1
|
Wu N, Yuan F, Yue S, Jiang F, Ren D, Liu L, Bi Y, Guo Z, Ji L, Han K, Yang X, Feng M, Su K, Yang F, Wu X, Lu Q, Li X, Wang R, Liu B, Le S, Shi Y, He G. Effect of exercise and diet intervention in NAFLD and NASH via GAB2 methylation. Cell Biosci 2021; 11:189. [PMID: 34736535 PMCID: PMC8569968 DOI: 10.1186/s13578-021-00701-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 10/25/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is a disorder that extends from simple hepatic steatosis to nonalcoholic steatohepatitis (NASH), which is effectively alleviated by lifestyle intervention. Nevertheless, DNA methylation mechanism underling the effect of environmental factors on NAFLD and NASH is still obscure. The aim of this study was to investigate the effect of exercise and diet intervention in NAFLD and NASH via DNA methylation of GAB2. METHODS Methylation of genomic DNA in human NAFLD was quantified using Infinium Methylation EPIC BeadChip assay after exercise (Ex), low carbohydrate diet (LCD) and exercise plus low carbohydrate diet (ELCD) intervention. The output Idat files were processed using ChAMP package. False discovery rate on genome-wide analysis of DNA methylation (q < 0.05), and cytosine-guanine dinucleotides (CpGs) which are located in promoters were used for subsequent analysis (|Δβ|≥ 0.1). K-means clustering was used to cluster differentially methylated genes according to 3D genome information from Human embryonic stem cell. To quantify DNA methylation and mRNA expression of GRB2 associated binding protein 2 (GAB2) in NASH mice after Ex, low fat diet (LFD) and exercise plus low fat diet (ELFD), MassARRAY EpiTYPER and quantitative reverse transcription polymerase chain reaction were used. RESULTS Both LCD and ELCD intervention on human NAFLD can induce same DNA methylation alterations at critical genes in blood, e.g., GAB2, which was also validated in liver and adipose of NASH mice after LFD and ELFD intervention. Moreover, methylation of CpG units (i.e., CpG_10.11.12) inversely correlated with mRNA expression GAB2 in adipose tissue of NASH mice after ELFD intervention. CONCLUSIONS We highlighted the susceptibility of DNA methylation in GAB2 to ELFD intervention, through which exercise and diet can protect against the progression of NAFLD and NASH on the genome level, and demonstrated that the DNA methylation variation in blood could mirror epigenetic signatures in target tissues of important biological function, i.e., liver and adipose tissue. Trial registration International Standard Randomized Controlled Trial Number Register (ISRCTN 42622771).
Collapse
Affiliation(s)
- Na Wu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China.,Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Fan Yuan
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China.,Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Siran Yue
- Shanghai Innovation Center of Traditional Chinese Medicine Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fengyan Jiang
- Shanghai Innovation Center of Traditional Chinese Medicine Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Decheng Ren
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China.,Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Liangjie Liu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China.,Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Bi
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China.,Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Zhenming Guo
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China.,Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Ji
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China.,Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Ke Han
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China.,Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Xiao Yang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China.,Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Mofan Feng
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China.,Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Kai Su
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China.,Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Fengping Yang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China.,Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Xi Wu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China.,Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Qing Lu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China.,Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Xingwang Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China.,Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Ruirui Wang
- Shanghai Innovation Center of Traditional Chinese Medicine Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Baocheng Liu
- Shanghai Innovation Center of Traditional Chinese Medicine Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shenglong Le
- Exercise Translational Medicine Center, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Yi Shi
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China. .,Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China.
| | - Guang He
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China. .,Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
2
|
Huang Y, Zhang T, Chen L, Yu M, Liu Q, Zhou C, Tang Q, Zhou L, Zhan H, Li J, Xu K, Lin J. Elevated expressions of SHP2 and GAB2 correlated with VEGF in eutopic and ectopic endometrium of women with ovarian endometriosis. Gynecol Endocrinol 2020; 36:813-818. [PMID: 32619126 DOI: 10.1080/09513590.2020.1787378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Aims: Protein tyrosine phosphatase Src-homology-2-domain-containing phosphatase 2 (SHP2) and adaptor protein Grb2-associated binding protein 2 (GAB2) can bind to each other in various signal transduction. However, the expression of SHP2 and GAB2 have not been investigated in endometriosis. The aim of the study was to evaluate the expressions of SHP2 and GAB2, and explore the correlation with Ki67 and VEGF in ovarian endometriosis.Materials and methods: The protein expressions and localizations were assessed immunohistochemically in ectopic, eutopic endometrium and normal endometrium from patients with (n = 30) and without (n = 30) ovarian endometriosis.Results: SHP2 was mainly present in the endometrial glandular epithelium, with increased expression in eutopic endometrium and even higher expression in ectopic endometrium compared to control endometrium (p < .05). GAB2 was immunolocalized in endometrial epithelium and stroma, increasing its expression from control endometrium to eutopic and ectopic endometrium (p < .05). Positive correlation was found between SHP2 and GAB2 in endometrium (p < .01). SHP2 and GAB2 both positively correlated with VEGF (p < .05), but not Ki67 in endometrium.Conclusions: We provide the first evidence that the protein expressions of SHP2 and GAB2 were elevated in ectopic and eutopic endometrium, suggesting GAB2-SHP2 axis regulating VEGF might contribute to the pathomechanism of endometriosis.
Collapse
Affiliation(s)
- Yizhou Huang
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Tao Zhang
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Liqing Chen
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Minghua Yu
- Department of Pathology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Qin Liu
- Department of Pathology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Caiyun Zhou
- Department of Pathology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Qile Tang
- Department of Pathology, Zhejiang Provincial People's Hospital, Hangzhou, People's Republic of China
| | - Linpo Zhou
- School of Medicine, Zhejiang University City College, Hangzhou, People's Republic of China
| | - Hong Zhan
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Juanqing Li
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Kaihong Xu
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Jun Lin
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| |
Collapse
|
3
|
Voisset E, Brenet F, Lopez S, de Sepulveda P. SRC-Family Kinases in Acute Myeloid Leukaemia and Mastocytosis. Cancers (Basel) 2020; 12:cancers12071996. [PMID: 32708273 PMCID: PMC7409304 DOI: 10.3390/cancers12071996] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/17/2020] [Accepted: 07/19/2020] [Indexed: 11/16/2022] Open
Abstract
Protein tyrosine kinases have been recognized as important actors of cell transformation and cancer progression, since their discovery as products of viral oncogenes. SRC-family kinases (SFKs) play crucial roles in normal hematopoiesis. Not surprisingly, they are hyperactivated and are essential for membrane receptor downstream signaling in hematological malignancies such as acute myeloid leukemia (AML) and mastocytosis. The precise roles of SFKs are difficult to delineate due to the number of substrates, the functional redundancy among members, and the use of tools that are not selective. Yet, a large num ber of studies have accumulated evidence to support that SFKs are rational therapeutic targets in AML and mastocytosis. These two pathologies are regulated by two related receptor tyrosine kinases, which are well known in the field of hematology: FLT3 and KIT. FLT3 is one of the most frequently mutated genes in AML, while KIT oncogenic mutations occur in 80-90% of mastocytosis. Studies on oncogenic FLT3 and KIT signaling have shed light on specific roles for members of the SFK family. This review highlights the central roles of SFKs in AML and mastocytosis, and their interconnection with FLT3 and KIT oncoproteins.
Collapse
|
4
|
Obata Y, Hara Y, Shiina I, Murata T, Tasaki Y, Suzuki K, Ito K, Tsugawa S, Yamawaki K, Takahashi T, Okamoto K, Nishida T, Abe R. N822K- or V560G-mutated KIT activation preferentially occurs in lipid rafts of the Golgi apparatus in leukemia cells. Cell Commun Signal 2019; 17:114. [PMID: 31484543 PMCID: PMC6727407 DOI: 10.1186/s12964-019-0426-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 08/22/2019] [Indexed: 02/07/2023] Open
Abstract
Background KIT tyrosine kinase is expressed in mast cells, interstitial cells of Cajal, and hematopoietic cells. Permanently active KIT mutations lead these host cells to tumorigenesis, and to such diseases as mast cell leukemia (MCL), gastrointestinal stromal tumor (GIST), and acute myeloid leukemia (AML). Recently, we reported that in MCL, KIT with mutations (D816V, human; D814Y, mouse) traffics to endolysosomes (EL), where it can then initiate oncogenic signaling. On the other hand, KIT mutants including KITD814Y in GIST accumulate on the Golgi, and from there, activate downstream. KIT mutations, such as N822K, have been found in 30% of core binding factor-AML (CBF-AML) patients. However, how the mutants are tyrosine-phosphorylated and where they activate downstream molecules remain unknown. Moreover, it is unclear whether a KIT mutant other than KITD816V in MCL is able to signal on EL. Methods We used leukemia cell lines, such as Kasumi-1 (KITN822K, AML), SKNO-1 (KITN822K, AML), and HMC-1.1 (KITV560G, MCL), to explore how KIT transduces signals in these cells and to examine the signal platform for the mutants using immunofluorescence microscopy and inhibition of intracellular trafficking. Results In AML cell lines, KITN822K aberrantly localizes to EL. After biosynthesis, KIT traffics to the cell surface via the Golgi and immediately migrates to EL through endocytosis in a manner dependent on its kinase activity. However, results of phosphorylation imaging show that KIT is preferentially activated on the Golgi. Indeed, blockade of KITN822K migration to the Golgi with BFA/M-COPA inhibits the activation of KIT downstream molecules, such as AKT, ERK, and STAT5, indicating that KIT signaling occurs on the Golgi. Moreover, lipid rafts in the Golgi play a role in KIT signaling. Interestingly, KITV560G in HMC-1.1 migrates and activates downstream in a similar manner to KITN822K in Kasumi-1. Conclusions In AML, KITN822K mislocalizes to EL. Our findings, however, suggest that the mutant transduces phosphorylation signals on lipid rafts of the Golgi in leukemia cells. Unexpectedly, the KITV560G signal platform in MCL is similar to that of KITN822K in AML. These observations provide new insights into the pathogenic role of KIT mutants as well as that of other mutant molecules. Electronic supplementary material The online version of this article (10.1186/s12964-019-0426-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yuuki Obata
- Division of Immunobiology, Research Institute for Biomedical Sciences, Tokyo University of Science, Yamazaki 2669, Noda, Chiba, 278-0022, Japan. .,Division of Cancer Differentiation, National Cancer Center Research Institute, Tsukiji 5-1-1, Chuo-ku, 104-0045, Tokyo, Japan.
| | - Yasushi Hara
- Division of Immunobiology, Research Institute for Biomedical Sciences, Tokyo University of Science, Yamazaki 2669, Noda, Chiba, 278-0022, Japan
| | - Isamu Shiina
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka 1-3, Shinjuku-ku, 162-8601, Tokyo, Japan
| | - Takatsugu Murata
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka 1-3, Shinjuku-ku, 162-8601, Tokyo, Japan
| | - Yasutaka Tasaki
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka 1-3, Shinjuku-ku, 162-8601, Tokyo, Japan
| | - Kyohei Suzuki
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka 1-3, Shinjuku-ku, 162-8601, Tokyo, Japan
| | - Keiichi Ito
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka 1-3, Shinjuku-ku, 162-8601, Tokyo, Japan
| | - Shou Tsugawa
- Division of Cancer Differentiation, National Cancer Center Research Institute, Tsukiji 5-1-1, Chuo-ku, 104-0045, Tokyo, Japan.,Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka 1-3, Shinjuku-ku, 162-8601, Tokyo, Japan
| | - Kouhei Yamawaki
- Division of Cancer Differentiation, National Cancer Center Research Institute, Tsukiji 5-1-1, Chuo-ku, 104-0045, Tokyo, Japan
| | - Tsuyoshi Takahashi
- Department of Surgery, Osaka University, Graduate School of Medicine, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| | - Koji Okamoto
- Division of Cancer Differentiation, National Cancer Center Research Institute, Tsukiji 5-1-1, Chuo-ku, 104-0045, Tokyo, Japan
| | - Toshirou Nishida
- National Cancer Center Hospital, Tsukiji 5-1-1, Chuo-ku, 104-0045, Tokyo, Japan
| | - Ryo Abe
- Division of Immunobiology, Research Institute for Biomedical Sciences, Tokyo University of Science, Yamazaki 2669, Noda, Chiba, 278-0022, Japan. .,SIRC, Teikyo University, Itabashi-ku 2-11-1, Itabashi-ku, 173-8605, Tokyo, Japan.
| |
Collapse
|
5
|
Nacmias B, Bagnoli S, Piaceri I, Sorbi S. Genetic Heterogeneity of Alzheimer's Disease: Embracing Research Partnerships. J Alzheimers Dis 2019; 62:903-911. [PMID: 29103034 PMCID: PMC5870047 DOI: 10.3233/jad-170570] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Studies on the genetics of Alzheimer’s disease (AD) have revealed the complexity and heterogeneity of the disease. All our studies have supported this evidence and contribute to the current understanding of the genetic architecture of AD. This report reviews the success of our investigations, focusing on the implications and importance of the genetics of AD, and demonstrates the relevance of research strategies embracing partnerships.
