1
|
Daneva GN, Tsiakanikas P, Adamopoulos PG, Scorilas A. Kallikrein-related peptidases: mechanistic understanding for potential therapeutic targeting in cancer. Expert Opin Ther Targets 2024:1-20. [PMID: 39431595 DOI: 10.1080/14728222.2024.2415014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/18/2024] [Accepted: 10/07/2024] [Indexed: 10/22/2024]
Abstract
INTRODUCTION Human kallikrein-related peptidases (KLKs) represent a subgroup of 15 serine endopeptidases involved in various physiological processes and pathologies, including cancer. AREAS COVERED This review aims to provide a comprehensive overview of the KLK family, highlighting their genomic structure, expression profiles and substrate specificity. We explore the role of KLKs in tumorigenesis, emphasizing their potential as biomarkers and therapeutic targets in cancer treatment. The dysregulated activity of KLKs has been linked to various malignancies, making them promising candidates for cancer diagnostics and therapy. EXPERT OPINION : Recent advancements in understanding the mechanistic pathways of KLK-related tumorigenesis offer new prospects for developing targeted cancer treatments. Expert opinion suggests that while significant progress has been made, further research is necessary to fully exploit KLKs' potential in clinical applications.
Collapse
Affiliation(s)
- Glykeria N Daneva
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis Tsiakanikas
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis G Adamopoulos
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
2
|
Erickson JA, Jimmidi R, Anamthathmakula P, Qin X, Wang J, Gong L, Park J, Koolpe G, Tan C, Matzuk MM, Li F, Chamakuri S, Winuthayanon W. Synthesis and Optimization of Small Molecule Inhibitors of Prostate Specific Antigen. ACS Med Chem Lett 2024; 15:1526-1532. [PMID: 39291021 PMCID: PMC11403753 DOI: 10.1021/acsmedchemlett.4c00257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/22/2024] [Accepted: 07/31/2024] [Indexed: 09/19/2024] Open
Abstract
Semen liquefaction is a postejaculation process that transforms semen from a gel-like (coagulated) form to a water-like consistency (liquefied). This process is primarily regulated by serine proteases from the prostate gland, most prominently, prostate-specific antigen (PSA; KLK3). Inhibiting PSA activity has the potential to impede liquefaction of human semen, presenting a promising target for nonhormonal contraception in the female reproductive tract. This study employed triazole B1 as a starting compound. Through systematic design, synthesis, and optimization, we identified compound 20 (CDD-3290) as a 216 nM inhibitor of PSA with better stability in media than triazole B1. Further, we also evaluated the selectivity profile of compound 20 (CDD-3290) by testing against closely related proteases and demonstrated excellent inhibition of PSA versus α-chymotrypsin and elastase and similar potency versus thrombin. Thus, compound 20 is an improved PSA inhibitor that can be tested for efficacy in vitro or in the female reproductive tract.
Collapse
Affiliation(s)
- Jeffery A Erickson
- Obstetrics, Gynecology and Women's Health, School of Medicine, University of Missouri - Columbia, Columbia, Missouri 65211, United States
| | - Ravikumar Jimmidi
- Center for Drug Discovery, Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Prashanth Anamthathmakula
- School of Medicine, University of Missouri - Kansas City, Kansas City, Missouri 64108, United States
| | - Xuan Qin
- Center for Drug Discovery, Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Jian Wang
- Center for Drug Discovery, Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Leyi Gong
- Department of Medicinal and Synthetic Chemistry, Bioscience Division, SRI International, Menlo Park, California 94025, United States
| | - Jaehyeon Park
- Department of Medicinal and Synthetic Chemistry, Bioscience Division, SRI International, Menlo Park, California 94025, United States
| | - Gary Koolpe
- Department of Medicinal and Synthetic Chemistry, Bioscience Division, SRI International, Menlo Park, California 94025, United States
| | - Caitlin Tan
- Department of Medicinal and Synthetic Chemistry, Bioscience Division, SRI International, Menlo Park, California 94025, United States
| | - Martin M Matzuk
- Center for Drug Discovery, Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas 77030, United States
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Feng Li
- Center for Drug Discovery, Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas 77030, United States
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Srinivas Chamakuri
- Center for Drug Discovery, Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Wipawee Winuthayanon
- Obstetrics, Gynecology and Women's Health, School of Medicine, University of Missouri - Columbia, Columbia, Missouri 65211, United States
| |
Collapse
|
3
|
Frantzi M, Culig Z, Heidegger I, Mokou M, Latosinska A, Roesch MC, Merseburger AS, Makridakis M, Vlahou A, Blanca-Pedregosa A, Carrasco-Valiente J, Mischak H, Gomez-Gomez E. Mass Spectrometry-Based Biomarkers to Detect Prostate Cancer: A Multicentric Study Based on Non-Invasive Urine Collection without Prior Digital Rectal Examination. Cancers (Basel) 2023; 15:cancers15041166. [PMID: 36831508 PMCID: PMC9954607 DOI: 10.3390/cancers15041166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 02/17/2023] Open
Abstract
(1) Background: Prostate cancer (PCa) is the most frequently diagnosed cancer in men. Wide application of prostate specific antigen test has historically led to over-treatment, starting from excessive biopsies. Risk calculators based on molecular and clinical variables can be of value to determine the risk of PCa and as such, reduce unnecessary and invasive biopsies. Urinary molecular studies have been mostly focusing on sampling after initial intervention (digital rectal examination and/or prostate massage). (2) Methods: Building on previous proteomics studies, in this manuscript, we aimed at developing a biomarker model for PCa detection based on urine sampling without prior intervention. Capillary electrophoresis coupled to mass spectrometry was applied to acquire proteomics profiles from 970 patients from two different clinical centers. (3) Results: A case-control comparison was performed in a training set of 413 patients and 181 significant peptides were subsequently combined by a support vector machine algorithm. Independent validation was initially performed in 272 negative for PCa and 138 biopsy-confirmed PCa, resulting in an AUC of 0.81, outperforming current standards, while a second validation phase included 147 PCa patients. (4) Conclusions: This multi-dimensional biomarker model holds promise to improve the current diagnosis of PCa, by guiding invasive biopsies.
Collapse
Affiliation(s)
- Maria Frantzi
- Department of Biomarker Research, Mosaiques Diagnostics GmbH, 30659 Hannover, Germany
- Correspondence: ; Tel.: +49-511-5547-4429
| | - Zoran Culig
- Experimental Urology Department of Urology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Isabel Heidegger
- Experimental Urology Department of Urology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Marika Mokou
- Department of Biomarker Research, Mosaiques Diagnostics GmbH, 30659 Hannover, Germany
| | - Agnieszka Latosinska
- Department of Biomarker Research, Mosaiques Diagnostics GmbH, 30659 Hannover, Germany
| | - Marie C. Roesch
- Department of Urology, University Hospital Schleswig-Holstein, Campus Lübeck, 23538 Lübeck, Germany
| | - Axel S. Merseburger
- Department of Urology, University Hospital Schleswig-Holstein, Campus Lübeck, 23538 Lübeck, Germany
| | - Manousos Makridakis
- Systems Biology Center, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
| | - Antonia Vlahou
- Systems Biology Center, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
| | - Ana Blanca-Pedregosa
- Maimonides Biomedical Research Institute of Córdoba, Department of Urology, University of Cordoba, 14004 Cordoba, Spain
| | - Julia Carrasco-Valiente
- Maimonides Biomedical Research Institute of Córdoba, Department of Urology, University of Cordoba, 14004 Cordoba, Spain
| | - Harald Mischak
- Department of Biomarker Research, Mosaiques Diagnostics GmbH, 30659 Hannover, Germany
- Institute of Cardiovascular and Medical Science, University of Glasgow, Glasgow G12 8TA, UK
| | - Enrique Gomez-Gomez
- Maimonides Biomedical Research Institute of Córdoba, Department of Urology, University of Cordoba, 14004 Cordoba, Spain
| |
Collapse
|
4
|
Sotiropoulou G, Zingkou E, Pampalakis G. Novel specific activity-based probes validate KLK proteases as druggable targets. Cancer Biol Ther 2022; 23:401-403. [PMID: 35652924 PMCID: PMC9176256 DOI: 10.1080/15384047.2022.2074775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Affiliation(s)
- Georgia Sotiropoulou
- Department of Pharmacy, School of Health Sciences, University of Patras, Rion-Patras, Greece
| | - Eleni Zingkou
- Department of Pharmacy, School of Health Sciences, University of Patras, Rion-Patras, Greece
| | - Georgios Pampalakis
- Department of Pharmacology-Pharmacognosy, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
5
|
Gao M, Ma S, Xu T, Jiang N, Xu Y, Zhong Y, Wu B. The design and synthesis of benzylpiperazine-based edaravone derivatives and their neuroprotective activities. JOURNAL OF CHEMICAL RESEARCH 2022. [DOI: 10.1177/17475198221116827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
New edaravone derivatives containing a benzylpiperazine moiety are designed and synthesized. The structures are characterized by 1H NMR, 13C NMR, and high-resolution mass spectrometry. The potential neuroprotective activities of the target compounds are evaluated in differentiated rat pheochromocytoma cells (PC12 cells) and in mice subjected to acute cerebral ischemia. Most of the target compounds showed neuroprotective activities both in vivo and in vitro, especially 1-(4-(4-fluorobenzyl) piperazin-1-yl)-2-(4-(5-hydroxy-3-methyl-1 H-pyrazol-1-yl)phenoxy)ethanone and 1-(4-(4-nitrobenzyl)piperazin-1-yl)-2-(4-(5-hydroxy-3-methyl-1 H-pyrazol-1-yl)phenoxy)ethanone, which displayed significant protective effects on cell viability against damage caused by H2O2, and remarkably prolonged the survival time of mice subjected to acute cerebral ischemia and decreased the mortality rate at all doses. These compounds represent lead compounds for the further discovery of neuroprotective agents for treating cerebral ischemic stroke. Molecular docking studies and basic structure–activity relationships are also presented.
Collapse
Affiliation(s)
- Mengjie Gao
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, P.R. China
| | - Shuangyan Ma
- School of Pharmacy, Nanjing Medical University, Nanjing, P.R. China
| | - Tong Xu
- School of Pharmacy, Nanjing Medical University, Nanjing, P.R. China
| | - Nan Jiang
- School of Pharmacy, Nanjing Medical University, Nanjing, P.R. China
| | - Yi Xu
- School of Pharmacy, Nanjing Medical University, Nanjing, P.R. China
| | - Yan Zhong
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, P.R. China
| | - Bin Wu
- School of Pharmacy, Nanjing Medical University, Nanjing, P.R. China
| |
Collapse
|
6
|
Anamthathmakula P, Erickson JA, Winuthayanon W. Blocking serine protease activity prevents semenogelin degradation leading to hyperviscous semen in humans. Biol Reprod 2022; 106:879-887. [PMID: 35098308 PMCID: PMC9113478 DOI: 10.1093/biolre/ioac023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 12/20/2021] [Accepted: 01/23/2022] [Indexed: 01/31/2023] Open
Abstract
Prostate-specific antigen (PSA) is a prostate-specific serine protease enzyme that hydrolyzes gel-forming proteins (semenogelins) and changes the semen from gel-like to watery viscosity, a process called semen liquefaction. Highly viscous semen and abnormal liquefaction reduce sperm motility and contribute to infertility. Previously, we showed that nonspecific serine protease inhibitor (AEBSF) prevented proteolytic degradation of semenogelin in mice. However, it is unclear whether similar effect could be recapitulated in fresh human ejaculates. Therefore, in this study we evaluated the effect of AEBSF on the degradation of semenogelin (SEMG1) and its subsequent impact on semen liquefaction and sperm motility in fresh semen ejaculates collected from healthy men. We found that AEBSF showed a dual contraceptive action where it effectively 1) prevented degradation of SEMG1 resulting in viscous semen and 2) decreased sperm motility in human semen samples. However, the impact of AEBSF on sperm motility and viability could be due to its inhibitory activity toward other serine proteases or simply due to its toxicity. Therefore, to determine whether inhibition of PSA activity alone could disrupt SEMG1 degradation and contribute to hyperviscous semen, a neutralizing PSA antibody was used. We found that PSA antibody effectively prevented SEMG1 degradation with a subtle impact on sperm motility. These findings suggest that the target inhibition of PSA activity can prevent proteolytic degradation of SEMG1 and block liquefaction process, resulting in hyperviscous semen. As it is currently unknown if blocking semen liquefaction alone could prevent pregnancy, it needs further extensive studies before drawing any translational conclusions.
