. In cell extracts, misincorporation of ATP opposite 8oxodG was shown to be SpPol4-specific, although RNase H2 efficiently recognized the 8oxodG:AMP mispair to remove AMP and trigger error-free incorporation of dCTP. These data are the first evidence that ribonucleotides can be used safely for 8oxodG tolerance, suggesting that insertion of the highly abundant ATP substrate could be beneficial to promote efficient and error-free repair of 8oxodG-associated DSBs. Moreover, we demonstrate that purified SpPol4 uses 8oxo-dGTP and 8oxo-GTP as substrates for DNA polymerization, although with poor efficiency compared to the incorporation of undamaged nucleotides opposite either 8oxodG or undamaged templates. This suggests that SpPol4 is specialized in tolerating 8oxodG as a DNA template, without contributing significantly to the accumulation of this lesion in the DNA.
Collapse
Affiliation(s)
- Guillermo Sastre-Moreno
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma, 28049 Madrid, Spain
| | - Arancha Sánchez
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma, 28049 Madrid, Spain
| | - Verónica Esteban
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma, 28049 Madrid, Spain
| | - Luis Blanco
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma, 28049 Madrid, Spain
| |
Collapse
|
24
|
Vejrup-Hansen R, Fleck O, Landvad K, Fahnøe U, Broendum SS, Schreurs AS, Kragelund BB, Carr AM, Holmberg C, Nielsen O. Spd2 assists Spd1 in the modulation of ribonucleotide reductase architecture but does not regulate deoxynucleotide pools. J Cell Sci 2014; 127:2460-70. [PMID: 24652833 DOI: 10.1242/jcs.139816] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024] Open
Abstract
In yeasts, small intrinsically disordered proteins (IDPs) modulate ribonucleotide reductase (RNR) activity to ensure an optimal supply of dNTPs for DNA synthesis. The Schizosaccharomyces pombe Spd1 protein can directly inhibit the large RNR subunit (R1), import the small subunit (R2) into the nucleus and induce an architectural change in the R1-R2 holocomplex. Here, we report the characterization of Spd2, a protein with sequence similarity to Spd1. We show that Spd2 is a CRL4(Cdt2)-controlled IDP that functions together with Spd1 in the DNA damage response and in modulation of RNR architecture. However, Spd2 does not regulate dNTP pools and R2 nuclear import. Furthermore, deletion of spd2 only weakly suppresses the Rad3(ATR) checkpoint dependency of CRL4(Cdt2) mutants. However, when we raised intracellular dNTP pools by inactivation of RNR feedback inhibition, deletion of spd2 could suppress the checkpoint dependency of CRL4(Cdt2) mutant cells to the same extent as deletion of spd1. Collectively, these observations suggest that Spd1 on its own regulates dNTP pools, whereas in combination with Spd2 it modulates RNR architecture and sensitizes cells to DNA damage.
Collapse
Affiliation(s)
- Rasmus Vejrup-Hansen
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N., Denmark
| | - Oliver Fleck
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N., Denmark NWCR Institute, School of Biological Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK
| | - Katrine Landvad
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N., Denmark
| | - Ulrik Fahnøe
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N., Denmark
| | - Sebastian S Broendum
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N., Denmark
| | - Ann-Sofie Schreurs
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, East Sussex BN1 9RQ, UK
| | - Birthe B Kragelund
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N., Denmark
| | - Antony M Carr
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, East Sussex BN1 9RQ, UK
| | - Christian Holmberg
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N., Denmark
| | - Olaf Nielsen
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N., Denmark
| |
Collapse
|
25
|
Guarino E, Salguero I, Kearsey SE. Cellular regulation of ribonucleotide reductase in eukaryotes. Semin Cell Dev Biol 2014; 30:97-103. [PMID: 24704278 DOI: 10.1016/j.semcdb.2014.03.030] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Accepted: 03/26/2014] [Indexed: 12/22/2022]
Abstract
Synthesis of deoxynucleoside triphosphates (dNTPs) is essential for both DNA replication and repair and a key step in this process is catalyzed by ribonucleotide reductases (RNRs), which reduce ribonucleotides (rNDPs) to their deoxy forms. Tight regulation of RNR is crucial for maintaining the correct levels of all four dNTPs, which is important for minimizing the mutation rate and avoiding genome instability. Although allosteric control of RNR was the first discovered mechanism involved in regulation of the enzyme, other controls have emerged in recent years. These include regulation of expression of RNR genes, proteolysis of RNR subunits, control of the cellular localization of the small RNR subunit, and regulation of RNR activity by small protein inhibitors. This review will focus on these additional mechanisms of control responsible for providing a balanced supply of dNTPs.
