1
|
Chen XR, Poudel L, Hong Z, Johnen P, Katti S, Tripathi A, Nile AH, Green SM, Khan D, Schaaf G, Bono F, Bankaitis VA, Igumenova TI. Mechanisms by which small molecules of diverse chemotypes arrest Sec14 lipid transfer activity. J Biol Chem 2023; 299:102861. [PMID: 36603766 PMCID: PMC9898755 DOI: 10.1016/j.jbc.2022.102861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023] Open
Abstract
Phosphatidylinositol (PtdIns) transfer proteins (PITPs) enhance the activities of PtdIns 4-OH kinases that generate signaling pools of PtdIns-4-phosphate. In that capacity, PITPs serve as key regulators of lipid signaling in eukaryotic cells. Although the PITP phospholipid exchange cycle is the engine that stimulates PtdIns 4-OH kinase activities, the underlying mechanism is not understood. Herein, we apply an integrative structural biology approach to investigate interactions of the yeast PITP Sec14 with small-molecule inhibitors (SMIs) of its phospholipid exchange cycle. Using a combination of X-ray crystallography, solution NMR spectroscopy, and atomistic MD simulations, we dissect how SMIs compete with native Sec14 phospholipid ligands and arrest phospholipid exchange. Moreover, as Sec14 PITPs represent new targets for the development of next-generation antifungal drugs, the structures of Sec14 bound to SMIs of diverse chemotypes reported in this study will provide critical information required for future structure-based design of next-generation lead compounds directed against Sec14 PITPs of virulent fungi.
Collapse
Affiliation(s)
- Xiao-Ru Chen
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas USA
| | - Lokendra Poudel
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas USA
| | - Zebin Hong
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Philipp Johnen
- Institute for Crop Science and Resource Conservation, Universität Bonn, Bonn, Germany
| | - Sachin Katti
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas USA
| | - Ashutosh Tripathi
- Department of Cell Biology & Genetics, Texas A&M University, College Station, Texas, USA
| | - Aaron H Nile
- Department of Cell Biology & Genetics, Texas A&M University, College Station, Texas, USA
| | - Savana M Green
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas USA; Department of Cell Biology & Genetics, Texas A&M University, College Station, Texas, USA
| | - Danish Khan
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas USA
| | - Gabriel Schaaf
- Institute for Crop Science and Resource Conservation, Universität Bonn, Bonn, Germany
| | - Fulvia Bono
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Vytas A Bankaitis
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas USA; Department of Cell Biology & Genetics, Texas A&M University, College Station, Texas, USA.
| | - Tatyana I Igumenova
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas USA.
| |
Collapse
|
2
|
Pemberton JG, Balla T. Polyphosphoinositide-Binding Domains: Insights from Peripheral Membrane and Lipid-Transfer Proteins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1111:77-137. [PMID: 30483964 DOI: 10.1007/5584_2018_288] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Within eukaryotic cells, biochemical reactions need to be organized on the surface of membrane compartments that use distinct lipid constituents to dynamically modulate the functions of integral proteins or influence the selective recruitment of peripheral membrane effectors. As a result of these complex interactions, a variety of human pathologies can be traced back to improper communication between proteins and membrane surfaces; either due to mutations that directly alter protein structure or as a result of changes in membrane lipid composition. Among the known structural lipids found in cellular membranes, phosphatidylinositol (PtdIns) is unique in that it also serves as the membrane-anchored precursor of low-abundance regulatory lipids, the polyphosphoinositides (PPIn), which have restricted distributions within specific subcellular compartments. The ability of PPIn lipids to function as signaling platforms relies on both non-specific electrostatic interactions and the selective stereospecific recognition of PPIn headgroups by specialized protein folds. In this chapter, we will attempt to summarize the structural diversity of modular PPIn-interacting domains that facilitate the reversible recruitment and conformational regulation of peripheral membrane proteins. Outside of protein folds capable of capturing PPIn headgroups at the membrane interface, recent studies detailing the selective binding and bilayer extraction of PPIn species by unique functional domains within specific families of lipid-transfer proteins will also be highlighted. Overall, this overview will help to outline the fundamental physiochemical mechanisms that facilitate localized interactions between PPIn lipids and the wide-variety of PPIn-binding proteins that are essential for the coordinate regulation of cellular metabolism and membrane dynamics.