Collapse
Affiliation(s)
- Prashanth Anamthathmakula
- School of Molecular Biosciences and Center for Reproductive Biology, College of Veterinary Medicine Washington State University, Pullman, WA, USA
| | - Jeffery A Erickson
- School of Molecular Biosciences and Center for Reproductive Biology, College of Veterinary Medicine Washington State University, Pullman, WA, USA
| | - Wipawee Winuthayanon
- School of Molecular Biosciences and Center for Reproductive Biology, College of Veterinary Medicine Washington State University, Pullman, WA, USA
| |
Collapse
|
7
|
Srinivasan S, Kryza T, Batra J, Clements J. Remodelling of the tumour microenvironment by the kallikrein-related peptidases. Nat Rev Cancer 2022; 22:223-238. [PMID: 35102281 DOI: 10.1038/s41568-021-00436-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/06/2021] [Indexed: 02/07/2023]
Abstract
Kallikrein-related peptidases (KLKs) are critical regulators of the tumour microenvironment. KLKs are proteolytic enzymes regulating multiple functions of bioactive molecules including hormones and growth factors, membrane receptors and the extracellular matrix architecture involved in cancer progression and metastasis. Perturbations of the proteolytic cascade generated by these peptidases, and their downstream signalling actions, underlie tumour emergence or blockade of tumour growth. Recent studies have also revealed their role in tumour immune suppression and resistance to cancer therapy. Here, we present an overview of the complex biology of the KLK family and its context-dependent nature in cancer, and discuss the different therapeutic strategies available to potentially target these proteases.
Collapse
Affiliation(s)
- Srilakshmi Srinivasan
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
- Australian Prostate Cancer Research Centre-Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Thomas Kryza
- Australian Prostate Cancer Research Centre-Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
- Mater Research Institute, The University of Queensland, Woolloongabba, Brisbane, Queensland, Australia
| | - Jyotsna Batra
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
- Australian Prostate Cancer Research Centre-Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
- Centre for Genomics and Personalised Medicine, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Judith Clements
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia.
- Australian Prostate Cancer Research Centre-Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia.
| |
Collapse
|
8
|
Lenga Ma Bonda W, Lavergne M, Vasseur V, Brisson L, Roger S, Legras A, Guillon A, Guyétant S, Hiemstra PS, Si-Tahar M, Iochmann S, Reverdiau P. Kallikrein-related peptidase 5 contributes to the remodeling and repair of bronchial epithelium. FASEB J 2021; 35:e21838. [PMID: 34582061 DOI: 10.1096/fj.202002649r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 06/28/2021] [Accepted: 07/21/2021] [Indexed: 12/12/2022]
Abstract
Inflammation, oxidative stress, and protease/protease inhibitor imbalance with excessive production of proteases are factors associated with pathogenesis of the chronic obstructive pulmonary disease (COPD). In this study, we report that kallikrein-related peptidase 5 (KLK5) is a crucial protease involved in extracellular matrix (ECM) remodeling and bronchial epithelial repair after injury. First, we showed that KLK5 degrades the basal layer formed by culture of primary bronchial epithelial cells from COPD or non-COPD patients. Also, exogenous KLK5 acted differently on BEAS-2B cells already engaged in epithelial-to-mesenchymal transition (EMT) or on 16HBE 14o- cells harboring epithelial characteristics. Indeed, by inducing EMT, KLK5 reduced BEAS-2B cell adherence to the ECM. This effect, neutralized by tissue factor pathway inhibitor 2, a kunitz-type serine protease inhibitor, was due to a direct proteolytic activity of KLK5 on E-cadherin, β-catenin, fibronectin, and α5β1 integrin. Thus, KLK5 may strengthen EMT mechanisms and promote the migration of cells by activating the mitogen-activated protein kinase signaling pathway required for this function. In contrast, knockdown of endogenous KLK5 in 16HBE14o- cells, accelerated wound healing repair after injury, and exogenous KLK5 addition delayed the closure repair. These data suggest that among proteases, KLK5 could play a critical role in airway remodeling events associated with COPD during exposure of the pulmonary epithelium to inhaled irritants or smoking and the inflammation process.
Collapse
Affiliation(s)
- Woodys Lenga Ma Bonda
- Université de Tours, Tours, France.,Centre d'Etude des Pathologies Respiratoires (CEPR), INSERM, UMR 1100, Tours, France
| | - Marion Lavergne
- Université de Tours, Tours, France.,Centre d'Etude des Pathologies Respiratoires (CEPR), INSERM, UMR 1100, Tours, France
| | - Virginie Vasseur
- Université de Tours, Tours, France.,Centre d'Etude des Pathologies Respiratoires (CEPR), INSERM, UMR 1100, Tours, France
| | - Lucie Brisson
- Université de Tours, Tours, France.,Nutrition, Croissance et Cancer (N2C), INSERM, UMR 1069, Tours, France
| | - Sébastien Roger
- Université de Tours, Tours, France.,EA 4245 "Transplantation, Immunologie, Inflammation", Tours, France.,Institut Universitaire de France, Paris, France
| | - Antoine Legras
- Université de Tours, Tours, France.,Département de chirurgie thoracique, CHRU de Tours, Tours, France
| | - Antoine Guillon
- Université de Tours, Tours, France.,Centre d'Etude des Pathologies Respiratoires (CEPR), INSERM, UMR 1100, Tours, France.,Service de médecine intensive et réanimation, CHRU de Tours, Tours, France
| | - Serge Guyétant
- Université de Tours, Tours, France.,Département d'anatomie et cytologie pathologiques, CHRU de Tours, Tours, France
| | - Pieter S Hiemstra
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| | - Mustapha Si-Tahar
- Université de Tours, Tours, France.,Centre d'Etude des Pathologies Respiratoires (CEPR), INSERM, UMR 1100, Tours, France
| | - Sophie Iochmann
- Université de Tours, Tours, France.,Centre d'Etude des Pathologies Respiratoires (CEPR), INSERM, UMR 1100, Tours, France.,Institut Universitaire de Technologie, Tours, France
| | - Pascale Reverdiau
- Université de Tours, Tours, France.,Centre d'Etude des Pathologies Respiratoires (CEPR), INSERM, UMR 1100, Tours, France.,Institut Universitaire de Technologie, Tours, France
| |
Collapse
|
9
|
Chang JS, Kim N, Kim JY, Do SI, Cho Y, Kim HS, Kim YB. Kallikrein 5 overexpression is associated with poor prognosis in uterine cervical cancer. J Gynecol Oncol 2021; 31:e78. [PMID: 33078588 PMCID: PMC7593226 DOI: 10.3802/jgo.2020.31.e78] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/01/2020] [Accepted: 06/07/2020] [Indexed: 01/16/2023] Open
Abstract
Objective Kallikrein 5 (KLK5), which is frequently observed in normal cervico-vaginal fluid, is known to be related to prognosis in several solid tumors. We investigated the prognostic significance of KLK5 in uterine cervical cancer using tumor tissue microarray and immunohistochemistry staining. Methods We analyzed samples of 165 patients with uterine cervical cancer who received definitive radiation therapy between 2004 and 2012. We divided patients into two groups stratified by their KLK5 activity by immunohistochemistry staining: negative/weak (0–1+) (n=120 patients) and moderate/strong (2–3+) group (n=45 patients). Patient and tumor characteristics, patterns of failure, and survival outcomes were compared. Univariable and multivariable analyses were performed to identify prognostic factors. Results Patients with KLK5 2–3+ were younger (median: 52 vs. 60 years) and had frequent paraaortic lymph node involvement (40.0% vs. 18.3%) than those with KLK5 0–1+. With a median follow-up of 60.8 (interquartile range, 47.5–77.9) months, patients with KLK5 2–3+ had inferior 5-year locoregional recurrence-free survival and distant metastasis-free survival of 61.7% (vs. 77.5% in KLK5 0–1+ group) and 59.4% (vs. 72.8% in the KLK5 0–1+ group), respectively (all p<0.05). KLK5 2–3+ expression retained its significance after adjusting for other well-known prognostic factors of tumor size and stage in multivariable analysis. Conclusions KLK5 overexpression is associated with the aggressiveness of cervical cancer and may underlie the diminished response to conventional treatments. Therefore, KLK5 could be a reliable prognostic factor in cervical cancer.
Collapse
Affiliation(s)
- Jee Suk Chang
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| | - Nalee Kim
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Ji Ye Kim
- Department of Pathology, Ilsan Paik Hospital, Inje University, Goyang, Korea
| | - Sung Im Do
- Department of Pathology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Yeona Cho
- Department of Radiation Oncology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Hyun Soo Kim
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
| | - Yong Bae Kim
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
10
|
Pampalakis G, Zingkou E, Panagiotidis C, Sotiropoulou G. Kallikreins emerge as new regulators of viral infections. Cell Mol Life Sci 2021; 78:6735-6744. [PMID: 34459952 PMCID: PMC8404027 DOI: 10.1007/s00018-021-03922-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/23/2021] [Accepted: 08/12/2021] [Indexed: 01/13/2023]
Abstract
Kallikrein-related peptidases (KLKs) or kallikreins have been linked to diverse (patho) physiological processes, such as the epidermal desquamation and inflammation, seminal clot liquefaction, neurodegeneration, and cancer. Recent mounting evidence suggests that KLKs also represent important regulators of viral infections. It is well-established that certain enveloped viruses, including influenza and coronaviruses, require proteolytic processing of their hemagglutinin or spike proteins, respectively, to infect host cells. Similarly, the capsid protein of the non-enveloped papillomavirus L1 should be proteolytically cleaved for viral uncoating. Consequently, extracellular or membrane-bound proteases of the host cells are instrumental for viral infections and represent potential targets for drug development. Here, we summarize how extracellular proteolysis mediated by the kallikreins is implicated in the process of influenza (and potentially coronavirus and papillomavirus) entry into host cells. Besides direct proteolytic activation of viruses, KLK5 and 12 promote viral entry indirectly through proteolytic cascade events, like the activation of thrombolytic enzymes that also can process hemagglutinin, while additional functions of KLKs in infection cannot be excluded. In the light of recent evidence, KLKs represent potential host targets for the development of new antivirals. Humanized animal models to validate their key functions in viral infections will be valuable.