Collapse
Affiliation(s)
- Estrella Guarino
- Tinbergen Building, Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, United Kingdom.
| | - Israel Salguero
- Tinbergen Building, Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, United Kingdom.
| | - Stephen E Kearsey
- Tinbergen Building, Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, United Kingdom.
| |
Collapse
|
26
|
Anda S, Boye E, Grallert B. Cell-cycle analyses using thymidine analogues in fission yeast. PLoS One 2014; 9:e88629. [PMID: 24551125 PMCID: PMC3923809 DOI: 10.1371/journal.pone.0088629] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 01/14/2014] [Indexed: 11/22/2022] Open
Abstract
Thymidine analogues are powerful tools when studying DNA synthesis including DNA replication, repair and recombination. However, these analogues have been reported to have severe effects on cell-cycle progression and growth, the very processes being investigated in most of these studies. Here, we have analyzed the effects of 5-ethynyl-2′-deoxyuridine (EdU) and 5-Chloro-2′-deoxyuridine (CldU) using fission yeast cells and optimized the labelling procedure. We find that both analogues affect the cell cycle, but that the effects can be mitigated by using the appropriate analogue, short pulses of labelling and low concentrations. In addition, we report sequential labelling of two consecutive S phases using EdU and 5-bromo-2′-deoxyuridine (BrdU). Furthermore, we show that detection of replicative DNA synthesis is much more sensitive than DNA-measurements by flow cytometry.
Collapse
Affiliation(s)
- Silje Anda
- Department of Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Montebello, Norway
| | - Erik Boye
- Department of Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Montebello, Norway
| | - Beata Grallert
- Department of Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Montebello, Norway
- * E-mail:
| |
Collapse
|
27
|
Fleck O, Vejrup-Hansen R, Watson A, Carr AM, Nielsen O, Holmberg C. Spd1 accumulation causes genome instability independently of ribonucleotide reductase activity but functions to protect the genome when deoxynucleotide pools are elevated. J Cell Sci 2013; 126:4985-94. [PMID: 23986475 DOI: 10.1242/jcs.132837] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cullin4, Ddb1 and Cdt2 are core subunits of the ubiquitin ligase complex CRL4(Cdt2), which controls genome stability by targeting Spd1 for degradation during DNA replication and repair in fission yeast. Spd1 has an inhibitory effect on ribonucleotide reductase (RNR), the activity of which is required for deoxynucleotide (dNTP) synthesis. The failure to degrade Spd1 in mutants where CRL4(Cdt2) is defective leads to DNA integrity checkpoint activation and dependency. This correlates with a lower dNTP pool. Pools are restored in a spd1-deleted background and this also suppresses checkpoint activation and dependency. We hypothesized that fission yeast with RNR hyperactivity would display a mutator phenotype on their own, but also possibly repress aspects of the phenotype associated with the inability to target Spd1 for degradation. Here, we report that a mutation in the R1 subunit of ribonucleotide reductase cdc22 (cdc22-D57N), which alleviated allosteric feedback inhibition, caused a highly elevated dNTP pool that was further increased by deleting spd1. The Δspd1 cdc22-D57N double mutant had elevated mutation rates and was sensitive to damaging agents that cause DNA strand breaks, demonstrating that Spd1 can protect the genome when dNTP pools are high. In ddb1-deleted cells, cdc22-D57N also potently elevated RNR activity, but failed to allow cell growth independently of the intact checkpoint. Our results provide evidence that excess Spd1 interferes with other functions in addition to its inhibitory effect on ribonucleotide reduction to generate replication stress and genome instability.
Collapse
Affiliation(s)
- Oliver Fleck
- Cell Cycle and Genome Stability Group, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | | | | | | | | | | |
Collapse
|
28
|
Sirbu BM, Cortez D. DNA damage response: three levels of DNA repair regulation. Cold Spring Harb Perspect Biol 2013; 5:a012724. [PMID: 23813586 DOI: 10.1101/cshperspect.a012724] [Citation(s) in RCA: 174] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Genome integrity is challenged by DNA damage from both endogenous and environmental sources. This damage must be repaired to allow both RNA and DNA polymerases to accurately read and duplicate the information in the genome. Multiple repair enzymes scan the DNA for problems, remove the offending damage, and restore the DNA duplex. These repair mechanisms are regulated by DNA damage response kinases including DNA-PKcs, ATM, and ATR that are activated at DNA lesions. These kinases improve the efficiency of DNA repair by phosphorylating repair proteins to modify their activities, by initiating a complex series of changes in the local chromatin structure near the damage site, and by altering the overall cellular environment to make it more conducive to repair. In this review, we focus on these three levels of regulation to illustrate how the DNA damage kinases promote efficient repair to maintain genome integrity and prevent disease.
