1
|
Gross J, Herrera-Marschitz M. Potential Key Proteins, Molecular Networks, and Pathways in Perinatal Hypoxia. Neurotox Res 2023; 41:571-588. [PMID: 37651081 DOI: 10.1007/s12640-023-00663-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 09/01/2023]
Abstract
Perinatal hypoxia is a common risk factor for CNS development. Using bioinformatics databases, a list of 129 genes involved in perinatal hypoxia was selected from the literature and analyzed with respect to proteins important for biological processes influencing the brain development. Functional enrichment analysis using the DAVID database was performed to identify relevant Gene Ontology (GO) biological processes like response to hypoxia, inflammatory response, positive and negative regulation of apoptosis, and positive and negative regulation of cell proliferation. The selected GO processes contain 17-30 proteins and show an enrichment of 6.3-14.3-fold. The STRING protein-protein interaction network and the Cytoscape data analyzer were used to identify interacting proteins playing a significant role in these processes. The two top protein pairs referring to the proteins with highest degrees and the corresponding proteins connected by high score edges exert opposite or regulatory functions and are essential for the balance between damaging, repairing, protective, or epigenetic processes. The GO response to hypoxia is characterized by the high score protein-protein interaction pairs CASP3/FAS promoting apoptosis and by the protective acting BDNF/MECP2 protein pair. Core components of the GO processes positive and negative regulation of apoptosis are the proteins CASP3/FAS/AKT/eNOS/RPS6KB1 involved in several signal pathways. The GO processes cell proliferation are characterized by the high-score protein-protein interaction pairs MYC/ MAPK1, JUN/MAPK1, IL6/IL1B, and JUN/HDAC1. The study provides new insights into the pathophysiology of perinatal hypoxia and is of importance for future investigations, diagnostics, and therapy of perinatal hypoxia.
Collapse
Affiliation(s)
- Johann Gross
- Tinnitus Center, Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin and Leibniz Society of Sciences Berlin, 10117, Berlin, Germany.
| | - Mario Herrera-Marschitz
- Programme of Molecular & Clinical Pharmacology, ICBM, Medical Faculty, University of Chile, Santiago 7, Chile
| |
Collapse
|
2
|
Gao S, Jiang H, Sun J, Diao Y, Tang Y, Hu J. Integrated Analysis of miRNA and mRNA Expression Profiles in Spleen of Specific Pathogen-Free Chicken Infected with Avian Reticuloendotheliosis Virus Strain SNV. Int J Mol Sci 2019; 20:ijms20051041. [PMID: 30818863 PMCID: PMC6429403 DOI: 10.3390/ijms20051041] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/15/2019] [Accepted: 02/23/2019] [Indexed: 01/06/2023] Open
Abstract
The Reticuloendotheliosis virus (REV) primarily causes avian severe immunosuppression, in addition to other symptoms, which include avian dwarfing syndrome and chronic tumors in lymphoid and other tissue. To date, REV’s molecular mechanisms leading to immunosuppression have not been fully elucidated. In the current study, we aimed to elucidate the role of microRNAs (miRNA) in regulating gene expression during REV infections. Therefore, we used a high-dose spleen necrosis virus (SNV) model of REV to inoculate one-day-old specific pathogen-free (SPF) chickens, thereby inducing congenital infections. We analyzed miRNA and mRNA expression profiles using Next Generation Sequencing (NGS) in a total of 19 spleen samples that were collected at 7, 14, and 21 days post infection (dpi). The results showed that 63 differentially expressed miRNAs (DEmiRNAs) (30 known miRNAs and 33 novel miRNAs) and 482 differentially expressed target genes (DETGs) were identified. Integration analysis identified 886 known miRNA–mRNA and 580 novel miRNA–mRNA interaction pairs, which involved miRNAs that were inversely correlated with the above DETGs. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed that the DETGs were considerably enriched in the immune-relevant pathways category, such as immune system, cell growth and death, signaling molecules and interaction, signal transduction, etc. We further verified selected immune-relevant miRNA and their DETGs while using quantitative RT-PCR (qRT-PCR). Overall, our data revealed valuable immune-related miRNA–mRNA interaction information that occurred during REV infections, thereby broadening our understanding of the REV-induced immunosuppression.
Collapse
Affiliation(s)
- Shuo Gao
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, No. 61 Daizong Street, Tai’an 271018, Shandong, China; (S.G.); (H.J.); (J.S.); (Y.D.)
