1
|
Ghodke-Puranik Y, Olferiev M, Crow MK. Systemic lupus erythematosus genetics: insights into pathogenesis and implications for therapy. Nat Rev Rheumatol 2024; 20:635-648. [PMID: 39232240 DOI: 10.1038/s41584-024-01152-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2024] [Indexed: 09/06/2024]
Abstract
Systemic lupus erythematosus (SLE) is a prime example of how the interplay between genetic and environmental factors can trigger systemic autoimmunity, particularly in young women. Although clinical disease can take years to manifest, risk is established by the unique genetic makeup of an individual. Genome-wide association studies have identified almost 200 SLE-associated risk loci, yet unravelling the functional effect of these loci remains a challenge. New analytic tools have enabled researchers to delve deeper, leveraging DNA sequencing and cell-specific and immune pathway analysis to elucidate the immunopathogenic mechanisms. Both common genetic variants and rare non-synonymous mutations can interact to increase SLE risk. Notably, variants strongly associated with SLE are often located in genome super-enhancers that regulate MHC class II gene expression. Additionally, the 3D conformations of DNA and RNA contribute to genome regulation and innate immune system activation. Improved therapies for SLE are urgently needed and current and future knowledge from genetic and genomic research should provide new tools to facilitate patient diagnosis, enhance the identification of therapeutic targets and optimize testing of agents.
Collapse
Affiliation(s)
- Yogita Ghodke-Puranik
- Mary Kirkland Center for Lupus Research, Hospital for Special Surgery and Weill Cornell Medicine, New York, NY, USA
| | - Mikhail Olferiev
- Mary Kirkland Center for Lupus Research, Hospital for Special Surgery and Weill Cornell Medicine, New York, NY, USA
| | - Mary K Crow
- Mary Kirkland Center for Lupus Research, Hospital for Special Surgery and Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
2
|
Sartoris S, Del Pozzo G. Exploring the HLA complex in autoimmunity: From the risk haplotypes to the modulation of expression. Clin Immunol 2024; 265:110266. [PMID: 38851519 DOI: 10.1016/j.clim.2024.110266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/10/2024]
Abstract
The genes mapping at the HLA region show high density, strong linkage disequilibrium and high polymorphism, which affect the association of HLA class I and class II genes with autoimmunity. We focused on the HLA haplotypes, genomic structures consisting of an array of specific alleles showing some degrees of genetic association with different autoimmune disorders. GWASs in many pathologies have identified variants in either the coding loci or the flanking regulatory regions, both in linkage disequilibrium in haplotypes, that are frequently associated with increased risk and may influence gene expression. We discuss the relevance of the HLA gene expression because the level of surface heterodimers determines the number of complexes presenting self-antigen and, thus, the strength of pathogenic autoreactive T cells immune response.
Collapse
Affiliation(s)
- Silvia Sartoris
- Dept. of Medicine, Section of Immunology University of Verona School of Medicine, Verona, Italy
| | - Giovanna Del Pozzo
- Institute of Genetics and Biophysics "Adriano Buzzati Traverso" National Research Council (CNR), Naples, Italy.
| |
Collapse
|
3
|
Dezfulian MH, Kula T, Pranzatelli T, Kamitaki N, Meng Q, Khatri B, Perez P, Xu Q, Chang A, Kohlgruber AC, Leng Y, Jupudi AA, Joachims ML, Chiorini JA, Lessard CJ, Farris AD, Muthuswamy SK, Warner BM, Elledge SJ. TScan-II: A genome-scale platform for the de novo identification of CD4 + T cell epitopes. Cell 2023; 186:5569-5586.e21. [PMID: 38016469 PMCID: PMC10841602 DOI: 10.1016/j.cell.2023.10.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/12/2023] [Accepted: 10/25/2023] [Indexed: 11/30/2023]
Abstract
CD4+ T cells play fundamental roles in orchestrating immune responses and tissue homeostasis. However, our inability to associate peptide human leukocyte antigen class-II (HLA-II) complexes with their cognate T cell receptors (TCRs) in an unbiased manner has hampered our understanding of CD4+ T cell function and role in pathologies. Here, we introduce TScan-II, a highly sensitive genome-scale CD4+ antigen discovery platform. This platform seamlessly integrates the endogenous HLA-II antigen-processing machinery in synthetic antigen-presenting cells and TCR signaling in T cells, enabling the simultaneous screening of multiple HLAs and TCRs. Leveraging genome-scale human, virome, and epitope mutagenesis libraries, TScan-II facilitates de novo antigen discovery and deep exploration of TCR specificity. We demonstrate TScan-II's potential for basic and translational research by identifying a non-canonical antigen for a cancer-reactive CD4+ T cell clone. Additionally, we identified two antigens for clonally expanded CD4+ T cells in Sjögren's disease, which bind distinct HLAs and are expressed in HLA-II-positive ductal cells within affected salivary glands.
Collapse
Affiliation(s)
- Mohammad H Dezfulian
- Division of Genetics, Department of Medicine, Howard Hughes Medical Institute, Brigham and Women's Hospital, Boston, MA, USA; Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Tomasz Kula
- Division of Genetics, Department of Medicine, Howard Hughes Medical Institute, Brigham and Women's Hospital, Boston, MA, USA; Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Thomas Pranzatelli
- Adeno-Associated Virus Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Nolan Kamitaki
- Department of Genetics, Harvard Medical School, Boston, MA, USA; Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Qingda Meng
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Bhuwan Khatri
- Genes and Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Paola Perez
- Salivary Disorders Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Qikai Xu
- Division of Genetics, Department of Medicine, Howard Hughes Medical Institute, Brigham and Women's Hospital, Boston, MA, USA; Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Aiquan Chang
- Division of Genetics, Department of Medicine, Howard Hughes Medical Institute, Brigham and Women's Hospital, Boston, MA, USA; Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Ayano C Kohlgruber
- Division of Genetics, Department of Medicine, Howard Hughes Medical Institute, Brigham and Women's Hospital, Boston, MA, USA; Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Yumei Leng
- Division of Genetics, Department of Medicine, Howard Hughes Medical Institute, Brigham and Women's Hospital, Boston, MA, USA; Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Ananth Aditya Jupudi
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA; Departmentment of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Michelle L Joachims
- Genes and Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA; Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - John A Chiorini
- Adeno-Associated Virus Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Christopher J Lessard
- Genes and Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA; Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - A Darise Farris
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA; Departmentment of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Senthil K Muthuswamy
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Blake M Warner
- Salivary Disorders Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Stephen J Elledge
- Division of Genetics, Department of Medicine, Howard Hughes Medical Institute, Brigham and Women's Hospital, Boston, MA, USA; Department of Genetics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
4
|
Siegler BH, Thon JN, Altvater M, Schenz J, Larmann J, Weigand MA, Weiterer S. Abdominal surgery induces long-lasting changes in expression and binding of CTCF with impact on Major Histocompatibility Complex II transcription in circulating human monocytes. PLoS One 2023; 18:e0293347. [PMID: 37878653 PMCID: PMC10599505 DOI: 10.1371/journal.pone.0293347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 10/11/2023] [Indexed: 10/27/2023] Open
Abstract
BACKGROUND Postoperative immunosuppression has been recognized as an important driver of surgery-related morbidity and mortality. It is characterized by lymphocyte depression and impaired monocyte capability to present foreign antigens to T-cells via Major Histocompatibility Complex, Class II (MHC-II) molecules. In patients with postoperative abdominal sepsis, we previously detected a persisting differential binding of the CCCTC-Binding Factor (CTCF), a superordinate regulator of transcription, inside the MHC-II region with specific impact on human leucocyte antigen (HLA) gene expression. In this prospective exploratory study, we investigated to which extent major surgery affects the MHC-II region of circulating CD14+-monocytes. RESULTS In non-immunocompromised patients undergoing elective major abdominal surgery, a postoperative loss of monocyte HLA-DR surface receptor density was accompanied by a decline in the transcription levels of the classical MHC-II genes HLA-DRA, HLA-DRB1, HLA-DPA1 and HLA-DPB1. The surgical event decreased the expression of the transcriptional MHC-II regulators CIITA and CTCF and led to a lower CTCF enrichment at an intergenic sequence within the HLA-DR subregion. During the observation period, we found a slow and only incomplete restoration of monocyte HLA-DR surface receptor density as well as a partial recovery of CIITA, HLA-DRA and HLA-DRB1 expression. In contrast, transcription of HLA-DPA1, HLA-DPB1, CTCF and binding of CTCF within the MHC-II remained altered. CONCLUSION In circulating monocytes, major surgery does not globally affect MHC-II transcription but rather induces specific changes in the expression of selected HLA genes, followed by differential recovery patterns and accompanied by a prolonged reduction of CTCF expression and binding within the MHC-II region. Our results hint toward a long-lasting impact of a major surgical intervention on monocyte functionality, possibly mediated by epigenetic changes that endure the life span of the individual cell.
Collapse
Affiliation(s)
- Benedikt Hermann Siegler
- Medical Faculty Heidelberg, Department of Anesthesiology, Heidelberg University, Heidelberg, Baden-Württemberg, Germany
| | - Jan Niklas Thon
- Medical Faculty Heidelberg, Department of Anesthesiology, Heidelberg University, Heidelberg, Baden-Württemberg, Germany
| | - Marc Altvater
- Medical Faculty Heidelberg, Department of Anesthesiology, Heidelberg University, Heidelberg, Baden-Württemberg, Germany
| | - Judith Schenz
- Medical Faculty Heidelberg, Department of Anesthesiology, Heidelberg University, Heidelberg, Baden-Württemberg, Germany
| | - Jan Larmann
- Medical Faculty Heidelberg, Department of Anesthesiology, Heidelberg University, Heidelberg, Baden-Württemberg, Germany
| | - Markus Alexander Weigand
- Medical Faculty Heidelberg, Department of Anesthesiology, Heidelberg University, Heidelberg, Baden-Württemberg, Germany
| | - Sebastian Weiterer
- Medical Faculty Heidelberg, Department of Anesthesiology, Heidelberg University, Heidelberg, Baden-Württemberg, Germany
| |
Collapse
|
5
|
Kawasaki A, Kusumawati PA, Kawamura Y, Kondo Y, Kusaoi M, Amano H, Kusanagi Y, Itoh K, Fujimoto T, Tamura N, Hashimoto H, Matsumoto I, Sumida T, Tsuchiya N. Genetic dissection of HLA-DRB1*15:01 and XL9 region variants in Japanese patients with systemic lupus erythematosus: primary role for HLA-DRB1*15:01. RMD Open 2023; 9:rmdopen-2023-003214. [PMID: 37258043 DOI: 10.1136/rmdopen-2023-003214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 05/12/2023] [Indexed: 06/02/2023] Open
Abstract
OBJECTIVE Major histocompatibility complex strongly contributes to susceptibility to systemic lupus erythematosus (SLE). In the European populations, HLA-DRB1*03:01 and DRB1*15:01 are susceptibility alleles, but C4 locus was reported to account for the association of DRB1*03:01. With respect to DRB1*15:01, strong linkage disequilibrium with a variant rs2105898T in the XL9 region, located between DRB1 and DQA1 and regulates HLA-class II expression levels, was reported; however, the causative allele remains to be determined. Leveraging the genetic background of the Japanese population, where DRB1*15:01 and DRB1*15:02 are commonly present and only DRB1*15:01 is associated with SLE, this study aimed to distinguish the genetic contribution of DRB1*15:01 and XL9 variants. METHODS Among the XL9 variants, two (rs2105898 and rs9271593) previously associated variants in the European populations and two (rs9271375 and rs9271378) which showed a trend towards association in a Japanese Genome-Wide Association Study were selected. Associations of the XL9 variants and HLA-DRB1 were examined in 442 Japanese SLE patients and 779 controls. Genotyping of the XL9 variants was performed by TaqMan SNP Genotyping Assay and direct sequencing. HLA-DRB1 alleles were determined by PCR-reverse sequence-specific oligonucleotide probes. RESULTS Among the XL9 variants, associations of rs2105898T and rs9271593C were replicated in the Japanese population. However, these associations became no longer significant when conditioned on DRB1*15:01. In contrast, the association of DRB1*15:01 remained significant after conditioning on the XL9 variants. CONCLUSION In the Japanese population, HLA-DRB1*15:01 was found to be primarily associated with SLE, and to account for the apparent association of XL9 region.