Collapse
Affiliation(s)
- Georgios Pampalakis
- Department of Pharmacognosy-Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, 541 24, Thessaloniki, Greece.
| | - Eleni Zingkou
- Department of Pharmacy, School of Health Sciences, University of Patras, 265 04, Rion-Patras, Greece
| | - Christos Panagiotidis
- Department of Pharmacognosy-Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, 541 24, Thessaloniki, Greece
| | - Georgia Sotiropoulou
- Department of Pharmacy, School of Health Sciences, University of Patras, 265 04, Rion-Patras, Greece
| |
Collapse
|
11
|
Anamthathmakula P, Winuthayanon W. Mechanism of semen liquefaction and its potential for a novel non-hormonal contraception†. Biol Reprod 2020; 103:411-426. [PMID: 32529252 PMCID: PMC7523691 DOI: 10.1093/biolre/ioaa075] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/08/2020] [Accepted: 05/12/2020] [Indexed: 12/21/2022] Open
Abstract
Semen liquefaction is a proteolytic process where a gel-like ejaculated semen becomes watery due to the enzymatic activity of prostate-derived serine proteases in the female reproductive tract. The liquefaction process is crucial for the sperm to gain their motility and successful transport to the fertilization site in Fallopian tubes (or oviducts in animals). Hyperviscous semen or failure in liquefaction is one of the causes of male infertility. Therefore, the biochemical inhibition of serine proteases in the female reproductive tract after ejaculation is a prime target for novel contraceptive development. Herein, we will discuss protein components in the ejaculates responsible for semen liquefaction and any developments of contraceptive methods in the past that involve the liquefaction process.
Collapse
Affiliation(s)
- Prashanth Anamthathmakula
- School of Molecular Biosciences, Center for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - Wipawee Winuthayanon
- School of Molecular Biosciences, Center for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
12
|
Heidary Z, Saliminejad K, Zaki-Dizaji M, Khorram Khorshid HR. Genetic aspects of idiopathic asthenozoospermia as a cause of male infertility. HUM FERTIL 2020; 23:83-92. [PMID: 30198353 DOI: 10.1080/14647273.2018.1504325] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Infertility is a worldwide problem affecting about 15% of couples trying to conceive. Asthenozoospermia (AZS) is one of the major causes of male infertility, diagnosed by reduced sperm motility, and has no effective therapeutic treatment. To date, a few genes have been found to be associated with AZS in humans and mice, but in most of cases its molecular aetiology remains unknown. Genetic causes of AZS may include chromosomal abnormalities, specific mutations of nuclear and mitochondrial genes. However recently, epigenetic factors, altered microRNAs expression signature, and proteomics have shed light on the pathophysiological basis of AZS. This review article summarises the reported genetic causes of AZS.
Collapse
Affiliation(s)
- Zohreh Heidary
- Reproductive Biotechnology Research Centre, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Kioomars Saliminejad
- Reproductive Biotechnology Research Centre, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Majid Zaki-Dizaji
- Department of Medical Genetics School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Khorram Khorshid
- Reproductive Biotechnology Research Centre, Avicenna Research Institute, ACECR, Tehran, Iran.,Genetics Research Centre University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| |
Collapse
|
13
|
Filippou PS, Ren AH, Soosaipillai A, Safar R, Prassas I, Diamandis EP, Conner JR. Kallikrein-related peptidases protein expression in lymphoid tissues suggests potential implications in immune response. Clin Biochem 2020; 77:41-47. [PMID: 31904348 DOI: 10.1016/j.clinbiochem.2019.12.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 12/02/2019] [Accepted: 12/27/2019] [Indexed: 12/29/2022]
Abstract
OBJECTIVES Kallikrein-related peptidases (KLKs) are a subgroup of 15 secreted chymotrypsin- and trypsin-like serine proteases that have been reported to possess novel functions in innate immunity and inflammation. Since the potential role of KLKs in immunity has not been studied in detail at the protein level, we examined the expression pattern of 12 members of the KLK family in immune-related tissues. DESIGN & METHODS Protein expression in tissue extracts was evaluated using immunoassays (ELISA). Immunohistochemistry (IHC) was performed on representative sections of tonsil and lymph nodes to determine the cellular localization of the KLK family members. RESULTS ELISA profiling of KLK3-KLK15 (except KLK12) revealed higher protein levels in the tonsil, compared to the lymph nodes and spleen. Relatively high protein levels in the tonsil were observed for KLK7, KLK9, KLK10 and KLK13. Expression of these KLKs was significantly lower in lymph nodes and spleen. IHC analysis in tonsil unveiled that KLK9 and KLK10 were differentially expressed in lymphoid cells. KLK9 was strongly expressed in the germinal center of lymphoid follicles where activated B-cells reside, whereas KLK10 was expressed in the follicular dendritic cells (FDCs) that are vital for maintaining the cycle of B cell maturation. CONCLUSION Overall, our study revealed the possible implications of KLK expression and regulation in the immune cells of lymphoid tissues.
Collapse
Affiliation(s)
- Panagiota S Filippou
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; Department of Clinical Biochemistry, University Health Network, Toronto, Canada
| | - Annie H Ren
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
| | | | - Roaa Safar
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
| | - Ioannis Prassas
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Canada
| | - Eleftherios P Diamandis
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; Department of Clinical Biochemistry, University Health Network, Toronto, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada; Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Canada
| | - James R Conner
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Canada.
| |
Collapse
|
14
|
Nauroy P, Nyström A. Kallikreins: Essential epidermal messengers for regulation of the skin microenvironment during homeostasis, repair and disease. Matrix Biol Plus 2019; 6-7:100019. [PMID: 33543017 PMCID: PMC7852331 DOI: 10.1016/j.mbplus.2019.100019] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/08/2019] [Accepted: 11/14/2019] [Indexed: 12/14/2022] Open
Abstract
As the outermost layer of the skin, the epidermis is playing a major role in organism homeostasis providing the first barrier against external aggressions. Although considered as an extracellular matrix (ECM)-poor subtissue, the epidermal microenvironment is a key regulator of skin homeostasis and functionality. Among the proteins essential for upholding the epidermal microenvironment are the members of the kallikrein (KLK) family composed of 15 secreted serine proteases. Most of the members of these epithelial-specific proteins are present in skin and regulate skin desquamation and inflammation. However, although epidermal products, the consequences of KLK activities are not confined to the epidermis but widespread in the skin. In this review starting with the location and proteolytic activation cascade of KLKs, we present KLKs involvement in skin homeostasis, regeneration and pathology. KLKs have a large variety of substrates including ECM proteins, and evidence suggests that they are involved in the different steps of skin wound healing as discussed here. KLKs are also used as prognosis/diagnosis markers for many cancer types and we are focusing later on KLKs in cutaneous cancers, although their pathogenicity remains to be fully elucidated. Dysregulation of the KLK cascade is directly responsible for skin diseases with heavy inflammatory aspects, highlighting their involvement in skin immune homeostasis. Future studies will be needed to support the therapeutic potential of adjusting KLK activities for treatment of inflammatory skin diseases and wound healing pathologies. Regulation of the microenvironment even in an extracellular matrix-poor tissue can heavily impact organ function. Extracellular activities of kallikreins maintain skin homeostasis by regulating desquamation and inflammation. The activation of skin epidermal-specific kallikrein family of proteases is regulated by an intricate proteolytic cascade. Kallikreins are emerging as players during skin wound healing. Dysregulated kallikrein expression and activity occur in cancers and inflammatory skin diseases.
Collapse
Key Words
- AD, atopic dermatitis
- CDSN, corneodesmosin
- DSC1, desmocollin 1
- DSG1, desmoglein 1
- Diseases
- ECM, extracellular matrix
- EMT, epithelial-to-mesenchymal transition
- Epidermal microenvironment
- Epidermis
- Inflammation
- KLKs, kallikreins
- Kallikrein
- LEKTI, lympho-epithelial Kazal-type inhibitor
- NS, Netherton syndrome
- PAR1/2, protease activated-receptor 1/2
- SCC, squamous cell carcinoma
- Wound healing
- tPA, tissue plasminogen activator
- uPA, urokinase plasminogen activator
Collapse
Affiliation(s)
- Pauline Nauroy
- Department of Dermatology, Medical Center - University of Freiburg, Hauptstrasse 7, 79104 Freiburg, Germany
| | - Alexander Nyström
- Department of Dermatology, Medical Center - University of Freiburg, Hauptstrasse 7, 79104 Freiburg, Germany
| |
Collapse
|
15
|
Liu X, Liu G, Zhu P, Wang Y, Wang J, Zhang W, Wang W, Li N, Wang X, Zhang C, Liu J, Shen X, Liu F. Characterization of seminal plasma proteomic alterations associated with the IVF and rescue-ICSI pregnancy in assisted reproduction. Andrology 2019; 8:407-420. [PMID: 31364287 DOI: 10.1111/andr.12687] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 06/25/2019] [Accepted: 07/02/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Seminal plasma is a promising diagnostic fluid for male infertility. In assisted reproduction, the seminal plasma-based characteristics of normozoospermic men achieving successful clinical pregnancy through rescue intracytoplasmic sperm injection after in vitro fertilization failure remain unclear. OBJECTIVE To identify potential seminal plasma proteins to contribute to a new understanding of unexplained male factor infertility. MATERIALS AND METHODS An approach with isobaric tags for relative and absolute quantification labeling coupled with liquid chromatography matrix-assisted laser desorption ionization mass spectrometry was applied to investigate differentially expressed proteins in the seminal plasma of a rescue intracytoplasmic sperm injection pregnancy group versus an in vitro fertilization pregnancy group of normozoospermic men. RESULT(S) The present work revealed seventy-three differentially expressed seminal plasma proteins between the in vitro fertilization and rescue intracytoplasmic sperm injection groups. Forty-five proteins were upregulated, and 28 proteins were downregulated in the rescue intracytoplasmic sperm injection group compared with the in vitro fertilization group. Bioinformatics analyses showed that these altered proteins were involved in various functions, including the kallikrein-related proteolytic cascade, immune response, and heparin binding. Furthermore, the validity of the proteomic results was verified by Western blot analysis of the proteins (lactoferrin [LTF], fibronectin [FN1], creatine kinase B type [CKB], kallikrein-2 [KLK2], aminopeptidase N [ANPEP], extracellular matrix protein 1 [ECM1], glycodelin [PAEP], alpha-1-antitrypsin [SERPINA1], and semenogelin-1 [SEMG1]) and immunofluorescence. Moreover, 16% of the seminal plasma proteins identified in the present work have not been reported in previous studies. DISCUSSION This panel of altered seminal plasma proteins associated with unexplained male factor infertility might have clinical relevance and may be useful in the diagnosis and prognosis of idiopathic infertility in in vitro fertilization. CONCLUSIONS Our work not only provides a new complementary high-confidence dataset of seminal plasma proteins but also shines new light onto the molecular characteristics of seminal plasma from normozoospermic men with different assisted reproductive outcomes.