Collapse
Affiliation(s)
- Benedetta Nacmias
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Silvia Bagnoli
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Irene Piaceri
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Sandro Sorbi
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy.,IRCCS Don Gnocchi, Florence, Italy
| |
Collapse
|
6
|
Wang Z, Vaughan TY, Zhu W, Chen Y, Fu G, Medrzycki M, Nishio H, Bunting ST, Hankey-Giblin PA, Nusrat A, Parkos CA, Wang D, Wen R, Bunting KD. Gab2 and Gab3 Redundantly Suppress Colitis by Modulating Macrophage and CD8 + T-Cell Activation. Front Immunol 2019; 10:486. [PMID: 30936879 PMCID: PMC6431666 DOI: 10.3389/fimmu.2019.00486] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 02/22/2019] [Indexed: 12/13/2022] Open
Abstract
Inflammatory Bowel Disease (IBD) is a multi-factorial chronic inflammation of the gastrointestinal tract prognostically linked to CD8+ T-cells, but little is known about their mechanism of activation during initiation of colitis. Here, Grb2-associated binding 2/3 adaptor protein double knockout mice (Gab2/3−/−) were generated. Gab2/3−/− mice, but not single knockout mice, developed spontaneous colitis. To analyze the cellular mechanism, reciprocal bone marrow (BM) transplantation demonstrated a Gab2/3−/− hematopoietic disease-initiating process. Adoptive transfer showed individual roles for macrophages and T-cells in promoting colitis development in vivo. In spontaneous disease, intestinal intraepithelial CD8+ but much fewer CD4+, T-cells from Gab2/3−/− mice with rectal prolapse were more proliferative. To analyze the molecular mechanism, reduced PI3-kinase/Akt/mTORC1 was observed in macrophages and T-cells, with interleukin (IL)-2 stimulated T-cells showing increased pSTAT5. These results illustrate the importance of Gab2/3 collectively in signaling responses required to control macrophage and CD8+ T-cell activation and suppress chronic colitis.
Collapse
Affiliation(s)
- Zhengqi Wang
- Division of Hem/Onc/BMT, Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Emory University, Atlanta, GA, United States
| | - Tamisha Y Vaughan
- Division of Hem/Onc/BMT, Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Emory University, Atlanta, GA, United States
| | - Wandi Zhu
- Division of Hem/Onc/BMT, Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Emory University, Atlanta, GA, United States
| | - Yuhong Chen
- BloodCenter of Wisconsin, Milwaukee, WI, United States
| | - Guoping Fu
- BloodCenter of Wisconsin, Milwaukee, WI, United States
| | - Magdalena Medrzycki
- Division of Hem/Onc/BMT, Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Emory University, Atlanta, GA, United States
| | - Hikaru Nishio
- Department of Pathology, Emory University, Atlanta, GA, United States
| | - Silvia T Bunting
- Department of Pathology, Children's Healthcare of Atlanta, Atlanta, GA, United States
| | - Pamela A Hankey-Giblin
- Department of Veterinary Science, Pennsylvania State University, University Park, PA, United States
| | - Asma Nusrat
- Department of Pathology, Emory University, Atlanta, GA, United States.,Department of Pathology, University of Michigan, Ann Arbor, MI, United States
| | - Charles A Parkos
- Department of Pathology, Emory University, Atlanta, GA, United States.,Department of Pathology, University of Michigan, Ann Arbor, MI, United States
| | - Demin Wang
- BloodCenter of Wisconsin, Milwaukee, WI, United States
| | - Renren Wen
- BloodCenter of Wisconsin, Milwaukee, WI, United States
| | - Kevin D Bunting
- Division of Hem/Onc/BMT, Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Emory University, Atlanta, GA, United States
| |
Collapse
|
7
|
Sun YZ, Chen XB, Wang RR, Li WY, Ma Y. Exploring the effect of N308D mutation on protein tyrosine phosphatase-2 cause gain-of-function activity by a molecular dynamics study. J Cell Biochem 2018; 120:5949-5961. [PMID: 30304563 DOI: 10.1002/jcb.27883] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 09/19/2018] [Indexed: 01/27/2023]
Abstract
One of the most common protein tyrosine phosphatase-2 (SHP2) mutations in Noonan syndrome is the N308D mutation, and it increases the activity of the protein. However, the molecular basis of the activation of N308D mutation on SHP2 conformations is poorly understood. Here, molecular dynamic simulations were performed on SHP2 and SHP2-N308D to explore the effect of N308D mutation on SHP2 cause gain of function activity, respectively. The principal component analysis, dynamic cross-correlation map, secondary structure analysis, residue interaction networks, and solvent accessible surface area analysis suggested that the N308D mutation distorted the residues interactions network between the allosteric site (residue Gly244-Gly246) and C-SH2 domain, including the hydrogen bond formation and the binding energy. Meanwhile, the activity of catalytic site (residue Gly503-Val505) located in the Q-loop in mutant increased due to this region's high fluctuations. Therefore, the substrate had more chances to access to the catalytic activity site of the precision time protocol domain of SHP2-N308D, which was easy to be exposed. In addition, we had speculated that the Lys244 located in the allosteric site was the key residue which lead to the protein conformation changes. Consequently, overall calculations presented in this study ultimately provide a useful understanding of the increased activity of SHP2 caused by the N308D mutation.
Collapse
Affiliation(s)
- Ying-Zhan Sun
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Xiu-Bo Chen
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China.,Eye Hospital, Tianjin Medical University, School of Optometry and Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Rui-Rui Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Wei-Ya Li
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Ying Ma
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| |
Collapse
|
8
|
Kuramasu A, Wakabayashi M, Inui M, Yanai K. Distinct Roles of Small GTPases Rac1 and Rac2 in Histamine H 4 Receptor-Mediated Chemotaxis of Mast Cells. J Pharmacol Exp Ther 2018; 367:9-19. [PMID: 30021868 DOI: 10.1124/jpet.118.249706] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 07/12/2018] [Indexed: 11/22/2022] Open
Abstract
Histamine induces chemotaxis of mast cells through the H4 receptor. However, little is known about the precise intracellular signaling pathway that mediates this process. In this study, we identified small GTPases Rac1 and Rac2 as intracellular binding partners of the H4 receptor and characterized their roles in H4 receptor signaling. We showed that histamine induced Rac GTPase activation via the H4 receptor. A Rac inhibitor NSC23766 attenuated chemotaxis of mast cells toward histamine, as well as histamine-induced calcium mobilization and extracellular signal-regulated kinase (ERK) activation. Histamine-induced migration of mast cells was also sensitive to PD98059, an inhibitor of the mitogen-activated protein kinase kinase, indicating that the Rac-ERK pathway was involved in chemotaxis through the H4 receptor. Inhibition of phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) by LY294002 suppressed the histamine-induced chemotaxis and activation of Rac GTPases, suggesting that PI3K regulates chemotaxis upstream of Rac activation. Specific knockdown of Rac1 and Rac2 by short-hairpin RNA revealed that both Rac GTPases are necessary for histamine-induced migration. Downregulation of Rac1 and Rac2 led to attenuated response in calcium mobilization and ERK activation, respectively. These observations suggested that Rac1 and Rac2 have distinct and essential roles in intracellular signaling downstream of H4 receptor-PI3K in histamine-induced chemotaxis of mast cells.
Collapse
Affiliation(s)
- Atsuo Kuramasu
- Department of Pharmacology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan (A.K., M.I.); and Department of Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan (M.W., K.Y.)
| | - Mie Wakabayashi
- Department of Pharmacology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan (A.K., M.I.); and Department of Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan (M.W., K.Y.)
| | - Makoto Inui
- Department of Pharmacology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan (A.K., M.I.); and Department of Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan (M.W., K.Y.)
| | - Kazuhiko Yanai
- Department of Pharmacology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan (A.K., M.I.); and Department of Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan (M.W., K.Y.)
| |
Collapse
|
9
|
Wilhelm T, Bick F, Peters K, Mohta V, Tirosh B, Patterson JB, Kharabi-Masouleh B, Huber M. Infliction of proteotoxic stresses by impairment of the unfolded protein response or proteasomal inhibition as a therapeutic strategy for mast cell leukemia. Oncotarget 2017; 9:2984-3000. [PMID: 29423023 PMCID: PMC5790440 DOI: 10.18632/oncotarget.23354] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Accepted: 12/03/2017] [Indexed: 01/05/2023] Open
Abstract
The intensity and duration of endoplasmic reticulum (ER) stress converts the unfolded protein response (UPR) from an adaptive into a terminal response. The first regulates homeostasis, the latter triggers apoptosis. Cells that rapidly proliferate and possess developed secretory capabilities, such as leukemia cells, depend on an efficiently operating UPR to maintain proteostasis. Activation of terminal UPR by either blockade of adaptive UPR or exaggeration of ER stress has been explored as a novel approach in cancer therapy. For mast cell leukemia (MCL) the efficacy of both approaches, by utilizing the KITV560G,D816V-positive MCL cell line HMC-1.2, was investigated. We show that HMC-1.2 cells display a tonic activation of the IRE1α arm of the UPR, which constitutively generates spliced XBP1. Inhibition of IRE1α by different types of inhibitors (MKC-8866, STF-083010, and KIRA6) suppressed proliferation at concentrations needed for blockade of IRE1α-mediated XBP1 splicing. At higher concentrations, these inhibitors triggered an apoptotic response. Blocking the proteasome by bortezomib, which confers an exaggerated UPR, resulted in a marked cytotoxic response. Bortezomib treatment also caused activation of the kinase JNK, which played a pro-proliferative and anti-apoptotic role. Hence, the combination of bortezomib with a JNK inhibitor synergized to induce cell death. In summary, the UPR can be addressed as an effective therapeutic target against KITD816V-positive MCL.
Collapse
Affiliation(s)
- Thomas Wilhelm
- Institute of Biochemistry and Molecular Immunology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Fabian Bick
- Institute of Biochemistry and Molecular Immunology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Kerstin Peters
- Institute of Biochemistry and Molecular Immunology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Vrinda Mohta
- Institute of Biochemistry and Molecular Immunology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Boaz Tirosh
- The Institute of Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Behzad Kharabi-Masouleh
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Michael Huber
- Institute of Biochemistry and Molecular Immunology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
10
|
Obata Y, Horikawa K, Shiina I, Takahashi T, Murata T, Tasaki Y, Suzuki K, Yonekura K, Esumi H, Nishida T, Abe R. Oncogenic Kit signalling on the Golgi is suppressed by blocking secretory trafficking with M-COPA in gastrointestinal stromal tumours. Cancer Lett 2017; 415:1-10. [PMID: 29196126 DOI: 10.1016/j.canlet.2017.11.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 11/14/2017] [Accepted: 11/23/2017] [Indexed: 02/08/2023]
Abstract
Most gastrointestinal stromal tumours (GISTs) are caused by constitutively active mutations in Kit tyrosine kinase. The drug imatinib, a specific Kit inhibitor, improves the prognosis of metastatic GIST patients, but these patients become resistant to the drug by acquiring secondary mutations in the Kit kinase domain. We recently reported that a Kit mutant causes oncogenic signals only on the Golgi apparatus in GISTs. In this study, we show that in GIST, 2-methylcoprophilinamide (M-COPA, also known as "AMF-26"), an inhibitor of biosynthetic protein trafficking from the endoplasmic reticulum (ER) to the Golgi, suppresses Kit autophosphorylation at Y703/Y721/Y730/Y936, resulting in blockade of oncogenic signalling. Results of our M-COPA treatment assay show that Kit Y703/Y730/Y936 in the ER are dephosphorylated by protein tyrosine phosphatases (PTPs), thus the ER-retained Kit is unable to activate downstream molecules. ER-localized Kit Y721 is not phosphorylated, but not due to PTPs. Importantly, M-COPA can inhibit the activation of the Kit kinase domain mutant, resulting in suppression of imatinib-resistant GIST proliferation. Our study demonstrates that Kit autophosphorylation is spatio-temporally regulated and may offer a new strategy for treating imatinib-resistant GISTs.