Collapse
Affiliation(s)
- Aya Kawasaki
- Molecular and Genetic Epidemiology Laboratory, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
- Master's Program in Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
- College of Medical Sciences, University of Tsukuba, Tsukuba, Japan
| | - Premita Ari Kusumawati
- Molecular and Genetic Epidemiology Laboratory, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
- Master's Program in Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Yuka Kawamura
- Molecular and Genetic Epidemiology Laboratory, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
- College of Medical Sciences, University of Tsukuba, Tsukuba, Japan
| | - Yuya Kondo
- Department of Rheumatology, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Makio Kusaoi
- Department of Internal Medicine and Rheumatology, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | - Hirofumi Amano
- Department of Internal Medicine and Rheumatology, Faculty of Medicine, Juntendo University, Tokyo, Japan
- Department of Internal Medicine and Rheumatology, Juntendo University Nerima Hospital, Tokyo, Japan
| | - Yasuyoshi Kusanagi
- Division of Hematology and Rheumatology, Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan
| | - Kenji Itoh
- Division of Hematology and Rheumatology, Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan
| | - Takashi Fujimoto
- Department of General Medicine, Nara Medical University, Kashihara, Japan
| | - Naoto Tamura
- Department of Internal Medicine and Rheumatology, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | | | - Isao Matsumoto
- Department of Rheumatology, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Takayuki Sumida
- Department of Rheumatology, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Naoyuki Tsuchiya
- Molecular and Genetic Epidemiology Laboratory, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
- Master's Program in Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
- College of Medical Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
6
|
HLA-DRB1: A new potential prognostic factor and therapeutic target of cutaneous melanoma and an indicator of tumor microenvironment remodeling. PLoS One 2022; 17:e0274897. [PMID: 36129956 PMCID: PMC9491554 DOI: 10.1371/journal.pone.0274897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 08/26/2022] [Indexed: 11/19/2022] Open
Abstract
Cutaneous melanoma (CM) is the most common skin cancer and one of the most aggressive cancers and its incidence has risen dramatically over the past few decades. The tumor microenvironment (TME) plays a crucial role in the occurrence and development of cutaneous melanoma. Nevertheless, the dynamics modulation of the immune and stromal components in the TME is not fully understood. In this study, 471 CM samples were obtained from TCGA database, and the ratio of tumor-infiltrating immune cells (TICs) in the TME were estimated using the ESTIMATE algorithms and CIBERSORT computational method. The differently expressed genes (DEGs) were applied to GO and KEGG function enrichment analysis, establishment of protein-protein interaction (PPI) network and univariate Cox regression analysis. Subsequently, we identified a predictive factor: HLA-DRB1 (major histocompatibility complex, class II, DR beta 1) by the intersection analysis of the hub genes of PPI network and the genes associated with the prognosis of the CM patients obtained by univariate Cox regression analysis. Correlation analysis and survival analysis showed that the expression level of HLA-DRB1 was negatively correlated with the Stage of the patients while positively correlated with the survival, prognosis and TME of melanoma. The GEPIA web server and the representative immunohistochemical images of HLA-DRB1 in the normal skin tissue and melanoma tissue from the Human Protein Atlas (HPA) database were applied to validate the expression level of HLA-DRB1. CIBERSORT analysis for the ratio of TICs indicated that 9 types of TICs were positively correlated with the expression level of HLA-DRB1 and only 4 types of TICs were negatively correlated with the expression level of HLA-DRB1. These results suggested that the expression level of HLA-DRB1 may be related to the immune activity of the TME and may affect the prognosis of CM patients by changing the status of the TME.
Collapse
|
7
|
A Case Report on Longitudinal Collection of Tumour Biopsies for Gene Expression-Based Tumour Microenvironment Analysis from Pancreatic Cancer Patients Treated with Endoscopic Ultrasound Guided Radiofrequency Ablation. Curr Oncol 2022; 29:6754-6763. [PMID: 36290808 PMCID: PMC9600136 DOI: 10.3390/curroncol29100531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/07/2022] [Accepted: 09/14/2022] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Most patients with pancreatic ductal adenocarcinoma (PDAC) are metastatic at presentation with dismal prognosis warranting improved systemic therapy options. Longitudinal sampling for the assessment of treatment response poses a challenge for validating novel therapies. In this case study, we evaluate the feasibility of collecting endoscopic ultrasound (EUS)-guided longitudinal fine-needle aspiration biopsies (FNABs) from two PDAC patients and conduct gene expression studies associated with tumour microenvironment changes associated with radiofrequency ablation (RFA). METHODS EUS-guided serial/longitudinal FNABs of tumour were collected before and after treatment from two stage III inoperable gemcitabine-treated PDAC patients treated with targeted RFA three times. Biopsies were analysed using a custom NanoString panel (144 genes) consisting of cancer and cancer-associated fibroblast (CAFs) subtypes and immune changes. CAF culture was established from one FNAB and characterised by immunofluorescence and immunoblotting. RESULTS Two-course RFA led to the upregulation of the CD1E gene (involved in antigen presentation) in both patients 1 and 2 (4.5 and 3.9-fold changes) compared to baseline. Patient 1 showed increased T cell genes (CD4-8.7-fold change, CD8-35.7-fold change), cytolytic function (6.4-fold change) and inflammatory response (8-fold change). A greater than 2-fold upregulation of immune checkpoint genes was observed post-second RFA in both patients. Further, two-course RFA led to increased PDGFRα (4.5-fold change) and CAF subtypes B and C genes in patient 1 and subtypes A, B and D genes in patient 2. Patient 2-derived CAFs post-first RFA showed expression of PDGFRα, POSTN and MYH11 proteins. Finally, RFA led to the downregulation of classical PDAC subtype-specific genes in both patients. CONCLUSIONS This case study suggests longitudinal EUS-FNAB as a potential resource to study tumour and microenvironmental changes associated with RFA treatment. A large sample size is required in the future to assess the efficacy and safety of the treatment and perform comprehensive statistical analysis of EUS-RFA-based molecular changes in PDAC.
Collapse
|
8
|
Sun X, Zhang J, Cao C. CTCF and Its Partners: Shaper of 3D Genome during Development. Genes (Basel) 2022; 13:genes13081383. [PMID: 36011294 PMCID: PMC9407368 DOI: 10.3390/genes13081383] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 02/06/2023] Open
Abstract
The 3D genome organization and its dynamic modulate genome function, playing a pivotal role in cell differentiation and development. CTCF and cohesin, acting as the core architectural components involved in chromatin looping and genome folding, can also recruit other protein or RNA partners to fine-tune genome structure during development. Moreover, systematic screening for partners of CTCF has been performed through high-throughput approaches. In particular, several novel protein and RNA partners, such as BHLHE40, WIZ, MAZ, Aire, MyoD, YY1, ZNF143, and Jpx, have been identified, and these partners are mostly implicated in transcriptional regulation and chromatin remodeling, offering a unique opportunity for dissecting their roles in higher-order chromatin organization by collaborating with CTCF and cohesin. Here, we review the latest advancements with an emphasis on features of CTCF partners and also discuss the specific functions of CTCF-associated complexes in chromatin structure modulation, which may extend our understanding of the functions of higher-order chromatin architecture in developmental processes.
Collapse
Affiliation(s)
- Xiaoyue Sun
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510275, China; (X.S.); (J.Z.)
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510275, China
- Center for Reproductive Genetics and Reproductive Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510275, China
| | - Jing Zhang
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510275, China; (X.S.); (J.Z.)
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510275, China
- Center for Reproductive Genetics and Reproductive Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510275, China
| | - Chunwei Cao
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510275, China; (X.S.); (J.Z.)
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510275, China
- Center for Reproductive Genetics and Reproductive Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510275, China
- Guangzhou Laboratory, Guangzhou 510320, China
- Correspondence:
| |
Collapse
|
9
|
Boss JM. The Regulation of Immunity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:2450-2455. [PMID: 35595305 DOI: 10.4049/jimmunol.2290007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Abstract
In their AAI President's Addresses reproduced in this issue, Jeremy M. Boss, Ph.D. (AAI '94; AAI president 2019–2020), and Jenny P.-Y. Ting, Ph.D. (AAI '97; AAI president 2020–2021), welcomed attendees to the AAI annual meeting, Virtual IMMUNOLOGY2021™. Due to the SARS-CoV-2 pandemic and the cancellation of IMMUNOLOGY2020™, Dr. Boss and Dr. Ting each presented their respective president's address to open the meeting.
Collapse
Affiliation(s)
- Jeremy M Boss
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322
| |
Collapse
|
10
|
Farina F, Pisapia L, Laezza M, Serena G, Rispo A, Ricciolino S, Gianfrani C, Fasano A, Del Pozzo G. Effect of Gliadin Stimulation on HLA-DQ2.5 Gene Expression in Macrophages from Adult Celiac Disease Patients. Biomedicines 2021; 10:biomedicines10010063. [PMID: 35052743 PMCID: PMC8773327 DOI: 10.3390/biomedicines10010063] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 11/16/2022] Open
Abstract
Macrophages play an important role in the pathogenesis of celiac disease (CD) because they are involved in both inflammatory reaction and antigen presentation. We analyzed the expression of CD-associated HLA-DQ2.5 risk alleles on macrophages isolated by two cohorts of adult patients, from the U.S. and Italy, at different stages of disease and with different genotypes. After isolating and differentiating macrophages from PBMC, we assessed the HLA genotype and quantified the HLA-DQ2.5 mRNAs by qPCR, before and after gliadin stimulation. The results confirmed the differences in expression between DQA1*05:01 and DQB1*02:01 predisposing alleles and the non-CD associated alleles, as previously shown on other types of APCs. The gliadin challenge confirmed the differentiation of macrophages toward a proinflammatory phenotype, but above all, it triggered an increase of DQA1*05:01 mRNA, as well as a decrease of the DQB1*02:01 transcript. Furthermore, we observed a decrease in the DRB1 genes expression and a downregulation of the CIITA transactivator. In conclusion, our findings provide new evidences on the non-coordinated regulation of celiac disease DQ2.5 risk genes and support the hypothesis that gliadin could interfere in the three-dimensional arrangement of chromatin at the HLA locus.
Collapse
Affiliation(s)
- Federica Farina
- Institute of Genetics and Biophysics “A. Buzzati-Traverso”, Italian National Council of Research (CNR), 80131 Naples, Italy; (F.F.); (L.P.); (M.L.)
| | - Laura Pisapia
- Institute of Genetics and Biophysics “A. Buzzati-Traverso”, Italian National Council of Research (CNR), 80131 Naples, Italy; (F.F.); (L.P.); (M.L.)
| | - Mariavittoria Laezza
- Institute of Genetics and Biophysics “A. Buzzati-Traverso”, Italian National Council of Research (CNR), 80131 Naples, Italy; (F.F.); (L.P.); (M.L.)
| | - Gloria Serena
- Division of Pediatric Gastroenterology and Nutrition, Center for Celiac Research, Mucosal Immunology and Biology Research Center, Harvard Medical School, Massachusetts General Hospital, Boston, MA 02114, USA; (G.S.); (A.F.)
| | - Antonio Rispo
- Gastroenterology, Department of Clinical Medicine and Surgery, School of Medicine Federico II of Naples, 80131 Naples, Italy; (A.R.); (S.R.)
| | - Simona Ricciolino
- Gastroenterology, Department of Clinical Medicine and Surgery, School of Medicine Federico II of Naples, 80131 Naples, Italy; (A.R.); (S.R.)
| | - Carmen Gianfrani
- Institute of Biochemistry and Cell Biology, Italian National Council of Research (CNR), 80131 Naples, Italy;
| | - Alessio Fasano
- Division of Pediatric Gastroenterology and Nutrition, Center for Celiac Research, Mucosal Immunology and Biology Research Center, Harvard Medical School, Massachusetts General Hospital, Boston, MA 02114, USA; (G.S.); (A.F.)
| | - Giovanna Del Pozzo
- Institute of Genetics and Biophysics “A. Buzzati-Traverso”, Italian National Council of Research (CNR), 80131 Naples, Italy; (F.F.); (L.P.); (M.L.)