Collapse
Affiliation(s)
- X Liu
- Central Laboratory, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - G Liu
- Reproductive Center, Tianjin Aiwei Hospital, Tianjin, China
| | - P Zhu
- Central Laboratory, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Y Wang
- Central Laboratory, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - J Wang
- Central Laboratory, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - W Zhang
- Central Laboratory, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - W Wang
- Central Laboratory, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - N Li
- Central Laboratory, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - X Wang
- Department of Clinical Laboratory, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - C Zhang
- Central Laboratory, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - J Liu
- Central Laboratory, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - X Shen
- Reproductive Center, Beijing BaoDao Obstetrics and Gynecology Hospital, Beijing, China
| | - F Liu
- Central Laboratory, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| |
Collapse
|
16
|
Sugimoto S, Morizane S, Nomura H, Kobashi M, Sugihara S, Iwatsuki K. Toll-like receptor signaling induces the expression of lympho-epithelial Kazal-type inhibitor in epidermal keratinocytes. J Dermatol Sci 2018; 92:181-187. [PMID: 30270115 DOI: 10.1016/j.jdermsci.2018.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/15/2018] [Accepted: 09/04/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND Lympho-epithelial Kazal-type inhibitor (LEKTI) tightly controls the activities of serine proteases such as kallikrein-related peptidase (KLK) 5 and KLK7 in the epidermis. LEKTI is known to be an essential molecule for the epidermal skin barrier, as demonstrated by SPINK5 nonsense mutation, which results in Netherton syndrome. Toll-like receptors (TLRs) recognize pathogen-associated molecular patterns or damage-associated molecular patterns and produce inflammatory cytokines, chemokines, and antimicrobial peptides. However, the effect of TLR signaling on the expression of LEKTI is not clear. OBJECTIVE To investigate whether TLR signaling can affect expression of LEKTI in epidermal keratinocytes. METHODS We stimulated a panel of TLR ligands and investigated the expression of LEKTI in normal human epidermal keratinocytes (NHEKs). We further measured trypsin or chymotrypsin-like serine protease activity in NHEK cultured media under stimulation with TLR3 ligand, poly (I:C). Immunostaining for LEKTI was performed using skin samples from skin infectious diseases. RESULTS TLR1/2, 3, 5, and 2/6 ligands induced the expression of LEKTI in NHEKs. The trypsin or chymotrypsin-like serine protease activity in NHEKs was up-regulated with the stimulation of poly (I:C). The gene expressions of KLK6, KLK10, KLK11, and KLK13 were also increased by poly (I:C). An immunohistochemical analysis demonstrated that the expression of LEKTI was up-regulated in the lesions of varicella, pyoderma, and rosacea. CONCLUSIONS TLR signaling induces the expression of LEKTI in epidermal keratinocytes, which might contribute to the control of aberrant serine protease activities in inflammatory skin diseases.
Collapse
Affiliation(s)
- Saeko Sugimoto
- Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Science, Okayama, Japan
| | - Shin Morizane
- Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Science, Okayama, Japan.
| | - Hayato Nomura
- Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Science, Okayama, Japan
| | - Mina Kobashi
- Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Science, Okayama, Japan
| | - Satoru Sugihara
- Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Science, Okayama, Japan
| | - Keiji Iwatsuki
- Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Science, Okayama, Japan
| |
Collapse
|
17
|
Filippou PS, Ren AH, Soosaipillai A, Papaioannou MD, Korbakis D, Safar R, Diamandis EP, Conner JR. Expression profile of human tissue kallikrein 15 provides preliminary insights into its roles in the prostate and testis. Clin Biochem 2018; 59:78-85. [DOI: 10.1016/j.clinbiochem.2018.06.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 06/07/2018] [Accepted: 06/25/2018] [Indexed: 02/02/2023]
|
18
|
Filippou PS, Ren AH, Bala S, Papaioannou MD, Brinc D, Prassas I, Karakosta T, Diamandis EP. Biochemical characterization of human tissue kallikrein 15 and examination of its potential role in cancer. Clin Biochem 2018; 58:108-115. [PMID: 29928903 DOI: 10.1016/j.clinbiochem.2018.06.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/25/2018] [Accepted: 06/12/2018] [Indexed: 01/11/2023]
Abstract
OBJECTIVE Human tissue kallikrein 15 (KLK15) is the last cloned member of the KLK-related gene family. Despite being implicated in multiple cancers, its pathophysiological role remains unknown. We aimed to biochemically characterize KLK15 and preliminarily study its role in cancer. DESIGN & METHODS Recombinant KLK15 protein was produced, purified to homogeneity and quantified by mass spectrometry (parallel reaction monitoring analysis). We profiled the enzymatic activity of KLK15 using fluorogenic peptide substrates, and performed kinetic analysis to discover the cleavage sites. As KLK15 has mainly been associated with prostate cancer, we used a degradomic approach and subsequent KEGG pathway analysis to identify a number of putative protein substrates in the KLK15-treated prostate cancer cell line PC3. RESULTS We discovered trypsin-like activity in KLK15, finding that it cleaves preferentially after arginine (R). The enzymatic activity of KLK15 was regulated by different factors such as pH, cations and serine protease inhibitors. Notably, we revealed that KLK15 most likely interacts with the extracellular matrix (ECM) receptor group. CONCLUSION To our knowledge, this is the first study that experimentally verifies the trypsin-like activity of KLK15. We show here for the first time that KLK15 may be able to cleave many ECM components, similar to several members of the KLK family. Thus the protease could potentially be linked to tumorigenesis by promoting metastasis via this mechanism.
Collapse
Affiliation(s)
- Panagiota S Filippou
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; Department of Clinical Biochemistry, University Health Network, Toronto, Canada
| | - Annie H Ren
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; Mount Sinai Hospital, Lunenfeld-Tanenbaum Research Institute, Toronto, Canada
| | - Sudarshan Bala
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | | | - Davor Brinc
- Department of Clinical Biochemistry, University Health Network, Toronto, Canada
| | - Ioannis Prassas
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Canada
| | - Theano Karakosta
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; Department of Clinical Biochemistry, University Health Network, Toronto, Canada
| | - Eleftherios P Diamandis
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; Department of Clinical Biochemistry, University Health Network, Toronto, Canada; Mount Sinai Hospital, Lunenfeld-Tanenbaum Research Institute, Toronto, Canada; Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Canada.
| |
Collapse
|
19
|
Darling MR, Tsai S, Jackson-Boeters L, Daley TD, Diamandis EP. Human Kallikrein 3 (prostate-specific antigen) and Human Kallikrein 5 Expression in Salivary Gland Tumors. Int J Biol Markers 2018; 21:201-5. [PMID: 17177156 DOI: 10.1177/172460080602100401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The human kallikrein 5 protein (hK5) is expressed in many normal tissues, most notably in skin, breast, salivary gland and esophagus. It has also been shown to be a potential biomarker for breast, ovarian and testicular cancer. Human kallikrein 3 (hK3; prostate-specific antigen) is the most useful marker for adenocarcinoma of the prostate gland. The aim of this study was to determine whether hK3 and hK5 are expressed in salivary gland tissues and salivary gland tumors (both benign and malignant), in order to compare normal with tumor tissues. Pleomorphic adenomas, adenoid cystic carcinomas, polymorphous low-grade adenocarcinomas, acinic cell carcinomas, mucoepidermoid carcinomas and adenocarcinomas not otherwise specified of both minor and major salivary glands were examined. The results of this study indicate that most salivary gland tumors do not show high levels of expression of hK5. Staining was most prominent in keratinizing epithelia in pleomorphic adenomas. hK3 is not expressed in salivary gland tumors.
Collapse
Affiliation(s)
- M R Darling
- Division of Oral Pathology, Department of Pathology, University of Western Ontario, London, Ontario N6A 5C1, Canada.
| | | | | | | | | |
Collapse
|
20
|
Biochemical and functional characterization of the human tissue kallikrein 9. Biochem J 2017; 474:2417-2433. [DOI: 10.1042/bcj20170174] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/25/2017] [Accepted: 05/30/2017] [Indexed: 12/23/2022]
Abstract
Human tissue kallikrein 9 (KLK9) is a member of the kallikrein-related family of proteases. Despite its known expression profile, much less is known about the functional roles of this protease and its implications in normal physiology and disease. We present here the first data on the biochemical characterization of KLK9, investigate parameters that affect its enzymatic activity (such as inhibitors) and provide preliminary insights into its putative substrates. We show that mature KLK9 is a glycosylated chymotrypsin-like enzyme with strong preference for tyrosine over phenylalanine at the P1 cleavage position. The enzyme activity is enhanced by Mg2+ and Ca2+, but is reversibly attenuated by Zn2+. KLK9 is inhibited in vitro by many naturally occurring or synthetic protease inhibitors. Using a combination of degradomic and substrate specificity assays, we identified candidate KLK9 substrates in two different epithelial cell lines [the non-tumorigenic human keratinocyte cells (HaCaT) and the tumorigenic tongue squamous carcinoma cells (SCC9)]. Two potential KLK9 substrates [KLK10 and midkine (MDK)] were subjected to further validation. Taken together, our data delineate some functional and biochemical properties of KLK9 for future elucidation of the role of this enzyme in health and disease.
Collapse
|
21
|
Li S, Garcia M, Gewiss RL, Winuthayanon W. Crucial role of estrogen for the mammalian female in regulating semen coagulation and liquefaction in vivo. PLoS Genet 2017; 13:e1006743. [PMID: 28414719 PMCID: PMC5411094 DOI: 10.1371/journal.pgen.1006743] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 05/01/2017] [Accepted: 04/05/2017] [Indexed: 11/18/2022] Open
Abstract
Semen liquefaction changes semen from a gel-like to watery consistency and is required for sperm to gain mobility and swim to the fertilization site in the Fallopian tubes. Kallikrein-related peptidases 3 (KLK3) and other kallikrein-related peptidases from male prostate glands are responsible for semen liquefaction by cleaving gel-forming proteins (semenogelin and collagen). In a physiological context, the liquefaction process occurs within the female reproductive tract. How seminal proteins interact with the female reproductive environment is still largely unexplored. We previously reported that conditional genetic ablation of Esr1 (estrogen receptor α) in the epithelial cells of the female reproductive tract (Wnt7aCre/+;Esr1f/f) causes female infertility, partly due to a drastic reduction in the number of motile sperm entering the oviduct. In this study, we found that post-ejaculated semen from fertile wild-type males was solidified and the sperm were entrapped in Wnt7aCre/+;Esr1f/f uteri, compared to the watery semen (liquefied) found in Esr1f/f controls. In addition, semenogelin and collagen were not degraded in Wnt7aCre/+;Esr1f/f uteri. Amongst multiple gene families aberrantly expressed in the absence of epithelial ESR1, we have identified that a lack of Klks in the uterus is a potential cause for the liquefaction defect. Pharmacological inhibition of KLKs in the uterus replicated the phenotype observed in Wnt7aCre/+;Esr1f/f uteri, suggesting that loss of uterine and seminal KLK function causes this liquefaction defect. In human cervical cell culture, expression of several KLKs and their inhibitors (SPINKs) was regulated by estrogen in an ESR1-dependent manner. Our study demonstrates that estrogen/ESR1 signaling in the female reproductive tract plays an indispensable role in normal semen liquefaction, providing fundamental evidence that exposure of post-ejaculated semen to the suboptimal microenvironment in the female reproductive tract leads to faulty liquefaction and subsequently causes a fertility defect. Semen liquefaction has been considered to be solely modulated by prostate-derived kallikrein-related peptidases (KLKs), especially KLK3 (or prostate specific antigen). However, our research demonstrated that female mice lacking estrogen receptor alpha (ERα) in the uterine epithelial cells had a drastic decrease in Klk transcripts and semen from fertile males fails to liquefy within the uteri of these females. Therefore, our results provide a novel aspect that, due to an interplay between semen and female reproductive tract secretions, the physiology of semen liquefaction is more complicated than previously assumed. This information will advance research on semen liquefaction in the female reproductive tract, an area that has never been explored, and could lead to the development of diagnostic tools for unexplained infertility cases and non-invasive contraception technologies.