Collapse
Affiliation(s)
- Yuuki Obata
- Division of Immunobiology, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda 278-0022, Chiba, Japan
| | - Keita Horikawa
- Division of Immunobiology, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda 278-0022, Chiba, Japan
| | - Isamu Shiina
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Shinjuku-ku 162-8601, Tokyo, Japan
| | - Tsuyoshi Takahashi
- Department of Surgery, Graduate School of Medicine, Osaka University, Suita 565-0871, Osaka, Japan
| | - Takatsugu Murata
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Shinjuku-ku 162-8601, Tokyo, Japan
| | - Yasutaka Tasaki
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Shinjuku-ku 162-8601, Tokyo, Japan
| | - Kyohei Suzuki
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Shinjuku-ku 162-8601, Tokyo, Japan
| | - Keita Yonekura
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Shinjuku-ku 162-8601, Tokyo, Japan
| | - Hiroyasu Esumi
- Division of Clinical Research, Research Institute for Biomedical Sciences, Tokyo, University of Science, Japan
| | - Toshirou Nishida
- National Cancer Center Hospital, Chuo-ku, 104-0045, Tokyo, Japan
| | - Ryo Abe
- Division of Immunobiology, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda 278-0022, Chiba, Japan.
| |
Collapse
|
11
|
Litchfield K, Levy M, Orlando G, Loveday C, Law P, Migliorini G, Holroyd A, Broderick P, Karlsson R, Haugen TB, Kristiansen W, Nsengimana J, Fenwick K, Assiotis I, Kote-Jarai ZS, Dunning AM, Muir K, Peto J, Eeles R, Easton DF, Dudakia D, Orr N, Pashayan N, Bishop DT, Reid A, Huddart RA, Shipley J, Grotmol T, Wiklund F, Houlston RS, Turnbull C. Identification of 19 new risk loci and potential regulatory mechanisms influencing susceptibility to testicular germ cell tumor. Nat Genet 2017; 49:1133-1140. [PMID: 28604728 PMCID: PMC6016736 DOI: 10.1038/ng.3896] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 05/16/2017] [Indexed: 12/29/2022]
Abstract
Genome-wide association studies (GWAS) have transformed understanding of susceptibility to testicular germ cell tumors (TGCTs), but much of the heritability remains unexplained. Here we report a new GWAS, a meta-analysis with previous GWAS and a replication series, totaling 7,319 TGCT cases and 23,082 controls. We identify 19 new TGCT risk loci, roughly doubling the number of known TGCT risk loci to 44. By performing in situ Hi-C in TGCT cells, we provide evidence for a network of physical interactions among all 44 TGCT risk SNPs and candidate causal genes. Our findings implicate widespread disruption of developmental transcriptional regulators as a basis of TGCT susceptibility, consistent with failed primordial germ cell differentiation as an initiating step in oncogenesis. Defective microtubule assembly and dysregulation of KIT-MAPK signaling also feature as recurrently disrupted pathways. Our findings support a polygenic model of risk and provide insight into the biological basis of TGCT.
Collapse
Affiliation(s)
- Kevin Litchfield
- Division of Genetics & Epidemiology, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Max Levy
- Division of Genetics & Epidemiology, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Giulia Orlando
- Division of Genetics & Epidemiology, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Chey Loveday
- Division of Genetics & Epidemiology, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Philip Law
- Division of Genetics & Epidemiology, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Gabriele Migliorini
- Division of Genetics & Epidemiology, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Amy Holroyd
- Division of Genetics & Epidemiology, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Peter Broderick
- Division of Genetics & Epidemiology, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Robert Karlsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, 171 77, Sweden
| | - Trine B Haugen
- Faculty of Health Sciences, Oslo and Akershus University College of Applied Sciences, Oslo, Norway
| | - Wenche Kristiansen
- Faculty of Health Sciences, Oslo and Akershus University College of Applied Sciences, Oslo, Norway
| | - Jérémie Nsengimana
- Section of Epidemiology & Biostatistics, Leeds Institute of Cancer and Pathology, Leeds, LS9 7TF, UK
| | - Kerry Fenwick
- Tumour Profiling Unit, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Ioannis Assiotis
- Tumour Profiling Unit, The Institute of Cancer Research, London, SM2 5NG, UK
| | - ZSofia Kote-Jarai
- Division of Genetics & Epidemiology, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Alison M. Dunning
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, CB1 8RN, UK
| | - Kenneth Muir
- Division of Health Sciences, Warwick Medical School, Warwick University, CV4 7AL, UK
- Institute of Population Health, University of Manchester, M1 3BB, UK
| | - Julian Peto
- Department of Non-Communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Rosalind Eeles
- Division of Genetics & Epidemiology, The Institute of Cancer Research, London, SM2 5NG, UK
- Royal Marsden NHS Foundation Trust, London, SM2 5NG, UK
| | - Douglas F Easton
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, CB1 8RN, UK
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, CB1 8RN, UK
| | - Darshna Dudakia
- Division of Genetics & Epidemiology, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Nick Orr
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | - Nora Pashayan
- Department of Applied Health Research, University College London, London, WC1E 6BT, UK
| | | | | | - D. Timothy Bishop
- Section of Epidemiology & Biostatistics, Leeds Institute of Cancer and Pathology, Leeds, LS9 7TF, UK
| | - Alison Reid
- Academic Radiotherapy Unit, Institute of Cancer Research, Sutton, Surrey, SM2 5NG, UK
| | - Robert A Huddart
- Academic Radiotherapy Unit, Institute of Cancer Research, Sutton, Surrey, SM2 5NG, UK
| | - Janet Shipley
- Division of Molecular Pathology, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Tom Grotmol
- Department of Research, Cancer Registry of Norway, Oslo, 0369, Norway
| | - Fredrik Wiklund
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, 171 77, Sweden
| | - Richard S Houlston
- Division of Genetics & Epidemiology, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Clare Turnbull
- Division of Genetics & Epidemiology, The Institute of Cancer Research, London, SM2 5NG, UK
- William Harvey Research Institute, Queen Mary University, London, EC1M 6BQ, UK
| |
Collapse
|
12
|
Rodriguez AR, Yu JJ, Navara C, Chambers JP, Guentzel MN, Arulanandam BP. Contribution of FcɛRI-associated vesicles to mast cell-macrophage communication following Francisella tularensis infection. Innate Immun 2016; 22:567-74. [PMID: 27554051 DOI: 10.1177/1753425916663639] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 07/12/2016] [Indexed: 11/17/2022] Open
Abstract
Understanding innate immune intercellular communication following microbial infection remains a key biological issue. Using live cell imaging, we demonstrate that mast cells actively extend cellular projections to sample the macrophage periphery during Francisella tularensis LVS infection. Mast cell MHCII(hi) expression was elevated from less than 1% to 13% during LVS infection. Direct contact during co-culture with macrophages further increased mast cell MHCII(hi) expression to approximately 87%. Confocal analyses of the cellular perimeter revealed mast cell caspase-1 was localized in close proximity with FcɛRI in uninfected mast cells, and repositioned to clustered regions upon LVS infection. Importantly, mast cell FcɛRI-encompassed vesicles are transferred to macrophages by trogocytosis, and macrophage caspase-1 expression is further up-regulated upon direct contact with mast cells. Our study reveals direct cellular interactions between innate cells that may impact the function of caspase-1, a known sensor of microbial danger and requirement for innate defense against many pathogenic microbes including F. tularensis.
Collapse
Affiliation(s)
- Annette R Rodriguez
- RCMI, Biophotonics Core, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, USA
| | - Jieh-Juen Yu
- South Texas Center for Emerging Infectious Diseases, Department of Biology, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, USA
| | - Christopher Navara
- Department of Biology, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, USA
| | - James P Chambers
- South Texas Center for Emerging Infectious Diseases, Department of Biology, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, USA
| | - M Neal Guentzel
- South Texas Center for Emerging Infectious Diseases, Department of Biology, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, USA
| | - Bernard P Arulanandam
- South Texas Center for Emerging Infectious Diseases, Department of Biology, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, USA
| |
Collapse
|
13
|
The genomic landscape of testicular germ cell tumours: from susceptibility to treatment. Nat Rev Urol 2016; 13:409-19. [PMID: 27296647 DOI: 10.1038/nrurol.2016.107] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The genomic landscape of testicular germ cell tumour (TGCT) can be summarized using four overarching hypotheses. Firstly, TGCT risk is dominated by inherited genetic factors, which determine nearly half of all disease risk and are highly polygenic in nature. Secondly KIT-KITLG signalling is currently the major pathway that is implicated in TGCT formation, both as a predisposition risk factor and a somatic driver event. Results from genome-wide association studies have also consistently suggested that other closely related pathways involved in male germ cell development and sex determination are associated with TGCT risk. Thirdly, the method of disease formation is unique, with tumours universally stemming from a noninvasive precursor lesion, probably of fetal origin, which lies dormant through childhood into adolescence and then eventually begins malignant growth in early adulthood. Formation of a 12p isochromosome, a hallmark of TGCT observed in nearly all tumours, is likely to be a key triggering event for malignant transformation. Finally, TGCT have been shown to have a distinctive somatic mutational profile, with a low rate of point mutations contrasted with frequent large-scale chromosomal gains. These four hypotheses by no means constitute a complete model that explains TGCT tumorigenesis, but advances in genomic technologies have enabled considerable progress in describing and understanding the disease. Further advancing our understanding of the genomic basis of TGCT offers a clear opportunity for clinical benefit in terms of preventing invasive cancer arising in young men, decreasing the burden of chemotherapy-related survivorship issues and reducing mortality in the minority of patients who have treatment-refractory disease.
Collapse
|
14
|
He L, Zhu Z, Chen S, Wang Y, Gu H. Mammary tumor growth and metastasis are reduced in c-Kit mutant Sash mice. Cancer Med 2016; 5:1292-7. [PMID: 26992445 PMCID: PMC4924387 DOI: 10.1002/cam4.696] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 01/21/2016] [Accepted: 02/14/2016] [Indexed: 12/20/2022] Open
Abstract
Besides its well‐known function in allergic response, mast cell, one of the key immune cells present in tumor microenvironment, plays important roles in cancer progression. However, the functional role of mast cells in breast cancer development and metastasis is not well understood. To test the involvement of mast cells in breast cancer, we examined the effects of loss of mast cells on mammary tumor development by crossing the well‐known mast cell deficient mouse strain sash (KitW‐sh/W‐sh) with the mammary tumor transgenic mouse strain MMTV‐Polyoma Middle T antigen (PyMT). Although mammary tumor onset was not affected in the absence of mast cells, mammary growth and metastasis were reduced in PyMT/KitW‐sh/W‐sh mice compared with PyMT/wild‐type mice (WT). Histological and immunofluorescent analyses showed that tumors from PyMT/KitW‐sh/W‐sh mice showed largely differentiated morphology with reduced angiogenesis compared with MMTV‐PyMT/WT mice. Our results suggest that mast cells may promote breast cancer growth and metastasis. Agents that can block mast cells growth are potential new therapies to treat metastatic breast cancer.
