1
|
Korbelik M, Heger M, Girotti AW. Participation of lipids in the tumor response to photodynamic therapy and its exploitation for therapeutic gain. J Lipid Res 2024:100729. [PMID: 39675508 DOI: 10.1016/j.jlr.2024.100729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 11/19/2024] [Accepted: 12/06/2024] [Indexed: 12/17/2024] Open
Abstract
Hydroperoxides of unsaturated membrane lipids (LOOHs) are the most abundant non-radical intermediates generated by photodynamic therapy (PDT) of soft tissues such as tumors and have far longer average lifetimes than singlet oxygen or oxygen radicals formed during initial photodynamic action. LOOH-initiated post-irradiation damage to remaining membrane lipids (chain peroxidation) or to membrane-associated proteins remains largely unrecognized. Such after-light processes could occur during clinical oncological PDT, but this is not well-perceived by practitioners of this therapy. In general, the pivotal influence of lipids in tumor responses to PDT needs to be better appreciated. Of related importance is the fact that most malignant tumors have dramatically different lipid metabolism compared with healthy tissues, and this is often ignored. The response of tumors to PDT appears especially vulnerable to manipulations within the tumor lipid microenvironment. This can be exploited for therapeutic gain with oncological PDT, as exemplified here by the combined treatment with antitumor lipid edelfosine.
Collapse
Affiliation(s)
- Mladen Korbelik
- Department of Integrative Oncology, BC Cancer, Vancouver, BC V5Z 1L3, Canada
| | - Michal Heger
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, 314001 Jiaxing, Zhejiang, P. R. China; Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CS Utrecht, the Netherlands; Membrane Biochemistry and Biophysics, Department of Chemistry, Faculty of Science, 3584 CS Utrecht University, Utrecht, the Netherlands.
| | - Albert W Girotti
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
2
|
Lapoot L, Jabeen S, O’Connor RM, Korytowski W, Girotti A, Greer A. Photosensitized Oxidative Damage from a New Perspective: The Influence of Before-Light and After-Light Reaction Conditions. J Org Chem 2024; 89:12873-12885. [PMID: 39231123 PMCID: PMC11421024 DOI: 10.1021/acs.joc.4c01305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/17/2024] [Accepted: 08/22/2024] [Indexed: 09/06/2024]
Abstract
Photooxidative damage is heavily influenced by the presence of bioactive agents. Conversely, bioactive agents influence the local environment, which in turn is perturbed by photooxidative damage. These sorts of processes give rise to a version of the "chicken-and-egg" quandary. In this Perspective, we probe this issue by referring to photooxidative damage in one direction as the light-dark (L-D) sequence and in a second direction as the dark-light (D-L) sequence with a reversed cause and effect. The L-D sequence can lead to the downstream production of reactive molecular species (RMS) in the dark, whereas the D-L sequence can be a pre-irradiation period, such as an additive to limit cellular iron levels to enhance biosynthesized amounts of a protoporphyrin sensitizer. A third direction comes from L-D or D-L sequences, or both simultaneously, which can also be useful for optimizing photodynamics. Photodynamic optimization will benefit from understanding and quantitating unidirectional L-D and D-L pathways, and bidirectional L-D/D-L pathways, for improved control over photooxidative damage. Photooxidative damage, which occurs during anticancer photodynamic therapy (PDT), will be shown to involve RMS. Such RMS include persulfoxides (R2S+OO-), NO2•, peroxynitrate (O2NOO-), OOSCN-, SO3•-, selenocyanogen [(SeCN)2], the triselenocyanate anion [(SeCN)3-], I•, I2•-, I3-, and HOOI, as well as additives to destabilize membranes (e.g., caspofungin and saponin A16), inhibit DNA synthesis (5-fluorouracil), or sequester iron (desferrioxamine). In view of the success that additive natural products and repurposed drugs have had in PDT, a Perspective of additive types is expected to reveal mechanistic details for enhanced photooxidation reactions in general. Indeed, strategies for how to potentiate photooxidations with additives remain highly underexplored.
Collapse
Affiliation(s)
- Lloyd Lapoot
- Department
of Chemistry, Brooklyn College of the City
University of New York, Brooklyn, New York 11210, United States
- Ph.D.
Program in Biochemistry, The Graduate Center
of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
| | - Shakeela Jabeen
- Department
of Chemistry, Brooklyn College of the City
University of New York, Brooklyn, New York 11210, United States
- Ph.D.
Program in Chemistry, The Graduate Center
of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
| | - Ryan M. O’Connor
- Department
of Chemistry, Brooklyn College of the City
University of New York, Brooklyn, New York 11210, United States
| | - Witold Korytowski
- Department
of Biophysics, Jagiellonian University, Gołębia 24 Street, 31-007 Kraków, Poland
- Department
of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Albert Girotti
- Department
of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Alexander Greer
- Department
of Chemistry, Brooklyn College of the City
University of New York, Brooklyn, New York 11210, United States
- Ph.D.
Program in Biochemistry, The Graduate Center
of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
- Ph.D.
Program in Chemistry, The Graduate Center
of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
| |
Collapse
|
3
|
Dai T, Xue X, Huang J, Yang Z, Xu P, Wang M, Xu W, Feng Z, Zhu W, Xu Y, Chen J, Li S, Meng Q. SCP2 mediates the transport of lipid hydroperoxides to mitochondria in chondrocyte ferroptosis. Cell Death Discov 2023; 9:234. [PMID: 37422468 DOI: 10.1038/s41420-023-01522-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/15/2023] [Accepted: 06/22/2023] [Indexed: 07/10/2023] Open
Abstract
Sterol carrier protein 2 (SCP2) is highly expressed in human osteoarthritis (OA) cartilage, accompanied by ferroptosis hallmarks, especially the accumulation of lipid hydroperoxides (LPO). However, the role of SCP2 in chondrocyte ferroptosis remains unexplored. Here, we identify that SCP2 transports cytoplasmic LPO to mitochondria in RSL3-induced chondrocyte ferroptosis, resulting in mitochondrial membrane damage and release of reactive oxygen species (ROS). The localization of SCP2 on mitochondria is associated with mitochondrial membrane potential, but independent of microtubules transport or voltage-dependent anion channel. Moreover, SCP2 promotes lysosomal LPO increase and lysosomal membrane damage through elevating ROS. However, SCP2 is not directly involved in the cell membrane rupture caused by RSL3. Inhibition of SCP2 markedly protects mitochondria and reduces LPO levels, attenuating chondrocyte ferroptosis in vitro and alleviating the progression of OA in rats. Our study demonstrates that SCP2 mediates the transport of cytoplasmic LPO to mitochondria and the spread of intracellular LPO, accelerating chondrocyte ferroptosis.