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, No. 61 Daizong Street, Tai’an 271018, Shandong, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, No. 61 Daizong Street, Tai’an 271018, Shandong, China
| | - Hao Jiang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, No. 61 Daizong Street, Tai’an 271018, Shandong, China; (S.G.); (H.J.); (J.S.); (Y.D.)
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, No. 61 Daizong Street, Tai’an 271018, Shandong, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, No. 61 Daizong Street, Tai’an 271018, Shandong, China
| | - Jie Sun
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, No. 61 Daizong Street, Tai’an 271018, Shandong, China; (S.G.); (H.J.); (J.S.); (Y.D.)
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, No. 61 Daizong Street, Tai’an 271018, Shandong, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, No. 61 Daizong Street, Tai’an 271018, Shandong, China
| | - Youxiang Diao
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, No. 61 Daizong Street, Tai’an 271018, Shandong, China; (S.G.); (H.J.); (J.S.); (Y.D.)
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, No. 61 Daizong Street, Tai’an 271018, Shandong, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, No. 61 Daizong Street, Tai’an 271018, Shandong, China
| | - Yi Tang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, No. 61 Daizong Street, Tai’an 271018, Shandong, China; (S.G.); (H.J.); (J.S.); (Y.D.)
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, No. 61 Daizong Street, Tai’an 271018, Shandong, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, No. 61 Daizong Street, Tai’an 271018, Shandong, China
- Correspondence: (Y.T.); (J.H.); Tel.: +86-13127277623 (Y.T.); +86-15949803926 (J.H.)
| | - Jingdong Hu
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, No. 61 Daizong Street, Tai’an 271018, Shandong, China; (S.G.); (H.J.); (J.S.); (Y.D.)
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, No. 61 Daizong Street, Tai’an 271018, Shandong, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, No. 61 Daizong Street, Tai’an 271018, Shandong, China
- Correspondence: (Y.T.); (J.H.); Tel.: +86-13127277623 (Y.T.); +86-15949803926 (J.H.)
| |
Collapse
|
3
|
Sussarellu R, Lebreton M, Rouxel J, Akcha F, Rivière G. Copper induces expression and methylation changes of early development genes in Crassostrea gigas embryos. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 196:70-78. [PMID: 29353135 DOI: 10.1016/j.aquatox.2018.01.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 12/23/2017] [Accepted: 01/02/2018] [Indexed: 06/07/2023]
Abstract
Copper contamination is widespread along coastal areas and exerts adverse effects on marine organisms such as mollusks. In the Pacific oyster, copper induces severe developmental abnormalities during early life stages; however, the underlying molecular mechanisms are largely unknown. This study aims to better understand whether the embryotoxic effects of copper in Crassostrea gigas could be mediated by alterations in gene expression, and the putative role of DNA methylation, which is known to contribute to gene regulation in early embryo development. For that purpose, oyster embryos were exposed to 4 nominal copper concentrations (0.1, 1, 10 and 20 μg L-1 Cu2+) during early development assays. Embryotoxicity was monitored through the oyster embryo-larval bioassay at the D-larva stage 24 h post fertilization (hpf) and genotoxicity at gastrulation 7 hpf. In parallel, the relative expression of 15 genes encoding putative homeotic, biomineralization and DNA methylation proteins was measured at three developmental stages (3 hpf morula stage, 7 hpf gastrula stage, 24 hpf D-larvae stage) using RT-qPCR. Global DNA content in methylcytosine and hydroxymethylcytosine were measured by HPLC and gene-specific DNA methylation levels were monitored using MeDIP-qPCR. A significant increase in larval abnormalities was observed from copper concentrations of 10 μg L-1, while significant genotoxic effects were detected at 1 μg L-1 and above. All the selected genes presented a stage-dependent expression pattern, which was impaired for some homeobox and DNA methylation genes (Notochord, HOXA1, HOX2, Lox5, DNMT3b and CXXC-1) after copper exposure. While global DNA methylation (5-methylcytosine) at gastrula stage didn't show significant changes between experimental conditions, 5-hydroxymethylcytosine, its degradation product, decreased upon copper treatment. The DNA methylation of exons and the transcript levels were correlated in control samples for HOXA1 but such a correlation was diminished following copper exposure. The methylation level of some specific gene regions (HoxA1, Hox2, Engrailed2 and Notochord) displayed changes upon copper exposure. Such changes were gene and exon-specific and no obvious global trends could be identified. Our study suggests that the embryotoxic effects of copper in oysters could involve homeotic gene expression impairment possibly by changing DNA methylation levels.