Collapse
Affiliation(s)
- Joshua G Pemberton
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Tamas Balla
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
3
|
Grabon A, Orłowski A, Tripathi A, Vuorio J, Javanainen M, Róg T, Lönnfors M, McDermott MI, Siebert G, Somerharju P, Vattulainen I, Bankaitis VA. Dynamics and energetics of the mammalian phosphatidylinositol transfer protein phospholipid exchange cycle. J Biol Chem 2017; 292:14438-14455. [PMID: 28718450 DOI: 10.1074/jbc.m117.791467] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 07/14/2017] [Indexed: 11/06/2022] Open
Abstract
Phosphatidylinositol-transfer proteins (PITPs) regulate phosphoinositide signaling in eukaryotic cells. The defining feature of PITPs is their ability to exchange phosphatidylinositol (PtdIns) molecules between membranes, and this property is central to PITP-mediated regulation of lipid signaling. However, the details of the PITP-mediated lipid exchange cycle remain entirely obscure. Here, all-atom molecular dynamics simulations of the mammalian StART-like PtdIns/phosphatidylcholine (PtdCho) transfer protein PITPα, both on membrane bilayers and in solvated systems, informed downstream biochemical analyses that tested key aspects of the hypotheses generated by the molecular dynamics simulations. These studies provided five key insights into the PITPα lipid exchange cycle: (i) interaction of PITPα with the membrane is spontaneous and mediated by four specific protein substructures; (ii) the ability of PITPα to initiate closure around the PtdCho ligand is accompanied by loss of flexibility of two helix/loop regions, as well as of the C-terminal helix; (iii) the energy barrier of phospholipid extraction from the membrane is lowered by a network of hydrogen bonds between the lipid molecule and PITPα; (iv) the trajectory of PtdIns or PtdCho into and through the lipid-binding pocket is chaperoned by sets of PITPα residues conserved throughout the StART-like PITP family; and (v) conformational transitions in the C-terminal helix have specific functional involvements in PtdIns transfer activity. Taken together, these findings provide the first mechanistic description of key aspects of the PITPα PtdIns/PtdCho exchange cycle and offer a rationale for the high conservation of particular sets of residues across evolutionarily distant members of the metazoan StART-like PITP family.
Collapse
Affiliation(s)
- Aby Grabon
- From the Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas 77843
| | - Adam Orłowski
- the Laboratory of Physics, Tampere University of Technology, FI-33720 Tampere, Finland.,the Department of Physics and Energy, University of Limerick, Limerick V94 T9PX, Ireland
| | - Ashutosh Tripathi
- From the Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas 77843
| | - Joni Vuorio
- the Laboratory of Physics, Tampere University of Technology, FI-33720 Tampere, Finland.,the Department of Physics, University of Helsinki, P. O. Box 64, FI-00014 Helsinki, Finland
| | - Matti Javanainen
- the Laboratory of Physics, Tampere University of Technology, FI-33720 Tampere, Finland
| | - Tomasz Róg
- the Laboratory of Physics, Tampere University of Technology, FI-33720 Tampere, Finland.,the Department of Physics, University of Helsinki, P. O. Box 64, FI-00014 Helsinki, Finland
| | - Max Lönnfors
- From the Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas 77843
| | - Mark I McDermott