Collapse
Affiliation(s)
- Bianca M Sirbu
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37027, USA
| | | |
Collapse
|
29
|
Abstract
Correct regulation of DNA nucleotide biosynthesis is emerging as a key issue of importance for genome integrity. The fission yeast Spd1 protein can modulate the activity of ribonucleotide reductase (RNR) by at least three different mechanisms. Now a paper reports that Spd1 turnover is linked to ongoing DNA synthesis.
Collapse
Affiliation(s)
- Christian Holmberg
- Cell cycle and Genome Stability Group, Department of Biology, University of Copenhagen, Ole Maaløes vej 5, DK-2200 Copenhagen N, Denmark
| | | |
Collapse
|
30
|
D'Angiolella V, Esencay M, Pagano M. A cyclin without cyclin-dependent kinases: cyclin F controls genome stability through ubiquitin-mediated proteolysis. Trends Cell Biol 2012. [PMID: 23182110 DOI: 10.1016/j.tcb.2012.10.011] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cell cycle transitions are driven by the periodic oscillations of cyclins, which bind and activate cyclin-dependent kinases (CDKs) to phosphorylate target substrates. Cyclin F uses a substrate recruitment strategy similar to that of the other cyclins, but its associated catalytic activity is substantially different. Indeed, cyclin F is the founding member of the F-box family of proteins, which are the substrate recognition subunits of Skp1-Cul1-F-box protein (SCF) ubiquitin ligase complexes. Here, we discuss cyclin F function and recently identified substrates of SCF(cyclin)(F) involved in deoxyribonucleotide triphosphate (dNTP) production, centrosome duplication, and spindle formation. We highlight the relevance of cyclin F in controlling genome stability through ubiquitin-mediated proteolysis and the implications for cancer development.
Collapse
Affiliation(s)
- Vincenzo D'Angiolella
- Department of Pathology, NYU Cancer Institute, New York University School of Medicine, New York, NY 10016, USA. vincenzo.d'
| | | | | |
Collapse
|
31
|
Abstract
Nucleoside analogs are frequently used to label newly synthesized DNA. These analogs are toxic in many cells, with the exception of the budding yeast. We show that Schizosaccharomyces pombe behaves similarly to metazoans in response to analogs 5-bromo-2'-deoxyuridine (BrdU) and 5-ethynyl-2'-deoxyuridine (EdU). Incorporation causes DNA damage that activates the damage checkpoint kinase Chk1 and sensitizes cells to UV light and other DNA-damaging drugs. Replication checkpoint mutant cds1Δ shows increased DNA damage response after exposure. Finally, we demonstrate that the response to BrdU is influenced by the ribonucleotide reductase inhibitor, Spd1, suggesting that BrdU causes dNTP pool imbalance in fission yeast, as in metazoans. Consistent with this, we show that excess thymidine induces G1 arrest in wild-type fission yeast expressing thymidine kinase. Thus, fission yeast responds to nucleoside analogs similarly to mammalian cells, which has implications for their use in replication and damage research, as well as for dNTP metabolism.
Collapse
|
32
|
Ribonucleotide reductase activity is coupled to DNA synthesis via proliferating cell nuclear antigen. Curr Biol 2012; 22:720-6. [PMID: 22464192 DOI: 10.1016/j.cub.2012.02.070] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Revised: 02/06/2012] [Accepted: 02/29/2012] [Indexed: 11/24/2022]
Abstract
Synthesis of deoxynucleoside triphosphates (dNTPs) is required for both DNA replication and DNA repair and is catalyzed by ribonucleotide reductases (RNR), which convert ribonucleotides to their deoxy forms [1, 2]. Maintaining the correct levels of dNTPs for DNA synthesis is important for minimizing the mutation rate [3-7], and this is achieved by tight regulation of RNR [2, 8, 9]. In fission yeast, RNR is regulated in part by a small protein inhibitor, Spd1, which is degraded in S phase and after DNA damage to allow upregulation of dNTP supply [10-12]. Spd1 degradation is mediated by the activity of the CRL4(Cdt2) ubiquitin ligase complex [5, 13, 14]. This has been reported to be dependent on modulation of Cdt2 levels, which are cell cycle regulated, peaking in S phase, and which also increase after DNA damage in a checkpoint-dependent manner [7, 13]. We show here that Cdt2 level fluctuations are not sufficient to regulate Spd1 proteolysis and that the key step in this event is the interaction of Spd1 with the polymerase processivity factor proliferating cell nuclear antigen (PCNA), complexed onto DNA. This mechanism thus provides a direct link between DNA synthesis and RNR regulation.