Collapse
Affiliation(s)
- Rossana Sussarellu
- Ifremer, Laboratoire d'Ecotoxicologie, Rue de l'Ile d'Yeu, 44311 Nantes, France.
| | - Morgane Lebreton
- Ifremer, Laboratoire d'Ecotoxicologie, Rue de l'Ile d'Yeu, 44311 Nantes, France; UMR BOREA, Université Caen-Basse Normandie, Esplanade de la Paix, Caen 14032, France
| | - Julien Rouxel
- Ifremer, Laboratoire d'Ecotoxicologie, Rue de l'Ile d'Yeu, 44311 Nantes, France
| | - Farida Akcha
- Ifremer, Laboratoire d'Ecotoxicologie, Rue de l'Ile d'Yeu, 44311 Nantes, France
| | - Guillaume Rivière
- UMR BOREA, Université Caen-Basse Normandie, Esplanade de la Paix, Caen 14032, France
| |
Collapse
|
4
|
Liu HX, Liu S, Qu W, Yan HY, Wen X, Chen T, Hou LF, Ping J. α7 nAChR mediated Fas demethylation contributes to prenatal nicotine exposure-induced programmed thymocyte apoptosis in mice. Oncotarget 2017; 8:93741-93756. [PMID: 29212186 PMCID: PMC5706832 DOI: 10.18632/oncotarget.21526] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 09/20/2017] [Indexed: 01/19/2023] Open
Abstract
This study aimed to investigate the effects of prenatal nicotine exposure (PNE) on thymocyte apoptosis and postnatal immune impairments in vivo and further explore the epigenetic mechanisms of the pro-apoptotic effect of nicotine in vitro. The results showed that PNE caused immune impairments in offspring on postnatal day 49, manifested as increased IL-4 production and an increased IgG1/IgG2a ratio in serum. Enhanced apoptosis of total and CD4+SP thymocytes was observed both in fetus and in offspring. Further, by exposing thymocytes to 0–100 μM of nicotine in vitro for 48 h, we found that nicotine increased α7 nicotinic acetylcholine receptor (nAChR) expression, activated the Fas apoptotic pathway, and promoted thymocyte apoptosis in concentration-dependent manners. In addition, nicotine could induce Tet methylcytosine dioxygenase (TET) 2 expression and Fas promoter demethylation, which can be abolished by TET2 siRNA transfection. Moreover, the α7 nAChR specific antagonist α-bungarotoxin can abrogate nicotine-induced TET2 increase, and the following Fas demethylation and Fas-mediated apoptosis. In conclusion, our findings showed, for the first time, that α7 nAChR activation could induce TET2-mediated Fas demethylation in thymocytes and results in the upregulation of Fas apoptotic pathway, which provide evidence for elucidating the PNE-induced programmed thymocyte apoptosis.
Collapse
Affiliation(s)
- Han-Xiao Liu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Sha Liu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Wen Qu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Hui-Yi Yan
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Xiao Wen
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Ting Chen
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Li-Fang Hou
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Jie Ping
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| |
Collapse
|
5
|
Hormone Replacement Therapy Associated White Blood Cell DNA Methylation and Gene Expression are Associated With Within-Pair Differences of Body Adiposity and Bone Mass. Twin Res Hum Genet 2016; 18:647-61. [PMID: 26678050 DOI: 10.1017/thg.2015.82] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The loss of estrogen during menopause causes changes in the female body, with wide-ranging effects on health. Estrogen-containing hormone replacement therapy (HRT) leads to a relief of typical menopausal symptoms, benefits bone and muscle health, and is associated with tissue-specific gene expression profiles. As gene expression is controlled by epigenetic factors (including DNA methylation), many of which are environmentally sensitive, it is plausible that at least part of the HRT-associated gene expression is due to changes in DNA methylation profile. We investigated genome-wide DNA methylation and gene expression patterns of white blood cells (WBCs) and their associations with body composition, including muscle and bone measures of monozygotic (MZ) female twin pairs discordant for HRT. We identified 7,855 nominally significant differentially methylated regions (DMRs) associated with 4,044 genes. Of the genes with DMRs, five (ACBA1, CCL5, FASLG, PPP2R2B, and UHRF1) were also differentially expressed. All have been previously associated with HRT or estrogenic regulation, but not with HRT-associated DNA methylation. All five genes were associated with bone mineral content (BMC), and ABCA1, FASLG, and UHRF1 were also associated with body adiposity. Our study is the first to show that HRT associates with genome-wide DNA methylation alterations in WBCs. Moreover, we show that five differentially expressed genes with DMRs associate with clinical measures, including body fat percentage, lean body mass, bone mass, and blood lipids. Our results indicate that at least part of the known beneficial HRT effects on body composition and bone mass may be regulated by DNA methylation associated alterations in gene expression in circulating WBCs.