- From the Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas 77843
| | - Garland Siebert
- From the Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas 77843
| | - Pentti Somerharju
- the Department of Biochemistry and Developmental Biology, University of Helsinki, P. O. Box 63, FI-00014 Helsinki, Finland
| | - Ilpo Vattulainen
- the Laboratory of Physics, Tampere University of Technology, FI-33720 Tampere, Finland, .,the Department of Physics, University of Helsinki, P. O. Box 64, FI-00014 Helsinki, Finland.,the Department of Physics and Chemistry, MEMPHYS, Center for Biomembrane Physics, University of Southern Denmark, DK-5230 Odense, Denmark, and
| | - Vytas A Bankaitis
- From the Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas 77843, .,the Departments of Biochemistry and Biophysics and.,Chemistry, Texas A&M University, College Station, Texas 77843
| |
Collapse
|
4
|
Huang J, Ghosh R, Bankaitis VA. Sec14-like phosphatidylinositol transfer proteins and the biological landscape of phosphoinositide signaling in plants. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1352-1364. [PMID: 27038688 DOI: 10.1016/j.bbalip.2016.03.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 03/21/2016] [Accepted: 03/23/2016] [Indexed: 01/01/2023]
Abstract
Phosphoinositides and soluble inositol phosphates are essential components of a complex intracellular chemical code that regulates major aspects of lipid signaling in eukaryotes. These involvements span a broad array of biological outcomes and activities, and cells are faced with the problem of how to compartmentalize and organize these various signaling events into a coherent scheme. It is in the arena of how phosphoinositide signaling circuits are integrated and, and how phosphoinositide pools are functionally defined and channeled to privileged effectors, that phosphatidylinositol (PtdIns) transfer proteins (PITPs) are emerging as critical players. As plant systems offer some unique advantages and opportunities for study of these proteins, we discuss herein our perspectives regarding the progress made in plant systems regarding PITP function. We also suggest interesting prospects that plant systems hold for interrogating how PITPs work, particularly in multi-domain contexts, to diversify the biological outcomes for phosphoinositide signaling. This article is part of a Special Issue entitled: Plant Lipid Biology edited by Kent D. Chapman and Ivo Feussner.
Collapse
Affiliation(s)
- Jin Huang
- Department of Molecular & Cellular Medicine, Texas A&M Health Sciences Center, College Station, TX 77843-1114 USA.
| | - Ratna Ghosh
- Department of Molecular & Cellular Medicine, Texas A&M Health Sciences Center, College Station, TX 77843-1114 USA
| | - Vytas A Bankaitis
- Department of Molecular & Cellular Medicine, Texas A&M Health Sciences Center, College Station, TX 77843-1114 USA; Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843-1114 USA; Department of Chemistry, Texas A&M University, College Station, TX 77843-1114 USA.
| |
Collapse
|
5
|
Bankaitis VA, Ile KE, Nile AH, Ren J, Ghosh R, Schaaf G. Thoughts on Sec14-like nanoreactors and phosphoinositide signaling. Adv Biol Regul 2012; 52:115-21. [PMID: 22776890 DOI: 10.1016/j.jbior.2011.11.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 11/11/2011] [Indexed: 10/28/2022]
Affiliation(s)
- Vytas A Bankaitis
- Department of Cell & Developmental Biology, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599-7090, USA.