Collapse
Affiliation(s)
- Tianming Dai
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510220, China
| | - Xiang Xue
- Department of Orthopedics, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510220, China
| | - Jian Huang
- Department of Orthopedics, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510220, China
| | - Zhenyu Yang
- Department of Orthopedics, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510220, China
| | - Pengfei Xu
- Department of Thoracic and Vascular Surgery, University Hospital Ulm, Albert-Einstein-Allee 23, 89081, Ulm, Germany
| | - Min Wang
- Department of Orthopedics, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510220, China
| | - Wuyan Xu
- Department of Orthopedics, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510220, China
| | - Zhencheng Feng
- Department of Orthopedics, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510220, China
| | - Weicong Zhu
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510220, China
| | - Yangyang Xu
- Guizhou Medical University, Guiyang, 550025, China
| | - Junyan Chen
- Guizhou Medical University, Guiyang, 550025, China
| | - Siming Li
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510220, China.
| | - Qingqi Meng
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510220, China.
| |
Collapse
|
4
|
Girotti AW, Korytowski W. Intermembrane Translocation of Photodynamically Generated Lipid Hydroperoxides: Broadcasting of Redox Damage. Photochem Photobiol 2022; 98:591-597. [PMID: 34633674 PMCID: PMC8995396 DOI: 10.1111/php.13537] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/02/2021] [Indexed: 12/15/2022]
Abstract
Lipid hydroperoxides (LOOHs), including cholesterol- and phospholipid-derived species, are reactive intermediates that arise during photosensitized peroxidation of unsaturated lipids in biological membranes. These intermediates may appear in cancer cell membranes during anti-tumor photodynamic therapy (PDT). Photodynamically generated LOOHs have several different fates, including (a) iron-catalyzed one-electron reduction to free radical species which trigger damaging chain peroxidation reactions, (b) selenoperoxidase-catalyzed two-electron reduction to redox-inert alcohols (LOHs), and (c) spontaneous or protein-mediated translocation to other lipid membrane compartments where (a) or (b) may take place. These different LOOH fates will be described in this review, but with special attention to category (c), which the authors were the first to describe and characterize. Seminal early findings on cholesterol hydroperoxide (ChOOH) translocation and its potential negative consequences will be discussed. In reviewing this work, we wish to congratulate Jean Cadet, for his many outstanding accomplishments as a photobiologist and P&P editor.
Collapse
Affiliation(s)
- Albert W. Girotti
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | | |
Collapse
|
5
|
Xu C, Li H, Tang CK. Sterol Carrier Protein 2: A promising target in the pathogenesis of atherosclerosis. Genes Dis 2022; 10:457-467. [DOI: 10.1016/j.gendis.2021.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/21/2021] [Accepted: 12/01/2021] [Indexed: 10/19/2022] Open
|
6
|
Miyamoto S, Lima RS, Inague A, Viviani LG. Electrophilic oxysterols: generation, measurement and protein modification. Free Radic Res 2021; 55:416-440. [PMID: 33494620 DOI: 10.1080/10715762.2021.1879387] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Cholesterol is an essential component of mammalian plasma membranes. Alterations in sterol metabolism or oxidation have been linked to various pathological conditions, including cardiovascular diseases, cancer, and neurodegenerative disorders. Unsaturated sterols are vulnerable to oxidation induced by singlet oxygen and other reactive oxygen species. This process yields reactive sterol oxidation products, including hydroperoxides, epoxides as well as aldehydes. These oxysterols, in particular those with high electrophilicity, can modify nucleophilic sites in biomolecules and affect many cellular functions. Here, we review the generation and measurement of reactive sterol oxidation products with emphasis on cholesterol hydroperoxides and aldehyde derivatives (electrophilic oxysterols) and their effects on protein modifications.
Collapse
Affiliation(s)
- Sayuri Miyamoto
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Rodrigo S Lima
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Alex Inague
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Lucas G Viviani
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
7
|
Nitric Oxide Inhibition of Chain Lipid Peroxidation Initiated by Photodynamic Action in Membrane Environments. Cell Biochem Biophys 2020; 78:149-156. [PMID: 32303898 DOI: 10.1007/s12013-020-00909-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/30/2020] [Indexed: 02/07/2023]
Abstract
Iron-catalyzed, free radical-mediated lipid peroxidation may play a major role in tumor cell killing by photodynamic therapy (PDT), particularly when membrane-localizing photosensitizers are employed. Many cancer cells exploit endogenous iNOS-generated NO for pro-survival/expansion purposes and for hyper-resistance to therapeutic modalities, including PDT. In addition to inhibiting the pro-oxidant activity of Fe(II) via nitrosylation, NO may intercept downstream lipid oxyl and peroxyl radicals, thereby acting as a chain-breaking antioxidant. We investigated this for the first time in the context of PDT by using POPC/Ch/PpIX (100:80:0.2 by mol) liposomes (LUVs) as a model system. Cholesterol (Ch or [14C]Ch) served as an in-situ peroxidation probe and protoporphyrin IX (PpIX) as photosensitizer. PpIX-sensitized lipid peroxidation was monitored by two analytical methods that we developed: HPLC-EC(Hg) and HPTLC-PI. 5α-hydroperoxy-Ch (5α-OOH) accumulated rapidly and linearly with irradiation time, indicating singlet oxygen (1O2) intermediacy. When ascorbate (AH-) and trace lipophilic iron [Fe(HQ)3] were included, 7α/7β-hydroperoxy-Ch (7-OOH) accumulated exponentially, indicating progressively greater membrane-damaging chain lipid peroxidation. With AH-/Fe(HQ)3 present, the NO donor SPNO had no effect on 5α-OOH formation, but dose-dependently inhibited 7-OOH formation due to NO interception of chain-carrying oxyl and peroxyl radicals. Similar results were obtained when cancer cells were PpIX/light-treated, using SPNO or activated macrophages as the NO source. These findings implicate chain lipid peroxidation in PDT-induced cytotoxicity and NO as a potent antagonist thereof by acting as a chain-breaking antioxidant. Thus, unless NO formation in aggressive tumors is suppressed, it can clearly compromise PDT efficacy.
Collapse
|
8
|
Girotti AW, Korytowski W. Cholesterol Peroxidation as a Special Type of Lipid Oxidation in Photodynamic Systems. Photochem Photobiol 2018; 95:73-82. [PMID: 29962109 DOI: 10.1111/php.12969] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 06/15/2018] [Indexed: 02/06/2023]
Abstract
Like other unsaturated lipids in cell membranes and lipoproteins, cholesterol (Ch) is susceptible to oxidative modification, including photodynamic oxidation. There is a sustained interest in the pathogenic properties of Ch oxides such as those generated by photooxidation. Singlet oxygen (1 O2 )-mediated Ch photooxidation (Type II mechanism) gives rise to three hydroperoxide (ChOOH) isomers: 5α-OOH, 6α-OOH and 6β-OOH, the 5α-OOH yield far exceeding that of the others. 5α-OOH detection is relatively straightforward and serves as a definitive indicator of 1 O2 involvement in a reaction, photochemical or otherwise. Like all lipid hydroperoxides (LOOHs), ChOOHs can disrupt membrane or lipoprotein structure/function on their own, but subsequent light-independent reactions may either intensify or attenuate such effects. Such reactions include (1) one-electron reduction to redox-active free radical intermediates, (2) two-electron reduction to redox-silent alcohols and (3) translocation to other lipid compartments, where (1) or (2) may take place. In addition to these effects, ChOOHs may act as signaling molecules in reactions that affect cell fates. Although processes a-c have been well studied for ChOOHs, signaling activity is still poorly understood compared with that of hydrogen peroxide. This review focuses on these various aspects Ch photoperoxidation and its biological consequences.