Collapse
|
6
|
Faridi U, Dhawan SS, Pal S, Gupta S, Shukla AK, Darokar MP, Sharma A, Shasany AK. Repurposing L-Menthol for Systems Medicine and Cancer Therapeutics? L-Menthol Induces Apoptosis through Caspase 10 and by Suppressing HSP90. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2016; 20:53-64. [PMID: 26760959 DOI: 10.1089/omi.2015.0118] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The objective of the present study was to repurpose L-menthol, which is frequently used in oral health and topical formulations, for cancer therapeutics. In this article, we argue that monoterpenes such as L-menthol might offer veritable potentials in systems medicine, for example, as cheaper anti-cancer compounds. Other monoterpenes such as limonene, perillyl alcohol, and geraniol have been shown to induce apoptosis in various cancer cell lines, but their mechanisms of action are yet to be completely elucidated. Earlier, we showed that L-menthol modulates tubulin polymerization and apoptosis to inhibit cancer cell proliferation. In the present report, we used an apoptosis-related gene microarray in conjunction with proteomics analyses, as well as in silico interpretations, to study gene expression modulation in human adenocarcinoma Caco-2 cell line in response to L-menthol treatment. The microarray analysis identified caspase 10 as the important initiator caspase, instead of caspase 8. The proteomics analyses showed downregulation of HSP90 protein (also corroborated by its low transcript abundance), which in turn indicated inhibition of AKT-mediated survival pathway, release of pro-apoptotic factor BAD from BAD and BCLxL complex, besides regulation of other factors related to apoptosis. Based on the combined microarray, proteomics, and in silico data, a signaling pathway for L-menthol-induced apoptosis is being presented for the first time here. These data and literature analysis have significant implications for "repurposing" L-menthol beyond oral medicine, and in understanding the mode of action of plant-derived monoterpenes towards development of cheaper anticancer drugs in future.
Collapse
Affiliation(s)
- Uzma Faridi
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants , Lucknow, U.P., India
| | - Sunita S Dhawan
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants , Lucknow, U.P., India
| | - Shaifali Pal
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants , Lucknow, U.P., India
| | - Sanchita Gupta
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants , Lucknow, U.P., India
| | - Ashutosh K Shukla
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants , Lucknow, U.P., India
| | - Mahendra P Darokar
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants , Lucknow, U.P., India
| | - Ashok Sharma
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants , Lucknow, U.P., India
| | - Ajit K Shasany
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants , Lucknow, U.P., India
| |
Collapse
|
7
|
Ghare SS, Donde H, Chen WY, Barker DF, Gobejishvilli L, McClain CJ, Barve SS, Joshi-Barve S. Acrolein enhances epigenetic modifications, FasL expression and hepatocyte toxicity induced by anti-HIV drug Zidovudine. Toxicol In Vitro 2016; 35:66-76. [PMID: 27238871 PMCID: PMC4938746 DOI: 10.1016/j.tiv.2016.05.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 05/16/2016] [Accepted: 05/25/2016] [Indexed: 10/21/2022]
Abstract
Zidovudine (AZT) remains the mainstay of antiretroviral therapy against HIV in resource-poor countries; however, its use is frequently associated with hepatotoxicity. Not all HIV patients on AZT develop hepatotoxicity, and the determining factors are unclear. Alcohol consumption and cigarette smoking are known risk factors for HIV hepatotoxicity, and both are significant sources of acrolein, a highly reactive and toxic aldehyde. This study examines the potential hepatotoxic interactions between acrolein and AZT. Our data demonstrate that acrolein markedly enhanced AZT-induced transcriptionally permissive histone modifications (H3K9Ac and H3K9Me3) allowing the recruitment of transcription factor NF-kB and RNA polymerase II at the FasL gene promoter, resulting in FasL upregulation and apoptosis in hepatocytes. Notably, the acrolein scavenger, hydralazine prevented these promoter-associated epigenetic changes and inhibited FasL upregulation and apoptosis induced by the combination of AZT and acrolein, as well as AZT alone. Our data strongly suggest that acrolein enhancement of promoter histone modifications and FasL upregulation are major pathogenic mechanisms driving AZT-induced hepatotoxicity. Moreover, these data also indicate the therapeutic potential of hydralazine in mitigating AZT hepatotoxicity.