Collapse
|
33
|
Shang H, Li Q, Feng G, Cui Z. Identification and characterization of alternative promoters, transcripts and protein isoforms of zebrafish R2 gene. PLoS One 2011; 6:e24089. [PMID: 21887375 PMCID: PMC3161108 DOI: 10.1371/journal.pone.0024089] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Accepted: 08/04/2011] [Indexed: 12/17/2022] Open
Abstract
Ribonucleotide reductase (RNR) is the rate-limiting enzyme in the de novo synthesis of deoxyribonucleoside triphosphates. Expression of RNR subunits is closely associated with DNA replication and repair. Mammalian RNR M2 subunit (R2) functions exclusively in DNA replication of normal cells due to its S phase-specific expression and late mitotic degradation. Herein, we demonstrate the control of R2 expression through alternative promoters, splicing and polyadenylation sites in zebrafish. Three functional R2 promoters were identified to generate six transcript variants with distinct 5′ termini. The proximal promoter contains a conserved E2F binding site and two CCAAT boxes, which are crucial for the transcription of R2 gene during cell cycle. Activity of the distal promoter can be induced by DNA damage to generate four transcript variants through alternative splicing. In addition, two novel splice variants were found to encode distinct N-truncated R2 isoforms containing residues for enzymatic activity but no KEN box essential for its proteolysis. These two N-truncated R2 isoforms remained in the cytoplasm and were able to interact with RNR M1 subunit (R1). Thus, our results suggest that multilayered mechanisms control the differential expression and function of zebrafish R2 gene during cell cycle and under genotoxic stress.
Collapse
Affiliation(s)
- Hanqiao Shang
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, People's Republic of China
| | | | | | | |
Collapse
|
34
|
Moss J, Tinline-Purvis H, Walker CA, Folkes LK, Stratford MR, Hayles J, Hoe KL, Kim DU, Park HO, Kearsey SE, Fleck O, Holmberg C, Nielsen O, Humphrey TC. Break-induced ATR and Ddb1-Cul4(Cdt)² ubiquitin ligase-dependent nucleotide synthesis promotes homologous recombination repair in fission yeast. Genes Dev 2010; 24:2705-16. [PMID: 21123655 DOI: 10.1101/gad.1970810] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Nucleotide synthesis is a universal response to DNA damage, but how this response facilitates DNA repair and cell survival is unclear. Here we establish a role for DNA damage-induced nucleotide synthesis in homologous recombination (HR) repair in fission yeast. Using a genetic screen, we found the Ddb1-Cul4(Cdt)² ubiquitin ligase complex and ribonucleotide reductase (RNR) to be required for HR repair of a DNA double-strand break (DSB). The Ddb1-Cul4(Cdt)² ubiquitin ligase complex is required for degradation of Spd1, an inhibitor of RNR in fission yeast. Accordingly, deleting spd1(+) suppressed the DNA damage sensitivity and the reduced HR efficiency associated with loss of ddb1(+) or cdt2(+). Furthermore, we demonstrate a role for nucleotide synthesis in postsynaptic gap filling of resected ssDNA ends during HR repair. Finally, we define a role for Rad3 (ATR) in nucleotide synthesis and HR through increasing Cdt2 nuclear levels in response to DNA damage. Our findings support a model in which break-induced Rad3 and Ddb1-Cul4(Cdt)² ubiquitin ligase-dependent Spd1 degradation and RNR activation promotes postsynaptic ssDNA gap filling during HR repair.
Collapse
Affiliation(s)
- Jennifer Moss
- Department of Oncology, Cancer Research UK-Medical Research Council Gray Institute for Radiation Oncology and Biology, University of Oxford, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Niida H, Shimada M, Murakami H, Nakanishi M. Mechanisms of dNTP supply that play an essential role in maintaining genome integrity in eukaryotic cells. Cancer Sci 2010; 101:2505-9. [PMID: 20874841 PMCID: PMC11158391 DOI: 10.1111/j.1349-7006.2010.01719.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Optimization of intracellular concentrations of dNTPs is critical for the fidelity of DNA synthesis during DNA replication and repair because levels that are too high or too low can easily lead to increased rates of mutagenesis. Recent advances in the analysis of intracellular concentrations of dNTPs have suggested that eukaryotes use diverse mechanisms in supplying dNTPs for DNA synthesis during DNA replication and repair. The enzyme ribonucleotide reductase (RNR) is a key enzyme involved in the synthesis of dNTPs. We found that Tip60-dependent recruitment of RNR at sites of DNA damage is essential for supplying a sufficient amount of dNTPs for mammalian DNA repair. In this review, we focus on recent findings related to RNR regulation in eukaryotes of the dNTPs supplied for DNA synthesis. We also discuss the effect of this regulation on mutagenesis and tumorigenesis.