Collapse
Affiliation(s)
- Albert W Girotti
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI
| | | |
Collapse
|
9
|
He H, Wang J, Yannie PJ, Kakiyama G, Korzun WJ, Ghosh S. Sterol carrier protein-2 deficiency attenuates diet-induced dyslipidemia and atherosclerosis in mice. J Biol Chem 2018; 293:9223-9231. [PMID: 29700117 DOI: 10.1074/jbc.ra118.002290] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/25/2018] [Indexed: 01/05/2023] Open
Abstract
Intracellular cholesterol transport proteins move cholesterol to different subcellular compartments and thereby regulate its final metabolic fate. In hepatocytes, for example, delivery of high-density lipoprotein (HDL)-associated cholesterol for bile acid synthesis or secretion into bile facilitates cholesterol elimination from the body (anti-atherogenic effect), whereas delivery for esterification and subsequent incorporation into apolipoprotein B-containing atherogenic lipoproteins (e.g. very-low-density lipoprotein (VLDL)) enhances cholesterol secretion into the systemic circulation (pro-atherogenic effect). Intracellular cholesterol transport proteins such as sterol carrier protein-2 (SCP2) should, therefore, play a role in regulating these pro- or anti-atherosclerotic processes. Here, we sought to evaluate the effects of SCP2 deficiency on the development of diet-induced atherosclerosis. We generated LDLR-/- mice deficient in SCP2/SCPx (LS) and examined the effects of this deficiency on Western diet-induced atherosclerosis. SCP2/SCPx deficiency attenuated atherosclerosis in LS mice by >80% and significantly reduced plasma cholesterol and triglyceride levels. Investigation of the likely underlying mechanisms revealed a significant reduction in intestinal cholesterol absorption (given as an oral gavage) in SCP2/SCPx-deficient mice. Consistently, siRNA-mediated knockdown of SCP2 in intestinal cells significantly reduced cholesterol uptake. Furthermore, hepatic triglyceride/VLDL secretion from the liver or hepatocytes isolated from SCP2/SCPx-deficient mice was significantly reduced. These results indicate an important regulatory role for SCP2 deficiency in attenuating diet-induced atherosclerosis by limiting intestinal cholesterol absorption and decreasing hepatic triglyceride/VLDL secretion. These findings suggest targeted inhibition of SCP2 as a potential therapeutic strategy to reduce Western diet-induced dyslipidemia and atherosclerosis.
Collapse
Affiliation(s)
| | - Jing Wang
- From the Departments of Internal Medicine and
| | - Paul J Yannie
- the Hunter Homes McGuire Veterans Affairs Medical Center, Richmond, Virginia 23249
| | - Genta Kakiyama
- the Hunter Homes McGuire Veterans Affairs Medical Center, Richmond, Virginia 23249
| | - William J Korzun
- Clinical and Laboratory Sciences, Virginia Commonwealth University (VCU) Medical Center, Richmond, Virginia 23298 and
| | - Shobha Ghosh
- From the Departments of Internal Medicine and .,the Hunter Homes McGuire Veterans Affairs Medical Center, Richmond, Virginia 23249
| |
Collapse
|
10
|
Girotti AW, Korytowski W. Cholesterol Hydroperoxide Generation, Translocation, and Reductive Turnover in Biological Systems. Cell Biochem Biophys 2017; 75:413-419. [PMID: 28434137 DOI: 10.1007/s12013-017-0799-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 04/18/2017] [Indexed: 12/17/2022]
Abstract
Cholesterol is like other unsaturated lipids in being susceptible to peroxidative degradation upon exposure to strong oxidants like hydroxyl radical or peroxynitrite generated under conditions of oxidative stress. In the eukaryotic cell plasma membrane, where most of the cellular cholesterol resides, peroxidation leads to membrane structural and functional damage from which pathological states may arise. In low density lipoprotein, cholesterol and phospholipid peroxidation have long been associated with atherogenesis. Among the many intermediates/products of cholesterol oxidation, hydroperoxide species (ChOOHs) have a number of different fates and deserve special attention. These fates include (a) damage-enhancement via iron-catalyzed one-electron reduction, (b) damage containment via two-electron reduction, and (c) inter-membrane, inter-lipoprotein, and membrane-lipoprotein translocation, which allows dissemination of one-electron damage or off-site suppression thereof depending on antioxidant location and capacity. In addition, ChOOHs can serve as reliable and conveniently detected mechanistic reporters of free radical-mediated reactions vs. non-radical (e.g., singlet oxygen)-mediated reactions. Iron-stimulated peroxidation of cholesterol and other lipids underlies a newly discovered form of regulated cell death called ferroptosis. These and other deleterious consequences of radical-mediated lipid peroxidation will be discussed in this review.
Collapse
Affiliation(s)
- Albert W Girotti
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
| | - Witold Korytowski
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.,Department of Biophysics, Jagiellonian University, Krakow, Poland
| |
Collapse
|
11
|
Girotti AW, Kriska T. Binding and cytotoxic trafficking of cholesterol hydroperoxides by sterol carrier protein-2. Methods Mol Biol 2015; 1208:421-35. [PMID: 25323524 DOI: 10.1007/978-1-4939-1441-8_30] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Redox-active cholesterol hydroperoxides (ChOOHs) generated by oxidative stress in eukaryotic cells may propagate cytotoxic membrane damage by undergoing one-electron reduction or, at low levels, act as mobile signaling molecules like H2O2. We discovered that ChOOHs can spontaneously translocate between membranes or membranes and lipoproteins in model systems, and that this can be accelerated by sterol carrier protein-2 (SCP-2), a nonspecific lipid trafficking protein. We found that cells overexpressing SCP-2 were more susceptible to damage/toxicity by 7α-OOH (a free radical-generated ChOOH) than control cells, and that this correlated with 7α-OOH delivery to mitochondria. The methods used for obtaining these results and for establishing that cellular SCP-2 binds and traffics 7α-OOH are described in this chapter.
Collapse
Affiliation(s)
- Albert W Girotti
- Department of Biochemistry, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA,
| | | |
Collapse
|
12
|
Martin GG, Atshaves BP, Landrock KK, Landrock D, Storey SM, Howles PN, Kier AB, Schroeder F. Ablating L-FABP in SCP-2/SCP-x null mice impairs bile acid metabolism and biliary HDL-cholesterol secretion. Am J Physiol Gastrointest Liver Physiol 2014; 307:G1130-43. [PMID: 25277800 PMCID: PMC4254959 DOI: 10.1152/ajpgi.00209.2014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 09/28/2014] [Indexed: 01/31/2023]
Abstract
On the basis of their abilities to bind bile acids and/or cholesterol, the physiological role(s) of liver fatty acid-binding protein (L-FABP) and sterol carrier protein (SCP) 2/SCP-x (SCP-2/SCP-x) gene products in biliary bile acid and cholesterol formation was examined in gene-ablated male mice. L-FABP (LKO) or L-FABP/SCP-2/SCP-x [triple-knockout (TKO)] ablation markedly decreased hepatic bile acid concentration, while SCP-2/SCP-x [double-knockout (DKO)] ablation alone had no effect. In contrast, LKO increased biliary bile acid, while DKO and TKO had no effect on biliary bile acid levels. LKO and DKO also altered biliary bile acid composition to increase bile acid hydrophobicity. Furthermore, LKO and TKO decreased hepatic uptake and biliary secretion of high-density lipoprotein (HDL)-derived 22-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-23,24-bisnor-5-cholen-3β-ol (NBD-cholesterol), while DKO alone had no effect. Finally, LKO and, to a lesser extent, DKO decreased most indexes contributing to cholesterol solubility in biliary bile. These results suggest different, but complementary, roles for L-FABP and SCP-2/SCP-x in biliary bile acid and cholesterol formation. L-FABP appears to function more in hepatic retention of bile acids as well as hepatic uptake and biliary secretion of HDL-cholesterol. Conversely, SCP-2/SCP-x may function more in formation and biliary secretion of bile acid, with less impact on hepatic uptake or biliary secretion of HDL-cholesterol.