Collapse
Affiliation(s)
- Smita S Ghare
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA; University of Louisville, Alcohol Research Center, University of Louisville, Louisville, KY 40202, USA
| | - Hridgandh Donde
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA; University of Louisville, Alcohol Research Center, University of Louisville, Louisville, KY 40202, USA
| | - Wei-Yang Chen
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA; University of Louisville, Alcohol Research Center, University of Louisville, Louisville, KY 40202, USA
| | - David F Barker
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA; University of Louisville, Alcohol Research Center, University of Louisville, Louisville, KY 40202, USA
| | - Leila Gobejishvilli
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA; University of Louisville, Alcohol Research Center, University of Louisville, Louisville, KY 40202, USA
| | - Craig J McClain
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA; University of Louisville, Alcohol Research Center, University of Louisville, Louisville, KY 40202, USA
| | - Shirish S Barve
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA; University of Louisville, Alcohol Research Center, University of Louisville, Louisville, KY 40202, USA
| | - Swati Joshi-Barve
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA; University of Louisville, Alcohol Research Center, University of Louisville, Louisville, KY 40202, USA.
| |
Collapse
|
8
|
|
9
|
Ghare SS, Joshi-Barve S, Moghe A, Patil M, Barker DF, Gobejishvili L, Brock GN, Cave M, McClain CJ, Barve SS. Coordinated histone H3 methylation and acetylation regulate physiologic and pathologic fas ligand gene expression in human CD4+ T cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2014; 193:412-21. [PMID: 24899502 PMCID: PMC5096587 DOI: 10.4049/jimmunol.1400055] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Activation-induced Fas ligand (FasL) mRNA expression in CD4+ T cells is mainly controlled at transcriptional initiation. To elucidate the epigenetic mechanisms regulating physiologic and pathologic FasL transcription, TCR stimulation-responsive promoter histone modifications in normal and alcohol-exposed primary human CD4+ T cells were examined. TCR stimulation of normal and alcohol-exposed cells led to discernible changes in promoter histone H3 lysine trimethylation, as documented by an increase in the levels of transcriptionally permissive histone 3 lysine 4 trimethylation and a concomitant decrease in the repressive histone 3 lysine 9 trimethylation. Moreover, acetylation of histone 3 lysine 9 (H3K9), a critical feature of the active promoter state that is opposed by histone 3 lysine 9 trimethylation, was significantly increased and was essentially mediated by the p300-histone acetyltransferase. Notably, the degree of these coordinated histone modifications and subsequent recruitment of transcription factors and RNA polymerase II were significantly enhanced in alcohol-exposed CD4+ T cells and were commensurate with the pathologic increase in the levels of FasL mRNA. The clinical relevance of these findings is further supported by CD4+ T cells obtained from individuals with a history of heavy alcohol consumption, which demonstrate significantly greater p300-dependent H3K9 acetylation and FasL expression. Overall, these data show that, in human CD4+ T cells, TCR stimulation induces a distinct promoter histone profile involving a coordinated cross-talk between histone 3 lysine 4 and H3K9 methylation and acetylation that dictates the transcriptional activation of FasL under physiologic, as well as pathologic, conditions of alcohol exposure.
Collapse
Affiliation(s)
- Smita S Ghare
- Department of Medicine, University of Louisville, Louisville, KY 40202; University of Louisville Alcohol Research Center, University of Louisville, Louisville, KY 40202
| | - Swati Joshi-Barve
- Department of Medicine, University of Louisville, Louisville, KY 40202; University of Louisville Alcohol Research Center, University of Louisville, Louisville, KY 40202; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202; and
| | - Akshata Moghe
- University of Louisville Alcohol Research Center, University of Louisville, Louisville, KY 40202; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202; and
| | - Madhuvanti Patil
- University of Louisville Alcohol Research Center, University of Louisville, Louisville, KY 40202; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202; and
| | - David F Barker
- Department of Medicine, University of Louisville, Louisville, KY 40202; University of Louisville Alcohol Research Center, University of Louisville, Louisville, KY 40202
| | - Leila Gobejishvili
- Department of Medicine, University of Louisville, Louisville, KY 40202; University of Louisville Alcohol Research Center, University of Louisville, Louisville, KY 40202