Collapse
Affiliation(s)
- Hiroyuki Niida
- Department of Cell Biology, Graduate School of Medical Sciences, Nagoya City University, Mizuho-ku, Nagoya, Japan
| | | | | | | |
Collapse
|
36
|
Holmgren A, Sengupta R. The use of thiols by ribonucleotide reductase. Free Radic Biol Med 2010; 49:1617-28. [PMID: 20851762 DOI: 10.1016/j.freeradbiomed.2010.09.005] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 08/17/2010] [Accepted: 09/03/2010] [Indexed: 12/22/2022]
Abstract
Ribonucleotide reductase (RNR) catalyzes the rate-limiting de novo synthesis of 2'-deoxyribonucleotides from the corresponding ribonucleotides and thereby provides balanced deoxyribonucleotide pools required for error-free DNA replication and repair. The essential role of RNR in DNA synthesis and the use of DNA as genetic material has made it an important target for the development of anticancer and antiviral agents. The most well known feature of the universal RNR reaction in all kingdoms of life is the involvement of protein free radicals. Redox-active cysteines, thiyl radicals, and thiol redox proteins of the thioredoxin superfamily play major roles in the catalytic mechanism. The involvement of cysteine residues in catalysis is common to all three classes of RNR. Taking account of the recent progress in this field of research, this review focuses on the use of thiols in the redox mechanism of RNR enzymes.
Collapse
Affiliation(s)
- Arne Holmgren
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden.
| | | |
Collapse
|
37
|
Nestoras K, Mohammed AH, Schreurs AS, Fleck O, Watson AT, Poitelea M, O'Shea C, Chahwan C, Holmberg C, Kragelund BB, Nielsen O, Osborne M, Carr AM, Liu C. Regulation of ribonucleotide reductase by Spd1 involves multiple mechanisms. Genes Dev 2010; 24:1145-59. [PMID: 20516199 DOI: 10.1101/gad.561910] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The correct levels of deoxyribonucleotide triphosphates and their relative abundance are important to maintain genomic integrity. Ribonucleotide reductase (RNR) regulation is complex and multifaceted. RNR is regulated allosterically by two nucleotide-binding sites, by transcriptional control, and by small inhibitory proteins that associate with the R1 catalytic subunit. In addition, the subcellular localization of the R2 subunit is regulated through the cell cycle and in response to DNA damage. We show that the fission yeast small RNR inhibitor Spd1 is intrinsically disordered and regulates R2 nuclear import, as predicted by its relationship to Saccharomyces cerevisiae Dif1. We demonstrate that Spd1 can interact with both R1 and R2, and show that the major restraint of RNR in vivo by Spd1 is unrelated to R2 subcellular localization. Finally, we identify a new behavior for RNR complexes that potentially provides yet another mechanism to regulate dNTP synthesis via modulation of RNR complex architecture.
Collapse
Affiliation(s)
- Konstantinos Nestoras
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton BN19RQ, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Dif1 is a DNA-damage-regulated facilitator of nuclear import for ribonucleotide reductase. Mol Cell 2008; 32:70-80. [PMID: 18851834 DOI: 10.1016/j.molcel.2008.08.018] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2008] [Revised: 07/28/2008] [Accepted: 08/20/2008] [Indexed: 12/21/2022]
Abstract
The control of dNTP concentrations is critical to the fidelity of DNA synthesis and repair. One level of regulation is through subcellular localization of ribonucleotide reductase. In Saccharomyces cerevisiae, the small subunit Rnr2-Rnr4 is nuclear, whereas the large subunit Rnr1 is cytoplasmic. In response to S phase or DNA damage, Rnr2-Rnr4 enters the cytoplasm to bind Rnr1, forming an active complex. We previously reported that Wtm1 anchors Rnr2-Rnr4 in the nucleus. Here, we identify DIF1, which regulates localization of Rnr2-Rnr4. Dif1 binds directly to the Rnr2-Rnr4 complex through a conserved Hug domain to drive nuclear import. Dif1 is both cell-cycle and DNA-damage regulated, the latter of which occurs via the Mec1-Dun1 pathway. In response to DNA damage, Dun1 directly phosphorylates Dif1, which both inactivates and degrades Dif1 and allows Rnr2-Rnr4 to become cytoplasmic. We propose that Rnr2-Rnr4 nuclear localization is achieved by a dynamic combination of Wtm1-mediated nuclear retention to limit export and regulated nuclear import through Dif1.