Collapse
Affiliation(s)
- Shuai Li
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
| | - Marleny Garcia
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
| | - Rachel L. Gewiss
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
| | - Wipawee Winuthayanon
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
- * E-mail:
| |
Collapse
|
22
|
de Veer SJ, Swedberg JE, Brattsand M, Clements JA, Harris JM. Exploring the active site binding specificity of kallikrein-related peptidase 5 (KLK5) guides the design of new peptide substrates and inhibitors. Biol Chem 2016; 397:1237-1249. [DOI: 10.1515/hsz-2016-0112] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 02/16/2016] [Indexed: 12/24/2022]
Abstract
Abstract
Kallikrein-related peptidase 5 (KLK5) is a promising therapeutic target in several skin diseases, including Netherton syndrome, and is emerging as a potential target in various cancers. In this study, we used a sparse matrix library of 125 individually synthesized peptide substrates to characterize the binding specificity of KLK5. The sequences most favored by KLK5 were GRSR, YRSR and GRNR, and we identified sequence-specific interactions involving the peptide N-terminus by analyzing kinetic constants (kcat and KM) and performing molecular dynamics simulations. KLK5 inhibitors were subsequently engineered by substituting substrate sequences into the binding loop (P1, P2 and P4 residues) of sunflower trypsin inhibitor-1 (SFTI-1). These inhibitors were effective against KLK5 but showed limited selectivity, and performing a further substitution at P2′ led to the design of a new variant that displayed improved activity against KLK5 (Ki=4.2±0.2 nm), weak activity against KLK7 and 12-fold selectivity over KLK14. Collectively, these findings provide new insight into the design of highly favored binding sequences for KLK5 and reveal several opportunities for modulating inhibitor selectivity over closely related proteases that will be useful for future studies aiming to develop therapeutic molecules targeting KLK5.
Collapse
|
23
|
Marques PI, Fonseca F, Carvalho AS, Puente DA, Damião I, Almeida V, Barros N, Barros A, Carvalho F, Azkargorta M, Elortza F, Osório H, Matthiesen R, Quesada V, Seixas S. Sequence variation atKLKandWFDCclusters and its association to semen hyperviscosity and other male infertility phenotypes. Hum Reprod 2016; 31:2881-2891. [DOI: 10.1093/humrep/dew267] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 09/15/2016] [Accepted: 10/17/2016] [Indexed: 12/22/2022] Open
|
24
|
Wu Y, Chen Y, Li Q, Gong Y, Liu X, Bi L, Hu C. Upregulation of kallikrein-related peptidase 5 is associated with the malignant behavior of colorectal cancer. Mol Med Rep 2016; 14:2164-70. [DOI: 10.3892/mmr.2016.5516] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 02/22/2016] [Indexed: 11/06/2022] Open
|
25
|
Karakosta TD, Soosaipillai A, Diamandis EP, Batruch I, Drabovich AP. Quantification of Human Kallikrein-Related Peptidases in Biological Fluids by Multiplatform Targeted Mass Spectrometry Assays. Mol Cell Proteomics 2016; 15:2863-76. [PMID: 27371727 DOI: 10.1074/mcp.m115.057695] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Indexed: 12/30/2022] Open
Abstract
Human kallikrein-related peptidases (KLKs) are a group of 15 secreted serine proteases encoded by the largest contiguous cluster of protease genes in the human genome. KLKs are involved in coordination of numerous physiological functions including regulation of blood pressure, neuronal plasticity, skin desquamation, and semen liquefaction, and thus represent promising diagnostic and therapeutic targets. Until now, quantification of KLKs in biological and clinical samples was accomplished by enzyme-linked immunosorbent assays (ELISA). Here, we developed multiplex targeted mass spectrometry assays for the simultaneous quantification of all 15 KLKs. Proteotypic peptides for each KLK were carefully selected based on experimental data and multiplexed in single assays. Performance of assays was evaluated using three different mass spectrometry platforms including triple quadrupole, quadrupole-ion trap, and quadrupole-orbitrap instruments. Heavy isotope-labeled synthetic peptides with a quantifying tag were used for absolute quantification of KLKs in sweat, cervico-vaginal fluid, seminal plasma, and blood serum, with limits of detection ranging from 5 to 500 ng/ml. Analytical performance of assays was evaluated by measuring endogenous KLKs in relevant biological fluids, and results were compared with selected ELISAs. The multiplex targeted proteomic assays were demonstrated to be accurate, reproducible, sensitive, and specific alternatives to antibody-based assays. Finally, KLK4, a highly prostate-specific protein and a speculated biomarker of prostate cancer, was unambiguously detected and quantified by immunoenrichment-SRM assay in seminal plasma and blood serum samples from individuals with confirmed prostate cancer and negative biopsy. Mass spectrometry revealed exclusively the presence of a secreted isoform and thus unequivocally resolved earlier disputes about KLK4 identity in seminal plasma. Measurements of KLK4 in either 41 seminal plasma or 58 blood serum samples revealed no statistically significant differences between patients with confirmed prostate cancer and negative biopsy. The presented multiplex targeted proteomic assays are an alternative analytical tool to study the biological and pathological roles of human KLKs.
Collapse
Affiliation(s)
- Theano D Karakosta
- From the ‡Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; §Department of Clinical Biochemistry, University Health Network, Toronto, Ontario, Canada
| | - Antoninus Soosaipillai
- ¶Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Eleftherios P Diamandis
- From the ‡Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; ‖Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Ihor Batruch
- ‖Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Andrei P Drabovich
- From the ‡Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; ¶Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada;
| |
Collapse
|
26
|
Avgeris M, Scorilas A. Kallikrein-related peptidases (KLKs) as emerging therapeutic targets: focus on prostate cancer and skin pathologies. Expert Opin Ther Targets 2016; 20:801-18. [PMID: 26941073 DOI: 10.1517/14728222.2016.1147560] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Tissue kallikrein and the kallikrein-related peptidases (KLKs) constitute a family of 15 homologous secreted serine proteases with trypsin- or chymotrypsin-like activities, which participate in a broad spectrum of physiological procedures. Deregulated expression and/or activation of the majority of the family members have been reported in several human diseases, thereby making KLKs ideal targets for therapeutic intervention. AREAS COVERED In the present review, we summarize the role of KLKs in normal human physiology and pathology, focusing on prostate cancer and skin diseases. Furthermore, we discuss the recent advances in the development of KLK-based therapies. A great number of diverse engineered KLKs inhibitors with improved potency, selectivity and immunogenicity have been synthesized by redesigning examples that are endogenous and naturally occurring. Moreover, encouraging results have been documented using KLKs-based vaccines and immunotherapies, as well as KLKs-mediated activation of pro-drugs. Finally, KLKs-targeting aptamers and KLKs-based imaging tools represent novel approaches towards the exploitation of KLKs' therapeutic value. EXPERT OPINION The central/critical roles of KLK family in several human pathologies highlight KLKs as attractive molecular targets for developing novel therapeutics.
Collapse
Affiliation(s)
- Margaritis Avgeris
- a Department of Biochemistry and Molecular Biology, Faculty of Biology , University of Athens , Athens , Greece
| | - Andreas Scorilas
- a Department of Biochemistry and Molecular Biology, Faculty of Biology , University of Athens , Athens , Greece
| |
Collapse
|
27
|
da Silva BF, Meng C, Helm D, Pachl F, Schiller J, Ibrahim E, Lynne CM, Brackett NL, Bertolla RP, Kuster B. Towards Understanding Male Infertility After Spinal Cord Injury Using Quantitative Proteomics. Mol Cell Proteomics 2016; 15:1424-34. [PMID: 26814186 DOI: 10.1074/mcp.m115.052175] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Indexed: 10/22/2022] Open
Abstract
The study of male infertility after spinal cord injury (SCI) has enhanced the understanding of seminal plasma (SP) as an important regulator of spermatozoa function. However, the most important factors leading to the diminished sperm motility and viability observed in semen of men with SCI remained unknown. Thus, to explore SP related molecular mechanisms underlying infertility after SCI, we used mass spectrometry-based quantitative proteomics to compare SP retrieved from SCI patients to normal controls. As a result, we present an in-depth characterization of the human SP proteome, identifying ∼2,800 individual proteins, and describe, in detail, the differential proteome observed in SCI. Our analysis demonstrates that a hyper-activation of the immune system may influence some seminal processes, which likely are not triggered by microbial infection. Moreover, we show evidence of an important prostate gland functional failure,i.e.diminished abundance of metabolic enzymes related to ATP turnover and those secreted via prostasomes. Further we identify the main outcome related to this fact and that it is intrinsically linked to the low sperm motility in SCI. Together, our data highlights the molecular pathways hindering fertility in SCI and shed new light on other causes of male infertility.
Collapse
Affiliation(s)
- Barbara Ferreira da Silva
- From the ‡Human Reproduction Section, Division of Urology, Department of Surgery São Paulo Federal University, Brazil
| | - Chen Meng
- §Chair for Proteomics and Bioanalytics, Technische Universität München, Freising, Germany
| | - Dominic Helm
- §Chair for Proteomics and Bioanalytics, Technische Universität München, Freising, Germany
| | - Fiona Pachl
- §Chair for Proteomics and Bioanalytics, Technische Universität München, Freising, Germany
| | - Jürgen Schiller
- ¶Medical Department, Institute of Medical Physics, Universität Leipzig, Leipzig, Germany
| | - Emad Ibrahim
- ‖The Miami Project to Cure Paralysis,University of Miami Miller School of Medicine, Miami, Florida
| | - Charles M Lynne
- **Department of Urology, University of Miami Miller School of Medicine, Miami, Florida
| | - Nancy L Brackett
- ‖The Miami Project to Cure Paralysis,University of Miami Miller School of Medicine, Miami, Florida
| | - Ricardo Pimenta Bertolla
- From the ‡Human Reproduction Section, Division of Urology, Department of Surgery São Paulo Federal University, Brazil
| | - Bernhard Kuster
- §Chair for Proteomics and Bioanalytics, Technische Universität München, Freising, Germany; ‡‡Center for Integrated Protein Science Munich (CIPSM), §§Bavarian Biomolecular Mass Spectrometry Center, Technische Universität München, Freising, Germany
| |
Collapse
|
28
|
Marques PI, Fonseca F, Sousa T, Santos P, Camilo V, Ferreira Z, Quesada V, Seixas S. Adaptive Evolution Favoring KLK4 Downregulation in East Asians. Mol Biol Evol 2015; 33:93-108. [PMID: 26420451 DOI: 10.1093/molbev/msv199] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The human kallikrein (KLK) cluster, located at chromosome 19q13.3-13.4, encodes 15 serine proteases, including neighboring genes (KLK3, KLK2, KLK4, and KLK5) with key roles in the cascades of semen liquefaction, tooth enamel maturation, and skin desquamation. KLK2 and KLK3 were previously identified as targets of adaptive evolution in primates through different mechanisms linked to reproductive biology and, in humans, genome-wide scans of positive selection captured, a yet unexplored, evidence for KLK neutrality departure in East Asians. We perform a detailed evaluation of KLK3-KLK5 variability in the 1000 Genomes samples from East Asia, Europe, and Africa, which was sustained by our own sequencing. In East Asians, we singled out a 70-kb region surrounding KLK4 that combined unusual low levels of diversity, high frequency variants with significant levels of population differentiation (FST > 0.5) and fairly homogenous haplotypes given the large local recombination rates. Among these variants, rs1654556_G, rs198968_T, and rs17800874_A stand out for their location on putative regulatory regions and predicted functional effects, namely the introduction of several microRNA binding sites and a repressor motif. Our functional assays carried out in different cellular models showed that rs198968_T and rs17800874_A operate synergistically to reduce KLK4 expression and could be further assisted by rs1654556_G. Considering the previous findings that KLK4 inactivation causes enamel malformations in humans and mice, and that this gene is coexpressed in epidermal layers along with several substrates involved in either cell adhesion or keratinocyte differentiation, we propose KLK4 as another target of selection in East Asians correlated to tooth and epidermal morphological traits.