Collapse
Affiliation(s)
- Gregory G Martin
- Department of Physiology and Pharmacology, Texas A & M University, College Station, Texas
| | - Barbara P Atshaves
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan
| | - Kerstin K Landrock
- Department of Pathobiology, Texas A & M University, College Station, Texas; and
| | - Danilo Landrock
- Department of Pathobiology, Texas A & M University, College Station, Texas; and
| | - Stephen M Storey
- Department of Physiology and Pharmacology, Texas A & M University, College Station, Texas
| | - Philip N Howles
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Ann B Kier
- Department of Pathobiology, Texas A & M University, College Station, Texas; and
| | - Friedhelm Schroeder
- Department of Physiology and Pharmacology, Texas A & M University, College Station, Texas;
| |
Collapse
|
13
|
Miyamoto S, Martinez GR, Medeiros MHG, Di Mascio P. Singlet molecular oxygen generated by biological hydroperoxides. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2014; 139:24-33. [PMID: 24954800 DOI: 10.1016/j.jphotobiol.2014.03.028] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 03/19/2014] [Accepted: 03/27/2014] [Indexed: 11/19/2022]
Abstract
The chemistry behind the phenomenon of ultra-weak photon emission has been subject of considerable interest for decades. Great progress has been made on the understanding of the chemical generation of electronically excited states that are involved in these processes. Proposed mechanisms implicated the production of excited carbonyl species and singlet molecular oxygen in the mechanism of generation of chemiluminescence in biological system. In particular, attention has been focused on the potential generation of singlet molecular oxygen in the recombination reaction of peroxyl radicals by the Russell mechanism. In the last ten years, our group has demonstrated the generation of singlet molecular oxygen from reactions involving the decomposition of biologically relevant hydroperoxides, especially from lipid hydroperoxides in the presence of metal ions, peroxynitrite, HOCl and cytochrome c. In this review we will discuss details on the chemical aspects related to the mechanism of singlet molecular oxygen generation from different biological hydroperoxides.
Collapse
Affiliation(s)
- Sayuri Miyamoto
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, CP26077, CEP 05513-970 São Paulo, SP, Brazil.
| | - Glaucia R Martinez
- Departamento de Bioquímica e Biologia Molecular, Setor de Ciências Biológicas, Universidade Federal do Paraná, Curitiba-PR, Brazil
| | - Marisa H G Medeiros
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, CP26077, CEP 05513-970 São Paulo, SP, Brazil
| | - Paolo Di Mascio
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, CP26077, CEP 05513-970 São Paulo, SP, Brazil.
| |
Collapse
|
14
|
Korytowski W, Wawak K, Pabisz P, Schmitt JC, Girotti AW. Macrophage mitochondrial damage from StAR transport of 7-hydroperoxycholesterol: implications for oxidative stress-impaired reverse cholesterol transport. FEBS Lett 2013; 588:65-70. [PMID: 24269887 DOI: 10.1016/j.febslet.2013.10.051] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 10/16/2013] [Accepted: 10/25/2013] [Indexed: 11/18/2022]
Abstract
StAR family proteins in vascular macrophages participate in reverse cholesterol transport (RCT). We hypothesize that under pathophysiological oxidative stress, StARs will transport not only cholesterol to macrophage mitochondria, but also pro-oxidant cholesterol hydroperoxides (7-OOHs), thereby impairing early-stage RCT. Upon stimulation with dibutyryl-cAMP, RAW264.7 macrophages exhibited a strong time-dependent induction of mitochondrial StarD1 and plasma membrane ABCA1, which exports cholesterol. 7α-OOH uptake by stimulated RAW cell mitochondria (like cholesterol uptake) was strongly reduced by StarD1 knockdown, consistent with StarD1 involvement. Upon uptake by mitochondria, 7α-OOH (but not redox-inactive 7α-OH) triggered lipid peroxidation and membrane depolarization while reducing ABCA1 upregulation. These findings provide strong initial support for our hypothesis.
Collapse
Key Words
- 1-palmitoyl-2-sn-glycero-3-phosphocholine
- 3-(4,5-dimethylthiazolyl-2-yl)-2,5-diphenyltetrazolium bromide
- 3β-hydroxycholest-5-ene-7α-hydroperoxide
- 4,4-difluoro-5-(4-phenyl-1,3-butadienyl)-4-bora-3a,4a-diaza-s-inda-cene-3-undecanoic acid
- 5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethyl-benzimidazolylcarbocyanine iodide
- 7α-OH
- 7α-OOH
- ABCA1
- ATP binding cassette transporter A1
- C11-BODIPY
- ChOOH(s)
- Cholesterol hydroperoxide
- JC-1
- MTT
- Macrophage
- Oxidative stress
- PBS
- POPC
- Reverse cholesterol transport
- SUV(s)
- StAR protein
- StarD1
- StarD4
- cholest-5-ene-3β,7α-diol
- cholesterol hydroperoxide(s)
- db-cAMP
- dibutyryl-cAMP
- phosphate-buffered saline
- small unilamellar vesicle(s)
- type-1 steroidogenic acute regulatory domain protein
- type-4 steroidogenic acute regulatory domain protein
Collapse
Affiliation(s)
- Witold Korytowski
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Biophysics, Jagiellonian University, Krakow, Poland.
| | - Katarzyna Wawak
- Department of Biophysics, Jagiellonian University, Krakow, Poland
| | - Pawel Pabisz
- Department of Biophysics, Jagiellonian University, Krakow, Poland
| | - Jared C Schmitt
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Albert W Girotti
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
15
|
Korytowski W, Pilat A, Schmitt JC, Girotti AW. Deleterious cholesterol hydroperoxide trafficking in steroidogenic acute regulatory (StAR) protein-expressing MA-10 Leydig cells: implications for oxidative stress-impaired steroidogenesis. J Biol Chem 2013; 288:11509-19. [PMID: 23467407 DOI: 10.1074/jbc.m113.452151] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Steroidogenic acute regulatory (StAR) proteins in steroidogenic cells are implicated in the delivery of cholesterol (Ch) from internal or external sources to mitochondria (Mito) for initiation of steroid hormone synthesis. In this study, we tested the hypothesis that under oxidative stress, StAR-mediated trafficking of redox-active cholesterol hydroperoxides (ChOOHs) can result in site-specific Mito damage and dysfunction. Steroidogenic stimulation of mouse MA-10 Leydig cells with dibutyryl-cAMP (Bt2cAMP) resulted in strong expression of StarD1 and StarD4 proteins over insignificant levels in nonstimulated controls. During incubation with the ChOOH 3β-hydroxycholest-5-ene-7α-hydroperoxide (7α-OOH) in liposomes, stimulated cells took up substantially more hydroperoxide in Mito than controls, with a resulting loss of membrane potential (ΔΨm) and ability to drive progesterone synthesis. 7α-OOH uptake and ΔΨm loss were greatly reduced by StarD1 knockdown, thus establishing the role of this protein in 7α-OOH delivery. Moreover, 7α-OOH was substantially more toxic to stimulated than nonstimulated cells, the former dying mainly by apoptosis and the latter dying by necrosis. Importantly, tert-butyl hydroperoxide, which is not a StAR protein ligand, was equally toxic to stimulated and nonstimulated cells. These findings support the notion that like Ch itself, 7α-OOH can be transported to/into Mito of steroidogenic cells by StAR proteins and therein induce free radical damage, which compromises steroid hormone synthesis.