- Correspondence:
| |
Collapse
|
11
|
Patterson DG, Kania AK, Zuo Z, Scharer CD, Boss JM. Epigenetic gene regulation in plasma cells. Immunol Rev 2021; 303:8-22. [PMID: 34010461 PMCID: PMC8387415 DOI: 10.1111/imr.12975] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 04/23/2021] [Indexed: 12/12/2022]
Abstract
Humoral immunity provides protection from pathogenic infection and is mediated by antibodies following the differentiation of naive B cells (nBs) to antibody-secreting cells (ASCs). This process requires substantial epigenetic and transcriptional rewiring to ultimately repress the nB program and replace it with one conducive to ASC physiology and function. Notably, these reprogramming events occur within the framework of cell division. Efforts to understand the relationship of cell division with reprogramming and ASC differentiation in vivo have uncovered the timing and scope of reprogramming, as well as key factors that influence these events. Herein, we discuss the unique physiology of ASC and how nBs undergo epigenetic and genome architectural reorganization to acquire the necessary functions to support antibody production. We also discuss the stage-wise manner in which reprogramming occurs across cell divisions and how key molecular determinants can influence B cell fate outcomes.
Collapse
Affiliation(s)
- Dillon G. Patterson
- Department of Microbiology and Immunology, Emory University, Atlanta GA 30322
| | - Anna K. Kania
- Department of Microbiology and Immunology, Emory University, Atlanta GA 30322
| | - Zhihong Zuo
- Department of Microbiology and Immunology, Emory University, Atlanta GA 30322
- Xiangya School of Medicine, Central South University, Changsha, 410008, China
| | | | - Jeremy M. Boss
- Department of Microbiology and Immunology, Emory University, Atlanta GA 30322
| |
Collapse
|
12
|
Li F, Zhu M, Niu B, Liu L, Peng X, Yang H, Qin B, Wang M, Ren X, Zhou X. Generation and expression analysis of BAC humanized mice carrying HLA-DP401 haplotype. Animal Model Exp Med 2021; 4:116-128. [PMID: 34179719 PMCID: PMC8212823 DOI: 10.1002/ame2.12158] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 12/17/2020] [Indexed: 11/13/2022] Open
Abstract
Background Human leukocyte antigen (HLA)-DP is much less studied than other HLA class II antigens, that is, HLA-DR and HLA-DQ, etc. However, the accumulating data have suggested the important roles of DP-restricted responses in the context of cancer, allergy, and infectious disease. Lack of animal models expressing these genes as authentic cis-haplotypes blocks our understanding for the role of HLA-DP haplotypes in immunity. Methods To explore the potential cis-acting control elements involved in the transcriptional regulation of the HLA-DPA1/DPB1 gene, we performed the expression analysis using bacterial artificial chromosome (BAC)-based transgenic humanized mice in the C57BL/6 background, which carried the entire HLA-DP401 gene locus. We further developed a mouse model of Staphylococcus aureus pneumonia in HLA-DP401 humanized transgenic mice, and performed the analysis on the expression pattern of HLA-DP401 and immunological responses in the model. Results In this study, we screened and identified a BAC clone spanning the entire HLA-DP gene locus. DNA from this clone was analyzed for integrity by pulsed-field gel electrophoresis and then microinjected into fertilized mouse oocytes to produce transgenic founder animals. Nine sets of PCR primers for regional markers with an average distance of 15 kb between each primer were used to confirm the integrity of the transgene in the five transgenic lines carrying the HLA-DPA1/DPB1 gene. Transgene copy numbers were determined by real-time PCR analysis. HLA-DP401 gene expression was analyzed at the mRNA and protein level. Although infection with S aureus Newman did not alter the percentage of immune cells in the spleen and thymus from the HLA-DP401-H2-Aβ1 humanized mice. Increased expression of HLA-DP401 was observed in the thymus of the humanized mice infected by S aureus. Conclusions We generated several BAC transgenic mice, and analyzed the expression of HLA-DPA1/DPB1 in those mice. A model of Saureus-induced pneumonia in the HLA-DP401-H2-Aβ1-/- humanized mice was further developed, and S aureus infection upregulated the HLA-DP401 expression in thymus of those humanized mice. These findings demonstrate the potential of those HLA-DPA1/DPB1 transgenic humanized mice for developing animal models of infectious diseases and MHC-associated immunological diseases.
Collapse
Affiliation(s)
- Feng Li
- Department of Laboratory Animal ScienceShanghai Public Health Clinical CenterFudan UniveristyShanghaiChina
| | - Meng‐min Zhu
- Department of Laboratory Animal ScienceShanghai Public Health Clinical CenterFudan UniveristyShanghaiChina
| | - Bo‐wen Niu
- Department of Laboratory Animal ScienceShanghai Public Health Clinical CenterFudan UniveristyShanghaiChina
| | - Ling‐ling Liu
- Department of Laboratory Animal ScienceShanghai Public Health Clinical CenterFudan UniveristyShanghaiChina
| | - Xiu‐hua Peng
- Department of Laboratory Animal ScienceShanghai Public Health Clinical CenterFudan UniveristyShanghaiChina
| | - Hua Yang
- Department of Laboratory Animal ScienceShanghai Public Health Clinical CenterFudan UniveristyShanghaiChina
| | - Bo‐yin Qin
- Department of Laboratory Animal ScienceShanghai Public Health Clinical CenterFudan UniveristyShanghaiChina
| | - Meixiang Wang
- Department of Scientific ResearchShanghai Public Health Clinical CenterFudan UniveristyShanghaiChina
| | - Xiaonan Ren
- Department of Laboratory Animal ScienceShanghai Public Health Clinical CenterFudan UniveristyShanghaiChina
| | - Xiaohui Zhou
- Department of Laboratory Animal ScienceShanghai Public Health Clinical CenterFudan UniveristyShanghaiChina
| |
Collapse
|
13
|
Postoperative abdominal sepsis induces selective and persistent changes in CTCF binding within the MHC-II region of human monocytes. PLoS One 2021; 16:e0250818. [PMID: 33939725 PMCID: PMC8092803 DOI: 10.1371/journal.pone.0250818] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 04/14/2021] [Indexed: 01/01/2023] Open
Abstract
Background Postoperative abdominal infections belong to the most common triggers of sepsis and septic shock in intensive care units worldwide. While monocytes play a central role in mediating the initial host response to infections, sepsis-induced immune dysregulation is characterized by a defective antigen presentation to T-cells via loss of Major Histocompatibility Complex Class II DR (HLA-DR) surface expression. Here, we hypothesized a sepsis-induced differential occupancy of the CCCTC-Binding Factor (CTCF), an architectural protein and superordinate regulator of transcription, inside the Major Histocompatibility Complex Class II (MHC-II) region in patients with postoperative sepsis, contributing to an altered monocytic transcriptional response during critical illness. Results Compared to a matched surgical control cohort, postoperative sepsis was associated with selective and enduring increase in CTCF binding within the MHC-II. In detail, increased CTCF binding was detected at four sites adjacent to classical HLA class II genes coding for proteins expressed on monocyte surface. Gene expression analysis revealed a sepsis-associated decreased transcription of (i) the classical HLA genes HLA-DRA, HLA-DRB1, HLA-DPA1 and HLA-DPB1 and (ii) the gene of the MHC-II master regulator, CIITA (Class II Major Histocompatibility Complex Transactivator). Increased CTCF binding persisted in all sepsis patients, while transcriptional recovery CIITA was exclusively found in long-term survivors. Conclusion Our experiments demonstrate differential and persisting alterations of CTCF occupancy within the MHC-II, accompanied by selective changes in the expression of spatially related HLA class II genes, indicating an important role of CTCF in modulating the transcriptional response of immunocompromised human monocytes during critical illness.
Collapse
|
14
|
Majumder P, Lee JT, Barwick BG, Patterson DG, Bally APR, Scharer CD, Boss JM. The Murine MHC Class II Super Enhancer IA/IE-SE Contains a Functionally Redundant CTCF-Binding Component and a Novel Element Critical for Maximal Expression. THE JOURNAL OF IMMUNOLOGY 2021; 206:2221-2232. [PMID: 33863790 DOI: 10.4049/jimmunol.2001089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 03/01/2021] [Indexed: 11/19/2022]
Abstract
In both humans and mice, CTCF-binding elements form a series of interacting loops across the MHC class II (MHC-II) locus, and CTCF is required for maximal MHC-II gene expression. In humans, a CTCF-bound chromatin insulator termed XL9 and a super enhancer (SE) DR/DQ-SE situated in the intergenic region between HLA-DRB1 and HLA-DQA1 play critical roles in regulating MHC-II expression. In this study, we identify a similar SE, termed IA/IE-SE, located between H2-Eb1 and H2-Aa of the mouse that contains a CTCF site (C15) and a novel region of high histone H3K27 acetylation. A genetic knockout of C15 was created and its role on MHC-II expression tested on immune cells. We found that C15 deletion did not alter MHC-II expression in B cells, macrophages, and macrophages treated with IFN-γ because of functional redundancy of the remaining MHC-II CTCF sites. Surprisingly, embryonic fibroblasts derived from C15-deleted mice failed to induce MHC-II gene expression in response to IFN-γ, suggesting that at least in this developmental lineage, C15 was required. Examination of the three-dimensional interactions with C15 and the H2-Eb1 and H2-Aa promoters identified interactions within the novel region of high histone acetylation within the IA/IE-SE (termed N1) that contains a PU.1 binding site. CRISPR/Cas9 deletion of N1 altered chromatin interactions across the locus and resulted in reduced MHC-II expression. Together, these data demonstrate the functional redundancy of the MHC-II CTCF elements and identify a functionally conserved SE that is critical for maximal expression of MHC-II genes.
Collapse
Affiliation(s)
- Parimal Majumder
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA
| | - Joshua T Lee
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA
| | - Benjamin G Barwick
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA
| | - Dillon G Patterson
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA
| | - Alexander P R Bally
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA
| | - Christopher D Scharer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA
| | - Jeremy M Boss
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
15
|
HLA class II genes in precision-based care of childhood diseases: what we can learn from celiac disease. Pediatr Res 2021; 89:307-312. [PMID: 33122841 DOI: 10.1038/s41390-020-01217-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/17/2020] [Accepted: 09/25/2020] [Indexed: 12/20/2022]
Abstract
Celiac disease (CeD) is a chronic immuno-mediated enteropathy caused by dietary gluten with marked autoimmunity traits. The human leukocyte antigen (HLA) class II heterodimers represent the main predisposing factor, although environmental agents, as viral infection, gut microbiota, and dietary regimen, also contribute to CeD risk. These molecules are involved in autoimmunity as they present self-antigens to autoreactive T cells that have escaped the thymic negative selection. In CeD, the HLA class II risk alleles, DQA1*05-DQB1*02 and DQA1*03-DQB1*03, encode for DQ2.5 and DQ8 heterodimers, and, furthermore, disease susceptibility was found strictly dependent on the dose of these genes. This finding questioned how the expression of HLA-DQ risk genes, and of relative surface protein on antigen-presenting cells, might be relevant for the magnitude of anti-gluten inflammatory response in CeD patients, and impact the natural history of disease, its pathomechanisms, and compliance to dietary treatment. In this scenario, new personalized medical approaches will be desirable to support an early, accurate, and non-invasive diagnosis, and to define genotype-guided preventive and therapeutic strategies for CeD. To reach this goal, a stratification of genetic risk, disease outcome, and therapy compliance based on HLA genotypes, DQ2.5/DQ8 expression measurement and magnitude of T cell response to gluten is mandatory. IMPACT: This article revises the current knowledge on how different HLA haplotypes, carrying the DQ2.5/DQ8 risk alleles, impact the onset of CeD. This review discusses how the expression of susceptibility HLA-DQ genes can determine the risk assessment, outcome, and prevention of CeD. The recent insights on the environmental factors contributing to CeD in childhood are reviewed. This review discusses the use of HLA risk gene expression as a tool to support medical precision approaches for an early and non-invasive diagnosis of CeD, and to define genotype-guided preventive and therapeutic strategies.