Collapse
Affiliation(s)
- Patrícia Isabel Marques
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto (I3S), Porto, Portugal Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal Department of Biochemistry and Molecular Biology-IUOPA, University of Oviedo, Oviedo, Spain Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Filipa Fonseca
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto (I3S), Porto, Portugal Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - Tânia Sousa
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto (I3S), Porto, Portugal Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - Paulo Santos
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto (I3S), Porto, Portugal Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - Vânia Camilo
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto (I3S), Porto, Portugal Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - Zélia Ferreira
- Department of Computational and Systems Biology, University of Pittsburgh
| | - Victor Quesada
- Department of Biochemistry and Molecular Biology-IUOPA, University of Oviedo, Oviedo, Spain
| | - Susana Seixas
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto (I3S), Porto, Portugal Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| |
Collapse
|
29
|
The kallikrein-related peptidase family: Dysregulation and functions during cancer progression. Biochimie 2015; 122:283-99. [PMID: 26343558 DOI: 10.1016/j.biochi.2015.09.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 09/01/2015] [Indexed: 01/07/2023]
Abstract
Cancer is the second leading cause of death with 14 million new cases and 8.2 million cancer-related deaths worldwide in 2012. Despite the progress made in cancer therapies, neoplastic diseases are still a major therapeutic challenge notably because of intra- and inter-malignant tumour heterogeneity and adaptation/escape of malignant cells to/from treatment. New targeted therapies need to be developed to improve our medical arsenal and counter-act cancer progression. Human kallikrein-related peptidases (KLKs) are secreted serine peptidases which are aberrantly expressed in many cancers and have great potential in developing targeted therapies. The potential of KLKs as cancer biomarkers is well established since the demonstration of the association between KLK3/PSA (prostate specific antigen) levels and prostate cancer progression. In addition, a constantly increasing number of in vitro and in vivo studies demonstrate the functional involvement of KLKs in cancer-related processes. These peptidases are now considered key players in the regulation of cancer cell growth, migration, invasion, chemo-resistance, and importantly, in mediating interactions between cancer cells and other cell populations found in the tumour microenvironment to facilitate cancer progression. These functional roles of KLKs in a cancer context further highlight their potential in designing new anti-cancer approaches. In this review, we comprehensively review the biochemical features of KLKs, their functional roles in carcinogenesis, followed by the latest developments and the successful utility of KLK-based therapeutics in counteracting cancer progression.
Collapse
|
30
|
Lizama AJ, Andrade Y, Colivoro P, Sarmiento J, Matus CE, Gonzalez CB, Bhoola KD, Ehrenfeld P, Figueroa CD. Expression and bioregulation of the kallikrein-related peptidases family in the human neutrophil. Innate Immun 2015; 21:575-586. [DOI: 10.1177/1753425914566083] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Abstract
The family of kallikrein-related peptidases (KLKs) has been identified in a variety of immunolabeled human tissue sections, but no previous study has experimentally confirmed their presence in the human neutrophil. We have investigated the expression and bioregulation of particular KLKs in the human neutrophil and, in addition, examined whether stimulation by a kinin B1receptor (B1R) agonist or fMet-Leu-Phe (fMLP) induces their secretion. Western blot analysis of neutrophil homogenates indicated that the MM of the KLKs ranged from 27 to 50 kDa. RT-PCR showed that blood neutrophils expressed only KLK1, KLK4, KLK10, KLK13, KLK14 and KLK15 mRNAs, whereas the non-differentiated HL-60 cells expressed most of them, with exception of KLK3 and KLK7. Nevertheless, mRNAs for KLK2, KLK5, KLK6 and KLK9 that were previously undetectable appeared after challenging with a mixture of cytokines. Both kinin B1R agonist and fMLP induced secretion of KLK1, KLK6, KLK10, KLK13 and KLK14 into the culture medium in similar amounts, whereas the B1R agonist caused the release of lower amounts of KLK2, KLK4 and KLK5. When secreted, the differing proteolytic activity of KLKs provides the human neutrophil with a multifunctional enzymatic capacity supporting a new dimension for its role in human disorders of diverse etiology.
Collapse
Affiliation(s)
- Alejandro J Lizama
- Laboratorio de Patologia Celular, Instituto de Anatomia, Histologia y Patologia, Universidad Austral de Chile, Valdivia, Chile
| | - Yessica Andrade
- Laboratorio de Patologia Celular, Instituto de Anatomia, Histologia y Patologia, Universidad Austral de Chile, Valdivia, Chile
| | - Patricio Colivoro
- Laboratorio de Patologia Celular, Instituto de Anatomia, Histologia y Patologia, Universidad Austral de Chile, Valdivia, Chile
| | - Jose Sarmiento
- Instituto de Fisiologia, Universidad Austral de Chile, Valdivia, Chile
| | - Carola E Matus
- Laboratorio de Patologia Celular, Instituto de Anatomia, Histologia y Patologia, Universidad Austral de Chile, Valdivia, Chile
| | - Carlos B Gonzalez
- Instituto de Fisiologia, Universidad Austral de Chile, Valdivia, Chile
| | - Kanti D Bhoola
- Laboratorio de Patologia Celular, Instituto de Anatomia, Histologia y Patologia, Universidad Austral de Chile, Valdivia, Chile
| | - Pamela Ehrenfeld
- Laboratorio de Patologia Celular, Instituto de Anatomia, Histologia y Patologia, Universidad Austral de Chile, Valdivia, Chile
| | - Carlos D Figueroa
- Laboratorio de Patologia Celular, Instituto de Anatomia, Histologia y Patologia, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
31
|
Larson NB, McDonnell S, French AJ, Fogarty Z, Cheville J, Middha S, Riska S, Baheti S, Nair AA, Wang L, Schaid DJ, Thibodeau SN. Comprehensively evaluating cis-regulatory variation in the human prostate transcriptome by using gene-level allele-specific expression. Am J Hum Genet 2015; 96:869-82. [PMID: 25983244 PMCID: PMC4457953 DOI: 10.1016/j.ajhg.2015.04.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 04/17/2015] [Indexed: 12/17/2022] Open
Abstract
The identification of cis-acting regulatory variation in primary tissues has the potential to elucidate the genetic basis of complex traits and further our understanding of transcriptomic diversity across cell types. Expression quantitative trait locus (eQTL) association analysis using RNA sequencing (RNA-seq) data can improve upon the detection of cis-acting regulatory variation by leveraging allele-specific expression (ASE) patterns in association analysis. Here, we present a comprehensive evaluation of cis-acting eQTLs by analyzing RNA-seq gene-expression data and genome-wide high-density genotypes from 471 samples of normal primary prostate tissue. Using statistical models that integrate ASE information, we identified extensive cis-eQTLs across the prostate transcriptome and found that approximately 70% of expressed genes corresponded to a significant eQTL at a gene-level false-discovery rate of 0.05. Overall, cis-eQTLs were heavily concentrated near the transcription start and stop sites of affected genes, and effects were negatively correlated with distance. We identified multiple instances of cis-acting co-regulation by using phased genotype data and discovered 233 SNPs as the most strongly associated eQTLs for more than one gene. We also noted significant enrichment (25/50, p = 2E-5) of previously reported prostate cancer risk SNPs in prostate eQTLs. Our results illustrate the benefit of assessing ASE data in cis-eQTL analyses by showing better reproducibility of prior eQTL findings than of eQTL mapping based on total expression alone. Altogether, our analysis provides extensive functional context of thousands of SNPs in prostate tissue, and these results will be of critical value in guiding studies examining disease of the human prostate.
Collapse
Affiliation(s)
- Nicholas B Larson
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA.
| | - Shannon McDonnell
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Amy J French
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Zach Fogarty
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA
| | - John Cheville
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Sumit Middha
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Shaun Riska
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Saurabh Baheti
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Asha A Nair
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Liang Wang
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Daniel J Schaid
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Stephen N Thibodeau
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
32
|
Prassas I, Eissa A, Poda G, Diamandis EP. Unleashing the therapeutic potential of human kallikrein-related serine proteases. Nat Rev Drug Discov 2015; 14:183-202. [DOI: 10.1038/nrd4534] [Citation(s) in RCA: 166] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
33
|
Shariff L, Zhu Y, Cowper B, Di WL, Macmillan D. Sunflower trypsin inhibitor (SFTI-1) analogues of synthetic and biological origin via N→S acyl transfer: potential inhibitors of human Kallikrein-5 (KLK5). Tetrahedron 2014. [DOI: 10.1016/j.tet.2014.06.059] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
34
|
Yoon H, Blaber SI, Li W, Scarisbrick IA, Blaber M. Activation profiles of human kallikrein-related peptidases by matrix metalloproteinases. Biol Chem 2014; 394:137-47. [PMID: 23241590 DOI: 10.1515/hsz-2012-0249] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 09/20/2012] [Indexed: 11/15/2022]
Abstract
The 15 human kallikrein-related peptidases (KLKs) are clinically important biomarkers and therapeutic targets of interest in inflammation, cancer, and neurodegenerative disease. KLKs are secreted as inactive pro-forms (pro-KLKs) that are activated extracellularly by specific proteolytic release of their amino-terminal pro-peptide, and this is a key step in their functional regulation. Physiologically relevant KLK regulatory cascades of activation have been described in skin desquamation and semen liquefaction, and work by a large number of investigators has elucidated pairwise and autolytic activation relationships among the KLKs with the potential for more extensive activation cascades. More recent work has asked whether functional intersection of KLKs with other types of regulatory proteases exists. Such studies show a capacity for members of the thrombostasis axis to act as broad activators of pro-KLKs. In the present report, we ask whether such functional intersection is possible between the KLKs and the members of the matrix metalloproteinase (MMP) family by evaluating the ability of the MMPs to activate pro-KLKs. The results identify MMP-20 as a broad activator of pro-KLKs, suggesting the potential for intersection of the KLK and MMP axes under pathological dysregulation of MMP-20 expression.
Collapse
Affiliation(s)
- Hyesook Yoon
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL 32306-4300, USA
| | | | | | | | | |
Collapse
|
35
|
Ma WJ, Guo X, Yu YX, Gao ZQ. Cytoskeleton remodeling and oxidative stress description in morphologic changes of chondrocyte in Kashin-Beck disease. Ultrastruct Pathol 2014; 38:406-12. [PMID: 25192227 DOI: 10.3109/01913123.2014.950779] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Kashin-Beck disease (KBD) is a kind of deformity disease involved in cytoskeleton and inner homeostasis regulation. The enrichment analysis of bioprocess, networks, and related disease set were performed. The development regulation, metabolic process, and apoptosis were important procession in KBD; it revealed the up-regulated process in removal of superoxide radicals, glycolysis and glucose catabolic process, regulation of cytoskeleton rearrangement and phagosome in antigen presentation. Morphological changes of KBD chondrocyte were investigated by transmission electronic microscopy compare with the normal one. The ultrastructure of KBD chondrocyte referred to oxidative stress and metabolic dysfunction has been found.