Collapse
Affiliation(s)
- Witold Korytowski
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA.
| | | | | | | |
Collapse
|
16
|
Storey SM, McIntosh AL, Huang H, Martin GG, Landrock KK, Landrock D, Payne HR, Kier AB, Schroeder F. Loss of intracellular lipid binding proteins differentially impacts saturated fatty acid uptake and nuclear targeting in mouse hepatocytes. Am J Physiol Gastrointest Liver Physiol 2012; 303:G837-50. [PMID: 22859366 PMCID: PMC3469595 DOI: 10.1152/ajpgi.00489.2011] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The liver expresses high levels of two proteins with high affinity for long-chain fatty acids (LCFAs): liver fatty acid binding protein (L-FABP) and sterol carrier protein-2 (SCP-2). Real-time confocal microscopy of cultured primary hepatocytes from gene-ablated (L-FABP, SCP-2/SCP-x, and L-FABP/SCP-2/SCP-x null) mice showed that the loss of L-FABP reduced cellular uptake of 12-N-methyl-(7-nitrobenz-2-oxa-1,3-diazo)-aminostearic acid (a fluorescent-saturated LCFA analog) by ∼50%. Importantly, nuclear targeting of the LCFA was enhanced when L-FABP was upregulated (SCP-2/SCP-x null) but was significantly reduced when L-FABP was ablated (L-FABP null), thus impacting LCFA nuclear targeting. These effects were not associated with a net decrease in expression of key membrane proteins involved in LCFA or glucose transport. Since hepatic LCFA uptake and metabolism are closely linked to glucose uptake, the effect of glucose on L-FABP-mediated LCFA uptake and nuclear targeting was examined. Increasing concentrations of glucose decreased cellular LCFA uptake and even more extensively decreased LCFA nuclear targeting. Loss of L-FABP exacerbated the decrease in LCFA nuclear targeting, while loss of SCP-2 reduced the glucose effect, resulting in enhanced LCFA nuclear targeting compared with control. Simply, ablation of L-FABP decreases LCFA uptake and even more extensively decreases its nuclear targeting.
Collapse
Affiliation(s)
- Stephen M. Storey
- 1Department of Physiology and Pharmacology, Texas A & M University, College Station, Texas; and
| | - Avery L. McIntosh
- 1Department of Physiology and Pharmacology, Texas A & M University, College Station, Texas; and
| | - Huan Huang
- 1Department of Physiology and Pharmacology, Texas A & M University, College Station, Texas; and
| | - Gregory G. Martin
- 1Department of Physiology and Pharmacology, Texas A & M University, College Station, Texas; and
| | - Kerstin K. Landrock
- 1Department of Physiology and Pharmacology, Texas A & M University, College Station, Texas; and
| | - Danilo Landrock
- 2Department of Pathobiology, Texas A & M University, College Station, Texas
| | - H. Ross Payne
- 2Department of Pathobiology, Texas A & M University, College Station, Texas
| | - Ann B. Kier
- 2Department of Pathobiology, Texas A & M University, College Station, Texas
| | - Friedhelm Schroeder
- 1Department of Physiology and Pharmacology, Texas A & M University, College Station, Texas; and
| |
Collapse
|
17
|
Storey SM, McIntosh AL, Huang H, Landrock KK, Martin GG, Landrock D, Payne HR, Atshaves BP, Kier AB, Schroeder F. Intracellular cholesterol-binding proteins enhance HDL-mediated cholesterol uptake in cultured primary mouse hepatocytes. Am J Physiol Gastrointest Liver Physiol 2012; 302:G824-39. [PMID: 22241858 PMCID: PMC3355564 DOI: 10.1152/ajpgi.00195.2011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Accepted: 01/07/2012] [Indexed: 01/31/2023]
Abstract
A major gap in our knowledge of rapid hepatic HDL cholesterol clearance is the role of key intracellular factors that influence this process. Although the reverse cholesterol transport pathway targets HDL to the liver for net elimination of free cholesterol from the body, molecular details governing cholesterol uptake into hepatocytes are not completely understood. Therefore, the effects of sterol carrier protein (SCP)-2 and liver fatty acid-binding protein (L-FABP), high-affinity cholesterol-binding proteins present in hepatocyte cytosol, on HDL-mediated free cholesterol uptake were examined using gene-targeted mouse models, cultured primary hepatocytes, and 22-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)-amino]-23,24-bisnor-5-cholen-3β-ol (NBD-cholesterol). While SCP-2 overexpression enhanced NBD-cholesterol uptake, counterintuitively, SCP-2/SCP-x gene ablation also 1) enhanced the rapid molecular phase of free sterol uptake detectable in <1 min and initial rate and maximal uptake of HDL free cholesterol and 2) differentially enhanced free cholesterol uptake mediated by the HDL3, rather than the HDL2, subfraction. The increased HDL free cholesterol uptake was not due to increased expression or distribution of the HDL receptor [scavenger receptor B1 (SRB1)], proteins regulating SRB1 [postsynaptic density protein (PSD-95)/Drosophila disk large tumor suppressor (dlg)/tight junction protein (ZO1) and 17-kDa membrane-associated protein], or other intracellular cholesterol trafficking proteins (steroidogenic acute response protein D, Niemann Pick C, and oxysterol-binding protein-related proteins). However, expression of L-FABP, the single most prevalent hepatic cytosolic protein that binds cholesterol, was upregulated twofold in SCP-2/SCP-x null hepatocytes. Double-immunogold electron microscopy detected L-FABP sufficiently close to SRB1 for direct interaction, similar to SCP-2. These data suggest a role for L-FABP in HDL cholesterol uptake, a finding confirmed with SCP-2/SCP-x/L-FABP null mice and hepatocytes. Taken together, these results suggest that L-FABP, particularly in the absence of SCP-2, plays a significant role in HDL-mediated cholesterol uptake in cultured primary hepatocytes.
Collapse
Affiliation(s)
- Stephen M Storey
- Department of Physiology and Pharmacology, Texas Veterinary Medical Center, Texas A & M University, College Station, TX 77843-4466, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Korytowski W, Basova LV, Pilat A, Kernstock RM, Girotti AW. Permeabilization of the mitochondrial outer membrane by Bax/truncated Bid (tBid) proteins as sensitized by cardiolipin hydroperoxide translocation: mechanistic implications for the intrinsic pathway of oxidative apoptosis. J Biol Chem 2011; 286:26334-43. [PMID: 21642428 PMCID: PMC3143596 DOI: 10.1074/jbc.m110.188516] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Revised: 05/12/2011] [Indexed: 12/31/2022] Open
Abstract
Cytochrome c (cyt c) release upon oxidation of cardiolipin (CL) in the mitochondrial inner membrane (IM) under oxidative stress occurs early in the intrinsic apoptotic pathway. We postulated that CL oxidation mobilizes not only cyt c but also CL itself in the form of hydroperoxide (CLOOH) species. Relatively hydrophilic CLOOHs could assist in apoptotic signaling by translocating to the outer membrane (OM), thus promoting recruitment of the pro-apoptotic proteins truncated Bid (tBid) and Bax for generation of cyt c-traversable pores. Initial testing of these possibilities showed that CLOOH-containing liposomes were permeabilized more readily by tBid plus Ca(2+) than CL-containing counterparts. Moreover, CLOOH translocated more rapidly from IM-mimetic to OM-mimetic liposomes than CL and permitted more extensive OM permeabilization. We found that tBid bound more avidly to CLOOH-containing membranes than to CL counterparts, and binding increased with increasing CLOOH content. Permeabilization of CLOOH-containing liposomes in the presence of tBid could be triggered by monomeric Bax, consistent with tBid/Bax cooperation in pore formation. Using CL-null mitochondria from a yeast mutant, we found that tBid binding and cyt c release were dramatically enhanced by transfer acquisition of CLOOH. Additionally, we observed a pre-apoptotic IM-to-OM transfer of oxidized CL in cardiomyocytes treated with the Complex III blocker, antimycin A. These findings provide new mechanistic insights into the role of CL oxidation in the intrinsic pathway of oxidative apoptosis.