Collapse
|
16
|
Valletta M, Russo R, Baglivo I, Russo V, Ragucci S, Sandomenico A, Iaccarino E, Ruvo M, De Feis I, Angelini C, Iachettini S, Biroccio A, Pedone PV, Chambery A. Exploring the Interaction between the SWI/SNF Chromatin Remodeling Complex and the Zinc Finger Factor CTCF. Int J Mol Sci 2020; 21:E8950. [PMID: 33255744 PMCID: PMC7728349 DOI: 10.3390/ijms21238950] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/19/2020] [Accepted: 11/22/2020] [Indexed: 12/18/2022] Open
Abstract
The transcription factor CCCTC-binding factor (CTCF) modulates pleiotropic functions mostly related to gene expression regulation. The role of CTCF in large scale genome organization is also well established. A unifying model to explain relationships among many CTCF-mediated activities involves direct or indirect interactions with numerous protein cofactors recruited to specific binding sites. The co-association of CTCF with other architectural proteins such as cohesin, chromodomain helicases, and BRG1, further supports the interplay between master regulators of mammalian genome folding. Here, we report a comprehensive LC-MS/MS mapping of the components of the switch/sucrose nonfermentable (SWI/SNF) chromatin remodeling complex co-associated with CTCF including subunits belonging to the core, signature, and ATPase modules. We further show that the localization patterns of representative SWI/SNF members significantly overlap with CTCF sites on transcriptionally active chromatin regions. Moreover, we provide evidence of a direct binding of the BRK-BRG1 domain to the zinc finger motifs 4-8 of CTCF, thus, suggesting that these domains mediate the interaction of CTCF with the SWI/SNF complex. These findings provide an updated view of the cooperative nature between CTCF and the SWI/SNF ATP-dependent chromatin remodeling complexes, an important step for understanding how these architectural proteins collaborate to shape the genome.
Collapse
Affiliation(s)
- Mariangela Valletta
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy; (M.V.); (R.R.); (I.B.); (V.R.); (S.R.)
| | - Rosita Russo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy; (M.V.); (R.R.); (I.B.); (V.R.); (S.R.)
| | - Ilaria Baglivo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy; (M.V.); (R.R.); (I.B.); (V.R.); (S.R.)
| | - Veronica Russo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy; (M.V.); (R.R.); (I.B.); (V.R.); (S.R.)
| | - Sara Ragucci
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy; (M.V.); (R.R.); (I.B.); (V.R.); (S.R.)
| | - Annamaria Sandomenico
- Istituto di Biostrutture e Bioimmagini IBB, National Research Council, 80134 Napoli, Italy; (A.S.); (E.I.); (M.R.)
| | - Emanuela Iaccarino
- Istituto di Biostrutture e Bioimmagini IBB, National Research Council, 80134 Napoli, Italy; (A.S.); (E.I.); (M.R.)
| | - Menotti Ruvo
- Istituto di Biostrutture e Bioimmagini IBB, National Research Council, 80134 Napoli, Italy; (A.S.); (E.I.); (M.R.)
| | - Italia De Feis
- Istituto per le Applicazioni del Calcolo IAC ‘M. Picone’, National Research Council, 80131 Napoli, Italy; (I.D.F.); (C.A.)
| | - Claudia Angelini
- Istituto per le Applicazioni del Calcolo IAC ‘M. Picone’, National Research Council, 80131 Napoli, Italy; (I.D.F.); (C.A.)
| | - Sara Iachettini
- Oncogenomic and Epigenetic Unit, IRCCS-Regina Elena National Cancer Institute, 00144 Roma, Italy; (S.I.); (A.B.)
| | - Annamaria Biroccio
- Oncogenomic and Epigenetic Unit, IRCCS-Regina Elena National Cancer Institute, 00144 Roma, Italy; (S.I.); (A.B.)
| | - Paolo Vincenzo Pedone
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy; (M.V.); (R.R.); (I.B.); (V.R.); (S.R.)
| | - Angela Chambery
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy; (M.V.); (R.R.); (I.B.); (V.R.); (S.R.)
| |
Collapse
|
17
|
Majumder P, Lee JT, Rahmberg AR, Kumar G, Mi T, Scharer CD, Boss JM. A super enhancer controls expression and chromatin architecture within the MHC class II locus. J Exp Med 2020; 217:e20190668. [PMID: 31753848 PMCID: PMC7041702 DOI: 10.1084/jem.20190668] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 09/05/2019] [Accepted: 10/14/2019] [Indexed: 12/30/2022] Open
Abstract
Super enhancers (SEs) play critical roles in cell type-specific gene regulation. The mechanisms by which such elements work are largely unknown. Two SEs termed DR/DQ-SE and XL9-SE are situated within the human MHC class II locus between the HLA-DRB1 and HLA-DQA1 genes and are highly enriched for disease-causing SNPs. To test the function of these elements, we used CRISPR/Cas9 to generate a series of mutants that deleted the SE. Deletion of DR/DQ-SE resulted in reduced expression of HLA-DRB1 and HLA-DQA1 genes. The SEs were found to interact with each other and the promoters of HLA-DRB1 and HLA-DQA1. DR/DQ-SE also interacted with neighboring CTCF binding sites. Importantly, deletion of DR/DQ-SE reduced the local chromatin interactions, implying that it functions as the organizer for the local three-dimensional architecture. These data provide direct mechanisms by which an MHC-II SE contributes to expression of the locus and suggest how variation in these SEs may contribute to human disease and altered immunity.
Collapse
Affiliation(s)
- Parimal Majumder
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA
| | - Joshua T Lee
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA
| | - Andrew R Rahmberg
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA
| | - Gaurav Kumar
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA
| | - Tian Mi
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA
| | - Christopher D Scharer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA
| | - Jeremy M Boss
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
18
|
Petersdorf EW, O'hUigin C. The MHC in the era of next-generation sequencing: Implications for bridging structure with function. Hum Immunol 2019; 80:67-78. [PMID: 30321633 PMCID: PMC6542361 DOI: 10.1016/j.humimm.2018.10.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 09/24/2018] [Accepted: 10/01/2018] [Indexed: 12/19/2022]
Abstract
The MHC continues to have the most disease-associations compared to other regions of the human genome, even in the genome-wide association study (GWAS) and single nucleotide polymorphism (SNP) era. Analysis of non-coding variation and their impact on the level of expression of HLA allotypes has shed new light on the potential mechanisms underlying HLA disease associations and alloreactivity in transplantation. Next-generation sequencing (NGS) technology has the capability of delineating the phase of variants in the HLA antigen-recognition site (ARS) with non-coding regulatory polymorphisms. These relationships are critical for understanding the qualitative and quantitative implications of HLA gene diversity. This article summarizes current understanding of non-coding region variation of HLA loci, the consequences of regulatory variation on HLA expression, the role for evolution in shaping lineage-specific expression, and the impact of HLA expression on disease susceptibility and transplantation outcomes. A role for phased sequencing methods for the MHC, and perspectives for future directions in basic and applied immunogenetic studies of the MHC are presented.
Collapse
Affiliation(s)
- Effie W Petersdorf
- University of Washington, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, D4-115, Seattle, WA 98109, United States.
| | - Colm O'hUigin
- Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Microbiome and Genetics Core, Building 37, Room 4140B, Bethesda, MD 20852, United States.
| |
Collapse
|
19
|
Siegler BH, Uhle F, Lichtenstern C, Arens C, Bartkuhn M, Weigand MA, Weiterer S. Impact of human sepsis on CCCTC-binding factor associated monocyte transcriptional response of Major Histocompatibility Complex II components. PLoS One 2018; 13:e0204168. [PMID: 30212590 PMCID: PMC6136812 DOI: 10.1371/journal.pone.0204168] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 09/03/2018] [Indexed: 12/12/2022] Open
Abstract
Background Antigen presentation on monocyte surface to T-cells by Major Histocompatibility Complex, Class II (MHC-II) molecules is fundamental for pathogen recognition and efficient host response. Accordingly, loss of Major Histocompatibility Complex, Class II, DR (HLA-DR) surface expression indicates impaired monocyte functionality in patients suffering from sepsis-induced immunosuppression. Besides the impact of Class II Major Histocompatibility Complex Transactivator (CIITA) on MHC-II gene expression, X box-like (XL) sequences have been proposed as further regulatory elements. These elements are bound by the DNA-binding protein CCCTC-Binding Factor (CTCF), a superordinate modulator of gene transcription. Here, we hypothesized a differential interaction of CTCF with the MHC-II locus contributing to an altered monocyte response in immunocompromised septic patients. Methods We collected blood from six patients diagnosed with sepsis and six healthy controls. Flow cytometric analysis was used to identify sepsis-induced immune suppression, while inflammatory cytokine levels in blood were determined via ELISA. Isolation of CD14++ CD16—monocytes was followed by (i) RNA extraction for gene expression analysis and (ii) chromatin immunoprecipitation to assess the distribution of CTCF and chromatin modifications in selected MHC-II regions. Results Compared to healthy controls, CD14++ CD16—monocytes from septic patients with immune suppression displayed an increased binding of CTCF within the MHC-II locus combined with decreased transcription of CIITA gene. In detail, enhanced CTCF enrichment was detected on the intergenic sequence XL9 separating two subregions coding for MHC-II genes. Depending on the relative localisation to XL9, gene expression of both regions was differentially affected in patients with sepsis. Conclusion Our experiments demonstrate for the first time that differential CTCF binding at XL9 is accompanied by uncoupled MHC-II expression as well as transcriptional and epigenetic alterations of the MHC-II regulator CIITA in septic patients. Overall, our findings indicate a sepsis-induced enhancer blockade mediated by variation of CTCF at the intergenic sequence XL9 in altered monocytes during immunosuppression.
Collapse
Affiliation(s)
- Benedikt Hermann Siegler
- Department of Anesthesiology, Heidelberg University Hospital, Im Neuenheimer Feld 110, Heidelberg, Baden-Württemberg, Germany
| | - Florian Uhle
- Department of Anesthesiology, Heidelberg University Hospital, Im Neuenheimer Feld 110, Heidelberg, Baden-Württemberg, Germany
| | - Christoph Lichtenstern
- Department of Anesthesiology, Heidelberg University Hospital, Im Neuenheimer Feld 110, Heidelberg, Baden-Württemberg, Germany
| | - Christoph Arens
- Department of Anesthesiology, Heidelberg University Hospital, Im Neuenheimer Feld 110, Heidelberg, Baden-Württemberg, Germany
| | - Marek Bartkuhn
- Institute for Genetics, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 58–62, Giessen, Hessen, Germany
| | - Markus Alexander Weigand
- Department of Anesthesiology, Heidelberg University Hospital, Im Neuenheimer Feld 110, Heidelberg, Baden-Württemberg, Germany
| | - Sebastian Weiterer
- Department of Anesthesiology, Heidelberg University Hospital, Im Neuenheimer Feld 110, Heidelberg, Baden-Württemberg, Germany
- * E-mail:
| |
Collapse
|
20
|
Gianfrani C, Pisapia L, Picascia S, Strazzullo M, Del Pozzo G. Expression level of risk genes of MHC class II is a susceptibility factor for autoimmunity: New insights. J Autoimmun 2018; 89:1-10. [PMID: 29331322 DOI: 10.1016/j.jaut.2017.12.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/28/2017] [Accepted: 12/29/2017] [Indexed: 02/08/2023]
Abstract
To date, the study of the impact of major hystocompatibility complex on autoimmunity has been prevalently focused on structural diversity of MHC molecules in binding and presentation of (auto)antigens to cognate T cells. Recently, a number of experimental evidences suggested new points of view to investigate the complex relationships between MHC gene expression and the individual predisposition to autoimmune diseases. Irrespective of the nature of the antigen, a threshold of MHC-peptide complexes needs to be reached, as well as a threshold of T cell receptors engaged is required, for the activation and proliferation of autoantigen-reactive T cells. Moreover, it is well known that increased expression of MHC class II molecules may alter the T cell receptor repertoire during thymic development, and affect the survival and expansion of mature T cells. Many evidences confirmed that the level of both transcriptional and post-transcriptional regulation are involved in the modulation of the expression of MHC class II genes and that both contribute to the predisposition to autoimmune diseases. Here, we aim to focus some of these regulative aspects to better clarify the role of MHC class II genes in predisposition and development of autoimmunity.