Collapse
Affiliation(s)
- Licai He
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, 325035, China
| | - Zhenfeng Zhu
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, 325035, China
| | - Shang Chen
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yongping Wang
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, 80045
| | - Haihua Gu
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, 325035, China.,Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, 80045
| |
Collapse
|
15
|
Drube S, Weber F, Loschinski R, Beyer M, Rothe M, Rabenhorst A, Göpfert C, Meininger I, Diamanti MA, Stegner D, Häfner N, Böttcher M, Reinecke K, Herdegen T, Greten FR, Nieswandt B, Hartmann K, Krämer OH, Kamradt T. Subthreshold IKK activation modulates the effector functions of primary mast cells and allows specific targeting of transformed mast cells. Oncotarget 2016; 6:5354-68. [PMID: 25749030 PMCID: PMC4467154 DOI: 10.18632/oncotarget.3022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 12/31/2014] [Indexed: 01/16/2023] Open
Abstract
Mast cell differentiation and proliferation depends on IL-3. IL-3 induces the activation of MAP-kinases and STATs and consequently induces proliferation and survival. Dysregulation of IL-3 signaling pathways also contribute to inflammation and tumorigenesis. We show here that IL-3 induces a SFK- and Ca²⁺-dependent activation of the inhibitor of κB kinases 2 (IKK2) which results in mast cell proliferation and survival but does not induce IκBα-degradation and NFκB activation. Therefore we propose the term "subthreshold IKK activation".This subthreshold IKK activation also primes mast cells for enhanced responsiveness to IL-33R signaling. Consequently, co-stimulation with IL-3 and IL-33 increases IKK activation and massively enhances cytokine production induced by IL-33.We further reveal that in neoplastic mast cells expressing constitutively active Ras, subthreshold IKK activation is associated with uncontrolled proliferation. Consequently, pharmacological IKK inhibition reduces tumor growth selectively by inducing apoptosis in vivo.Together, subthreshold IKK activation is crucial to mediate the full IL-33-induced effector functions in primary mast cells and to mediate uncontrolled proliferation of neoplastic mast cells. Thus, IKK2 is a new molecularly defined target structure.
Collapse
Affiliation(s)
- Sebastian Drube
- Institut für Immunologie, Universitätsklinikum Jena, 07743 Jena, Germany
| | - Franziska Weber
- Institut für Immunologie, Universitätsklinikum Jena, 07743 Jena, Germany
| | - Romy Loschinski
- Institut für Immunologie, Universitätsklinikum Jena, 07743 Jena, Germany
| | - Mandy Beyer
- Institut für Immunologie, Universitätsklinikum Jena, 07743 Jena, Germany
| | - Mandy Rothe
- Institut für Immunologie, Universitätsklinikum Jena, 07743 Jena, Germany
| | - Anja Rabenhorst
- Klinik und Poliklinik für Dermatologie und Venerologie, Universität zu Köln, 50937 Köln, Germany
| | - Christiane Göpfert
- Institut für Immunologie, Universitätsklinikum Jena, 07743 Jena, Germany
| | - Isabel Meininger
- Institut für Immunologie, Universitätsklinikum Jena, 07743 Jena, Germany
| | - Michaela A Diamanti
- Georg-Speyer-Haus, Institute for Tumorbiology and Experimental Therapy, 60596 Frankfurt, Germany
| | - David Stegner
- Rudolf Virchow Centrum für experimentelle Biomedizin, Universität Würzburg, 97080 Würzburg, Germany
| | - Norman Häfner
- Gynäkologische Molekularbiologie, Klinik für Frauenheilkunde und Geburtshilfe, 07743 Jena, Germany
| | - Martin Böttcher
- Institut für Immunologie, Universitätsklinikum Jena, 07743 Jena, Germany
| | - Kirstin Reinecke
- Institut für Experimentelle und Klinische Pharmakologie, Universität Schleswig-Holstein, 24105 Kiel, Germany
| | - Thomas Herdegen
- Institut für Experimentelle und Klinische Pharmakologie, Universität Schleswig-Holstein, 24105 Kiel, Germany
| | - Florian R Greten
- Georg-Speyer-Haus, Institute for Tumorbiology and Experimental Therapy, 60596 Frankfurt, Germany
| | - Bernhard Nieswandt
- Rudolf Virchow Centrum für experimentelle Biomedizin, Universität Würzburg, 97080 Würzburg, Germany
| | - Karin Hartmann
- Klinik und Poliklinik für Dermatologie und Venerologie, Universität zu Köln, 50937 Köln, Germany
| | - Oliver H Krämer
- Institut für Toxikologie, Universitätsmedizin Mainz, 55131 Mainz, Germany
| | - Thomas Kamradt
- Institut für Immunologie, Universitätsklinikum Jena, 07743 Jena, Germany
| |
Collapse
|
16
|
Sharma N, Everingham S, Zeng LF, Zhang ZY, Kapur R, Craig AWB. Oncogenic KIT-induced aggressive systemic mastocytosis requires SHP2/PTPN11 phosphatase for disease progression in mice. Oncotarget 2015; 5:6130-41. [PMID: 25026279 PMCID: PMC4171618 DOI: 10.18632/oncotarget.2177] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Acquired mutations in KIT are driver mutations in systemic mastocytosis (SM). Here, we tested the role of SHP2/PTPN11 phosphatase in oncogenic KIT signaling using an aggressive SM mouse model. Stable knock-down (KD) of SHP2 led to impaired growth, colony formation, and increased rates of apoptosis in P815 cells. This correlated with defects in signaling to ERK/Bim, Btk, Lyn, and Stat5 pathways in P815-KD cells compared to non-targeting (NT). Retro-orbital injections of P815 NT cells in syngeneic DBA/2 mice resulted in rapid development of aggressive SM within 13-16 days characterized by splenomegaly, extramedullary hematopoiesis, and multifocal liver tumors. In contrast, mice injected with P815 SHP2 KD cells showed less disease burden, including normal spleen weight and cellularity, and significant reductions in mastocytoma cells in spleen, bone marrow, peripheral blood and liver compared to NT controls. Treatment of human mast cell leukemia HMC-1 cells or P815 cells with SHP2 inhibitor II-B08, resulted in reduced colony formation and cell viability. Combining II-B08 with multi-kinase inhibitor Dasatinib showed enhanced efficacy than either inhibitor alone in blocking cell growth pathways and cell viability. Taken together, these results identify SHP2 as a key effector of oncogenic KIT and a therapeutic target in aggressive SM.
Collapse
Affiliation(s)
- Namit Sharma
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada K7L 3N6; Division of Cancer Biology and Genetics, Queen's Cancer Research Institute, Kingston, Ontario, Canada K7L 3N6
| | - Stephanie Everingham
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada K7L 3N6; Division of Cancer Biology and Genetics, Queen's Cancer Research Institute, Kingston, Ontario, Canada K7L 3N6
| | - Li-Fan Zeng
- Department of Biochemistry and Molecular Biology, Indiana University, Indianapolis, IN, USA
| | - Zhong-Yin Zhang
- Department of Biochemistry and Molecular Biology, Indiana University, Indianapolis, IN, USA
| | - Reuben Kapur
- Department of Biochemistry and Molecular Biology, Indiana University, Indianapolis, IN, USA; Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Andrew W B Craig
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada K7L 3N6; Division of Cancer Biology and Genetics, Queen's Cancer Research Institute, Kingston, Ontario, Canada K7L 3N6
| |
Collapse
|
17
|
Litchfield K, Holroyd A, Lloyd A, Broderick P, Nsengimana J, Eeles R, Easton DF, Dudakia D, Bishop DT, Reid A, Huddart RA, Grotmol T, Wiklund F, Shipley J, Houlston RS, Turnbull C. Identification of four new susceptibility loci for testicular germ cell tumour. Nat Commun 2015; 6:8690. [PMID: 26503584 PMCID: PMC4846317 DOI: 10.1038/ncomms9690] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 09/17/2015] [Indexed: 02/06/2023] Open
Abstract
Genome-wide association studies (GWAS) have identified multiple risk loci for testicular germ cell tumour (TGCT), revealing a polygenic model of disease susceptibility strongly influenced by common variation. To identify additional single-nucleotide polymorphisms (SNPs) associated with TGCT, we conducted a multistage GWAS with a combined data set of >25,000 individuals (6,059 cases and 19,094 controls). We identified new risk loci for TGCT at 3q23 (rs11705932, TFDP2, P=1.5 × 10(-9)), 11q14.1 (rs7107174, GAB2, P=9.7 × 10(-11)), 16p13.13 (rs4561483, GSPT1, P=1.6 × 10(-8)) and 16q24.2 (rs55637647, ZFPM1, P=3.4 × 10(-9)). We additionally present detailed functional analysis of these loci, identifying a statistically significant relationship between rs4561483 risk genotype and increased GSPT1 expression in TGCT patient samples. These findings provide additional support for a polygenic model of TGCT risk and further insight into the biological basis of disease development.
Collapse
Affiliation(s)
- Kevin Litchfield
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London SM2 5NG, UK
| | - Amy Holroyd
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London SM2 5NG, UK
| | - Amy Lloyd
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London SM2 5NG, UK
| | - Peter Broderick
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London SM2 5NG, UK
| | - Jérémie Nsengimana
- Section of Epidemiology and Biostatistics, Leeds Institute of Cancer and Pathology, Leeds LS9 7TF, UK
| | - Rosalind Eeles
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London SM2 5NG, UK
- Royal Marsden NHS Foundation Trust, London SM2 5NG, UK
| | - Douglas F Easton
- Cancer Research UK, Genetic Epidemiology Unit, Strangeways Research Laboratory, Cambridge CB1 8RN, UK
| | - Darshna Dudakia
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London SM2 5NG, UK
| | - D. Timothy Bishop
- Section of Epidemiology and Biostatistics, Leeds Institute of Cancer and Pathology, Leeds LS9 7TF, UK
| | - Alison Reid
- Academic Radiotherapy Unit, Institute of Cancer Research, Sutton, Surrey SM2 5NG, UK
| | - Robert A. Huddart
- Academic Radiotherapy Unit, Institute of Cancer Research, Sutton, Surrey SM2 5NG, UK
| | - Tom Grotmol
- Department of Research, Cancer Registry of Norway, 0369 Oslo, Norway
| | - Fredrik Wiklund
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Janet Shipley
- Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, London SM2 5NG, UK
| | - Richard S. Houlston
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London SM2 5NG, UK
| | - Clare Turnbull
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London SM2 5NG, UK
- William Harvey Research Institute, Queen Mary University, London EC1M 6BQ, UK
| |
Collapse
|
18
|
Vajravelu BN, Hong KU, Al-Maqtari T, Cao P, Keith MCL, Wysoczynski M, Zhao J, Moore IV JB, Bolli R. C-Kit Promotes Growth and Migration of Human Cardiac Progenitor Cells via the PI3K-AKT and MEK-ERK Pathways. PLoS One 2015; 10:e0140798. [PMID: 26474484 PMCID: PMC4608800 DOI: 10.1371/journal.pone.0140798] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 09/29/2015] [Indexed: 01/01/2023] Open
Abstract
A recent phase I clinical trial (SCIPIO) has shown that autologous c-kit+ cardiac progenitor cells (CPCs) improve cardiac function and quality of life when transplanted into patients with ischemic heart disease. Although c-kit is widely used as a marker of resident CPCs, its role in the regulation of the cellular characteristics of CPCs remains unknown. We hypothesized that c-kit plays a role in the survival, growth, and migration of CPCs. To test this hypothesis, human CPCs were grown under stress conditions in the presence or absence of SCF, and the effects of SCF-mediated activation of c-kit on CPC survival/growth and migration were measured. SCF treatment led to a significant increase in cell survival and a reduction in cell death under serum depletion conditions. In addition, SCF significantly promoted CPC migration in vitro. Furthermore, the pro-survival and pro-migratory effects of SCF were augmented by c-kit overexpression and abrogated by c-kit inhibition with imatinib. Mechanistically, c-kit activation in CPCs led to activation of the PI3K and the MAPK pathways. With the use of specific inhibitors, we confirmed that the SCF/c-kit-dependent survival and chemotaxis of CPCs are dependent on both pathways. Taken together, our findings suggest that c-kit promotes the survival/growth and migration of human CPCs cultured ex vivo via the activation of PI3K and MAPK pathways. These results imply that the efficiency of CPC homing to the injury site as well as their survival after transplantation may be improved by modulating the activity of c-kit.