Collapse
Affiliation(s)
- Witold Korytowski
- From the Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226 and
- the Institute of Molecular Biology, Jagiellonian University, Krakow 30-387, Poland
| | - Liana V. Basova
- From the Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226 and
| | - Anna Pilat
- From the Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226 and
| | - Robert M. Kernstock
- From the Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226 and
| | - Albert W. Girotti
- From the Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226 and
| |
Collapse
|
19
|
Angeli JPF, Garcia CCM, Sena F, Freitas FP, Miyamoto S, Medeiros MHG, Di Mascio P. Lipid hydroperoxide-induced and hemoglobin-enhanced oxidative damage to colon cancer cells. Free Radic Biol Med 2011; 51:503-15. [PMID: 21600979 DOI: 10.1016/j.freeradbiomed.2011.04.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2010] [Revised: 04/05/2011] [Accepted: 04/08/2011] [Indexed: 11/23/2022]
Abstract
Epidemiological studies have indicated that Western diets are related to an increase in a series of malignancies. Among the compounds that are credited for this toxic effect are heme and lipid peroxides. We evaluated the effects of hemoglobin (Hb) and linoleic acid hydroperoxides (LAOOH) on a series of toxicological endpoints, such as cytotoxicity, redox status, lipid peroxidation, and DNA damage. We demonstrated that the preincubation of SW480 cells with Hb and its subsequent exposure to LAOOH (Hb + LAOOH) led to an increase in cell death, DCFH oxidation, malonaldehyde formation, and DNA fragmentation and that these effects were related to the peroxide group and the heme present in Hb. Furthermore, Hb and LAOOH alone exerted a toxic effect on the endpoints assayed only at concentrations higher than 100 μM. We were also able to show that SW480 cells presented a higher level of the modified DNA bases 8-oxo-7,8-dihydro-2'-deoxyguanosine and 1,N(2)-etheno-2'-deoxyguanosine compared to the control. Furthermore, incubations with Hb led to an increase in intracellular iron levels, and this high level of iron correlated with DNA oxidation, as measured as EndoIII- and Fpg-sensitive sites. Thus, Hb from either red meat or bowel bleeding could act as an enhancer of fatty acid hydroperoxide genotoxicity, which contributes to the accumulation of DNA lesions in colon cancer cells.
Collapse
Affiliation(s)
- José Pedro F Angeli
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, CEP 05508–000 São Paulo, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
20
|
Xiao R, Power RF, Mallonee D, Crowdus C, Brennan KM, Ao T, Pierce JL, Dawson KA. A comparative transcriptomic study of vitamin E and an algae-based antioxidant as antioxidative agents: investigation of replacing vitamin E with the algae-based antioxidant in broiler diets. Poult Sci 2011; 90:136-46. [PMID: 21177453 DOI: 10.3382/ps.2010-01018] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previous study indicated that inclusion of an algae-based antioxidant as an antioxidative agent [EconomasE, Alltech, Nicholasville, KY; EcoE] significantly reduced the amount of vitamin E (VE) required in broiler diets without compromising performance and meat quality. To assess the mechanisms related to the VE-saving activity of EcoE, as well as other potential functions related to EcoE and VE supplementation, we analyzed gene expression profiles of breast muscle from broilers fed a control diet, the control diet + 50 IU of VE/kg, the control diet + 100 IU of VE/kg, or the control diet + 200 g of EcoE/ton. Evaluation of the serum antioxidant capacity indicated that dietary supplementation of either a high level of VE (50 or 100 IU of VE/kg) or EcoE significantly improved bird antioxidant status. Analysis of gene expression profiles indicated that expression of 542 genes of the breast muscle were altered (P < 0.05, fold change >1.2) by dietary treatments, of which a significant part were commonly regulated by EcoE and VE (especially the control diet + 50 IU of VE/kg). In addition to the process of cellular oxidation, gene ontology analysis indicated the involvement of EcoE and VE on cell morphology, skeletal and muscular system development and function, immune response, and multiple metabolic processes, including lipid, carbohydrate, and drug metabolism. Results of this experiment indicate that the biological roles of high VE, including its activity as an antioxidant, can be greatly mimicked at the transcriptional level by EcoE, and they suggest a relationship of functional redundancy between VE and EcoE in the broiler diets.
Collapse
Affiliation(s)
- R Xiao
- Center for Animal Nutrigenomics and Applied Animal Nutrition, Alltech, Nicholasville, KY 40356, USA.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Kriska T, Pilat A, Schmitt JC, Girotti AW. Sterol carrier protein-2 (SCP-2) involvement in cholesterol hydroperoxide cytotoxicity as revealed by SCP-2 inhibitor effects. J Lipid Res 2010; 51:3174-84. [PMID: 20656919 DOI: 10.1194/jlr.m008342] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sterol carrier protein-2 (SCP-2) plays an important role in cholesterol trafficking and metabolism in mammalian cells. The purpose of this study was to determine whether SCP-2, under oxidative stress conditions, might also traffic hydroperoxides of cholesterol, thereby disseminating their cytotoxic effects. Two inhibitors, SCPI-1 and SCPI-3, known to block cholesterol binding by an insect SCP-2, were used to investigate this. A mouse fibroblast transfectant clone (SC2F) overexpressing SCP-2 was found to be substantially more sensitive to apoptotic killing induced by liposomal 7α-hydroperoxycholesterol (7α-OOH) than a wild-type control. 7α-OOH uptake by SC2F cells and resulting apoptosis were both inhibited by SCPI-1 or SCPI-3 at a subtoxic concentration. Preceding cell death, reactive oxidant accumulation and loss of mitochondrial membrane potential were also strongly inhibited. Similar SCPI protection against 7α-OOH was observed with two other types of SCP-2-expressing mammalian cells. In striking contrast, neither inhibitor had any effect on H(2)O(2)-induced cell killing. To learn whether 7α-OOH cytotoxicity is due to uptake/transport by SCP-2, we used a fluorescence-based competitive binding assay involving recombinant SCP-2, NBD-cholesterol, and SCPI-1/SCPI-3 or 7α-OOH. The results clearly showed that 7α-OOH binds to SCP-2 in SCPI-inhibitable fashion. Our findings suggest that cellular SCP-2 not only binds and translocates cholesterol but also cholesterol hydroperoxides, thus expanding their redox toxicity and signaling ranges under oxidative stress conditions.