Collapse
Affiliation(s)
- Carmen Gianfrani
- Institute of Protein Biochemistry-CNR, Via Pietro Castellino 111, 80131, Naples, Italy
| | - Laura Pisapia
- Institute of Genetics and Biophysics-CNR, Via Pietro Castellino 111, 80131, Naples, Italy
| | - Stefania Picascia
- Institute of Protein Biochemistry-CNR, Via Pietro Castellino 111, 80131, Naples, Italy
| | - Maria Strazzullo
- Institute of Genetics and Biophysics-CNR, Via Pietro Castellino 111, 80131, Naples, Italy
| | - Giovanna Del Pozzo
- Institute of Genetics and Biophysics-CNR, Via Pietro Castellino 111, 80131, Naples, Italy.
| |
Collapse
|
21
|
Ferreira LMR, Meissner TB, Tilburgs T, Strominger JL. HLA-G: At the Interface of Maternal-Fetal Tolerance. Trends Immunol 2017; 38:272-286. [PMID: 28279591 DOI: 10.1016/j.it.2017.01.009] [Citation(s) in RCA: 178] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 01/23/2017] [Accepted: 01/27/2017] [Indexed: 12/22/2022]
Abstract
During pregnancy, semiallogeneic fetal extravillous trophoblasts (EVT) invade the uterine mucosa without being rejected by the maternal immune system. Several mechanisms were initially proposed by Peter Medawar half a century ago to explain this apparent violation of the laws of transplantation. Then, three decades ago, an unusual human leukocyte antigen (HLA) molecule was identified: HLA-G. Uniquely expressed in EVT, HLA-G has since become the center of the present understanding of fetus-induced immune tolerance. Despite slow progress in the field, the last few years have seen an explosion in our knowledge of HLA-G biology. Here, we critically review new insights into the mechanisms controlling the expression and function of HLA-G at the maternal-fetal interface, and discuss their relevance for fetal tolerance.
Collapse
Affiliation(s)
- Leonardo M R Ferreira
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Torsten B Meissner
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Tamara Tilburgs
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Jack L Strominger
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
22
|
Suzuki K, Luo Y. Histone Acetylation and the Regulation of Major Histocompatibility Class II Gene Expression. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2017; 106:71-111. [PMID: 28057216 DOI: 10.1016/bs.apcsb.2016.08.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Major histocompatibility complex (MHC) class II molecules are essential for processing and presenting exogenous pathogen antigens to activate CD4+ T cells. Given their central role in adaptive immune responses, MHC class II genes are tightly regulated in a tissue- and activation-specific manner. The regulation of MHC class II gene expression involves various transcription factors that interact with conserved proximal cis-acting regulatory promoter elements, as well as MHC class II transactivator that interacts with a variety of chromatin remodeling machineries. Recent studies also identified distal regulatory elements within MHC class II gene locus that provide enormous insight into the long-range coordination of MHC class II gene expression. Novel therapeutic modalities that can modify MHC class II genes at the epigenetic level are emerging and are currently in preclinical and clinical trials. This review will focus on the role of chromatin remodeling, particularly remodeling that involves histone acetylation, in the constitutive and inducible regulation of MHC class II gene expression.
Collapse
Affiliation(s)
- K Suzuki
- Faculty of Medical Technology, Teikyo University, Itabashi, Japan.
| | - Y Luo
- Faculty of Medical Technology, Teikyo University, Itabashi, Japan
| |
Collapse
|
23
|
Park JH, Choi Y, Song MJ, Park K, Lee JJ, Kim HP. Dynamic Long-Range Chromatin Interaction Controls Expression of IL-21 in CD4+ T Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2016; 196:4378-89. [PMID: 27067007 DOI: 10.4049/jimmunol.1500636] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 03/14/2016] [Indexed: 12/16/2023]
Abstract
IL-21, a pleiotropic cytokine strongly linked with autoimmunity and inflammation, regulates diverse immune responses. IL-21 can be potently induced in CD4(+) T cells by IL-6; however, very little is known about the mechanisms underlying the transcriptional regulation of the Il21 gene at the chromatin level. In this study, we demonstrated that a conserved noncoding sequence located 49 kb upstream of the Il21 gene contains an enhancer element that can upregulate Il21 gene expression in a STAT3- and NFAT-dependent manner. Additionally, we identified enhancer-blocking insulator elements in the Il21 locus, which constitutively bind CTCF and cohesin. In naive CD4(+) T cells, these upstream and downstream CTCF binding sites interact with each other to make a DNA loop; however, the Il21 promoter does not interact with any cis-elements in the Il21 locus. In contrast, stimulation of CD4(+) T cells with IL-6 leads to recruitment of STAT3 to the promoter and novel distal enhancer region. This induces dynamic changes in chromatin configuration, bringing the promoter and the regulatory elements in close spatial proximity. The long-range interaction between the promoter and distal enhancer region was dependent on IL-6/STAT3 signaling pathway but was disrupted in regulatory T cells, where IL-21 expression was repressed. Thus, our work uncovers a novel topological chromatin framework underlying proper transcriptional regulation of the Il21 gene.
Collapse
Affiliation(s)
- Joo-Hong Park
- Department of Environmental Medical Biology, Yonsei University College of Medicine, Seoul 120-752, Korea; Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul 120-752, Korea; and
| | - Yeeun Choi
- Department of Environmental Medical Biology, Yonsei University College of Medicine, Seoul 120-752, Korea; Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul 120-752, Korea; and Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Min-Ji Song
- Department of Environmental Medical Biology, Yonsei University College of Medicine, Seoul 120-752, Korea; Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul 120-752, Korea; and
| | - Keunhee Park
- Department of Environmental Medical Biology, Yonsei University College of Medicine, Seoul 120-752, Korea; Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul 120-752, Korea; and
| | - Jong-Joo Lee
- Department of Environmental Medical Biology, Yonsei University College of Medicine, Seoul 120-752, Korea; Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul 120-752, Korea; and Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Hyoung-Pyo Kim
- Department of Environmental Medical Biology, Yonsei University College of Medicine, Seoul 120-752, Korea; Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul 120-752, Korea; and Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul 120-752, Korea
| |
Collapse
|
24
|
Raj P, Rai E, Song R, Khan S, Wakeland BE, Viswanathan K, Arana C, Liang C, Zhang B, Dozmorov I, Carr-Johnson F, Mitrovic M, Wiley GB, Kelly JA, Lauwerys BR, Olsen NJ, Cotsapas C, Garcia CK, Wise CA, Harley JB, Nath SK, James JA, Jacob CO, Tsao BP, Pasare C, Karp DR, Li QZ, Gaffney PM, Wakeland EK. Regulatory polymorphisms modulate the expression of HLA class II molecules and promote autoimmunity. eLife 2016; 5:e12089. [PMID: 26880555 PMCID: PMC4811771 DOI: 10.7554/elife.12089] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 02/13/2016] [Indexed: 12/15/2022] Open
Abstract
Targeted sequencing of sixteen SLE risk loci among 1349 Caucasian cases and controls produced a comprehensive dataset of the variations causing susceptibility to systemic lupus erythematosus (SLE). Two independent disease association signals in the HLA-D region identified two regulatory regions containing 3562 polymorphisms that modified thirty-seven transcription factor binding sites. These extensive functional variations are a new and potent facet of HLA polymorphism. Variations modifying the consensus binding motifs of IRF4 and CTCF in the XL9 regulatory complex modified the transcription of HLA-DRB1, HLA-DQA1 and HLA-DQB1 in a chromosome-specific manner, resulting in a 2.5-fold increase in the surface expression of HLA-DR and DQ molecules on dendritic cells with SLE risk genotypes, which increases to over 4-fold after stimulation. Similar analyses of fifteen other SLE risk loci identified 1206 functional variants tightly linked with disease-associated SNPs and demonstrated that common disease alleles contain multiple causal variants modulating multiple immune system genes.
Collapse
Affiliation(s)
- Prithvi Raj
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Ekta Rai
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, United States
- School of Biotechnology, Shri Mata Vaishno Devi University, Katra, India
| | - Ran Song
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Shaheen Khan
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Benjamin E Wakeland
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Kasthuribai Viswanathan
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Carlos Arana
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Chaoying Liang
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Bo Zhang
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Igor Dozmorov
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Ferdicia Carr-Johnson
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Mitja Mitrovic
- Department of Neurology, Yale School of Medicine, New Haven, United States
| | - Graham B Wiley
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, United States
| | - Jennifer A Kelly
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, United States
| | - Bernard R Lauwerys
- Pole de pathologies rhumatismales, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Bruxelles, Belgium
| | - Nancy J Olsen
- Division of Rheumatology, Department of Medicine, Penn State Medical School, Hershey, United States
| | - Chris Cotsapas
- Department of Neurology, Yale School of Medicine, New Haven, United States
| | - Christine K Garcia
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, United States
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, United States
| | - Carol A Wise
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, United States
- Department of Orthopaedic Surgery, University of Texas Southwestern Medical Center, Dallas, United States
- Sarah M. and Charles E. Seay Center for Musculoskeletal Research, Texas Scottish Rite Hospital for Children, Dallas, United States
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, United States
| | - John B Harley
- Cincinnati VA Medical Center, Cincinnati, United States
- Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| | - Swapan K Nath
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, United States
| | - Judith A James
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, United States
| | - Chaim O Jacob
- Department of Medicine, University of Southern California, Los Angeles, United States
| | - Betty P Tsao
- Department of Medicine, University of California, Los Angeles, Los Angeles, United States
| | - Chandrashekhar Pasare
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, United States
| | - David R Karp
- Rheumatic Diseases Division, Department of Medicine, University of Texas Southwestern Medical Center, Dallas, United States
| | - Quan Zhen Li
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Patrick M Gaffney
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, United States
| | - Edward K Wakeland
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|
25
|
Majumder P, Scharer CD, Choi NM, Boss JM. B cell differentiation is associated with reprogramming the CCCTC binding factor-dependent chromatin architecture of the murine MHC class II locus. THE JOURNAL OF IMMUNOLOGY 2014; 192:3925-35. [PMID: 24634495 DOI: 10.4049/jimmunol.1303205] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The transcriptional insulator CCCTC binding factor (CTCF) was shown previously to be critical for human MHC class II (MHC-II) gene expression. Whether the mechanisms used by CTCF in humans were similar to that of the mouse and whether the three-dimensional chromatin architecture created was specific to B cells were not defined. Genome-wide CTCF occupancy was defined for murine B cells and LPS-derived plasmablasts by chromatin immunoprecipitation sequencing. Fifteen CTCF sites within the murine MHC-II locus were associated with high CTCF binding in B cells. Only one-third of these sites displayed significant CTCF occupancy in plasmablasts. CTCF was required for maximal MHC-II gene expression in mouse B cells. In B cells, a subset of the CTCF regions interacted with each other, creating a three-dimensional architecture for the locus. Additional interactions occurred between MHC-II promoters and the CTCF sites. In contrast, a novel configuration occurred in plasma cells, which do not express MHC-II genes. Ectopic CIITA expression in plasma cells to induce MHC-II expression resulted in high levels of MHC-II proteins, but did not alter the plasma cell architecture completely. These data suggest that reorganizing the three-dimensional chromatin architecture is an epigenetic mechanism that accompanies the silencing of MHC-II genes as part of the cell fate commitment of plasma cells.
Collapse
Affiliation(s)
- Parimal Majumder
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322
| | | | | | | |
Collapse
|
26
|
Mégarbané A, Noguier F, Stora S, Manchon L, Mircher C, Bruno R, Dorison N, Pierrat F, Rethoré MO, Trentin B, Ravel A, Morent M, Lefranc G, Piquemal D. The intellectual disability of trisomy 21: differences in gene expression in a case series of patients with lower and higher IQ. Eur J Hum Genet 2013; 21:1253-9. [PMID: 23422941 PMCID: PMC3798834 DOI: 10.1038/ejhg.2013.24] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 12/27/2012] [Accepted: 01/22/2013] [Indexed: 12/25/2022] Open
Abstract
Trisomy 21 (T21), or Down syndrome (DS), is the most frequent and recognizable cause of intellectual disabilities. The level of disability, as evaluated by the intelligence quotient (IQ) test, varies considerably between patients independent of other factors. To determine the genetic or molecular basis of this difference, a high throughput transcriptomic analysis was performed on twenty T21 patients with high and low IQ, and 10 healthy controls using Digital Gene Expression. More than 90 millions of tags were sequenced in the three libraries. A total of 80 genes of potential interest were selected for the qPCR experiment validation, and three housekeeping genes were used for normalizing purposes. HLA DQA1 and HLA DRB1 were significantly downregulated among the patients with a low IQ, the values found in the healthy controls being intermediate between those noted in the IQ+ and IQ- T21 patients. Interestingly, the intergenic region between these genes contains a binding sequence for the CCCTC-binding factor, or CTCF, and cohesin (a multisubunit complex), both of which are essential for expression of HLA DQA1 and HLA DRB1 and numerous other genes. Our results might lead to the discovery of genes, or genetic markers, that are directly involved in several phenotypes of DS and, eventually, to the identification of potential targets for therapeutic interventions.