| | | | | | | | | | | |
Collapse
|
6
|
Devising Powerful Genetics, Biochemical and Structural Tools in the Functional Analysis of Phosphatidylinositol Transfer Proteins (PITPs) Across Diverse Species. Methods Cell Biol 2012; 108:249-302. [DOI: 10.1016/b978-0-12-386487-1.00013-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
7
|
Ghosh R, Bankaitis VA. Phosphatidylinositol transfer proteins: negotiating the regulatory interface between lipid metabolism and lipid signaling in diverse cellular processes. Biofactors 2011; 37:290-308. [PMID: 21915936 DOI: 10.1002/biof.180] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Phosphoinositides represent only a small percentage of the total cellular lipid pool. Yet, these molecules play crucial roles in diverse intracellular processes such as signal transduction at membrane-cytosol interface, regulation of membrane trafficking, cytoskeleton organization, nuclear events, and the permeability and transport functions of the membrane. A central principle in such lipid-mediated signaling is the appropriate coordination of these events. Such an intricate coordination demands fine spatial and temporal control of lipid metabolism and organization, and consistent mechanisms for specifically coupling these parameters to dedicated physiological processes. In that regard, recent studies have identified Sec14-like phosphatidylcholine transfer protein (PITPs) as "coincidence detectors," which spatially and temporally link the diverse aspects of the cellular lipid metabolome with phosphoinositide signaling. The integral role of PITPs in eukaryotic signal transduction design is amply demonstrated by the mammalian diseases associated with the derangements in the function of these proteins, to stress response and developmental regulation in plants, to fungal dimorphism and pathogenicity, to membrane trafficking in yeast, and higher eukaryotes. This review updates the recent advances made in the understanding of how these proteins, specifically PITPs of the Sec14-protein superfamily, operate at the molecular level and further describes how this knowledge has advanced our perception on the diverse biological functions of PITPs.
Collapse
Affiliation(s)
- Ratna Ghosh
- Lineberger Comprehensive Cancer Center, Department of Cell and Developmental Biology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27526-7090, USA.
| | | |
Collapse
|
8
|
Schaaf G, Dynowski M, Mousley CJ, Shah SD, Yuan P, Winklbauer EM, de Campos MKF, Trettin K, Quinones MC, Smirnova TI, Yanagisawa LL, Ortlund EA, Bankaitis VA. Resurrection of a functional phosphatidylinositol transfer protein from a pseudo-Sec14 scaffold by directed evolution. Mol Biol Cell 2011; 22:892-905. [PMID: 21248202 PMCID: PMC3057712 DOI: 10.1091/mbc.e10-11-0903] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Sec14-superfamily proteins integrate the lipid metabolome with phosphoinositide synthesis and signaling via primed presentation of phosphatidylinositol (PtdIns) to PtdIns kinases. Sec14 action as a PtdIns-presentation scaffold requires heterotypic exchange of phosphatidylcholine (PtdCho) for PtdIns, or vice versa, in a poorly understood progression of regulated conformational transitions. We identify mutations that confer Sec14-like activities to a functionally inert pseudo-Sec14 (Sfh1), which seemingly conserves all of the structural requirements for Sec14 function. Unexpectedly, the "activation" phenotype results from alteration of residues conserved between Sfh1 and Sec14. Using biochemical and biophysical, structural, and computational approaches, we find the activation mechanism reconfigures atomic interactions between amino acid side chains and internal water in an unusual hydrophilic microenvironment within the hydrophobic Sfh1 ligand-binding cavity. These altered dynamics reconstitute a functional "gating module" that propagates conformational energy from within the hydrophobic pocket to the helical unit that gates pocket access. The net effect is enhanced rates of phospholipid-cycling into and out of the Sfh1* hydrophobic pocket. Taken together, the directed evolution approach reveals an unexpectedly flexible functional engineering of a Sec14-like PtdIns transfer protein-an engineering invisible to standard bioinformatic, crystallographic, and rational mutagenesis approaches.