Collapse
Affiliation(s)
- Wei Juan Ma
- Public Health College of Health Science Center, Xi'an Jiaotong University , Xi'an, Shaanxi , PR China
| | | | | | | |
Collapse
|
36
|
Magni R, Espina BH, Liotta LA, Luchini A, Espina V. Hydrogel nanoparticle harvesting of plasma or urine for detecting low abundance proteins. J Vis Exp 2014:e51789. [PMID: 25145492 DOI: 10.3791/51789] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Novel biomarker discovery plays a crucial role in providing more sensitive and specific disease detection. Unfortunately many low-abundance biomarkers that exist in biological fluids cannot be easily detected with mass spectrometry or immunoassays because they are present in very low concentration, are labile, and are often masked by high-abundance proteins such as albumin or immunoglobulin. Bait containing poly(N-isopropylacrylamide) (NIPAm) based nanoparticles are able to overcome these physiological barriers. In one step they are able to capture, concentrate and preserve biomarkers from body fluids. Low-molecular weight analytes enter the core of the nanoparticle and are captured by different organic chemical dyes, which act as high affinity protein baits. The nanoparticles are able to concentrate the proteins of interest by several orders of magnitude. This concentration factor is sufficient to increase the protein level such that the proteins are within the detection limit of current mass spectrometers, western blotting, and immunoassays. Nanoparticles can be incubated with a plethora of biological fluids and they are able to greatly enrich the concentration of low-molecular weight proteins and peptides while excluding albumin and other high-molecular weight proteins. Our data show that a 10,000 fold amplification in the concentration of a particular analyte can be achieved, enabling mass spectrometry and immunoassays to detect previously undetectable biomarkers.
Collapse
Affiliation(s)
- Ruben Magni
- Center for Applied Proteomics and Molecular Medicine, George Mason University
| | | | - Lance A Liotta
- Center for Applied Proteomics and Molecular Medicine, George Mason University
| | - Alessandra Luchini
- Center for Applied Proteomics and Molecular Medicine, George Mason University
| | - Virginia Espina
- Center for Applied Proteomics and Molecular Medicine, George Mason University;
| |
Collapse
|
37
|
Igawa T, Takehara K, Onita T, Ito K, Sakai H. Stability of [-2]Pro-PSA in whole blood and serum: analysis for optimal measurement conditions. J Clin Lab Anal 2014; 28:315-9. [PMID: 24578247 DOI: 10.1002/jcla.21687] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 08/21/2013] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND The clinical usefulness of [-2]pro-PSA (where PSA is prostate-specific antigen) in prostate cancer diagnosis has been emphasized in recent studies. To determine proper blood sample handling conditions for [-2]pro-PSA evaluation, we analyzed the preanalytical stability of [-2]pro-PSA. METHODS Blood samples from 22 Japanese males were stored under various conditions before total PSA (tPSA), free PSA, and [-2]pro-PSA concentrations were measured, and the preanalytical stability of [-2]pro-PSA and the changes in the Prostate Health Index (phi) were assessed. RESULTS [-2]Pro-PSA was stable in serum for at least 24 hr at both room temperature (RT) and at 4°C. However, [-2]pro-PSA levels in whole blood increased rapidly over time, particularly at RT. Mean recovery (%) of [-2]pro-PSA in whole blood at RT was >110% at 1 hr after drawing of blood. The phi tended to increase over time in a pattern similar to the change in[-2]pro-PSA. CONCLUSIONS Preanalytical stability was lower for [-2]pro-PSA than for free PSA or tPSA. Whole-blood [-2]pro-PSA increased in a time-dependent manner, particularly at RT. Thus, whole blood samples collected at RT should be centrifuged within 1 hr after drawing. The [-2]pro-PSA in serum is stable for at least 24 hr at both RT and at 4°C.
Collapse
Affiliation(s)
- Tsukasa Igawa
- Department of Nephro-urology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | | | | | | | | |
Collapse
|
38
|
Circulating microRNAs and kallikreins before and after radical prostatectomy: are they really prostate cancer markers? BIOMED RESEARCH INTERNATIONAL 2013; 2013:241780. [PMID: 24288670 PMCID: PMC3830854 DOI: 10.1155/2013/241780] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 08/09/2013] [Accepted: 08/23/2013] [Indexed: 01/04/2023]
Abstract
The aim of our study was to monitor serum levels of two miRNAs (miR-21 and miR-141) and three KLKs (hK3/PSA, hK11, and hK13) before and 1, 5, and 30 days after radical prostatectomy, in order to characterize their fluctuations after surgery. 38 patients with prostate cancer were included. miR-21 and miR-141 were quantified through real-time PCR, while ELISA assays were used to quantify hK3 (PSA), hK11, and hK13. Both miR-21 and miR-141 showed a significant increase at the 5th postoperative day, after which a gradual return to the preoperative levels was recorded. These findings suggest that miR-21 and miR-141 could be involved in postsurgical inflammatory processes and that radical prostatectomy does not seem to alter their circulating levels. Postoperative serum kallikreins showed a significant decrease, highlighting the potential usefulness of kallikreins apart from PSA as potential prostate cancer markers.
Collapse
|
39
|
Hamilton BS, Whittaker GR. Cleavage activation of human-adapted influenza virus subtypes by kallikrein-related peptidases 5 and 12. J Biol Chem 2013; 288:17399-407. [PMID: 23612974 DOI: 10.1074/jbc.m112.440362] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A critical step in the influenza virus replication cycle is the cleavage activation of the HA precursor. Cleavage activation of influenza HA enables fusion with the host endosome, allowing for release of the viral genome into the host cell. To date, studies have determined that HA activation is driven by trypsin-like host cell proteases, as well as yet to be identified bacterial proteases. Although the number of host proteases that can activate HA is growing, there is still uncertainty regarding which secreted proteases are able to support multicycle replication of influenza. In this study, we have determined that the kallikrein-related peptidases 5 and 12 are secreted from the human respiratory tract and have the ability to cleave and activate HA from the H1, H2, and H3 subtypes. Each peptidase appears to have a preference for particular influenza subtypes, with kallikrein 5 cleaving the H1 and H3 subtypes most efficiently and kallikrein 12 cleaving the H1 and H2 subtypes most efficiently. Cleavage analysis using HA cleavage site peptide mimics revealed that the amino acids neighboring the arginine cleavage site affect cleavage efficiency. Additionally, the thrombolytic zymogens plasminogen, urokinase, and plasma kallikrein have all been shown to cleave and activate influenza but are found circulating mainly as inactive precursors. Kallikrein 5 and kallikrein 12 were examined for their ability to activate the thrombolytic zymogens, and both resulted in activation of each zymogen, with kallikrein 12 being a more potent activator. Activation of the thrombolytic zymogens may therefore allow for both direct and indirect activation of the HA of human-adapted influenza viruses by kallikrein 5 and kallikrein 12.
Collapse
Affiliation(s)
- Brian S Hamilton
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, USA
| | | |
Collapse
|
40
|
Loessner D, Quent VMC, Kraemer J, Weber EC, Hutmacher DW, Magdolen V, Clements JA. Combined expression of KLK4, KLK5, KLK6, and KLK7 by ovarian cancer cells leads to decreased adhesion and paclitaxel-induced chemoresistance. Gynecol Oncol 2012; 127:569-78. [PMID: 22964375 DOI: 10.1016/j.ygyno.2012.09.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 08/10/2012] [Accepted: 09/02/2012] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Chemoresistance is a critical feature of advanced ovarian cancer with only 30% of patients surviving longer than 5 years. We have previously shown that four kallikrein-related (KLK) peptidases, KLK4, KLK5, KLK6 and KLK7 (KLK4-7), are implicated in peritoneal invasion and tumour growth, but underlying mechanisms were not identified. We also reported that KLK7 overexpression confers chemoresistance to paclitaxel, and cell survival via integrins. In this study, we further explored the functional consequenses of overexpression of all four KLKs (KLK4-7) simultaneously in the ovarian cancer cell line, OV-MZ-6, and its impact on integrin expression and signalling, cell adhesion and survival as contributors to chemoresistance and metastatic progression. METHODS Quantitative gene and protein expression analyses, confocal microscopy, cell adhesion and chemosensitivity assays were performed. RESULTS Expression of α5β1/αvβ3 integrins was downregulated upon combined stable KLK4-7 overexpression in OV-MZ-6 cells. Accordingly, the adhesion of these cells to vitronectin and fibronectin, the extracellular matrix binding proteins of α5β1/αvβ3 integrins and two predominant proteins of the peritoneal matrix, was decreased. KLK4-7-transfected cells were more resistant to paclitaxel (10-100 nmol/L: 38-54%), but not to carboplatin, which was associated with decreased apoptotic stimuli. However, the KLK4-7-induced paclitaxel resistance was not blocked by the MEK1/2 inhibitor, U0126. CONCLUSIONS This study demonstrates that combined KLK4-7 expression by ovarian cancer cells promotes reduced integrin expression with consequently less cell-matrix attachment, and insensitivity to paclitaxel mediated by complex integrin and MAPK independent interactions, indicative of a malignant phenotype and disease progression suggesting a role for these KLKs in this process.
Collapse
Affiliation(s)
- Daniela Loessner
- Cancer Program, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, Brisbane, Queensland 4059, Australia
| | | | | | | | | | | | | |
Collapse
|
41
|
Fu S, Deng Q, Yang W, Ding H, Wang X, Li P, Li X, Wang Z, Li X, Liu G. Increase of Fatty Acid Oxidation and VLDL Assembly and Secretion Overexpression of PTEN in Cultured Hepatocytes of Newborn Calf. Cell Physiol Biochem 2012; 30:1005-13. [DOI: 10.1159/000341477] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2012] [Indexed: 11/19/2022] Open
|
42
|
Kriegel AJ, Liu Y, Cohen B, Usa K, Liu Y, Liang M. MiR-382 targeting of kallikrein 5 contributes to renal inner medullary interstitial fibrosis. Physiol Genomics 2011; 44:259-67. [PMID: 22202692 DOI: 10.1152/physiolgenomics.00173.2011] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Previously we have shown that microRNA miR-382 can facilitate loss of renal epithelial characteristics in cultured cells. This study examined the in vivo role of miR-382 in the development of renal interstitial fibrosis in a mouse model. Unilateral ureteral obstruction was used to induce renal interstitial fibrosis in mice. With 3 days of unilateral ureteral obstruction, expression of miR-382 in the obstructed kidney was increased severalfold compared with sham-operated controls. Intravenous delivery of locked nucleic acid-modified anti-miR-382 blocked the increase in miR-382 expression and significantly reduced inner medullary fibrosis. Expression of predicted miR-382 target kallikrein 5, a proteolytic enzyme capable of degrading several extracellular matrix proteins, was reduced with unilateral ureteral obstruction. Anti-miR-382 treatment prevented the reduction of kallikrein 5 in the inner medulla. Furthermore, the protective effect of the anti-miR-382 treatment against fibrosis was abolished by renal knockdown of kallikrein 5. Targeting of kallikrein 5 by miR-382 was confirmed by 3'-untranslated region luciferase assay. These data support a completely novel mechanism in which miR-382 targets kallikrein 5 and contributes to the development of renal inner medullary interstitial fibrosis. The study provided the first demonstration of an in vivo functional role of miR-382 in any species and any organ system.