Collapse
Affiliation(s)
- Tamas Kriska
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | | | | |
Collapse
|
22
|
McIntosh AL, Atshaves BP, Huang H, Gallegos AM, Kier AB, Schroeder F. Fluorescence techniques using dehydroergosterol to study cholesterol trafficking. Lipids 2008; 43:1185-208. [PMID: 18536950 PMCID: PMC2606672 DOI: 10.1007/s11745-008-3194-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2008] [Accepted: 05/09/2008] [Indexed: 12/22/2022]
Abstract
Cholesterol itself has very few structural/chemical features suitable for real-time imaging in living cells. Thus, the advent of dehydroergosterol [ergosta-5,7,9(11),22-tetraen-3beta-ol, DHE] the fluorescent sterol most structurally and functionally similar to cholesterol to date, has proven to be a major asset for real-time probing/elucidating the sterol environment and intracellular sterol trafficking in living organisms. DHE is a naturally occurring, fluorescent sterol analog that faithfully mimics many of the properties of cholesterol. Because these properties are very sensitive to sterol structure and degradation, such studies require the use of extremely pure (>98%) quantities of fluorescent sterol. DHE is readily bound by cholesterol-binding proteins, is incorporated into lipoproteins (from the diet of animals or by exchange in vitro), and for real-time imaging studies is easily incorporated into cultured cells where it co-distributes with endogenous sterol. Incorporation from an ethanolic stock solution to cell culture media is effective, but this process forms an aqueous dispersion of DHE crystals which can result in endocytic cellular uptake and distribution into lysosomes which is problematic in imaging DHE at the plasma membrane of living cells. In contrast, monomeric DHE can be incorporated from unilamellar vesicles by exchange/fusion with the plasma membrane or from DHE-methyl-beta-cyclodextrin (DHE-MbetaCD) complexes by exchange with the plasma membrane. Both of the latter techniques can deliver large quantities of monomeric DHE with significant distribution into the plasma membrane. The properties and behavior of DHE in protein-binding, lipoproteins, model membranes, biological membranes, lipid rafts/caveolae, and real-time imaging in living cells indicate that this naturally occurring fluorescent sterol is a useful mimic for probing the properties of cholesterol in these systems.
Collapse
Affiliation(s)
- Avery L. McIntosh
- Department of Physiology and Pharmacology Texas A&M University, TVMC College Station, TX 77843-4466
| | - Barbara P. Atshaves
- Department of Physiology and Pharmacology Texas A&M University, TVMC College Station, TX 77843-4466
| | - Huan Huang
- Department of Physiology and Pharmacology Texas A&M University, TVMC College Station, TX 77843-4466
| | - Adalberto M. Gallegos
- Department of Pathobiology Texas A&M University, TVMC College Station, TX 77843-4467
| | - Ann B. Kier
- Department of Pathobiology Texas A&M University, TVMC College Station, TX 77843-4467
| | - Friedhelm Schroeder
- Department of Physiology and Pharmacology Texas A&M University, TVMC College Station, TX 77843-4466
| |
Collapse
|
23
|
Kriska T, Levchenko VV, Chu FF, Esworthy RS, Girotti AW. Novel enrichment of tumor cell transfectants expressing high levels of type 4 glutathione peroxidase using 7alpha-hydroperoxycholesterol as a selection agent. Free Radic Biol Med 2008; 45:700-7. [PMID: 18554519 PMCID: PMC2603420 DOI: 10.1016/j.freeradbiomed.2008.05.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Revised: 05/07/2008] [Accepted: 05/23/2008] [Indexed: 01/18/2023]
Abstract
A novel approach for selecting high expressing cells out of a general population that had been transfected with a construct encoding cytosolic type 4 glutathione peroxidase (GPx4) is reported. The approach is described for GPx4-null COH-BR1 breast tumor cells and is based on use of a highly specific GPx4 substrate, 7alpha-hydroperoxycholesterol (7alpha-OOH), as a selection agent. Cells recovering from a highly toxic dose of liposomal 7alpha-OOH were found to be substantially more resistant to a second 7alpha-OOH challenge than cells recovering from a less toxic dose, but were much less resistant to t-butyl hydroperoxide (t-BuOOH) or H2O2. Several clones isolated from the general transfectant population exhibited variable, relatively low GPx4 activities. However, clones from the 7alpha-OOH-selected population exhibited uniformly high GPx4 activities (each approximately 3-fold higher than that of the starting transfectant population) and elevated steady-state mRNA levels. t-BuOOH could also be used for selecting high GPx4-expressing cells, but consistent recovery from toxic doses was more difficult than with 7alpha-OOH. Compared with conventional "hit or miss" cloning procedures, the 7alpha-OOH approach we describe affords a uniform population of high GPx4-activity cells in a relatively rapid manner. This approach should prove valuable for investigators interested in the peroxide regulatory properties of GPx4, in the context of both cytoprotection and redox signaling.
Collapse
Affiliation(s)
- Tamas Kriska
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | - Fong-Fong Chu
- Department of Radiation Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - R. Steven Esworthy
- Department of Radiation Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Albert W. Girotti
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- To whom correspondence should be addressed: Prof. Albert W. Girotti, Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, 53226, Phone: 414-456-8432, Fax: 414-456-6510, E-mail:
| |
Collapse
|
24
|
Girotti AW. Translocation as a means of disseminating lipid hydroperoxide-induced oxidative damage and effector action. Free Radic Biol Med 2008; 44:956-68. [PMID: 18206663 PMCID: PMC2361152 DOI: 10.1016/j.freeradbiomed.2007.12.004] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2007] [Revised: 12/06/2007] [Accepted: 12/06/2007] [Indexed: 11/25/2022]
Abstract
Lipid hydroperoxides (LOOHs) generated in cells and lipoproteins under oxidative pressure may induce waves of damaging chain lipid peroxidation near their sites of origin if O2 is readily available and antioxidant capacity is overwhelmed. However, recent studies have demonstrated that chain induction is not necessarily limited to a nascent LOOH's immediate surroundings but can extend to other cell membranes or lipoproteins by means of LOOH translocation through the aqueous phase. Mobilization and translocation can also extend the range of LOOHs as redox signaling molecules and in this sense they could act like the small, readily diffusible inorganic analogue H2O2, which has been studied much more extensively in this regard. In this article, basic mechanisms of free-radical- and singlet-oxygen-mediated LOOH formation and one-electron and two-electron LOOH reduction pathways and their biological consequences are reviewed. The first studies to document spontaneous and protein-assisted LOOH transfer in model systems and cells are described. Finally, LOOH translocation is discussed in the context of cytotoxicity vs detoxification and expanded effector action, i.e., redox signaling activity.