Collapse
Affiliation(s)
- Bathri N. Vajravelu
- Institute of Molecular Cardiology, Department of Medicine, University of Louisville, Louisville, KY 40202, United States of America
| | - Kyung U. Hong
- Institute of Molecular Cardiology, Department of Medicine, University of Louisville, Louisville, KY 40202, United States of America
| | - Tareq Al-Maqtari
- Institute of Molecular Cardiology, Department of Medicine, University of Louisville, Louisville, KY 40202, United States of America
| | - Pengxiao Cao
- Institute of Molecular Cardiology, Department of Medicine, University of Louisville, Louisville, KY 40202, United States of America
| | - Matthew C. L. Keith
- Institute of Molecular Cardiology, Department of Medicine, University of Louisville, Louisville, KY 40202, United States of America
| | - Marcin Wysoczynski
- Institute of Molecular Cardiology, Department of Medicine, University of Louisville, Louisville, KY 40202, United States of America
| | - John Zhao
- Institute of Molecular Cardiology, Department of Medicine, University of Louisville, Louisville, KY 40202, United States of America
| | - Joseph B. Moore IV
- Institute of Molecular Cardiology, Department of Medicine, University of Louisville, Louisville, KY 40202, United States of America
| | - Roberto Bolli
- Institute of Molecular Cardiology, Department of Medicine, University of Louisville, Louisville, KY 40202, United States of America
- * E-mail:
| |
Collapse
|
19
|
Ding CB, Yu WN, Feng JH, Luo JM. Structure and function of Gab2 and its role in cancer (Review). Mol Med Rep 2015; 12:4007-4014. [PMID: 26095858 PMCID: PMC4526075 DOI: 10.3892/mmr.2015.3951] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 05/19/2015] [Indexed: 12/30/2022] Open
Abstract
The docking proteins of the Grb-associated binder (Gab) family transduce cellular signals between receptors and intracellular downstream effectors, and provide a platform for protein-protein interactions. Gab2, a key member of the Gab family of proteins, is involved in the amplification and integration of signal transduction, evoked by a variety of extracellular stimuli, including growth factors, cytokines and antigen receptors. Gab2 protein lacks intrinsic catalytic activity; however, when phosphorylated by protein-tyrosine kinases (PTKs), Gab2 recruits several Src homology-2 (SH2) domain-containing proteins, including the SH2-containing protein tyrosine phosphatase 2 (SHP2), the p85 subunit of phosphoinositide-3 kinase (PI3K), phospholipase C-γ (PLCγ)1, Crk, and GC-GAP. Through these interactions, the Gab2 protein triggers various downstream signal effectors, including SHP2/rat sarcoma viral oncogene/RAF/mitogen-activated protein kinase kinase/extracellular signal-regulated kinase and PI3K/AKT, involved in cell growth, differentiation, migration and apoptosis. It has been previously reported that aberrant Gab2 and/or Gab2 signaling is closely associated with human tumorigenesis, particularly in breast cancer, leukemia and melanoma. The present review aimed to focus on the structure and effector function of Gab2, its role in cancer and its potential for use as an effective therapeutic target.
Collapse
Affiliation(s)
- Chen-Bo Ding
- Department of Immunology and Immunology Innovation Base for Postgraduate Education in Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563099, P.R. China
| | - Wei-Na Yu
- Department of Immunology and Immunology Innovation Base for Postgraduate Education in Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563099, P.R. China
| | - Ji-Hong Feng
- Department of Oncology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563099, P.R. China
| | - Jun-Min Luo
- Department of Immunology and Immunology Innovation Base for Postgraduate Education in Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563099, P.R. China
| |
Collapse
|
20
|
Kim JH, Kim AR, Kim HS, Kim HW, Park YH, You JS, Park YM, Her E, Kim HS, Kim YM, Choi WS. Rhamnus davurica leaf extract inhibits Fyn activation by antigen in mast cells for anti-allergic activity. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 15:80. [PMID: 25887889 PMCID: PMC4379541 DOI: 10.1186/s12906-015-0607-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 03/12/2015] [Indexed: 01/06/2023]
Abstract
BACKGROUND Complementary and alternative herbal medicines are recently considered as a promising approach for treating various diseases. We screened approximately 100 plant extracts for anti-allergic activity. Rhamnus davurica leaf extract showed the most potent inhibitory effect on the activation of RBL-2H3 mast cells. Although Rhamnus davurica extract has been used to treat pruritus, dysuresia, and constipation as a traditional herbal medicine in some Asian countries, an anti-allergic effect of Rhamnus davurica has not yet been demonstrated. We aimed to investigate the effect and mechanism of the leaf extract of Rhamnus davurica (LERD) on mast cells in vitro and allergic responses in vivo. METHODS The effects of LERD on the activation of mast cells and mast cell-mediated passive cutaneous anaphylaxis (PCA) were measured in mice and two types of mast cells, mouse bone marrow-derived mast cells (BMMCs) and RBL-2H3 cells in vitro. A mechanistic study of its inhibitory effect was performed by using degranulation assay, reverse transcriptase-polymerase chain reaction, enzyme-linked immunosorbent assay, and western blotting analysis. RESULTS LERD reversibly suppressed antigen-stimulated degranulation in BMMCs and RBL-2H3 cells, and also inhibited mRNA expression and secretion of TNF-α and IL-4 in a dose-dependent manner. In a PCA animal model, LERD significantly inhibited antigen-induced allergic response and degranulation of ear tissue mast cells. As for the mechanism of action, LERD inhibited the activation of Syk, which is the pivotal signaling protein for mast cell activation by antigen. Furthermore, LERD also impeded the activations of well-known downstream proteins such as LAT, Akt and three MAP kinases (Erk, p38 and JNK). In an in vitro kinase assay, LERD suppressed the activation of Fyn in antigen-stimulated mast cells. CONCLUSION This study demonstrated for the first time that LERD has anti-allergic effects through inhibiting the Fyn/Syk pathway in mast cells. Therefore, this study provides scientific evidence for LERD to be used as an herbal medicine or health food for patients with allergic diseases.
Collapse
Affiliation(s)
- Ji Hyung Kim
- KU open Innovation Center, School of Medicine, Konkuk University, Chungju, 380-701, Korea.
| | - A-Ram Kim
- KU open Innovation Center, School of Medicine, Konkuk University, Chungju, 380-701, Korea.
| | - Hyuk Soon Kim
- KU open Innovation Center, School of Medicine, Konkuk University, Chungju, 380-701, Korea.
| | - Hyun Woo Kim
- KU open Innovation Center, School of Medicine, Konkuk University, Chungju, 380-701, Korea.
| | - Young Hwan Park
- KU open Innovation Center, School of Medicine, Konkuk University, Chungju, 380-701, Korea.
| | - Jueng Soo You
- KU open Innovation Center, School of Medicine, Konkuk University, Chungju, 380-701, Korea.
| | - Yeong Min Park
- KU open Innovation Center, School of Medicine, Konkuk University, Chungju, 380-701, Korea.
| | - Erk Her
- KU open Innovation Center, School of Medicine, Konkuk University, Chungju, 380-701, Korea.
| | - Hyung Sik Kim
- College of Pharmacy, Sungkyunkwan University, Suwon, 440-746, Korea.
| | - Young Mi Kim
- College of Pharmacy, Duksung Women's University, Seoul, 132-714, Korea.
| | - Wahn Soo Choi
- KU open Innovation Center, School of Medicine, Konkuk University, Chungju, 380-701, Korea.
| |
Collapse
|
21
|
Ueshima C, Kataoka TR, Hirata M, Furuhata A, Suzuki E, Toi M, Tsuruyama T, Okayama Y, Haga H. The Killer Cell Ig-like Receptor 2DL4 Expression in Human Mast Cells and Its Potential Role in Breast Cancer Invasion. Cancer Immunol Res 2015; 3:871-80. [PMID: 25735953 DOI: 10.1158/2326-6066.cir-14-0199] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 02/24/2015] [Indexed: 11/16/2022]
Abstract
The killer-cell Ig-like receptor (KIR) 2DL4 (CD158d) acts as a receptor for human leukocyte antigen (HLA)-G and is expressed on almost all human natural killer (NK) cells. The expression and function of KIR2DL4 in other hematopoietic cells is poorly understood. Here, we focused on human mast cells, which exhibit cytotoxic activity similar to that of NK cells. KIR2DL4 was detected in all examined human cultured mast cells established from peripheral blood derived from healthy volunteers (PB-mast), the human mast cell line LAD2, and human nonneoplastic mast cells, including those on pathologic specimens. An agonistic antibody against KIR2DL4 decreased KIT-mediated and IgE-triggered responses, and enhanced the granzyme B production by PB-mast and LAD2 cells, by activating Src homology 2-containing protein tyrosine phosphatase (SHP-2). Next, we performed a coculture assay between LAD2 cells and the HLA-G(+) cancer cells, MCF-7 and JEG-3, and showed that KIR2DL4 on LAD2 cells enhanced MMP-9 production and the invasive activity of both cell lines via HLA-G. Immunohistochemical analysis revealed that the direct interaction between HLA-G(+) breast cancer cells and KIR2DL4(+) tissue mast cells (observed in 12 of 36 cases; 33.3%) was statistically correlated with the presence of lymph node metastasis or lymph-vascular invasion (observed in 11 of 12 cases; 91.7%; χ(2) = 7.439; P < 0.01; degrees of freedom, 1) in the clinical samples. These findings suggest that the KIR2DL4 on human mast cells facilitates HLA-G-expressing cancer invasion and the subsequent metastasis.
Collapse
Affiliation(s)
- Chiyuki Ueshima
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan. Human Health Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tatsuki R Kataoka
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan.
| | - Masahiro Hirata
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan
| | - Ayako Furuhata
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan
| | - Eiji Suzuki
- Department of Breast Surgery, Kyoto University Hospital, Kyoto, Japan
| | - Masakazu Toi
- Department of Breast Surgery, Kyoto University Hospital, Kyoto, Japan
| | - Tatsuaki Tsuruyama
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan
| | - Yoshimichi Okayama
- Division of Molecular Cell Immunology and Allergology, Advanced Medical Research Center, Nihon University Graduate School of Medical Science, Tokyo, Japan
| | - Hironori Haga
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan
| |
Collapse
|
22
|
Abstract
For a time, mast cells were viewed as simple granulocytic effector cells that mediate allergic symptoms. More recent discoveries show that mast cells can also function as potent pro- and anti-inflammatory immune regulators in a plethora of human diseases. Much of the current knowledge about mast cell functions comes from studies on rodent models. The membrane receptors for antigen/IgE and growth factors are the core initiators of signaling cascades that trigger various mast cell responses. Yet, the regulation and multifunctionality of key receptor-proximal protein tyrosine phosphorylation events are still not well understood. The roles of the members of the protein tyrosine phosphatase superfamily of enzymes in regulating mast cell development, survival, and immune activation will be reviewed in this chapter.
Collapse
|
23
|
Amsterdam A, Shpigner L, Raanan C, Schreiber L, Melzer E, Seger R. Dynamic distribution of ERK, p38 and JNK during the development of pancreatic ductal adenocarcinoma. Acta Histochem 2014; 116:1434-42. [PMID: 25440531 DOI: 10.1016/j.acthis.2014.09.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Revised: 09/21/2014] [Accepted: 09/22/2014] [Indexed: 12/12/2022]
Abstract
We recently discovered that oncogenic c-kit is highly expressed concomitantly with the development of pancreatic ductal adenocarcinoma (PDAC). Since oncogenic c-kit may activate major pathways of protein tyrosine phosphorylation, we decided to investigate this issue in the major protein phosphorylation cascades. In normal pancreas labeling with antiphosphorylated ERK1/2 (pERK1/2) antibody was mainly confined to islets of Langerhans in close overlapping with insulin containing cells. Phosphorylated p38 (pp38) showed a similar pattern of distribution, while only weak labeling was evident for pJNK and no labeling of pMEK was observed. As expected, general ERK1/2 (gERK1/2), general p38 (gp38), general JNK (gJNK) as well as general MEK (gMEK) were all evident in islets of Langerhans and in the exocrine tissue. In early development of PDAC, pERK1/2 and pp38 retained their localization in islets of Langerhans. Intensive staining of pERK1/2 was also evident in the cancerous ducts, while the labeling with antibodies to pp38 was more moderate. While pJNK staining in islets of Langerhans was weak, with no labeling in the cancerous ducts, antibodies to gJNK revealed intensive staining suggesting the weak staining of pJNK is not due to the lack of the enzyme. In a more advanced stage of PDAC the carcinomas were clearly stained with pERK1/2 and pp38, while moderate staining with pJNK was also evident. In liver metastases, the cancer cells were heavily labeled with all three phospho-MAPKs. It should be noted that the localization of all three kinases was mainly in the cell nuclei. In the more advanced stage of PDAC, heavy labeling was evident using antibodies to gERK1/2, gp38, gJNK and gMEK. However, no labeling to pMEK was evident in parallel sections. Our data suggest that both in normal and cancerous pancreas, most of the MAPK activities are located in islets of Langerhans and cancerous ducts. It is suggested that using inhibitors to protein kinases may attenuate the progression of the disease.