Collapse
|
39
|
Ribonucleotide reduction is a cytosolic process in mammalian cells independently of DNA damage. Proc Natl Acad Sci U S A 2008; 105:17801-6. [PMID: 18997010 DOI: 10.1073/pnas.0808198105] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Ribonucleotide reductase provides deoxynucleotides for nuclear and mitochondrial (mt) DNA replication and repair. The mammalian enzyme consists of a catalytic (R1) and a radical-generating (R2 or p53R2) subunit. During S-phase, a R1/R2 complex is the major provider of deoxynucleotides. p53R2 is induced by p53 after DNA damage and was proposed to supply deoxynucleotides for DNA repair after translocating from the cytosol to the cell nucleus. Similarly R1 and R2 were claimed to move to the nucleus during S-phase to provide deoxynucleotides for DNA replication. These models suggest translocation of ribonucleotide reductase subunits as a regulatory mechanism. In quiescent cells that are devoid of R2, R1/p53R2 synthesizes deoxynucleotides also in the absence of DNA damage. Mutations in human p53R2 cause severe mitochondrial DNA depletion demonstrating a vital function for p53R2 different from DNA repair and cast doubt on a nuclear localization of the protein. Here we use three independent methods to localize R1, R2, and p53R2 in fibroblasts during cell proliferation and after DNA damage: Western blotting after separation of cytosol and nuclei; immunofluorescence in intact cells; and transfection with proteins carrying fluorescent tags. We thoroughly validate each method, especially the specificity of antibodies. We find in all cases that ribonucleotide reductase resides in the cytosol suggesting that the deoxynucleotides produced by the enzyme diffuse into the nucleus or are transported into mitochondria and supporting a primary function of p53R2 for mitochondrial DNA replication.
Collapse
|
40
|
Dif1 controls subcellular localization of ribonucleotide reductase by mediating nuclear import of the R2 subunit. Mol Cell Biol 2008; 28:7156-67. [PMID: 18838542 DOI: 10.1128/mcb.01388-08] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Fidelity in DNA replication and repair requires adequate and balanced deoxyribonucleotide pools that are maintained primarily by regulation of ribonucleotide reductase (RNR). RNR is controlled via transcription, protein inhibitor association, and subcellular localization of its two subunits, R1 and R2. Saccharomyces cerevisiae Sml1 binds R1 and inhibits its activity, while Schizosaccharomyces pombe Spd1 impedes RNR holoenzyme formation by sequestering R2 in the nucleus away from the cytoplasmic R1. Here we report the identification and characterization of S. cerevisiae Dif1, a regulator of R2 nuclear localization and member of a new family of proteins sharing separate homologous domains with Spd1 and Sml1. Dif1 is localized in the cytoplasm and acts in a pathway different from the nuclear R2-anchoring protein Wtm1. Like Sml1 and Spd1, Dif1 is phosphorylated and degraded in cells encountering DNA damage, thereby relieving inhibition of RNR. A shared domain between Sml1 and Dif1 controls checkpoint kinase-mediated phosphorylation and degradation of the two proteins. Abolishing Dif1 phosphorylation stabilizes the protein and delays damage-induced nucleus-to-cytoplasm redistribution of R2. This study suggests that Dif1 is required for nuclear import of the R2 subunit and plays an essential role in regulating the dynamic RNR subcellular localization.
Collapse
|
41
|
Sabouri N, Viberg J, Goyal DK, Johansson E, Chabes A. Evidence for lesion bypass by yeast replicative DNA polymerases during DNA damage. Nucleic Acids Res 2008; 36:5660-7. [PMID: 18772226 PMCID: PMC2553575 DOI: 10.1093/nar/gkn555] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The enzyme ribonucleotide reductase, responsible for the synthesis of deoxyribonucleotides (dNTP), is upregulated in response to DNA damage in all organisms. In Saccharomyces cerevisiae, dNTP concentration increases ∼6- to 8-fold in response to DNA damage. This concentration increase is associated with improved tolerance of DNA damage, suggesting that translesion DNA synthesis is more efficient at elevated dNTP concentration. Here we show that in a yeast strain with all specialized translesion DNA polymerases deleted, 4-nitroquinoline oxide (4-NQO) treatment increases mutation frequency ∼3-fold, and that an increase in dNTP concentration significantly improves the tolerance of this strain to 4-NQO induced damage. In vitro, under single-hit conditions, the replicative DNA polymerase ε does not bypass 7,8-dihydro-8-oxoguanine lesion (8-oxoG, one of the lesions produced by 4-NQO) at S-phase dNTP concentration, but does bypass the same lesion with 19–27% efficiency at DNA-damage-state dNTP concentration. The nucleotide inserted opposite 8-oxoG is dATP. We propose that during DNA damage in S. cerevisiae increased dNTP concentration allows replicative DNA polymerases to bypass certain DNA lesions.