Collapse
Affiliation(s)
- André Mégarbané
- Institut Jérôme Lejeune, Paris, France
- Unité de Génétique Médicale et Laboratoire Associé INSERM UMR_S910, Beirut, Lebanon
| | | | | | | | | | | | | | | | | | | | | | | | - Gerard Lefranc
- Université Montpellier 2 et CNRS UPR 1142, Institut de Génétique Humaine, Montpellier, France
| | | |
Collapse
|
27
|
Lill M, Kõks S, Soomets U, Schalkwyk LC, Fernandes C, Lutsar I, Taba P. Peripheral blood RNA gene expression profiling in patients with bacterial meningitis. Front Neurosci 2013; 7:33. [PMID: 23515576 PMCID: PMC3600829 DOI: 10.3389/fnins.2013.00033] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 02/26/2013] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES The aim of present study was to find genetic pathways activated during infection with bacterial meningitis (BM) and potentially influencing the course of the infection using genome-wide RNA expression profiling combined with pathway analysis and functional annotation of the differential transcription. METHODS We analyzed 21 patients with BM hospitalized in 2008. The control group consisted of 18 healthy subjects. The RNA was extracted from whole blood, globin mRNA was depleted and gene expression profiling was performed using GeneChip Human Gene 1.0 ST Arrays which can assess the transcription of 28,869 genes. Gene expression profile data were analyzed using Bioconductor packages and Bayesian modeling. Functional annotation of the enriched gene sets was used to define the altered genetic networks. We also analyzed whether gene expression profiles depend on the clinical course and outcome. In order to verify the microarray results, the expression levels of ten functionally relevant genes with high statistical significance (CD177, IL1R2, IL18R1, IL18RAP, OLFM4, TLR5, CPA3, FCER1A, IL5RA, and IL7R) were confirmed by quantitative real-time (qRT) PCR. RESULTS There were 8569 genes displaying differential expression at a significance level of p < 0.05. Following False Discovery Rate (FDR) correction, a total of 5500 genes remained significant at a p-value of < 0.01. Quantitative RT-PCR confirmed the differential expression in 10 selected genes. Functional annotation and network analysis indicated that most of the genes were related to activation of humoral and cellular immune responses (enrichment score 43). Those changes were found in both adults and in children with BM compared to the healthy controls. The gene expression profiles did not significantly depend on the clinical outcome, but there was a strong influence of the specific type of pathogen underlying BM. CONCLUSION This study demonstrates that there is a very strong activation of immune response at the transcriptional level during BM and that the type of pathogen influences this transcriptional activation.
Collapse
Affiliation(s)
- Margit Lill
- Department of Neurology and Neurosurgery, University of Tartu Tartu, Estonia
| | | | | | | | | | | | | |
Collapse
|
28
|
Leung A, Schones DE, Natarajan R. Using epigenetic mechanisms to understand the impact of common disease causing alleles. Curr Opin Immunol 2012; 24:558-63. [PMID: 22857822 DOI: 10.1016/j.coi.2012.07.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 06/29/2012] [Accepted: 07/09/2012] [Indexed: 02/05/2023]
Abstract
Many common genetic variants have been identified to be associated with autoimmune diseases such as Type I diabetes. Methods to identify these genetic loci have become powerful, but deciphering the functional effects of these variants in disease progression remains a major challenge. Recent studies have shown that single nucleotide polymorphisms are associated with altered DNA methylation and chromatin accessibility, suggesting that genetic variants can alter epigenetic features and epigenetic variations can mediate genetic variability. In this review, we highlight recent studies that have examined the relationship between genetics and epigenetics, and how epigenetic studies may complement genetic studies in understanding the impact of common disease causing alleles.
Collapse
Affiliation(s)
- Amy Leung
- Department of Diabetes, Beckman Research Institute of the City of Hope, Duarte, CA 91010, United States
| | | | | |
Collapse
|
29
|
Herold M, Bartkuhn M, Renkawitz R. CTCF: insights into insulator function during development. Development 2012; 139:1045-57. [PMID: 22354838 DOI: 10.1242/dev.065268] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
The genome of higher eukaryotes exhibits a patchwork of inactive and active genes. The nuclear protein CCCTC-binding factor (CTCF) when bound to insulator sequences can prevent undesirable crosstalk between active and inactive genomic regions, and it can also shield particular genes from enhancer function, a role that has many applications in development. Exciting recent work has demonstrated roles for CTCF in, for example, embryonic, neuronal and haematopoietic development. Here, we discuss the underlying mechanisms of developmentally regulated CTCF-dependent transcription in relation to model genes, and highlight genome-wide results indicating that CTCF might play a master role in regulating both activating and repressive transcription events at sites throughout the genome.
Collapse
Affiliation(s)
- Martin Herold
- Institut für Genetik, Justus-Liebig-Universität Giessen, Heinrich-Buff-Ring 58-62, 35392 Giessen, Germany
| | | | | |
Collapse
|
30
|
Ottaviani D, Lever E, Mao S, Christova R, Ogunkolade BW, Jones TA, Szary J, Aarum J, Mumin MA, Pieri CA, Krawetz SA, Sheer D. CTCF binds to sites in the major histocompatibility complex that are rapidly reconfigured in response to interferon-gamma. Nucleic Acids Res 2012; 40:5262-70. [PMID: 22367884 PMCID: PMC3384298 DOI: 10.1093/nar/gks158] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Activation of the major histocompatibility complex (MHC) by interferon-gamma (IFN−γ) is a fundamental step in the adaptive immune response to pathogens. Here, we show that reorganization of chromatin loop domains in the MHC is evident within the first 30 min of IFN−γ treatment of fibroblasts, and that further dynamic alterations occur up to 6 h. These very rapid changes occur at genomic sites which are occupied by CTCF and are close to IFN−γ-inducible MHC genes. Early responses to IFN−γ are thus initiated independently of CIITA, the master regulator of MHC class II genes and prepare the MHC for subsequent induction of transcription.
Collapse
Affiliation(s)
- Diego Ottaviani
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Newark St, London E1 2AT, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Volpi SA, Verma-Gaur J, Hassan R, Ju Z, Roa S, Chatterjee S, Werling U, Hou H, Will B, Steidl U, Scharff M, Edelman W, Feeney AJ, Birshtein BK. Germline deletion of Igh 3' regulatory region elements hs 5, 6, 7 (hs5-7) affects B cell-specific regulation, rearrangement, and insulation of the Igh locus. THE JOURNAL OF IMMUNOLOGY 2012; 188:2556-66. [PMID: 22345664 DOI: 10.4049/jimmunol.1102763] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Regulatory elements located within an ∼28-kb region 3' of the Igh gene cluster (3' regulatory region) are required for class switch recombination and for high levels of IgH expression in plasma cells. We previously defined novel DNase I hypersensitive sites (hs) 5, 6, 7 immediately downstream of this region. The hs 5-7 region (hs5-7) contains a high density of binding sites for CCCTC-binding factor (CTCF), a zinc finger protein associated with mammalian insulator activity, and is an anchor for interactions with CTCF sites flanking the D(H) region. To test the function of hs5-7, we generated mice with an 8-kb deletion encompassing all three hs elements. B cells from hs5-7 knockout (KO) (hs5-7KO) mice showed a modest increase in expression of the nearest downstream gene. In addition, Igh alleles in hs5-7KO mice were in a less contracted configuration compared with wild-type Igh alleles and showed a 2-fold increase in the usage of proximal V(H)7183 gene families. Hs5-7KO mice were essentially indistinguishable from wild-type mice in B cell development, allelic regulation, class switch recombination, and chromosomal looping. We conclude that hs5-7, a high-density CTCF-binding region at the 3' end of the Igh locus, impacts usage of V(H) regions as far as 500 kb away.
Collapse
Affiliation(s)
- Sabrina A Volpi
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Ren L, Wang Y, Shi M, Wang X, Yang Z, Zhao Z. CTCF mediates the cell-type specific spatial organization of the Kcnq5 locus and the local gene regulation. PLoS One 2012; 7:e31416. [PMID: 22347474 PMCID: PMC3275579 DOI: 10.1371/journal.pone.0031416] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 01/07/2012] [Indexed: 11/30/2022] Open
Abstract
Chromatin loops play important roles in the dynamic spatial organization of genes in the nucleus. Growing evidence has revealed that the multivalent functional zinc finger protein CCCTC-binding factor (CTCF) is a master regulator of genome spatial organization, and mediates the ubiquitous chromatin loops within the genome. Using circular chromosome conformation capture (4C) methodology, we discovered that CTCF may be a master organizer in mediating the spatial organization of the kcnq5 gene locus. We characterized the cell-type specific spatial organization of the kcnq5 gene locus mediated by CTCF in detail using chromosome conformation capture (3C) and 3C-derived techniques. Cohesion also participated in mediating the organization of this locus. RNAi-mediated knockdown of CTCF sharply diminished the interaction frequencies between the chromatin loops of the kcnq5 gene locus and down-regulated local gene expression. Functional analysis showed that the interacting chromatin loops of the kcnq5 gene locus can repress the gene expression in a luciferase reporter assay. These interacting chromatin fragments were a series of repressing elements whose contacts were mediated by CTCF. Therefore, these findings suggested that the dynamical spatial organization of the kcnq5 locus regulates local gene expression.
Collapse
Affiliation(s)
- Licheng Ren
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yang Wang
- Beijing Institute of Biotechnology, Fengtai District, Beijing, China
| | - Minglei Shi
- Beijing Institute of Biotechnology, Fengtai District, Beijing, China
| | - Xiaoning Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- State Key Laboratory of Genetic Engineering and Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
- * E-mail: (ZZ); (ZY); (XW)
| | - Zhong Yang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- State Key Laboratory of Genetic Engineering and Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
- * E-mail: (ZZ); (ZY); (XW)
| | - Zhihu Zhao
- Beijing Institute of Biotechnology, Fengtai District, Beijing, China
- * E-mail: (ZZ); (ZY); (XW)
| |
Collapse
|
33
|
Wood AM, Van Bortle K, Ramos E, Takenaka N, Rohrbaugh M, Jones BC, Jones KC, Corces VG. Regulation of chromatin organization and inducible gene expression by a Drosophila insulator. Mol Cell 2011; 44:29-38. [PMID: 21981916 DOI: 10.1016/j.molcel.2011.07.035] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 06/02/2011] [Accepted: 07/29/2011] [Indexed: 11/19/2022]
Abstract
Insulators are multiprotein-DNA complexes thought to affect gene expression by mediating inter- and intrachromosomal interactions. Drosophila insulators contain specific DNA-binding proteins plus common components, such as CP190, that facilitate these interactions. Here, we examine changes in the distribution of Drosophila insulator proteins during the heat-shock and ecdysone responses. We find that CP190 recruitment to insulator sites is the main regulatable step in controlling insulator function during heat shock. In contrast, both CP190 and DNA-binding protein recruitment are regulated during the ecdysone response. CP190 is necessary to stabilize specific chromatin loops and for proper activation of transcription of genes regulated by this hormone. These findings suggest that cells may regulate recruitment of insulator proteins to DNA to activate insulator activity at specific sites and create distinct patterns of nuclear organization that are necessary to achieve proper gene expression in response to different stimuli.