| | - Guy N Brock
- Department of Bioinformatics and Biostatistics, University of Louisville, Louisville, KY 40202
| | - Matthew Cave
- Department of Medicine, University of Louisville, Louisville, KY 40202; University of Louisville Alcohol Research Center, University of Louisville, Louisville, KY 40202; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202; and
| | - Craig J McClain
- Department of Medicine, University of Louisville, Louisville, KY 40202; University of Louisville Alcohol Research Center, University of Louisville, Louisville, KY 40202; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202; and
| | - Shirish S Barve
- Department of Medicine, University of Louisville, Louisville, KY 40202; University of Louisville Alcohol Research Center, University of Louisville, Louisville, KY 40202; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202; and
| |
Collapse
|
10
|
Liberman AC, Refojo D, Antunica-Noguerol M, Holsboer F, Arzt E. Underlying mechanisms of cAMP- and glucocorticoid-mediated inhibition of FasL expression in activation-induced cell death. Mol Immunol 2012; 50:220-35. [PMID: 22341864 DOI: 10.1016/j.molimm.2012.01.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 01/04/2012] [Accepted: 01/21/2012] [Indexed: 11/19/2022]
Abstract
Glucocorticoids (GCs) and cAMP-dependent signaling pathways exert diverse and relevant immune regulatory functions, including a tight control of T cell death and homeostasis. Both of these signaling molecules inhibit TCR-induced cell death and FasL expression, but the underlying mechanisms are still poorly understood. Therefore, to address this question, we performed a comprehensive screening of signaling pathways downstream of the TCR, in order to define which of them are targets of cAMP- and GC-mediated inhibition. We found that cAMP inhibited NF-κB and ERK pathways through a PKA-dependent mechanism, while Dexamethasone blocked TCR-induced NF-κB signaling. Although GCs and cAMP inhibited the induction of endogenous FasL mRNA expression triggered by TCR activation, they potentiated TCR-mediated induction of FasL promoter activity in transient transfection assays. However, when the same FasL promoter was stably transfected, the facilitatory effect of GCs and cAMP became inhibitory, thus resembling the effects on endogenous FasL mRNA expression. Hence, the endogenous chromatinization status known to occur in integrated or genomic vs. episomic DNA might be critical for proper regulation of FasL expression by cAMP and GCs. Our results suggest that the chromatinization status of the FasL promoter may function as a molecular switch, controlling cAMP and GC responsiveness and explaining why these agents inhibit FasL expression in T cells but induce FasL in other cell types.
Collapse
Affiliation(s)
- Ana C Liberman
- Laboratorio de Fisiología y Biología Molecular, Departamento de Fisiología y Biología Molecular y Celular, Universidad de Buenos Aires and IBioBA-CONICET, 1428 Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
11
|
Chaib H, Nebbioso A, Prebet T, Castellano R, Garbit S, Restouin A, Vey N, Altucci L, Collette Y. Anti-leukemia activity of chaetocin via death receptor-dependent apoptosis and dual modulation of the histone methyl-transferase SUV39H1. Leukemia 2011; 26:662-74. [PMID: 21979880 DOI: 10.1038/leu.2011.271] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Epigenetic deregulation is involved in acute myeloid leukemia (AML) pathogenesis and epigenetic targeting drugs are in clinical trial. Since the first results with histone-deacetylase inhibitors in AML are controversial, novel single and combined treatments need to be explored. It is tempting to combine chromatin-targeting drugs. SUV39H1, the main methyl-transferase for lysine 9 tri-methylation on histone H3, interacts with oncogenes involved in AML and acts as a transcriptional repressor for hematopoietic differentiation and immortalization. We report here that pharmacological inhibition of SUV39H1 by chaetocin induces apoptosis in leukemia cell lines in vitro and primary AML cells ex vivo, and that it interferes with leukemia growth in vivo. Chaetocin treatment upregulates reactive oxygen species (ROS) production as well as the transcription of death-receptor-related genes, in a ROS-dependent manner, leading to death receptor-dependent apoptosis. In addition to its direct inhibition by chaetocin, SUV39H1 is indirectly modulated by chaetocin-induced ROS. Accordingly, chaetocin potentiates other anti-AML drugs, in a ROS-dependent manner. The decryption of a dual mechanism of action against AML involving both direct and indirect SUV39H1 modulation represents an innovative read-out for the anticancer activity of chaetocin and for its synergy with other anti-AML drugs, suggesting new therapeutic combination strategies in AML.