Collapse
Affiliation(s)
- Gabriel Schaaf
- Department of Cell and Developmental Biology, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Mathias JD, Ran Y, Carter JD, Fanucci GE. Interactions of the GM2 activator protein with phosphatidylcholine bilayers: a site-directed spin-labeling power saturation study. Biophys J 2009; 97:1436-44. [PMID: 19720032 DOI: 10.1016/j.bpj.2009.05.058] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Revised: 04/29/2009] [Accepted: 05/11/2009] [Indexed: 10/20/2022] Open
Abstract
The GM2 activator protein (GM2AP) is an accessory protein that is an essential component in the catabolism of the ganglioside GM2. A function of GM2AP is to bind and extract GM2 from intralysosomal vesicles, forming a soluble protein-lipid complex, which interacts with the hydrolase Hexosaminidase A, the enzyme that cleaves the terminal sugar group of GM2. Here, we used site-directed spin labeling with power saturation electron paramagnetic resonance to determine the surface-bound orientation of GM2AP upon phosphatidylcholine vesicles. Because GM2AP extracts lipid ligands from the vesicle and is undergoing exchange on and off the vesicle surface, we utilized a nickel-chelating lipid to localize the paramagnetic metal collider to the lipid bilayer-aqueous interface. Spin-labeled sites that collide with the lipid-bound metal relaxing agent provide a means for mapping sites of the protein that interact with the lipid bilayer interface. Results show that GM2AP binds to lipid bilayers such that the residues lining the lipid-binding cavity lie on the vesicle surface. This orientation creates a favorable microenvironment that can allow for the lipid tails to flip out of the bilayer directly into the hydrophobic pocket of GM2AP.
Collapse
Affiliation(s)
- Jordan D Mathias
- Department of Chemistry, University of Florida, Gainesville, Florida, USA
| | | | | | | |
Collapse
|
10
|
Ligand extraction properties of the GM2 activator protein and its interactions with lipid vesicles. Biophys J 2009; 97:257-66. [PMID: 19580763 DOI: 10.1016/j.bpj.2009.03.065] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2008] [Revised: 03/25/2009] [Accepted: 03/31/2009] [Indexed: 11/23/2022] Open
Abstract
The GM2 activator protein (GM2AP) is an accessory protein required for the enzymatic conversion of GM2 to GM3 by hydrolases in the lysosomal compartments of cells. Here, GM2AP interactions with lipid vesicles are investigated by sucrose-loaded vesicle sedimentation and gel filtration assays, and the effects of pH and lipid composition on membrane binding and lipid extraction are characterized. The sedimentation experiments allow for facile quantification of the percentage of protein in solution and on the bilayer surface, with detailed analysis of the protein:lipid complex that remains in solution. Optimum binding and ligand extraction is found for pH 4.8 where <15% of the protein remains surface associated regardless of the lipid composition. In addition to extracting GM2, we find that GM2AP readily extracts dansyl-headgroup-labeled lipids as well as other phospholipids from vesicles. The ability of GM2AP to extract dansyl-DHPE from vesicles is altered by pH and the specific ligand GM2. Although the unique endosomal lipid, bis(monoacylglycero)phosphate, is not required for ligand extraction, it does enhance the extraction efficiency of GM2 when cholesterol is present in the vesicles.
Collapse
|
11
|
Mousley CJ, Tyeryar K, Ile KE, Schaaf G, Brost RL, Boone C, Guan X, Wenk MR, Bankaitis VA. Trans-Golgi network and endosome dynamics connect ceramide homeostasis with regulation of the unfolded protein response and TOR signaling in yeast. Mol Biol Cell 2008; 19:4785-803. [PMID: 18753406 DOI: 10.1091/mbc.e08-04-0426] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Synthetic genetic array analyses identify powerful genetic interactions between a thermosensitive allele (sec14-1(ts)) of the structural gene for the major yeast phosphatidylinositol transfer protein (SEC14) and a structural gene deletion allele (tlg2Delta) for the Tlg2 target membrane-soluble N-ethylmaleimide-sensitive factor attachment protein receptor. The data further demonstrate Sec14 is required for proper trans-Golgi network (TGN)/endosomal dynamics in yeast. Paradoxically, combinatorial depletion of Sec14 and Tlg2 activities elicits trafficking defects from the endoplasmic reticulum, and these defects are accompanied by compromise of the unfolded protein response (UPR). UPR failure occurs downstream of Hac1 mRNA splicing, and it is further accompanied by defects in TOR signaling. The data link TGN/endosomal dynamics with ceramide homeostasis, UPR activity, and TOR signaling in yeast, and they identify the Sit4 protein phosphatase as a primary conduit through which ceramides link to the UPR. We suggest combinatorial Sec14/Tlg2 dysfunction evokes inappropriate turnover of complex sphingolipids in endosomes. One result of this turnover is potentiation of ceramide-activated phosphatase-mediated down-regulation of the UPR. These results provide new insight into Sec14 function, and they emphasize the TGN/endosomal system as a central hub for homeostatic regulation in eukaryotes.