Collapse
Affiliation(s)
- Ashley M Wood
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Majumder P, Boss JM. Cohesin regulates MHC class II genes through interactions with MHC class II insulators. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 187:4236-44. [PMID: 21911605 PMCID: PMC3186872 DOI: 10.4049/jimmunol.1100688] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cohesin is a multiprotein, ringed complex that is most well-known for its role in stabilizing the association of sister chromatids between S phase and M. More recently, cohesin was found to be associated with transcriptional insulators, elements that are associated with the organization of chromatin into regulatory domains. The human MHC class II (MHC-II) locus contains 10 intergenic elements, termed MHC-II insulators, which bind the transcriptional insulator protein CCCTC-binding factor. MHC-II insulators interact with each other, forming a base architecture of discrete loops and potential regulatory domains. When MHC-II genes are expressed, their proximal promoter regulatory regions reorganize to the foci established by the interacting MHC-II insulators. MHC-II insulators also bind cohesin, but the functional role of cohesin in regulating this system is not known. In this article, we show that the binding of cohesin to MHC-II insulators occurred irrespective of MHC-II expression but was required for optimal expression of the HLA-DR and HLA-DQ genes. In a DNA-dependent manner, cohesin subunits interacted with CCCTC-binding factor and the MHC-II-specific transcription factors regulatory factor X and CIITA. Intriguingly, cohesin subunits were important for DNA looping interactions between the HLA-DRA promoter region and a 5' MHC-II insulator but were not required for interactions between the MHC-II insulators themselves. This latter observation introduces cohesin as a regulator of MHC-II expression by initiating or stabilizing MHC-II promoter regulatory element interactions with the MHC-II insulator elements, events that are required for maximal MHC-II transcription.
Collapse
Affiliation(s)
- Parimal Majumder
- Department of Microbiology & Immunology, 1510 Clifton Rd, Emory University School of Medicine, Atlanta, GA 30322
| | - Jeremy M. Boss
- Department of Microbiology & Immunology, 1510 Clifton Rd, Emory University School of Medicine, Atlanta, GA 30322
| |
Collapse
|
35
|
van den Elsen PJ. Expression regulation of major histocompatibility complex class I and class II encoding genes. Front Immunol 2011; 2:48. [PMID: 22566838 PMCID: PMC3342053 DOI: 10.3389/fimmu.2011.00048] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 09/14/2011] [Indexed: 12/26/2022] Open
Abstract
Major histocompatibility complex (MHC)-I and MHC-II molecules play an essential role in the immune response to pathogens by virtue of their ability to present peptides to CD8+ and CD4+ T cells, respectively. Given this critical role, MHC-I and MHC-II genes are regulated in a tight fashion at the transcriptional level by a variety of transcription factors that interact with conserved cis-acting regulatory promoter elements. In addition to the activities of these regulatory factors, modification of chromatin also plays an essential role in the efficient transcription of these genes to meet with local requirement for an effective immune response. The focus of this review is on the transcription factors that interact with conserved cis-acting promoter elements and the epigenetic mechanisms that modulate induced and constitutive expression of these MHC genes.
Collapse
Affiliation(s)
- Peter J van den Elsen
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center Leiden, Netherlands.
| |
Collapse
|
36
|
Nikolaev LG, Akopov SB, Didych DA, Sverdlov ED. Vertebrate Protein CTCF and its Multiple Roles in a Large-Scale Regulation of Genome Activity. Curr Genomics 2011; 10:294-302. [PMID: 20119526 PMCID: PMC2729993 DOI: 10.2174/138920209788921038] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Revised: 06/15/2009] [Accepted: 06/18/2009] [Indexed: 11/24/2022] Open
Abstract
The CTCF transcription factor is an 11 zinc fingers multifunctional protein that uses different zinc finger combinations to recognize and bind different sites within DNA. CTCF is thought to participate in various gene regulatory networks including transcription activation and repression, formation of independently functioning chromatin domains and regulation of imprinting. Sequencing of human and other genomes opened up a possibility to ascertain the genomic distribution of CTCF binding sites and to identify CTCF-dependent cis-regulatory elements, including insulators. In the review, we summarized recent data on genomic distribution of CTCF binding sites in the human and other genomes within a framework of the loop domain hypothesis of large-scale regulation of the genome activity. We also tried to formulate possible lines of studies on a variety of CTCF functions which probably depend on its ability to specifically bind DNA, interact with other proteins and form di- and multimers. These three fundamental properties allow CTCF to serve as a transcription factor, an insulator and a constitutive dispersed genome-wide demarcation tool able to recruit various factors that emerge in response to diverse external and internal signals, and thus to exert its signal-specific function(s).
Collapse
Affiliation(s)
- L G Nikolaev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya, 117997, Moscow, Russia
| | | | | | | |
Collapse
|
37
|
Majumder P, Boss JM. DNA methylation dysregulates and silences the HLA-DQ locus by altering chromatin architecture. Genes Immun 2011; 12:291-9. [PMID: 21326318 PMCID: PMC3107363 DOI: 10.1038/gene.2010.77] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The MHC-II locus encodes a cluster of highly polymorphic genes HLA-DR, -DQ, and -DP that are co-expressed in mature B lymphocytes. Two cell lines were established over 30 years ago from a patient diagnosed with acute lymphocytic leukemia. Laz221 represented the leukemic cells of the patient; whereas Laz388 represented the normal B cells of the patient. Whereas Laz388 expressed both HLA-DR and HLA-DQ surface and gene products, Laz221 expressed only HLA-DR genes. The discordant expression of HLA-DR and HLA-DQ genes was due to epigenetic silencing of the HLA-DQ region CTCF-binding insulators that separate the MHC-II subregions by DNA methylation. These epigenetic modifications resulted in the loss of binding of the insulator protein CTCF to the HLA-DQ flanking insulator regions and the MHC-II specific transcription factors to the HLA-DQ promoter regions. These events led to the inability of the HLA-DQ promoter regions to interact with flanking insulators that control HLA-DQ expression. Inhibition of DNA methylation by treatment with 5’deoxyazacytidine reversed each of these changes and restored expression of the HLA-DQ locus. These results highlight the consequence of disrupting an insulator within the MHC-II region and may be a normal developmental mechanism or one used by tumor cells to escape immune surveillance.
Collapse
Affiliation(s)
- P Majumder
- Department of Microbiology and Immunology, Emory University School Of Medicine, Atlanta, GA 30322, USA
| | | |
Collapse
|
38
|
Amouyal M. Gene insulation. Part II: natural strategies in vertebrates. Biochem Cell Biol 2011; 88:885-98. [PMID: 21102651 DOI: 10.1139/o10-111] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The way a gene is insulated from its genomic environment in vertebrates is not basically different from what is observed in yeast and Drosophila (preceding article in this issue). If the formation of a looped chromatin domain, whether generated by attachment to the nuclear matrix or not, has become a classic way to confine an enhancer to a specific genomic domain and to coordinate, sequentially or simultaneously, gene expression in a given program, its role has been extended to new networks of genes or regulators within the same gene. A wider definition of the bases of the chromatin loops (nonchromosomal nuclear structures or genomic interacting elements) is also available. However, whereas insulation in Drosophila is due to a variety of proteins, in vertebrates insulators are still practically limited to CTCF (the CCCTC-binding factor), which appears in all cases to be the linchpin of an architecture that structures the assembly of DNA-protein interactions for gene regulation. As in yeast and Drosophila, the economy of means is the rule and the same unexpected diversion of known transcription elements (active or poised RNA polymerases, TFIIIC elements out of tRNA genes, permanent histone replacement) is observed, with variants peculiar to CTCF. Thus, besides structuring DNA looping, CTCF is a barrier to DNA methylation or interferes with all sorts of transcription processes, such as that generating heterochromatin.
Collapse
|
39
|
Epigenetic Control in Immune Function. EPIGENETIC CONTRIBUTIONS IN AUTOIMMUNE DISEASE 2011; 711:36-49. [DOI: 10.1007/978-1-4419-8216-2_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
40
|
Ling JQ, Hou A, Hoffman AR. Long-range DNA interactions are specifically altered by locked nucleic acid-targeting of a CTCF binding site. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2010; 1809:24-33. [PMID: 21111075 DOI: 10.1016/j.bbagrm.2010.11.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Revised: 11/10/2010] [Accepted: 11/15/2010] [Indexed: 01/21/2023]
Abstract
Long-range DNA interactions play an important role in gene expression. CCCTC-binding factor (CTCF), a ubiquitously expressed and evolutionarily conserved 11-zinc-finger DNA binding protein, is intimately involved in gene regulation, helping to establish and maintain chromatin architecture and long-range DNA interactions. In order to study the effects of manipulating long range chromatin interactions in the regulation of the neurofibromatosis gene NF1, we targeted Zorro locked nucleic acids (Zorro LNA) to a single CTCF binding site at an NF1 locus in human fibroblast cells. Using chromatin immunoprecipitation, we determined that this Zorro LNA altered CTCF and RNA polymerase II binding at three separate and distinct regions in the NF1 gene. This change in protein binding was associated with changes in long-range DNA interactions at the NF1 locus and downregulation of NF1 gene expression. This study describes an efficient and convenient method to manipulate chromatin structure and alter gene expression that is regulated by long-range DNA interactions without changing the DNA sequence. The use of specific Zorro LNA probes may facilitate our efforts to understand the interactions between chromatin architecture and gene expression.
Collapse
Affiliation(s)
- Jian Qun Ling
- Medical Service, VA Palo Alto Health Care System and Department of Medicine, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | | | | |
Collapse
|
41
|
Choi NM, Majumder P, Boss JM. Regulation of major histocompatibility complex class II genes. Curr Opin Immunol 2010; 23:81-7. [PMID: 20970972 DOI: 10.1016/j.coi.2010.09.007] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Accepted: 09/23/2010] [Indexed: 12/11/2022]
Abstract
The major histocompatibility complex class II (MHC-II) genes are regulated at the level of transcription. Recent studies have shown that chromatin modification is critical for efficient transcription of these genes, and a number of chromatin modifying complexes recruited to MHC-II genes have been described. The MHC-II genes are segregated from each other by a series of chromatin elements, termed MHC-II insulators. Interactions between MHC-insulators and the promoters of MHC-II genes are mediated by the insulator factor CCCTC-binding factor and are critical for efficient expression. This regulatory mechanism provides a novel view of how the entire MHC-II locus is assembled architecturally and can be coordinately controlled.
Collapse
Affiliation(s)
- Nancy M Choi
- Department of Microbiology & Immunology, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA 30322, United States
| | | | | |
Collapse
|
42
|
Majumder P, Boss JM. CTCF controls expression and chromatin architecture of the human major histocompatibility complex class II locus. Mol Cell Biol 2010; 30:4211-23. [PMID: 20584980 PMCID: PMC2937552 DOI: 10.1128/mcb.00327-10] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2010] [Revised: 04/22/2010] [Accepted: 06/17/2010] [Indexed: 11/20/2022] Open
Abstract
The major histocompatibility complex class II (MHC-II) locus includes a dense cluster of genes that function to initiate immune responses. Expression of insulator CCCTC binding factor (CTCF) was found to be required for expression of all MHC class II genes associated with antigen presentation. Ten CTCF sites that divide the MHC-II locus into apparent evolutionary domains were identified. To define the role of CTCF in mediating regulation of the MHC II genes, chromatin conformation capture assays, which provide an architectural assessment of a locus, were conducted across the MHC-II region. Depending on whether MHC-II genes and the class II transactivator (CIITA) were being expressed, two CTCF-dependent chromatin architectural states, each with multiple configurations and interactions, were observed. These states included the ability to express MHC-II gene promoter regions to interact with nearby CTCF sites and CTCF sites to interact with each other. Thus, CTCF organizes the MHC-II locus into a novel basal architecture of interacting foci and loop structures that rearranges in the presence of CIITA. Disruption of the rearranged states eradicated expression, suggesting that the formation of these structures is key to coregulation of MHC-II genes and the locus.