Collapse
Affiliation(s)
| | | | | | | | - Andrei Chabes
- *To whom correspondence should be addressed. Tel: +46 90 786 5937; Fax: +46 90 786 9795;
| |
Collapse
|
42
|
Soft computing methods to predict gene regulatory networks: An integrative approach on time-series gene expression data. Appl Soft Comput 2008. [DOI: 10.1016/j.asoc.2007.02.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
43
|
Choi DH, Oh YM, Kwon SH, Bae SH. The mutation of a novel Saccharomyces cerevisiae SRL4 gene rescues the lethality of rad53 and lcd1 mutations by modulating dNTP levels. J Microbiol 2008; 46:75-80. [PMID: 18337697 DOI: 10.1007/s12275-008-0013-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The SRL4 (YPL033C) gene was initially identified by the screening of Saccharomyces cerevisiae genes that play a role in DNA metabolism and/or genome stability using the SOS system of Escherichia coli. In this study, we found that the srl4Delta mutant cells were resistant to the chemicals that inhibit nucleotide metabolism and evidenced higher dNTP levels than were observed in the wild-type cells in the presence of hydroxyurea. The mutant cells also showed a significantly faster growth rate and higher dNTP levels at low temperature (16 degrees C) than were observed in the wild-type cells, whereas we detected no differences in the growth rate at 30 degrees C. Furthermore, srl4Delta was shown to suppress the lethality of mutations of the essential S phase checkpoint genes, RAD53 and LCD1. These results indicate that SRL4 may be involved in the regulation of dNTP production by its function as a negative regulator of ribonucleotide reductase.
Collapse
Affiliation(s)
- Do-Hee Choi
- Department of Biological Sciences, College of Natural Science, Inha University, Incheon 402-751, Republic of Korea
| | | | | | | |
Collapse
|
44
|
Zhang Z, Yang K, Chen CC, Feser J, Huang M. Role of the C terminus of the ribonucleotide reductase large subunit in enzyme regeneration and its inhibition by Sml1. Proc Natl Acad Sci U S A 2007; 104:2217-22. [PMID: 17277086 PMCID: PMC1892911 DOI: 10.1073/pnas.0611095104] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Ribonucleotide reductase maintains cellular deoxyribonucleotide pools and is thus tightly regulated during the cell cycle to ensure high fidelity in DNA replication. The Sml1 protein inhibits ribonucleotide reductase activity by binding to the R1 subunit. At the completion of each turnover cycle, the active site of R1 becomes oxidized and subsequently regenerated by a cysteine pair (CX2C) at its C-terminal domain (R1-CTD). Here we show that R1-CTD acts in trans to reduce the active site of its neighboring monomer. Both Sml1 and R1-CTD interact with the N-terminal domain of R1 (R1-NTD), which involves a conserved two-residue sequence motif in the R1-NTD. Mutations at these two positions enhancing the Sml1-R1 interaction cause SML1-dependent lethality. These results point to a model whereby Sml1 competes with R1-CTD for association with R1-NTD to hinder the accessibility of the CX2C motif to the active site for R1 regeneration.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Biochemistry and Molecular Genetics, University of Colorado Health Sciences Center, Aurora, CO 80045
| | - Kui Yang
- Department of Biochemistry and Molecular Genetics, University of Colorado Health Sciences Center, Aurora, CO 80045
| | - Chin-Chuan Chen
- Department of Biochemistry and Molecular Genetics, University of Colorado Health Sciences Center, Aurora, CO 80045
| | - Jason Feser
- Department of Biochemistry and Molecular Genetics, University of Colorado Health Sciences Center, Aurora, CO 80045
| | - Mingxia Huang
- Department of Biochemistry and Molecular Genetics, University of Colorado Health Sciences Center, Aurora, CO 80045
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
45
|
Takahashi S, Kontani K, Araki Y, Katada T. Caf1 regulates translocation of ribonucleotide reductase by releasing nucleoplasmic Spd1-Suc22 assembly. Nucleic Acids Res 2007; 35:1187-97. [PMID: 17264117 PMCID: PMC1851654 DOI: 10.1093/nar/gkm015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Appropriate supply of deoxyribonucleotides by the ribonucleotide reductase (RNR) complex is essential for DNA replication and repair. One recent model for the RNR activation in Schizosaccharomyces pombe is translocation of the regulatory subunit Suc22 from the nucleoplasm to the cytoplasm. The RNR inhibitory protein Spd1, which retains Suc22 in the nucleoplasm, is rapidly degraded upon DNA-replication stress, resulting in release of Suc22 to form the active RNR complex in the cytoplasm. Here, we show that Caf1, a component of the Ccr4-Not complex, is responsible for resistance of the replication stress and control of the Suc22 translocation. Caf1 is required not only for the stress-induced translocation of Suc22 from nucleoplasm to cytoplasm but also for the degradation of nucleoplasmic Spd1. DNA-replication stress appears to allow Caf1 to interact with Suc22, resulting in release of the nucleoplasmic Spd1-Suc22 assembly. Taken together, these results suggest a novel function of Caf1 as a key regulator in the stress-induced RNR activation.