Collapse
Affiliation(s)
- Carl J Mousley
- Department of Cell and Developmental Biology, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599-7090, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Voinov MA, Ruuge A, Reznikov VA, Grigor'ev IA, Smirnov AI. Mapping local protein electrostatics by EPR of pH-sensitive thiol-specific nitroxide. Biochemistry 2008; 47:5626-37. [PMID: 18426227 DOI: 10.1021/bi800272f] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A first thiol-specific pH-sensitive nitroxide spin-label of the imidazolidine series, methanethiosulfonic acid S-(1-oxyl-2,2,3,5,5-pentamethylimidazolidin-4-ylmethyl) ester (IMTSL), has been synthesized and characterized. X-Band (9 GHz) and W-band (94 GHz) EPR spectral parameters of the new spin-label in its free form and covalently attached to an amino acid cysteine and a tripeptide glutathione were studied as a function of pH and solvent polarity. The pKa value of the protonatable tertiary amino group of the spin-label was found to be unaffected by other ionizable groups present in side chains of unstructured small peptides. The W-band EPR spectra were shown to allow for pKa determination from precise g-factor measurements. Is has been demonstrated that the high accuracy of pKa determination for pH-sensitive nitroxides could be achieved regardless of the frequency of measurements or the regime of spin exchange: fast at X-band and slow at W-band. IMTSL was found to react specifically with a model protein, iso-1-cytochrome c from the yeast Saccharomyces cerevisiae, giving EPR spectra very similar to those of the most commonly employed cysteine-specific label MTSL. CD data indicated no perturbations to the overall protein structure upon IMTSL labeling. It was found that for IMTSL, g iso correlates linearly with A iso, but the slopes are different for the neutral and charged forms of the nitroxide. This finding was attributed to the solvent effects on the spin density at the oxygen atom of the NO group and on the excitation energy of the oxygen lone-pair orbital.
Collapse
Affiliation(s)
- Maxim A Voinov
- Department of Chemistry, North Carolina State UniVersity, 2620 Yarbrough DriVe, Raleigh, North Carolina 27695, USA
| | | | | | | | | |
Collapse
|
13
|
Platform X: Membrane Transporters & Exchangers. Biophys J 2008. [DOI: 10.1016/s0006-3495(08)79048-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
14
|
Schaaf G, Ortlund EA, Tyeryar KR, Mousley CJ, Ile KE, Garrett TA, Ren J, Woolls MJ, Raetz CR, Redinbo MR, Bankaitis VA. Functional anatomy of phospholipid binding and regulation of phosphoinositide homeostasis by proteins of the sec14 superfamily. Mol Cell 2008; 29:191-206. [PMID: 18243114 PMCID: PMC7808562 DOI: 10.1016/j.molcel.2007.11.026] [Citation(s) in RCA: 200] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2007] [Revised: 09/27/2007] [Accepted: 11/14/2007] [Indexed: 11/28/2022]
Abstract
Sec14, the major yeast phosphatidylinositol (PtdIns)/phosphatidylcholine (PtdCho) transfer protein, regulates essential interfaces between lipid metabolism and membrane trafficking from the trans-Golgi network (TGN). How Sec14 does so remains unclear. We report that Sec14 binds PtdIns and PtdCho at distinct (but overlapping) sites, and both PtdIns- and PtdCho-binding activities are essential Sec14 activities. We further show both activities must reside within the same molecule to reconstitute a functional Sec14 and for effective Sec14-mediated regulation of phosphoinositide homeostasis in vivo. This regulation is uncoupled from PtdIns-transfer activity and argues for an interfacial presentation mode for Sec14-mediated potentiation of PtdIns kinases. Such a regulatory role for Sec14 is a primary counter to action of the Kes1 sterol-binding protein that antagonizes PtdIns 4-OH kinase activity in vivo. Collectively, these findings outline functional mechanisms for the Sec14 superfamily and reveal additional layers of complexity for regulating phosphoinositide homeostasis in eukaryotes.