Collapse
Affiliation(s)
- Albert W Girotti
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226-4801, USA.
| |
Collapse
|
25
|
Girotti AW, Giacomoni PU. Lipid and Protein Damage Provoked by Ultraviolet Radiation: Mechanisms of Indirect Photooxidative Damage. BIOPHYSICAL AND PHYSIOLOGICAL EFFECTS OF SOLAR RADIATION ON HUMAN SKIN 2007. [DOI: 10.1039/9781847557957-00271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Albert W. Girotti
- Department of Biochemistry Medical College of Wisconsin Milwaukee WI USA
| | | |
Collapse
|
26
|
Behn C, Araneda OF, Llanos AJ, Celedón G, González G. Hypoxia-related lipid peroxidation: Evidences, implications and approaches. Respir Physiol Neurobiol 2007; 158:143-50. [PMID: 17662674 DOI: 10.1016/j.resp.2007.06.001] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2007] [Revised: 06/01/2007] [Accepted: 06/05/2007] [Indexed: 12/20/2022]
Abstract
Hypoxia may be intensified by concurrent oxidative stress. Lack of oxygen in relation to aerobic ATP requirements, as hypoxia has been defined, goes along with an increased generation of reactive oxygen species (ROS). Polyunsaturated fatty acids (PUFAs) range among the molecules most susceptible to ROS. Oxidative breakdown of n-3 PUFAs may compromise not only membrane lipid matrix dynamics, and hence structure and function of membrane-associated proteins like enzymes, receptors, and transporters, but also gene expression. Eicosapentaenoic acid depletion, products of lipid peroxidation (LP), as well as, lack of oxygen may combine in exacerbating activity of nuclear factor kappa B (NFkappaB), an ubiquitous pro-inflammatory and anti-apoptotic transcription factor. Field studies at high altitude show malondialdehyde (MDA) content in exhaled breath condensate (EBC) of mountaineers to correlate with Lake Louis score of acute mountain sickness. A pathogenic role of LP in hypoxia can therefore be expected. By control of LP, some species seem to cope more efficiently than others with naturally occurring hypoxia. Limitation of potential pro-inflammatory effects of hypoxia-related LP by an adequate provision of n-3 PUFAs and antioxidants may contribute to increase survival under conditions where oxygen is lacking in relation to aerobic ATP requirements. A need for antioxidant intervention, however, should be weighed against the ROS requirement for triggering adaptive processes in response to an increased demand of oxygen.
Collapse
Affiliation(s)
- Claus Behn
- Laboratorio de Ambientes Extremos, Programa de Fisiología y Biofísica, ICBM, Facultad de Medicina, Universidad de Chile Independencia 1027, Independencia, Santiago, Chile.
| | | | | | | | | |
Collapse
|
27
|
Schroeder F, Atshaves BP, McIntosh AL, Gallegos AM, Storey SM, Parr RD, Jefferson JR, Ball JM, Kier AB. Sterol carrier protein-2: new roles in regulating lipid rafts and signaling. BIOCHIMICA ET BIOPHYSICA ACTA 2007; 1771:700-18. [PMID: 17543577 PMCID: PMC1989133 DOI: 10.1016/j.bbalip.2007.04.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2006] [Revised: 03/28/2007] [Accepted: 04/03/2007] [Indexed: 12/31/2022]
Abstract
Sterol carrier protein-2 (SCP-2) was independently discovered as a soluble protein that binds and transfers cholesterol as well as phospholipids (nonspecific lipid transfer protein, nsLTP) in vitro. Physiological functions of this protein are only now beginning to be resolved. The gene encoding SCP-2 also encodes sterol carrier protein-x (SCP-x) arising from an alternate transcription site. In vitro and in vivo SCP-x serves as a peroxisomal 3-ketoacyl-CoA thiolase in oxidation of branched-chain lipids (cholesterol to form bile acids; branched-chain fatty acid for detoxification). While peroxisomal SCP-2 facilitates branched-chain lipid oxidation, the role(s) of extraperoxisomal (up to 50% of total) are less clear. Studies using transfected fibroblasts overexpressing SCP-2 and hepatocytes from SCP-2/SCP-x gene-ablated mice reveal that SCP-2 selectively remodels the lipid composition, structure, and function of lipid rafts/caveolae. Studies of purified SCP-2 and in cells show that SCP-2 has high affinity for and selectively transfers many lipid species involved in intracellular signaling: fatty acids, fatty acyl CoAs, lysophosphatidic acid, phosphatidylinositols, and sphingolipids (sphingomyelin, ceramide, mono-di-and multi-hexosylceramides, gangliosides). SCP-2 selectively redistributes these signaling lipids between lipid rafts/caveolae and intracellular sites. These findings suggest SCP-2 serves not only in cholesterol and phospholipid transfer, but also in regulating multiple lipid signaling pathways in lipid raft/caveolae microdomains of the plasma membrane.
Collapse
Affiliation(s)
- Friedhelm Schroeder
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX 77843-4466, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Cló E, Snyder JW, Ogilby PR, Gothelf KV. Control and Selectivity of Photosensitized Singlet Oxygen Production: Challenges in Complex Biological Systems. Chembiochem 2007; 8:475-81. [PMID: 17323398 DOI: 10.1002/cbic.200600454] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Singlet molecular oxygen is a reactive oxygen species that plays an important role in a number of biological processes, both as a signalling agent and as an intermediate involved in oxidative degradation reactions. Singlet oxygen is commonly generated by the so-called photosensitization process wherein a light-absorbing molecule, the sensitizer, transfers its energy of excitation to ground-state oxygen to make singlet oxygen. This process forms the basis of photodynamic therapy, for example, where light, a sensitizer, and oxygen are used to initiate cell death and ultimately destroy undesired tissue. Although the photosensitized production of singlet oxygen has been studied and used in biologically pertinent systems for years, the photoinitiated behaviour is often indiscriminate and difficult to control. In this Concept, we discuss new ideas and results in which spatial and temporal control of photosensitized singlet oxygen production can be implemented through the incorporation of the sensitizer into a conjugate system that selectively responds to certain triggers or stimuli.
Collapse
Affiliation(s)
- Emiliano Cló
- Department of Chemistry and iNANO, University of Aarhus, Langelandsgade 140, 8000 Arhus C, Denmark
| | | | | | | |
Collapse
|
29
|
Kernstock RM, Girotti AW. Lipid transfer protein binding of unmodified natural lipids as assessed by surface plasmon resonance methodology. Anal Biochem 2007; 365:111-21. [PMID: 17376396 PMCID: PMC1975857 DOI: 10.1016/j.ab.2007.02.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2007] [Accepted: 02/16/2007] [Indexed: 12/12/2022]
Abstract
A new approach for analyzing lipid-lipid transfer protein interactions is described. The transfer protein is genetically engineered for expression with a C-terminal biotinylated peptide extension (AviTag). This allows protein anchoring to a streptavidin-coated chip for surface plasmon resonance (SPR)-based assessment of lipid binding. Sterol carrier protein-2 (SCP-2), involved in the intracellular trafficking of cholesterol, fatty acids, and other lipids, was selected as the prototype. Biotinylated SCP-2 (bSCP-2) was expressed in Escherichia coli, purified to homogeneity by mutated streptavidin (SoftLink) affinity chromatography, and confirmed by mass spectrometry to contain one biotin group at the expected position. Intermembrane [(14)C]cholesterol transfer was strongly enhanced by bSCP-2, demonstrating that it was functional. Using bSCP-2 immobilized on a Biacore streptavidin chip, we determined on- and off-rate constants along with equilibrium dissociation constants for the following analytes: oleic acid, linoleic acid, cholesterol, and fluorophore (NBD)-derivatized cholesterol. The dissociation constant for NBD-cholesterol was similar to that determined by fluorescence titration for SCP-2 in solution, thereby validating the SPR approach. This method can be readily adapted to other transfer proteins and has several advantages over existing techniques for measuring lipid binding, including (i) the ability to study lipids in their natural states (i.e., without relatively large reporter groups) and (ii) the ability to measure on- and off- rate constants as well as equilibrium constants.
Collapse
Affiliation(s)
| | - Albert W. Girotti
- *To whom correspondence should be addressed: Dr. Albert W. Girotti, Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, 53226, Tel: 414-456-8432, Fax: 414-456-6510, E-mail:
| |
Collapse
|