Collapse
Affiliation(s)
- Alison J Kriegel
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | | | | | | | | |
Collapse
|
43
|
Pépin D, Shao ZQ, Huppé G, Wakefield A, Chu CW, Sharif Z, Vanderhyden BC. Kallikreins 5, 6 and 10 differentially alter pathophysiology and overall survival in an ovarian cancer xenograft model. PLoS One 2011; 6:e26075. [PMID: 22102857 PMCID: PMC3216928 DOI: 10.1371/journal.pone.0026075] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Accepted: 09/19/2011] [Indexed: 12/31/2022] Open
Abstract
Human tissue kallikreins (KLKs) are members of a multigene family of serine proteases aberrantly expressed in many cancer types. In ovarian cancer, 12 KLKs are upregulated, and of those KLK5, 6 and 10 have been the focus of investigations into new diagnostic and prognostic biomarkers. However, little is known about the contributions of KLK5, 6 and 10 to ovarian cancer pathophysiology. In this study, a panel of 13 human ovarian cancer cell lines was screened by ELISA for secretion of KLK5, 6, 8, 10, 13, and 14. The ES-2 cell line, devoid of these kallikreins, was transfected with expression vectors of KLK5, 6 and 10 individually or in pairs. Co-expression of KLK5, 6 and 10 was correlated with lessened aggressivity of ovarian cancer cell lines as defined by reduced colony formation in soft agar and tumorigenicity in nude mice. ES-2 clones overexpressing KLK5, 10/5, 10/6, 5/6 made significantly fewer colonies in soft agar. When compared to control mice, survival of mice injected with ES-2 clones overexpressing KLK10, 10/5, 10/6, 5/6 was significantly longer, while KLK6 was shorter. All groups displaying a survival advantage also differed quantitatively and qualitatively in their presentation of ascites, with both a reduced incidence of ascites and an absence of cellular aggregates within those ascites. The survival advantage conferred by KLK10 overexpression could be recapitulated with the exogenous administration of a recombinant KLK10. In conclusion, these findings indicate that KLK5, 6 and 10 may modulate the progression of ovarian cancer, and interact together to alter tumour pathophysiology. Furthermore, results support the putative role of KLK10 as a tumour suppressor and suggest it may hold therapeutic potential in ovarian cancer.
Collapse
Affiliation(s)
- David Pépin
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Centre for Cancer Therapeutics, Ottawa Health Research Institute, Ottawa, Ontario, Canada
| | | | | | | | - Chee-Wui Chu
- Ibex Pharmaceuticals Inc., Montreal, Quebec, Canada
| | - Zahra Sharif
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Centre for Cancer Therapeutics, Ottawa Health Research Institute, Ottawa, Ontario, Canada
| | - Barbara C. Vanderhyden
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Centre for Cancer Therapeutics, Ottawa Health Research Institute, Ottawa, Ontario, Canada
- * E-mail:
| |
Collapse
|
44
|
Bayani J, Diamandis EP. The physiology and pathobiology of human kallikrein-related peptidase 6 (KLK6). Clin Chem Lab Med 2011; 50:211-33. [PMID: 22047144 DOI: 10.1515/cclm.2011.750] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Accepted: 09/21/2011] [Indexed: 12/11/2022]
Abstract
The human kallikrein-related peptidase 6 (KLK6) gene belongs to the 15-member kallikrein (KLK) gene family mapping to chromosome 19q13.3-13.4. Encoding for an enzyme with trypsin-like properties, KLK6 can degrade components of the extracellular matrix. The successful utilisation of another KLK member (KLK3/PSA) for prostate cancer diagnosis has led many to evaluate KLK6 as a potential biomarker for other cancer and diseased states. The observed dysregulated expression in cancers, neurodegenerative diseases and skin conditions has led to the discovery that KLK6 participates in other cellular pathways including inflammation, receptor activation and regulation of apoptosis. Moreover, the improvements in high-throughput genomics have not only enabled the identification of sequence polymorphisms, but of transcript variants, whose functional significances have yet to be realised. This comprehensive review will summarise the current findings of KLK6 pathophysiology and discuss its potential as a viable biomarker.
Collapse
Affiliation(s)
- Jane Bayani
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | | |
Collapse
|
45
|
Kerschgens J, Renaud S, Schütz F, Grasso L, Egener-Kuhn T, Delaloye JF, Lehr HA, Vogel H, Mermod N. Protein-binding microarray analysis of tumor suppressor AP2α target gene specificity. PLoS One 2011; 6:e22895. [PMID: 21876733 PMCID: PMC3158074 DOI: 10.1371/journal.pone.0022895] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Accepted: 07/08/2011] [Indexed: 12/22/2022] Open
Abstract
Cheap and massively parallel methods to assess the DNA-binding specificity of transcription factors are actively sought, given their prominent regulatory role in cellular processes and diseases. Here we evaluated the use of protein-binding microarrays (PBM) to probe the association of the tumor suppressor AP2α with 6000 human genomic DNA regulatory sequences. We show that the PBM provides accurate relative binding affinities when compared to quantitative surface plasmon resonance assays. A PBM-based study of human healthy and breast tumor tissue extracts allowed the identification of previously unknown AP2α target genes and it revealed genes whose direct or indirect interactions with AP2α are affected in the diseased tissues. AP2α binding and regulation was confirmed experimentally in human carcinoma cells for novel target genes involved in tumor progression and resistance to chemotherapeutics, providing a molecular interpretation of AP2α role in cancer chemoresistance. Overall, we conclude that this approach provides quantitative and accurate assays of the specificity and activity of tumor suppressor and oncogenic proteins in clinical samples, interfacing genomic and proteomic assays.
Collapse
Affiliation(s)
- Jan Kerschgens
- Institute of Biotechnology, University of Lausanne, Lausanne, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
PSA affects prostate cancer cell invasion in vitro and induces an osteoblastic phenotype in bone in vivo. Prostate Cancer Prostatic Dis 2011; 14:286-94. [PMID: 21826098 DOI: 10.1038/pcan.2011.34] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Patients with advanced prostate cancer frequently have a poor prognosis as a result of metastasis and present with high serum PSA levels. There is evidence suggesting that the serine protease activity of PSA could be involved in the invasion and metastasis of prostate cancer. In this study, we determined the effects of PSA and its precursor, pro-PSA, on invasion and the type of bone metastasis. METHODS We stably transfected prostate adenocarcinoma cells, human DU-145 and rat MatLyLu, with either the full-length prepro-PSA sequence or pre-PSA DNA, to generate subclones of cells that secrete pro-PSA or free PSA, respectively. Secretion of PSA was measured by western blot analysis and enzyme-linked immunosorbent assay (ELISA). The invasive and migratory properties of the cells were determined using a basement membrane extract and were compared with corresponding empty vector control cells. Twelve days after injection of PSA-secreting MatLyLu cells into the femora of nude mice, bone tumor burden and histomorphometry were determined using a stereological technique. RESULTS The transfected cells secreted 0.15-2.23 ng PSA/10(6) cells/day. Pro-PSA-secreting subclones increased invasion and migration by 24-263%. Conversely, the PSA-secreting subclones significantly reduced both invasion and migration by 59-70%. The divergent effects on invasion and migration observed in pro-PSA- and PSA-secreting subclones indicate that different forms of PSA may have different functions. Intrafemoral injections with PSA-secreting MatLyLu cells resulted in an increase in osteoblastic parameters when compared with non-PSA-secreting subclones as measured by bone histomorphometry. Concomitantly, a decrease in osteoclasts and eroded surface was observed. CONCLUSIONS Our in vitro data suggest that PSA, dependent on the predominant form secreted, may decrease or increase invasive properties of prostate cancer cells. The in vivo results indicate that PSA in the bone microenvironment may contribute to the osteoblastic phenotype of bone metastasis frequently observed in prostate cancer.
Collapse
|
47
|
Avgeris M, Papachristopoulou G, Polychronis A, Scorilas A. Down-regulation of kallikrein-related peptidase 5 (KLK5) expression in breast cancer patients: a biomarker for the differential diagnosis of breast lesions. Clin Proteomics 2011; 8:5. [PMID: 21906360 PMCID: PMC3167201 DOI: 10.1186/1559-0275-8-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Accepted: 05/31/2011] [Indexed: 01/02/2023] Open
Abstract
Background Kallikrein-related peptidase 5 (KLK5) is a secreted trypsin-like protease of the KLK family, encoded by the KLK5 gene. KLK5 has been found to cleave various extracellular matrix components, as well as to activate several other KLK proteases, triggering the stimulation of tissue microenvironment proteolytic cascades. Material and Methods KLK5 expression levels were quantified in 102 cancerous and benign breast tissue specimens, obtained by randomly chosen patients, using RT-qPCR assay. Subsequently, advanced biostatistics were applied in order to analyze the KLK5 expression profile in the two patients' cohorts and also to evaluate its clinical significance for the discrimination of breast tumors. Results A statistically significant (p < 0.001) down-regulation of the KLK5 expression levels were observed in the malignant specimens compared to the benign ones. Logistic regression and ROC curve analysis revealed the significant (p < 0.001) and the independent (p < 0.001) value of the KLK5 expression quantification, for the discrimination of the malignant from the benign mammary gland biopsies. Moreover, KLK5 expression levels correlate with the pre-menopausal status (p < 0.005) as well as the ER-negative staining (p = 0.028) of women with breast cancer. Conclusions The quantification of KLK5 expression in breast tissue biopsies may be considered as a novel and independent biomarker for the differential diagnosis between malignant and benign tumors of the mammary gland.
Collapse
Affiliation(s)
- Margaritis Avgeris
- Department of Biochemistry and Molecular Biology, University of Athens, Panepistimiopolis, 15701 Athens, Greece.
| | | | | | | |
Collapse
|
48
|
|
49
|
Involvement of corneodesmosome degradation and lamellar granule transportation in the desquamation process. Med Mol Morphol 2011; 44:1-6. [DOI: 10.1007/s00795-010-0513-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Accepted: 04/26/2010] [Indexed: 12/13/2022]
|
50
|
Jiang R, Shi Z, Johnson JJ, Liu Y, Stack MS. Kallikrein-5 promotes cleavage of desmoglein-1 and loss of cell-cell cohesion in oral squamous cell carcinoma. J Biol Chem 2011; 286:9127-35. [PMID: 21163944 PMCID: PMC3059049 DOI: 10.1074/jbc.m110.191361] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Revised: 11/24/2010] [Indexed: 11/06/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) ranks among the top 8 causes of cancer death worldwide, with only a 60% 5-year survival rate, highlighting the need for discovery of novel biomarkers and therapeutic targets. We have previously reported that expression of a panel of serine proteinase kallikreins (KLK 5, 7, 8, and 10) is correlated with formation of more aggressive OSCC tumors in a murine orthotopic OSCC model and is elevated in human OSCC. Current studies focus on understanding the potential role of KLK5 in OSCC progression. In initial studies, KLK levels in malignant OSCC cells (SCC25) were compared with cells from normal oral mucosa (OKF/6) and pre-malignant oral keratinocytes (pp126) using qPCR. A marked elevation of all KLKs was observed in aggressive SCC25 cells relative to OKF/6 cells. In normal skin, KLKs are involved in desquamation during epidermal differentiation via proteolytic cleavage of the desmosomal cadherin component desmoglein 1 (Dsg1). As loss of cell-cell cohesion is prevalent in tumor metastasis, Dsg1 integrity was evaluated. Results show that SCC25 cells exhibit cleavage of Dsg1, which is blocked by proteinase inhibitor treatment as well as by siRNA silencing of KLK5 expression. Furthermore, cell-cell aggregation assays demonstrate that silencing of KLK5 enforces cell-cell adhesion; conversely, overexpression of KLK5 in normal oral mucosal cells (OKF/6) enhances cell dispersal. These data suggest that KLK5 may promote metastatic dissemination of OSCC by promoting loss of junctional integrity through cleavage of desmoglein 1.
Collapse
Affiliation(s)
- Rong Jiang
- From the Department of Pathology and Anatomical Science and
| | - Zonggao Shi
- From the Department of Pathology and Anatomical Science and
| | | | - Yueying Liu
- From the Department of Pathology and Anatomical Science and
| | - M. Sharon Stack
- From the Department of Pathology and Anatomical Science and
- Medical Pharmacology & Physiology, University of Missouri School of Medicine, Columbia, Missouri 65212
| |
Collapse
|