Collapse
Affiliation(s)
- Abraham Amsterdam
- Department of Molecular Cell Biology, The Weizmann Institute of Science, 234 Herzl Street, Rehovot 76100, Israel.
| | - Lotem Shpigner
- Department of Molecular Cell Biology, The Weizmann Institute of Science, 234 Herzl Street, Rehovot 76100, Israel
| | - Calanit Raanan
- Department of Veterinary Resources, The Weizmann Institute of Science, 234 Herzl Street, Rehovot 76100, Israel
| | | | - Ehud Melzer
- Department of Gastroentrology, Kaplan Medical Center, Rehovot 76100, Israel
| | - Rony Seger
- Department of Biological Regulation, The Weizmann Institute of Science, 234 Herzl Street, Rehovot 76100, Israel
| |
Collapse
|
24
|
Hu S, Zhang Y, Yu Y, Jin D, Zhang X, Gu S, Jia H, Chen X, Zhang Z, Jin Q, Ke Y, Liu H. Growth factor receptor bound protein 2-associated binder 2, a scaffolding adaptor protein, negatively regulates host immunity against tuberculosis. Am J Respir Cell Mol Biol 2014; 51:575-85. [PMID: 24805943 DOI: 10.1165/rcmb.2013-0329oc] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Cell-mediated immunity is indispensable for host protection against tuberculosis (TB). Growth factor receptor bound protein 2-associated binder (Gab) 2, a scaffolding adaptor protein, negatively regulates signaling pathways critical for T cell-mediated immunity. We sought to investigate the clinical significance and immunological role of Gab2 in Mycobacterium tuberculosis infection. We evaluated Gab2 protein and messenger RNA (mRNA) expression in human patients with pulmonary TB and determined the correlation of the mRNA expression pattern with antigen-specific IFN-γ secretion. Subsequently, we carried out M. tuberculosis infection in Gab2-deficient and wild-type control mice to explore the immunological role of Gab2 by examining bacterial load, histological changes, cytokine secretion, and gene expression of immune-associated transcription factors. mRNA levels of Gab2 and its correlated family member, Gab1, were markedly decreased in untreated patients with pulmonary TB compared with healthy control subjects. Importantly, this decreased Gab2 expression to normal levels after bacterial load in the patient's sputum became undetectable under the standard anti-TB treatment, which negatively correlated with the level of M. tuberculosis antigen-specific IFN-γ secretion. In the M. tuberculosis infection mouse model, infected Gab2-deficient mice exhibited decreased bacterial load and milder lung pathological damage compared with infected wild-type mice, accompanied by decreased production of IL-2, IL-6, and granulocyte/macrophage colony-stimulating factor proinflammatory cytokines, and an increased T-cell-specific T-box transcription factor/GATA binding protein 3 expression ratio. Overall, our study indicates that down-regulation of Gab2 relates to a protective function during M. tuberculosis infection, revealing a potential negative regulatory role for Gab2 in immunity to TB.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Animals
- Bacterial Load
- Case-Control Studies
- Disease Models, Animal
- GATA3 Transcription Factor/metabolism
- Host-Pathogen Interactions
- Humans
- Immunity, Cellular
- Inflammation Mediators/metabolism
- Lung/immunology
- Lung/metabolism
- Lung/pathology
- Lung/virology
- Mice
- Mice, Knockout
- Mycobacterium tuberculosis/immunology
- Mycobacterium tuberculosis/pathogenicity
- Phosphoproteins/deficiency
- Phosphoproteins/genetics
- Phosphoproteins/metabolism
- RNA, Messenger/metabolism
- TCF Transcription Factors/metabolism
- Time Factors
- Tuberculosis, Pulmonary/genetics
- Tuberculosis, Pulmonary/immunology
- Tuberculosis, Pulmonary/metabolism
- Tuberculosis, Pulmonary/pathology
- Tuberculosis, Pulmonary/prevention & control
- Tuberculosis, Pulmonary/virology
Collapse
Affiliation(s)
- Shizong Hu
- 1 Ministry of Health (MOH) Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Lee HS, Hwang CY, Shin SY, Kwon KS, Cho KH. MLK3 is part of a feedback mechanism that regulates different cellular responses to reactive oxygen species. Sci Signal 2014; 7:ra52. [PMID: 24894995 DOI: 10.1126/scisignal.2005260] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Reactive oxygen species (ROS) influence diverse cellular processes, including proliferation and apoptosis. Both endogenous and exogenous ROS activate signaling through mitogen-activated proteins kinase (MAPK) pathways, including those involving extracellular signal-regulated kinases (ERKs) or c-Jun N-terminal kinases (JNKs). Whereas low concentrations of ROS generally stimulate proliferation, high concentrations result in cell death. We found that low concentrations of ROS induced activating phosphorylation of ERKs, whereas high concentrations of ROS induced activating phosphorylation of JNKs. Mixed lineage kinase 3 (MLK3, also known as MAP3K11) directly phosphorylates JNKs and may control activation of ERKs. Mathematical modeling of MAPK networks revealed a positive feedback loop involving MLK3 that determined the relative phosphorylation of ERKs and JNKs by ROS. Cells exposed to an MLK3 inhibitor or cells in which MLK3 was knocked down showed increased activation of ERKs and decreased activation of JNKs and were resistant to cell death when exposed to high concentrations of ROS. Thus, the data indicated that MLK3 is a critical factor controlling the activity of kinase networks that control the cellular responses to different concentrations of ROS.
Collapse
Affiliation(s)
- Ho-Sung Lee
- Laboratory for Systems Biology and Bio-Inspired Engineering, Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Republic of Korea. Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Republic of Korea
| | - Chae Young Hwang
- Laboratory for Systems Biology and Bio-Inspired Engineering, Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Republic of Korea. Laboratory of Cell Signaling, Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea
| | - Sung-Young Shin
- Laboratory for Systems Biology and Bio-Inspired Engineering, Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Republic of Korea
| | - Ki-Sun Kwon
- Laboratory of Cell Signaling, Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea.
| | - Kwang-Hyun Cho
- Laboratory for Systems Biology and Bio-Inspired Engineering, Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Republic of Korea. Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Republic of Korea.
| |
Collapse
|
26
|
Sharma N, Everingham S, Ramdas B, Kapur R, Craig AWB. SHP2 phosphatase promotes mast cell chemotaxis toward stem cell factor via enhancing activation of the Lyn/Vav/Rac signaling axis. THE JOURNAL OF IMMUNOLOGY 2014; 192:4859-66. [PMID: 24733849 DOI: 10.4049/jimmunol.1301155] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
SHP2 protein-tyrosine phosphatase (encoded by Ptpn11) positively regulates KIT (CD117) signaling in mast cells and is required for mast cell survival and homeostasis in mice. In this study, we uncover a role of SHP2 in promoting chemotaxis of mast cells toward stem cell factor (SCF), the ligand for KIT receptor. Using an inducible SHP2 knockout (KO) bone marrow-derived mast cell (BMMC) model, we observed defects in SCF-induced cell spreading, polarization, and chemotaxis. To address the mechanisms involved, we tested whether SHP2 promotes activation of Lyn kinase that was previously shown to promote mast cell chemotaxis. In SHP2 KO BMMCs, SCF-induced phosphorylation of the inhibitory C-terminal residue (pY507) was elevated compared with control cells, and phosphorylation of activation loop (pY396) was diminished. Because Lyn also was detected by substrate trapping assays, these results are consistent with SHP2 activating Lyn directly by dephosphorylation of pY507. Further analyses revealed a SHP2- and Lyn-dependent pathway leading to phosphorylation of Vav1, Rac activation, and F-actin polymerization in SCF-treated BMMCs. Treatment of BMMCs with a SHP2 inhibitor also led to impaired chemotaxis, consistent with SHP2 promoting SCF-induced chemotaxis of mast cells via a phosphatase-dependent mechanism. Thus, SHP2 inhibitors may be useful to limit SCF/KIT-induced mast cell recruitment to inflamed tissues or the tumor microenvironment.
Collapse
Affiliation(s)
- Namit Sharma
- Division of Cancer Biology and Genetics, Department of Biomedical and Molecular Sciences, Queen's University, Queen's Cancer Research Institute, Kingston, Ontario K7L 3N6, Canada
| | | | | | | | | |
Collapse
|
27
|
Reber LL, Frossard N. Targeting mast cells in inflammatory diseases. Pharmacol Ther 2014; 142:416-35. [PMID: 24486828 DOI: 10.1016/j.pharmthera.2014.01.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 01/24/2014] [Indexed: 12/24/2022]
Abstract
Although mast cells have long been known to play a critical role in anaphylaxis and other allergic diseases, they also participate in some innate immune responses and may even have some protective functions. Data from the study of mast cell-deficient mice have facilitated our understanding of some of the molecular mechanisms driving mast cell functions during both innate and adaptive immune responses. This review presents an overview of the biology of mast cells and their potential involvement in various inflammatory diseases. We then discuss some of the current pharmacological approaches used to target mast cells and their products in several diseases associated with mast cell activation.
Collapse
Affiliation(s)
- Laurent L Reber
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.
| | - Nelly Frossard
- Laboratoire d'Innovation Thérapeutique, UMR 7200 CNRS-Université de Strasbourg, Faculté de Pharmacie, France
| |
Collapse
|
28
|
Saka K, Kawahara M, Nagamune T. Reconstitution of a cytokine receptor scaffold utilizing multiple different tyrosine motifs. Biotechnol Bioeng 2013; 110:3197-204. [DOI: 10.1002/bit.24973] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 05/20/2013] [Accepted: 06/03/2013] [Indexed: 12/23/2022]
Affiliation(s)
- Koichiro Saka
- Department of Chemistry and Biotechnology, School of Engineering; The University of Tokyo; 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Masahiro Kawahara
- Department of Chemistry and Biotechnology, School of Engineering; The University of Tokyo; 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Teruyuki Nagamune
- Department of Chemistry and Biotechnology, School of Engineering; The University of Tokyo; 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| |
Collapse
|
29
|
Gab docking proteins in cardiovascular disease, cancer, and inflammation. Int J Inflam 2013; 2013:141068. [PMID: 23431498 PMCID: PMC3566608 DOI: 10.1155/2013/141068] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 12/11/2012] [Indexed: 12/23/2022] Open
Abstract
The docking proteins of the Grb2-associated binder (Gab) family have emerged as crucial signaling compartments in metazoans. In mammals, the Gab proteins, consisting of Gab1, Gab2, and Gab3, are involved in the amplification and integration of signal transduction evoked by a variety of extracellular stimuli, including growth factors, cytokines, antigens, and other molecules. Gab proteins lack the enzymatic activity themselves; however, when phosphorylated on tyrosine residues, they provide binding sites for multiple Src homology-2 (SH2) domain-containing proteins, such as SH2-containing protein tyrosine phosphatase 2 (SHP2), phosphatidylinositol 3-kinase regulatory subunit p85, phospholipase Cγ, Crk, and GC-GAP. Through these interactions, the Gab proteins transduce signals from activated receptors into pathways with distinct biological functions, thereby contributing to signal diversification. They are known to play crucial roles in numerous physiological processes through their associations with SHP2 and p85. In addition, abnormal Gab protein signaling has been linked to human diseases including cancer, cardiovascular disease, and inflammatory disorders. In this paper, we provide an overview of the structure, effector functions, and regulation of the Gab docking proteins, with a special focus on their associations with cardiovascular disease, cancer, and inflammation.