Collapse
Affiliation(s)
- Gabriel Schaaf
- Department of Cell and Developmental Biology, School of Medicine, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7090, USA
- These authors contributed equally to this work
| | - Eric A. Ortlund
- Department of Chemistry, School of Medicine, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7090, USA
- Department of Biochemistry and Biophysics, School of Medicine, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7090, USA
- These authors contributed equally to this work
| | - Kimberly R. Tyeryar
- Department of Cell and Developmental Biology, School of Medicine, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7090, USA
| | - Carl J. Mousley
- Department of Cell and Developmental Biology, School of Medicine, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7090, USA
| | - Kristina E. Ile
- Department of Cell and Developmental Biology, School of Medicine, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7090, USA
| | - Teresa A. Garrett
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Jihui Ren
- Department of Cell and Developmental Biology, School of Medicine, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7090, USA
| | - Melissa J. Woolls
- Department of Cell and Developmental Biology, School of Medicine, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7090, USA
| | - Christian R.H. Raetz
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Matthew R. Redinbo
- Department of Chemistry, School of Medicine, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7090, USA
- Department of Biochemistry and Biophysics, School of Medicine, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7090, USA
| | - Vytas A. Bankaitis
- Department of Cell and Developmental Biology, School of Medicine, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7090, USA
| |
Collapse
|
15
|
Current awareness on yeast. Yeast 2007. [DOI: 10.1002/yea.1328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
16
|
Mousley CJ, Tyeryar KR, Vincent-Pope P, Bankaitis VA. The Sec14-superfamily and the regulatory interface between phospholipid metabolism and membrane trafficking. Biochim Biophys Acta Mol Cell Biol Lipids 2007; 1771:727-36. [PMID: 17512778 PMCID: PMC2001170 DOI: 10.1016/j.bbalip.2007.04.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2007] [Revised: 03/26/2007] [Accepted: 04/03/2007] [Indexed: 12/11/2022]
Abstract
A central principle of signal transduction is the appropriate control of the process so that relevant signals can be detected with fine spatial and temporal resolution. In the case of lipid-mediated signaling, organization and metabolism of specific lipid mediators is an important aspect of such control. Herein, we review the emerging evidence regarding the roles of Sec14-like phosphatidylinositol transfer proteins (PITPs) in the action of intracellular signaling networks; particularly as these relate to membrane trafficking. Finally, we explore developing ideas regarding how Sec14-like PITPs execute biological function. As Sec14-like proteins define a protein superfamily with diverse lipid (or lipophile) binding capabilities, it is likely these under-investigated proteins will be ultimately demonstrated as a ubiquitously important set of biological regulators whose functions influence a large territory in the signaling landscape of eukaryotic cells.
Collapse
Affiliation(s)
- Carl J Mousley
- Department of Cell and Developmental Biology, Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7090, USA.
| | | | | | | |
Collapse
|
17
|
Bankaitis VA, Vincent P, Merkulova M, Tyeryar K, Liu Y. Phosphatidylinositol transfer proteins and functional specification of lipid signaling pools. ACTA ACUST UNITED AC 2007; 47:27-40. [PMID: 17335879 PMCID: PMC2080876 DOI: 10.1016/j.advenzreg.2006.12.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Vytas A Bankaitis
- Department of Cell & Developmental Biology, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599-7090, USA.
| | | | | | | | | |
Collapse
|