Collapse
Affiliation(s)
| | | | | | - Toshiaki Katada
- *To Whom Correspondence should be addressed. Tel: +81-3-5841-4750; Fax: +81 3 5841 4751; E-mail:
| |
Collapse
|
46
|
Chabes A, Stillman B. Constitutively high dNTP concentration inhibits cell cycle progression and the DNA damage checkpoint in yeast Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 2007; 104:1183-8. [PMID: 17227840 PMCID: PMC1783093 DOI: 10.1073/pnas.0610585104] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2006] [Indexed: 11/18/2022] Open
Abstract
In eukaryotic cells the concentration of dNTP is highest in S phase and lowest in G1 phase and is controlled by ribonucleotide reductase (RNR). RNR activity is eliminated in all eukaryotes in G1 phase by a variety of mechanisms: transcriptional regulation, small inhibitory proteins, and protein degradation. After activation of RNR upon commitment to S phase, dATP feedback inhibition ensures that the dNTP concentration does not exceed a certain maximal level. It is not apparent why limitation of dNTP concentration is necessary in G1 phase. In principle, dATP feedback inhibition should be sufficient to couple dNTP production to utilization. We demonstrate that in Saccharomyces cerevisiae constitutively high dNTP concentration transiently arrests cell cycle progression in late G1 phase, affects activation of origins of replication, and inhibits the DNA damage checkpoint. We propose that fluctuation of dNTP concentration controls cell cycle progression and the initiation of DNA replication.
Collapse
Affiliation(s)
- Andrei Chabes
- *Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724; and
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87 Umeå, Sweden
| | - Bruce Stillman
- *Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724; and
| |
Collapse
|
47
|
Rich RL, Myszka DG. Survey of the year 2006 commercial optical biosensor literature. J Mol Recognit 2007; 20:300-66. [DOI: 10.1002/jmr.862] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
48
|
Current awareness on yeast. Yeast 2006. [DOI: 10.1002/yea.1317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
49
|
Abstract
Ribonucleotide reductases (RNRs) transform RNA building blocks to DNA building blocks by catalyzing the substitution of the 2'OH-group of a ribonucleotide with a hydrogen by a mechanism involving protein radicals. Three classes of RNRs employ different mechanisms for the generation of the protein radical. Recent structural studies of members from each class have led to a deeper understanding of their catalytic mechanism and allosteric regulation by nucleoside triphosphates. The main emphasis of this review is on regulation of RNR at the molecular and cellular level. Conformational transitions induced by nucleotide binding determine the regulation of substrate specificity. An intricate interplay between gene activation, enzyme inhibition, and protein degradation regulates, together with the allosteric effects, enzyme activity and provides the appropriate amount of deoxynucleotides for DNA replication and repair. In spite of large differences in the amino acid sequences, basic structural features are remarkably similar and suggest a common evolutionary origin for the three classes.
Collapse
Affiliation(s)
- Pär Nordlund
- Division of Biophysics and 2Division of Biochemistry, Medical Nobel Institute, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-17177 Stockholm, Sweden.
| | | |
Collapse
|
50
|
Håkansson P, Hofer A, Thelander L. Regulation of mammalian ribonucleotide reduction and dNTP pools after DNA damage and in resting cells. J Biol Chem 2006; 281:7834-41. [PMID: 16436374 DOI: 10.1074/jbc.m512894200] [Citation(s) in RCA: 222] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Ribonucleotide reductase (RNR) provides the cell with a balanced supply of deoxyribonucleoside triphosphates (dNTP) for DNA synthesis. In budding yeast DNA damage leads to an up-regulation of RNR activity and an increase in dNTP pools, which are essential for survival. Mammalian cells contain three non-identical subunits of RNR; that is, one homodimeric large subunit, R1, carrying the catalytic site and two variants of the homodimeric small subunit, R2 and the p53-inducible p53R2, each containing a tyrosyl free radical essential for catalysis. S-phase-specific DNA replication is supported by an RNR consisting of the R1 and R2 subunits. In contrast, DNA damage induces expression of the R1 and the p53R2 subunits. We now show that neither logarithmically growing nor G(o)/G1-synchronized mammalian cells show any major increase in their dNTP pools after DNA damage. However, non-dividing fibroblasts expressing the p53R2 protein, but not the R2 protein, have reduced dNTP levels if exposed to the RNR-specific inhibitor hydroxyurea, strongly indicating that there is ribonucleotide reduction in resting cells. The slow, 4-fold increase in p53R2 protein expression after DNA damage results in a less than 2-fold increase in the dNTP pools in G(o)/G1 cells, where the pools are about 5% that of the size of the pools in S-phase cells. Our results emphasize the importance of the low constitutive levels of p53R2 in mammalian cells, which together with low levels of R1 protein may be essential for the supply of dNTPs for basal levels of DNA repair and mitochondrial DNA synthesis in G(o)/G1 cells.
Collapse
Affiliation(s)
- Pelle Håkansson
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-90187-Umeå, Sweden.
| | | | | |
Collapse
|