Collapse
Affiliation(s)
- H Chaib
- Inserm, U891, Centre de Recherche en Cancérologie de Marseille, Marseille, France
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Vire B, de Walque S, Restouin A, Olive D, Van Lint C, Collette Y. Anti-leukemia activity of MS-275 histone deacetylase inhibitor implicates 4-1BBL/4-1BB immunomodulatory functions. PLoS One 2009; 4:e7085. [PMID: 19759901 PMCID: PMC2738963 DOI: 10.1371/journal.pone.0007085] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Accepted: 08/10/2009] [Indexed: 11/18/2022] Open
Abstract
Histone deacetylase inhibitors (HDACi) have demonstrated promising therapeutic potential in clinical trials for hematological malignancies. HDACi, such as SAHA/Vorinostat, Trichostatin A, and MS-275 were found to induce apoptosis of leukemic blasts through activation of the death receptor pathway and transcriptional induction of the Tumor Necrosis Factor (TNF)-related pro-apoptotic family members, TRAIL and FasL. The impact of HDACi on TNF-related costimulatory molecules such as 4-1BB ligand (4-1BBL/TNFSF9) is however not known. Following exposure to SAHA/Vorinostat, Trichostatin A, and MS-275, transcript levels were determined by real time PCR in Jurkat, Raji and U937 cells. Treatment with HDACi up-regulated TNFSF9 gene expression in the three leukemia cell lines, yet to different extend and with distinct kinetics, which did not require de novo protein synthesis and was not associated with DNAse I hypersensitive chromatin remodeling. Transcriptional activity of TNFSF9 promoter-luciferase constructs was induced up to 12 fold by HDACi, and implication of Sp1/Sp3 transcription factors binding to functional GC-box elements was evidenced by reporter gene assays, site-directed mutagenesis, and electrophoretic mobility shift assays. Functionality of modulated target genes was assessed in allogeneic mixed leukocyte reaction experiments. MS-275- and to a lesser extent Trichostatin A- and SAHA-treated Raji cells significantly up regulated T lymphocytes proliferation which was reduced by about 50% by a 4-1BB blocking recombinant protein, while MS-275- but neither Trichostatin A- nor SAHA-treated cells up-regulated IFNγ secretion by T lymphocytes. Our results identify 4-1BBL/4-1BB as a downstream target of HDACi, especially of MS-275 anti-leukemia action in vitro. Thus, HDACi such as MS-275 displaying dual TNF-dependent proapoptotic and costimulatory activities might be favored for inclusion in HDACi-based anti-cancer therapeutic strategies.
Collapse
Affiliation(s)
- Bérengère Vire
- INSERM U891, Centre de Recherche en Cancérologie de Marseille, Marseille, France
- Institut Paoli-Calmettes, Marseille, France
- Université de la Méditerranée, Marseille, France
| | - Stéphane de Walque
- Université Libre de Bruxelles, Institut de Biologie et de Médecine Moléculaires (IBMM), Laboratoire de Virologie Moléculaire, Gosselies, Belgique
| | - Audrey Restouin
- INSERM U891, Centre de Recherche en Cancérologie de Marseille, Marseille, France
- Institut Paoli-Calmettes, Marseille, France
- Université de la Méditerranée, Marseille, France
| | - Daniel Olive
- INSERM U891, Centre de Recherche en Cancérologie de Marseille, Marseille, France
- Institut Paoli-Calmettes, Marseille, France
- Université de la Méditerranée, Marseille, France
| | - Carine Van Lint
- Université Libre de Bruxelles, Institut de Biologie et de Médecine Moléculaires (IBMM), Laboratoire de Virologie Moléculaire, Gosselies, Belgique
| | - Yves Collette
- INSERM U891, Centre de Recherche en Cancérologie de Marseille, Marseille, France
- Institut Paoli-Calmettes, Marseille, France
- Université de la Méditerranée, Marseille, France
- * E-mail:
| |
Collapse
|
13
|
Patra SK, Szyf M. DNA methylation-mediated nucleosome dynamics and oncogenic Ras signaling: insights from FAS, FAS ligand and RASSF1A. FEBS J 2008; 275:5217-35. [PMID: 18803665 DOI: 10.1111/j.1742-4658.2008.06658.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cytosine methylation at the 5-carbon position is the only known stable base modification found in the mammalian genome. The organization and modification of chromatin is a key factor in programming gene expression patterns. Recent findings suggest that DNA methylation at the junction of transcription initiation and elongation plays a critical role in suppression of transcription. This effect is mechanistically mediated by the state of chromatin modification. DNA methylation attracts binding of methyl-CpG-binding domain proteins that trigger repression of transcription, whereas DNA demethylation facilitates transcription activation. Understanding the rules that guide differential gene expression, as well as transcription dynamics and transcript abundance, has proven to be a taxing problem for molecular biologists and oncologists alike. The use of novel molecular modeling methods is providing exciting insights into the challenging problem of how methylation mediates chromatin dynamics. New data implicate lipid rafts as the coordinators of signals emanating from the cell membrane and are converging on the mechanisms linking DNA methylation and chromatin dynamics. This review focuses on some of these recent advances and uses lipid-raft-facilitated Ras signaling as a paradigm for understanding DNA methylation, chromatin dynamics and apoptosis.