Collapse
Affiliation(s)
- Parimal Majumder
- Department of Microbiology and Immunology, Emory University, 1510 Clifton Road, Atlanta, Georgia 30322
| | - Jeremy M. Boss
- Department of Microbiology and Immunology, Emory University, 1510 Clifton Road, Atlanta, Georgia 30322
| |
Collapse
|
43
|
Modular insulators: genome wide search for composite CTCF/thyroid hormone receptor binding sites. PLoS One 2010; 5:e10119. [PMID: 20404925 PMCID: PMC2852416 DOI: 10.1371/journal.pone.0010119] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Accepted: 03/18/2010] [Indexed: 02/07/2023] Open
Abstract
The conserved 11 zinc-finger protein CTCF is involved in several transcriptional mechanisms, including insulation and enhancer blocking. We had previously identified two composite elements consisting of a CTCF and a TR binding site at the chicken lysozyme and the human c-myc genes. Using these it has been demonstrated that thyroid hormone mediates the relief of enhancer blocking even though CTCF remains bound to its binding site. Here we wished to determine whether CTCF and TR combined sites are representative of a general feature of the genome, and whether such sites are functional in regulating enhancer blocking. Genome wide analysis revealed that about 18% of the CTCF regions harbored at least one of the four different palindromic or repeated sequence arrangements typical for the binding of TR homodimers or TR/RXR heterodimers. Functional analysis of 10 different composite elements of thyroid hormone responsive genes was performed using episomal constructs. The episomal system allowed recapitulating CTCF mediated enhancer blocking function to be dependent on poly (ADP)-ribose modification and to mediate histone deacetylation. Furthermore, thyroid hormone sensitive enhancer blocking could be shown for one of these new composite elements. Remarkably, not only did the regulation of enhancer blocking require functional TR binding, but also the basal enhancer blocking activity of CTCF was dependent on the binding of the unliganded TR. Thus, a number of composite CTCF/TR binding sites may represent a subset of other modular CTCF composite sites, such as groups of multiple CTCF sites or of CTCF/Oct4, CTCF/Kaiso or CTCF/Yy1 combinations.
Collapse
|
44
|
Handunnetthi L, Ramagopalan SV, Ebers GC, Knight JC. Regulation of major histocompatibility complex class II gene expression, genetic variation and disease. Genes Immun 2010; 11:99-112. [PMID: 19890353 PMCID: PMC2987717 DOI: 10.1038/gene.2009.83] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Accepted: 09/15/2009] [Indexed: 12/29/2022]
Abstract
Major histocompatibility complex (MHC) class II molecules are central to adaptive immune responses and maintenance of self-tolerance. Since the early 1970s, the MHC class II region at chromosome 6p21 has been shown to be associated with a remarkable number of autoimmune, inflammatory and infectious diseases. Given that a full explanation for most MHC class II disease associations has not been reached through analysis of structural variation alone, in this review we examine the role of genetic variation in modulating gene expression. We describe the intricate architecture of the MHC class II regulatory system, indicating how its unique characteristics may relate to observed associations with disease. There is evidence that haplotype-specific variation involving proximal promoter sequences can alter the level of gene expression, potentially modifying the emergence and expression of key phenotypic traits. Although much emphasis has been placed on cis-regulatory elements, we also examine the role of more distant enhancer elements together with the evidence of dynamic inter- and intra-chromosomal interactions and epigenetic processes. The role of genetic variation in such mechanisms may hold profound implications for susceptibility to common disease.
Collapse
Affiliation(s)
- Lahiru Handunnetthi
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
- Department of Clinical Neurology, University of Oxford, Oxford OX3 7BN, UK
| | - Sreeram V. Ramagopalan
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
- Department of Clinical Neurology, University of Oxford, Oxford OX3 7BN, UK
| | - George C. Ebers
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
- Department of Clinical Neurology, University of Oxford, Oxford OX3 7BN, UK
| | - Julian C. Knight
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| |
Collapse
|
45
|
Moltó E, Fernández A, Montoliu L. Boundaries in vertebrate genomes: different solutions to adequately insulate gene expression domains. BRIEFINGS IN FUNCTIONAL GENOMICS AND PROTEOMICS 2009; 8:283-96. [PMID: 19752046 DOI: 10.1093/bfgp/elp031] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Gene expression domains are normally not arranged in vertebrate genomes according to their expression patterns. Instead, it is not unusual to find genes expressed in different cell types, or in different developmental stages, sharing a particular region of a chromosome. Therefore, the existence of boundaries, or insulators, as non-coding gene regulatory elements, is instrumental for the adequate organization and function of vertebrate genomes. Through the evolution and natural selection at the molecular level, and according to available DNA sequences surrounding a locus, previously existing or recently mobilized, different elements have been recruited to serve as boundaries, depending on their suitability to properly insulate gene expression domains. In this regard, several gene regulatory elements, including scaffold/matrix-attachment regions, members of families of DNA repetitive elements (such as LINEs or SINEs), target sites for the zinc-finger multipurpose nuclear factor CTCF, enhancers and locus control regions, have been reported to show functional activities as insulators. In this review, we will address how such a variety of apparently different genomic sequences converge in a similar function, namely, to adequately insulate a gene expression domain, thereby allowing the locus to be expressed according to their own gene regulatory elements without interfering itself and being interfered by surrounding loci. The identification and characterization of genomic boundaries is not only interesting as a theoretical exercise for better understanding how vertebrate genomes are organized, but also allows devising new and improved gene transfer strategies to ensure the expression of heterologous DNA constructs in ectopic genomic locations.
Collapse
Affiliation(s)
- Eduardo Moltó
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Department of Molecular and Cellular Biology, Campus de Cantoblanco, C/Darwin 3, 28049 Madrid, Spain
| | | | | |
Collapse
|
46
|
Cohen H, Parekh P, Sercan Z, Kotekar A, Weissman JD, Singer DS. In vivo expression of MHC class I genes depends on the presence of a downstream barrier element. PLoS One 2009; 4:e6748. [PMID: 19707598 PMCID: PMC2727697 DOI: 10.1371/journal.pone.0006748] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2009] [Accepted: 06/25/2009] [Indexed: 11/18/2022] Open
Abstract
Regulation of MHC class I gene expression is critical to achieve proper immune surveillance. In this work, we identify elements downstream of the MHC class I promoter that are necessary for appropriate in vivo regulation: a novel barrier element that protects the MHC class I gene from silencing and elements within the first two introns that contribute to tissue specific transcription. The barrier element is located in intergenic sequences 3' to the polyA addition site. It is necessary for stable expression in vivo, but has no effect in transient transfection assays. Accordingly, in both transgenic mice and stably transfected cell lines, truncation of the barrier resulted in transcriptional gene silencing, increased nucleosomal density and decreased histone H3K9/K14 acetylation and H3K4 di-methylation across the gene. Significantly, distinct sequences within the barrier element govern anti-silencing and chromatin modifications. Thus, this novel barrier element functions to maintain transcriptionally permissive chromatin organization and prevent transcriptional silencing of the MHC class I gene, ensuring it is poised to respond to immune signaling.
Collapse
Affiliation(s)
- Helit Cohen
- Experimental Immunology Branch, Center for Cancer Research (CCR), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Palak Parekh
- Experimental Immunology Branch, Center for Cancer Research (CCR), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Zeynep Sercan
- Experimental Immunology Branch, Center for Cancer Research (CCR), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Aparna Kotekar
- Experimental Immunology Branch, Center for Cancer Research (CCR), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Jocelyn D. Weissman
- Experimental Immunology Branch, Center for Cancer Research (CCR), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Dinah S. Singer
- Experimental Immunology Branch, Center for Cancer Research (CCR), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| |
Collapse
|
47
|
Abstract
CTCF is a highly conserved zinc finger protein implicated in diverse regulatory functions, including transcriptional activation/repression, insulation, imprinting, and X chromosome inactivation. Here we re-evaluate data supporting these roles in the context of mechanistic insights provided by recent genome-wide studies and highlight evidence for CTCF-mediated intra- and interchromosomal contacts at several developmentally regulated genomic loci. These analyses support a primary role for CTCF in the global organization of chromatin architecture and suggest that CTCF may be a heritable component of an epigenetic system regulating the interplay between DNA methylation, higher-order chromatin structure, and lineage-specific gene expression.
Collapse
|
48
|
Abstract
CTCF is a ubiquitous transcription factor that is involved in numerous, seemingly unrelated functions. These functions include, but are not limited to, positive or negative regulation of transcription, enhancer-blocking activities at developmentally regulated gene clusters and at imprinted loci, and X-chromosome inactivation. Here, we review recent data acquired with state-of-the-art technologies that illuminate possible mechanisms behind the diversity of CTCF functions. CTCF interacts with numerous protein partners, including cohesin, nucleophosmin, PARP1, Yy1 and RNA polymerase II. We propose that CTCF interacts with one or two different partners according to the biological context, applying the Roman principle of governance, 'divide and rule' (divide et impera).
Collapse
Affiliation(s)
- Jordanka Zlatanova
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA.
| | | |
Collapse
|
49
|
Identification of infected B-cell populations by using a recombinant murine gammaherpesvirus 68 expressing a fluorescent protein. J Virol 2009; 83:6484-93. [PMID: 19386718 DOI: 10.1128/jvi.00297-09] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Infection of inbred mice with murine gammaherpesvirus 68 (MHV68) has proven to be a powerful tool to study gammaherpesvirus pathogenesis. However, one of the limitations of this system has been the inability to directly detect infected cells harvested from infected animals. To address this issue, we generated a transgenic virus that expresses the enhanced yellow fluorescent protein (YFP), driven by the human cytomegalovirus immediate-early promoter and enhancer, from a neutral locus within the viral genome. This virus, MHV68-YFP, replicated and established latency as efficiently as did the wild-type virus. During the early phase of viral latency, MHV68-YFP efficiently marked latently infected cells in the spleen after intranasal inoculation. Staining splenocytes for expression of various surface markers demonstrated the presence of MHV68 in distinct populations of splenic B cells harboring MHV68. Notably, these analyses also revealed that markers used to discriminate between newly formed, follicular and marginal zone B cells may not be reliable for phenotyping B cells harboring MHV68 since virus infection appears to modulate cell surface expression levels of CD21 and CD23. However, as expected, we observed that the overwhelming majority of latently infected B cells at the peak of latency exhibited a germinal center phenotype. These analyses also demonstrated that a significant percentage of MHV68-infected splenocytes at the peak of viral latency are plasma cells (ca. 15% at day 14 and ca. 8% at day 18). Notably, the frequency of virus-infected plasma cells correlated well with the frequency of splenocytes that spontaneously reactivate virus upon explant. Finally, we observed that the efficiency of marking latently infected B cells with the MHV68-YFP recombinant virus declined at later times postinfection, likely due to shut down of transgene expression, and indicating that the utility of this marking strategy is currently limited to the early stages of virus infection.
Collapse
|
50
|
NF-kappaB p50 plays distinct roles in the establishment and control of murine gammaherpesvirus 68 latency. J Virol 2009; 83:4732-48. [PMID: 19264770 DOI: 10.1128/jvi.00111-09] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
NF-kappaB signaling is critical to the survival and transformation of cells infected by the human gammaherpesviruses Epstein-Barr virus and Kaposi's sarcoma-associated herpesvirus. Here we have examined how elimination of the NF-kappaB transcription factor p50 from mice affects the life cycle of murine gammaherpesvirus 68 (MHV68). Notably, mice lacking p50 in every cell type were unable to establish a sufficiently robust immune response to control MHV68 infection, leading to high levels of latently infected B cells detected in the spleen and persistent virus replication in the lungs. The latter correlated with very low levels of virus-specific immunoglobulin G (IgG) in the infected p50(-/-) mice at day 48 postinfection. Because the confounding impact of the loss of p50 on the host response to MHV68 infection prevented a direct analysis of the role of this NF-kappaB family member on MHV68 latency in B cells, we generated and infected mixed p50(+/+)/p50(-/-) bone marrow chimeric mice. We show that the chimeric mice were able to control acute virus replication and exhibited normal levels of virus-specific IgG at 3 months postinfection, indicating the induction of a normal host immune response to MHV68 infection. However, in p50(+/+)/p50(-/-) chimeric mice the p50(-/-) B cells exhibited a significant defect compared to p50(+/+) B cells in supporting MHV68 latency. In addition to identifying a role for p50 in the establishment of latency, we determined that the absence of p50 in a subset of the hematopoietic compartment led to persistent virus replication in the lungs of the chimeric mice, providing evidence that p50 is required for controlling virus reactivation. Taken together, these data demonstrate that p50 is required for immune control by the host and has distinct tissue-dependent roles in the regulation of murine gammaherpesvirus latency during chronic infection.
Collapse
|