Collapse
|
30
|
Lennartsson J, Rönnstrand L. Stem Cell Factor Receptor/c-Kit: From Basic Science to Clinical Implications. Physiol Rev 2012; 92:1619-49. [DOI: 10.1152/physrev.00046.2011] [Citation(s) in RCA: 485] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Stem cell factor (SCF) is a dimeric molecule that exerts its biological functions by binding to and activating the receptor tyrosine kinase c-Kit. Activation of c-Kit leads to its autophosphorylation and initiation of signal transduction. Signaling proteins are recruited to activated c-Kit by certain interaction domains (e.g., SH2 and PTB) that specifically bind to phosphorylated tyrosine residues in the intracellular region of c-Kit. Activation of c-Kit signaling has been found to mediate cell survival, migration, and proliferation depending on the cell type. Signaling from c-Kit is crucial for normal hematopoiesis, pigmentation, fertility, gut movement, and some aspects of the nervous system. Deregulated c-Kit kinase activity has been found in a number of pathological conditions, including cancer and allergy. The observation that gain-of-function mutations in c-Kit can promote tumor formation and progression has stimulated the development of therapeutics agents targeting this receptor, e.g., the clinically used inhibitor imatinib mesylate. Also other clinically used multiselective kinase inhibitors, for instance, sorafenib and sunitinib, have c-Kit included in their range of targets. Furthermore, loss-of-function mutations in c-Kit have been observed and shown to give rise to a condition called piebaldism. This review provides a summary of our current knowledge regarding structural and functional aspects of c-Kit signaling both under normal and pathological conditions, as well as advances in the development of low-molecular-weight molecules inhibiting c-Kit function.
Collapse
Affiliation(s)
- Johan Lennartsson
- Ludwig Institute for Cancer Research, Uppsala University, Uppsala, Sweden; and Experimental Clinical Chemistry, Wallenberg Laboratory, Department of Laboratory Medicine, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Lars Rönnstrand
- Ludwig Institute for Cancer Research, Uppsala University, Uppsala, Sweden; and Experimental Clinical Chemistry, Wallenberg Laboratory, Department of Laboratory Medicine, Lund University, Skåne University Hospital, Malmö, Sweden
| |
Collapse
|
31
|
Detection of a rare BCR-ABL tyrosine kinase fusion protein in H929 multiple myeloma cells using immunoprecipitation (IP)-tandem mass spectrometry (MS/MS). Proc Natl Acad Sci U S A 2012; 109:16190-5. [PMID: 22988110 DOI: 10.1073/pnas.1212759109] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Hypothesis directed proteomics offers higher throughput over global analyses. We show that immunoprecipitation (IP)-tandem mass spectrometry (LC-MS/MS) in H929 multiple myeloma (MM) cancer cells led to the discovery of a rare and unexpected BCR-ABL fusion, informing a therapeutic intervention using imatinib (Gleevec). BCR-ABL is the driving mutation in chronic myeloid leukemia (CML) and is uncommon to other cancers. Three different IP-MS experiments central to cell signaling pathways were sufficient to discover a BCR-ABL fusion in H929 cells: phosphotyrosine (pY) peptide IP, p85 regulatory subunit of phosphoinositide-3-kinase (PI3K) IP, and the GRB2 adaptor IP. The pY peptides inform tyrosine kinase activity, p85 IP informs the activating adaptors and receptor tyrosine kinases (RTKs) involved in AKT activation and GRB2 IP identifies RTKs and adaptors leading to ERK activation. Integration of the bait-prey data from the three separate experiments identified the BCR-ABL protein complex, which was confirmed by biochemistry, cytogenetic methods, and DNA sequencing revealed the e14a2 fusion transcript. The tyrosine phosphatase SHP2 and the GAB2 adaptor protein, important for MAPK signaling, were common to all three IP-MS experiments. The comparative treatment of tyrosine kinase inhibitor (TKI) drugs revealed only imatinib, the standard of care in CML, was inhibitory to BCR-ABL leading to down-regulation of pERK and pS6K and inhibiting cell proliferation. These data suggest a model for directed proteomics from patient tumor samples for selecting the appropriate TKI drug(s) based on IP and LC-MS/MS. The data also suggest that MM patients, in addition to CML patients, may benefit from BCR-ABL diagnostic screening.
Collapse
|
32
|
Fang X, Lang Y, Wang Y, Mo W, Wei H, Xie J, Yu M. Shp2 activates Fyn and Ras to regulate RBL-2H3 mast cell activation following FcεRI aggregation. PLoS One 2012; 7:e40566. [PMID: 22802969 PMCID: PMC3393662 DOI: 10.1371/journal.pone.0040566] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 06/09/2012] [Indexed: 11/18/2022] Open
Abstract
The protein-tyrosine phosphatase (PTP) Shp2 has been implicated in many immunoreceptor signaling pathways, but its role in immunoreceptor FcεRI signaling, which leads to the activation of mast cells and blood basophils, is still largely undefined. Using Shp2 knockdown RBL-2H3 (RBL) mast cells, we here reported that Shp2 is required for the activation of RBL cells induced by FcεRI. FcεRΙ-evoked degranulation, calcium mobilization, and synthesis of cytokine transcripts (IL-1β, IL-10, and monocyte chemoattractant protein 1 (MCP-1)) were reduced in Shp2 knockdown RBL cells. Signaling regulatory mechanism investigation using immunoblotting, immunoprecipitation, and GST pull-down assay reveals that the down-regulation of Shp2 expression in RBL cells leads to decreased activities of Fyn, PLCγ, JNK, p38MAPK, and Ras/Erk1/2 after FcεRΙ aggregation. Further studies suggest that Paxillin phosphoryaltion was also impaired, but PAG phosphorylation was normal after FcεRΙ stimulation as a consequence of the inhibition of Shp2 expression in RBL cells. Collectively, our data strongly indicate that Shp2 is essential for the activation of RBL cells in response to FcεRΙ aggregation. Shp2 regulates this process through Fyn and Ras with no involvement of PAG. In addition, we identify Paxillin as an indirect substrate of Shp2 in FcεRΙ-initiated signaling of RBL cells.
Collapse
Affiliation(s)
- Xiaoyun Fang
- The Key Laboratory of Molecular Medicine, Ministry of Education, Shanghai Medical College, Fudan University, Shanghai, People’s Republic of China
- Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai, People’s Republic of China
| | - Yongjiang Lang
- The Key Laboratory of Molecular Medicine, Ministry of Education, Shanghai Medical College, Fudan University, Shanghai, People’s Republic of China
- Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai, People’s Republic of China
| | - Yuxiong Wang
- The Key Laboratory of Molecular Medicine, Ministry of Education, Shanghai Medical College, Fudan University, Shanghai, People’s Republic of China
- Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai, People’s Republic of China
| | - Wei Mo
- The Key Laboratory of Molecular Medicine, Ministry of Education, Shanghai Medical College, Fudan University, Shanghai, People’s Republic of China
- Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai, People’s Republic of China
| | - Huanhuan Wei
- The Key Laboratory of Molecular Medicine, Ministry of Education, Shanghai Medical College, Fudan University, Shanghai, People’s Republic of China
- Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai, People’s Republic of China
| | - Jianhui Xie
- Gene Research Center, Shanghai Medical College, Fudan University, Shanghai, People’s Republic of China
- Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai, People’s Republic of China
| | - Min Yu
- The Key Laboratory of Molecular Medicine, Ministry of Education, Shanghai Medical College, Fudan University, Shanghai, People’s Republic of China
- Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai, People’s Republic of China
| |
Collapse
|
33
|
Sharma N, Kumar V, Everingham S, Mali RS, Kapur R, Zeng LF, Zhang ZY, Feng GS, Hartmann K, Roers A, Craig AWB. SH2 domain-containing phosphatase 2 is a critical regulator of connective tissue mast cell survival and homeostasis in mice. Mol Cell Biol 2012; 32:2653-63. [PMID: 22566685 PMCID: PMC3416204 DOI: 10.1128/mcb.00308-12] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 04/28/2012] [Indexed: 12/28/2022] Open
Abstract
Mast cells require KIT receptor tyrosine kinase signaling for development and survival. Here, we report that SH2 domain-containing phosphatase 2 (SHP2) signaling downstream of KIT is essential for mast cell survival and homeostasis in mice. Using a novel mouse model with shp2 deletion within mature mast cells (MC-shp2 knockout [KO]), we find that SHP2 is required for the homeostasis of connective tissue mast cells. Consistently with the loss of skin mast cells, MC-shp2 KO mice fail to mount a passive late-phase cutaneous anaphylaxis response. To better define the phenotype of shp2-deficient mast cells, we used an inducible shp2 knockout approach in bone marrow-derived mast cells (BMMCs) or cultured peritoneal mast cells and found that SHP2 promotes mast cell survival. We show that SHP2 promotes KIT signaling to extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase and downregulation of the proapoptotic protein Bim in BMMCs. Also, SHP2-deficient BMMCs failed to repopulate mast cells in mast cell-deficient mice. Silencing of Bim partially rescued survival defects in shp2-deficient BMMCs, consistent with the importance of a KIT → SHP2 → Ras/ERK pathway in suppressing Bim and promoting mast cell survival. Thus, SHP2 is a key node in a mast cell survival pathway and a new potential therapeutic target in diseases involving mast cells.
Collapse
Affiliation(s)
- Namit Sharma
- Department of Biomedical and Molecular Sciences, Division of Cancer Biology & Genetics, Queen's University, Kingston, Ontario, Canada
| | - Vijay Kumar
- Department of Biomedical and Molecular Sciences, Division of Cancer Biology & Genetics, Queen's University, Kingston, Ontario, Canada
| | - Stephanie Everingham
- Department of Biomedical and Molecular Sciences, Division of Cancer Biology & Genetics, Queen's University, Kingston, Ontario, Canada
| | - Raghuveer Singh Mali
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indianapolis, Indiana, USA
| | - Reuben Kapur
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indianapolis, Indiana, USA
| | - Li-Fan Zeng
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Bloomington, Indiana, USA
| | - Zhong-Yin Zhang
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Bloomington, Indiana, USA
| | - Gen-Sheng Feng
- Department of Pathology, University of California, San Diego, La Jolla, California, USA
| | - Karin Hartmann
- Department of Dermatology, University of Cologne, Cologne, Germany
| | - Axel Roers
- Institute for Immunology, Technical University of Dresden, Dresden, Germany
| | - Andrew W. B. Craig
- Department of Biomedical and Molecular Sciences, Division of Cancer Biology & Genetics, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
34
|
Gab adapter proteins as therapeutic targets for hematologic disease. Adv Hematol 2011; 2012:380635. [PMID: 22216034 PMCID: PMC3246295 DOI: 10.1155/2012/380635] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 08/30/2011] [Accepted: 09/06/2011] [Indexed: 12/19/2022] Open
Abstract
The Grb-2 associated binder (Gab) family of scaffolding/adaptor/docking proteins is a group of three molecules with significant roles in cytokine receptor signaling. Gabs possess structural motifs for phosphorylation-dependent receptor recruitment, Grb2 binding, and activation of downstream signaling pathways through p85 and SHP-2. In addition, Gabs participate in hematopoiesis and regulation of immune response which can be aberrantly activated in cancer and inflammation. The multifunctionality of Gab adapters might suggest that they would be too difficult to consider as candidates for “targeted” therapy. However, the one drug/one target approach is giving way to the concept of one drug/multiple target approach since few cancers are addicted to a single signaling molecule for survival and combination drug therapies can be problematic. In this paper, we cover recent findings on Gab multi-functionality, binding partners, and their role in hematological malignancy and examine the concept of Gab-targeted therapy.