Collapse
|
14
|
Patra SK. Dissecting lipid raft facilitated cell signaling pathways in cancer. Biochim Biophys Acta Rev Cancer 2007; 1785:182-206. [PMID: 18166162 DOI: 10.1016/j.bbcan.2007.11.002] [Citation(s) in RCA: 151] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2007] [Revised: 11/24/2007] [Accepted: 11/29/2007] [Indexed: 01/09/2023]
Abstract
Cancer is one of the most devastating disorders in our lives. Higher rate of proliferation than death of cells is one of the essential factors for development of cancer. The dynamicity of cell membrane plays some vital roles in cell survival and cell death, including protection, endocytosis, signaling, and increases in mechanical stability during cell division, as well as decrease of shear forces during separation of two cells after division, and cell separation from tissues for cancer metastasis. Within the membrane, there are specialized domains, known as lipid rafts. A raft can coordinate various signaling pathways. Recent data on the proteomics of lipid rafts/caveolae have highlighted the enigmatic role of various signaling proteins in cancer development. Analysis of these data of raft proteome from various tumors, cancer tissues, and cell lines cultured without and with therapeutic agents, as well as from model rafts revealed that there may be two subsets of raft assemblage in cell membrane. One subset of raft is enriched with cholesterol-sphingomyeline-ganglioside-cav-1/Src/EGFR (hereafter, "chol-raft") that is involved in normal cell signaling, and when dysregulated promotes cell transformation and tumor progression; another subset of raft is enriched with ceramide-sphingomyeline-ganglioside-FAS/Ezrin (hereafter, "cer-raft") that generally promotes apoptosis. In view of this, and to focus insight into the cancer cell physiology caused by the lipid rafts mediated signals and their receptors, and the downstream transmitters, either proliferative (for example, EGF and EGFR) or death-inducing (for example, FASL and FAS), and the precise roles of some therapeutic drugs and endogenous acid sphingomylenase in this scenario in in situ transformation of "chol-raft" into "cer-raft" are summarized and discussed in this contribution.
Collapse
Affiliation(s)
- Samir Kumar Patra
- Cancer Epigenetics Research, Kalyani (B-7/183), Nadia, West Bengal, India-741235.
| |
Collapse
|
15
|
Vanden Berghe W, Ndlovu MN, Hoya-Arias R, Dijsselbloem N, Gerlo S, Haegeman G. Keeping up NF-κB appearances: Epigenetic control of immunity or inflammation-triggered epigenetics. Biochem Pharmacol 2006; 72:1114-31. [PMID: 16934762 DOI: 10.1016/j.bcp.2006.07.012] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2006] [Revised: 07/13/2006] [Accepted: 07/17/2006] [Indexed: 02/06/2023]
Abstract
Controlled expression of cytokine genes is an essential component of an immune response and is crucial for homeostasis. In order to generate an appropriate response to an infectious condition, the type of cytokine, as well as the cell type, dose range and the kinetics of its expression are of critical importance. The nuclear factor-kappaB (NF-kappaB) family of transcription factors has a crucial role in rapid responses to stress and pathogens (innate immunity), as well as in development and differentiation of immune cells (acquired immunity). Although quite a number of genes contain NF-kappaB-responsive elements in their regulatory regions, their expression pattern can significantly vary from both a kinetic and quantitative point of view, reflecting the impact of environmental and differentiative cues. At the transcription level, selectivity is conferred by the expression of specific NF-kappaB subunits and their respective posttranslational modifications, and by combinatorial interactions between NF-kappaB and other transcription factors and coactivators, that form specific enhanceosome complexes in association with particular promoters. These enhanceosome complexes represent another level of signaling integration, whereby the activities of multiple upstream pathways converge to impress a distinct pattern of gene expression upon the NF-kappaB-dependent transcriptional network. Today, several pieces of evidence suggest that the chromatin structure and epigenetic settings are the ultimate integration sites of both environmental and differentiative inputs, determining proper expression of each NF-kappaB-dependent gene. We will therefore discuss in this review the multilayered interplay of NF-kappaB signaling and epigenome dynamics, in achieving appropriate gene expression responses and transcriptional activity.
Collapse
Affiliation(s)
- Wim Vanden Berghe
- Laboratory for Eukaryotic Gene Expression and Signal Transduction (LEGEST), Department of Molecular Biology, Ghent University, K.L. Ledeganckstraat 35, B-9000 Gent, Belgium.
| | | | | | | | | | | |
Collapse
|