Collapse
|
35
|
Nasrazadani A, Van Den Berg CL. c-Jun N-terminal Kinase 2 Regulates Multiple Receptor Tyrosine Kinase Pathways in Mouse Mammary Tumor Growth and Metastasis. Genes Cancer 2011; 2:31-45. [PMID: 21779479 DOI: 10.1177/1947601911400901] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Revised: 01/10/2011] [Accepted: 01/22/2011] [Indexed: 12/17/2022] Open
Abstract
c-Jun N-terminal kinase 2 (JNK2) isoforms are transcribed from the jnk2 gene and are highly homologous with jnk1 and jnk3 transcriptional products. JNK proteins mediate cell proliferation, stress response, and migration when activated by a variety of stimuli, including receptor tyrosine kinases (RTKs), but their ability to influence tumor metastasis is ill defined. To evaluate JNK2 in this manner, we used the highly metastatic 4T1.2 mammary tumor cells. Short hairpin RNA expression directed toward JNK2 (shJNK2) decreases tumor cell invasion. In vivo, shJNK2 expression slows tumor growth and inhibits lung metastasis. Subsequent analysis of tumors showed that shJNK2 tumors express lower GRB2-associated binding protein 2 (GAB2). In vitro, knockdown of JNK2 or GAB2 inhibits Akt activation by hepatocyte growth factor (HGF), insulin, and heregulin-1, while phosphorylation of ERK is constitutive and Src dependent. Knockdown of GAB2 phenocopies knockdown of JNK2 in vivo by reducing tumor growth and metastasis, supporting that JNK2 mediates tumor progression by regulating GAB2. The influence of jnk2 in the host or microenvironment was also evaluated using syngeneic jnk2-/- and jnk2+/+ mice. Jnk2-/- mice experience longer survival and less bone and lung metastasis compared to jnk2+/+ mice after intracardiac injection of 4T1.2 cells. GAB2 has previously been shown to mediate osteoclast differentiation, and osteoclasts are critical mediators of tumor-related osteolysis. Thus, studies focusing on the role of JNK2 on osteoclast differentiation were undertaken. ShJNK2 expression impairs osteoclast differentiation, independently of GAB2. Further, shJNK2 4T1.2 cells express less RANKL, a stimulant of osteoclast differentiation. Together, our data support that JNK2 conveys Src/phosphotidylinositol 3-kinase (PI3K) signals important for tumor growth and metastasis by enhancing GAB2 expression. In osteoclast progenitor cells, JNK2 promotes differentiation, which may contribute to the progression of bone metastasis. These studies identify JNK2 as a tumor and host target to inhibit breast cancer growth and metastasis.
Collapse
Affiliation(s)
- Azadeh Nasrazadani
- Division of Pharmacology/Toxicology, Center for Molecular and Cellular Toxicology, and Drug Dynamics Institute, College of Pharmacy, and Dell Pediatric Research Institute, University of Texas at Austin, Austin, TX, USA
| | | |
Collapse
|
36
|
Rådinger M, Smrž D, Metcalfe DD, Gilfillan AM. Glycogen synthase kinase-3β is a prosurvival signal for the maintenance of human mast cell homeostasis. THE JOURNAL OF IMMUNOLOGY 2011; 187:5587-95. [PMID: 22039301 DOI: 10.4049/jimmunol.1101257] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Homeostasis of mature tissue-resident mast cells is dependent on the relative activation of pro- and antiapoptotic regulators. In this study, we investigated the role of glycogen synthase kinase 3β (GSK3β) in the survival of neoplastic and nonneoplastic human mast cells. GSK3β was observed to be phosphorylated at the Y(216) activating residue under resting conditions in both the neoplastic HMC1.2 cell line and in peripheral blood-derived primary human mast cells (HuMCs), suggesting constitutive activation of GSK3β in these cells. Lentiviral-transduced short hairpin RNA knockdown of GSK3β in both the HMC1.2 cells and HuMCs resulted in a significant reduction in cell survival as determined with the MTT assay. The decrease in stem cell factor (SCF)-mediated survival in the GSK3β knockdown HuMCs was reflected by enhancement of SCF withdrawal-induced apoptosis, as determined by Annexin V staining and caspase cleavage, and this was associated with a pronounced reduction in SCF-mediated phosphorylation of Src homology 2 domain-containing phosphatase 2 and ERK1/2 and reduced expression of the antiapoptotic proteins Bcl-xl and Bcl-2. These data show that GSK3β is an essential antiapoptotic factor in both neopastic and nontransformed primary human mast cells through the regulation of SCF-mediated Src homology 2 domain-containing phosphatase 2 and ERK activation. Our data suggest that targeting of GSK3β with small m.w. inhibitors such as CHIR 99021 may thus provide a mechanism for limiting mast cell survival and subsequently decreasing the intensity of the allergic inflammatory response.
Collapse
Affiliation(s)
- Madeleine Rådinger
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-1881, USA
| | | | | | | |
Collapse
|
37
|
Gab2 promotes colony-stimulating factor 1-regulated macrophage expansion via alternate effectors at different stages of development. Mol Cell Biol 2011; 31:4563-81. [PMID: 21930791 DOI: 10.1128/mcb.05706-11] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Colony-stimulating factor 1 (CSF-1) receptor (CSF-1R, or macrophage CSF receptor [M-CSFR]) is the primary regulator of the proliferation, survival, and differentiation of mononuclear phagocytes (MNPs), but the critical CSF-1 signals for these functions are unclear. The scaffold protein Gab2 is a major tyrosyl phosphoprotein in the CSF-1R signaling network. Here we demonstrate that Gab2 deficiency results in profoundly defective expansion of CSF-1R-dependent MNP progenitors in the bone marrow, through decreased proliferation and survival. Reconstitution and phospho-flow studies show that downstream of CSF-1R, Gab2 uses phosphatidylinositol 3-kinase (PI3K)-Akt and extracellular signal-regulated kinase (Erk) to regulate MNP progenitor expansion. Unexpectedly, Gab2 ablation enhances Jun N-terminal protein kinase 1 (JNK1) phosphorylation in differentiated MNPs but reduces their proliferation; inhibition of JNK signaling or reduction of JNK1 levels restores proliferation. MNP recruitment to inflammatory sites and the corresponding bone marrow response is strongly impaired in Gab2-deficient mice. Our data provide genetic and biochemical evidence that CSF-1R, through Gab2, utilizes different effectors at different stages of MNP development to promote their expansion.
Collapse
|
38
|
c-Kit is required for growth and survival of the cells of origin of Brca1-mutation-associated breast cancer. Oncogene 2011; 31:869-83. [PMID: 21765473 DOI: 10.1038/onc.2011.289] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BRCA1 mutation-associated breast cancer originates in oestrogen receptor-alpha-negative (ER(-)) progenitors in the mammary luminal epithelium. These cells also express high levels of the Kit gene and a recent study demonstrated a correlation between Brca1 loss and Kit over-expression in the mammary epithelium. However, the functional significance of c-Kit expression in the mammary gland is unknown. To address this, c-Kit(-) and c-Kit(+) mammary epithelial subsets were isolated by flow cytometry, characterised for expression of lineage-specific cell markers and functionally analysed by in vitro colony forming and in vivo transplantation assays. The results confirm that the majority of luminal ER(-) progenitors are c-Kit(+), but also that most stem cells and the differentiated cell populations are c-Kit(-). A subset of c-Kit(+) cells with high proliferative potential was found in the luminal ER(+) population, however, suggesting the existence of a distinct luminal ER(+) progenitor cell type. Analysis of mouse Brca1 mammary tumours demonstrated that they expressed Kit and its downstream effector Lyn at levels comparable to the most strongly c-Kit(+) luminal ER(-) progenitors. Consistent with c-Kit being a progenitor cell marker, in vitro three-dimensional differentiation of c-Kit(+) cells resulted in a loss of c-Kit expression, whereas c-Kit over-expression prevented normal differentiation in vivo. Furthermore, c-Kit was a functional marker of proliferative potential, as c-Kit inhibition by short hairpin knockdown prevented normal epithelial growth and caused cells to undergo apoptosis. Therefore, c-Kit defines distinct progenitor populations in the mammary epithelium and is critical for mammary progenitor survival and proliferation. Importantly, c-Kit is only the second mammary epithelial stem/progenitor marker to be shown to have a functional role in the mammary epithelium and the first marker to be shown to be required for progenitor cell function. The c-Kit signalling network has potential as a target for therapy and/or prevention in BRCA1-associated breast cancer.
Collapse
|
39
|
Nishida K, Yamasaki S, Hasegawa A, Iwamatsu A, Koseki H, Hirano T. Gab2, via PI-3K, Regulates ARF1 in FcεRI-Mediated Granule Translocation and Mast Cell Degranulation. THE JOURNAL OF IMMUNOLOGY 2011; 187:932-41. [DOI: 10.4049/jimmunol.1100360] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
40
|
Darian E, Guvench O, Yu B, Qu CK, MacKerell AD. Structural mechanism associated with domain opening in gain-of-function mutations in SHP2 phosphatase. Proteins 2011; 79:1573-88. [PMID: 21365683 DOI: 10.1002/prot.22984] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 12/01/2010] [Accepted: 12/14/2010] [Indexed: 01/29/2023]
Abstract
The SHP2 phosphatase plays a central role in a number of signaling pathways were it dephosphorylates various substrate proteins. Regulation of SHP2 activity is, in part, achieved by an intramolecular interaction between the PTP domain of the protein, which contains the catalytic site, and the N-SH2 domain leading to a "closed" protein conformation and autoinhibition. Accordingly, "opening" of the N-SH2 and PTP domains is required for the protein to become active. Binding of phosphopeptides to the N-SH2 domain is known to induce the opening event, while a number of gain-of-function (GOF) mutants, implicated in Noonan's Syndrome and childhood leukemias, are thought to facilitate opening. In the present study, a combination of computational and experimental methods are used to investigate the structural mechanism of opening of SHP2 and the impact of three GOF mutants, D61G, E76K, and N308D, on the opening mechanism. Calculated free energies of opening indicate that opening must be facilitated by effector molecules, possibly the protein substrates themselves, as the calculated free energies preclude spontaneous opening. Simulations of both wild type (WT) SHP2 and GOF mutants in the closed state indicate GOF activity to involve increased solvent exposure of selected residues, most notably Arg362, which in turn may enhance interactions of SHP2 with its substrate proteins and thereby aid opening. In addition, GOF mutations cause structural changes in the phosphopeptide-binding region of the N-SH2 domain leading to conformations that mimic the bound state. Such conformational changes are suggested to enhance binding of phosphopeptides and/or decrease interactions between the PTP and N-SH2 domains thereby facilitating opening. Experimental assays of the impact of effector molecules on SHP2 phosphatase activity against both small molecule and peptide substrates support the hypothesized mechanism of GOF mutant action. The present calculations also suggest a role for the C-SH2 domain of SHP2 in stabilizing the overall conformation of the protein in the open state, thereby aiding conformational switching between the open active and closed inactive states.
Collapse
Affiliation(s)
- Eva Darian
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, USA
| | | | | | | | | |
Collapse
|
41
|
Herrera Abreu MT, Hughes WE, Mele K, Lyons RJ, Rickwood D, Browne BC, Bennett HL, Vallotton P, Brummer T, Daly RJ. Gab2 regulates cytoskeletal organization and migration of mammary epithelial cells by modulating RhoA activation. Mol Biol Cell 2010; 22:105-16. [PMID: 21118992 PMCID: PMC3016968 DOI: 10.1091/mbc.e10-03-0185] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The oncogenic signal transducer Gab2 mediates altered cytoskeletal organization and enhanced cell migration of mammary epithelial cells via down-regulation of RhoA activity. This sheds new light on the role of Gab2 in cancer cell metastasis. The docking protein Gab2 is overexpressed in several human malignancies, including breast cancer, and is associated with increased metastatic potential. Here we report that Gab2 overexpression in MCF-10A mammary epithelial cells led to delayed cell spreading, a decrease in stress fibers and mature focal adhesions, and enhanced cell migration. Expression of a Gab2 mutant uncoupled from 14-3-3-mediated negative feedback (Gab22×A) led to a more mesenchymal morphology and acquisition of invasive potential. Expression of either Gab2 or Gab22×A led to decreased activation of RhoA, but only the latter increased levels of Rac-GTP. Expression of constitutively active RhoA in MCF-10A/Gab2 cells restored stress fibers and focal adhesions, indicating that Gab2 signals upstream of RhoA to suppress these structures. Mutation of the two Shp2-binding sites to phenylalanine (Gab2ΔShp2) markedly reduced the effects of Gab2 on cellular phenotype and RhoA activation. Expression of Gab2 or Gab22×A, but not Gab2ΔShp2, promoted Vav2 phosphorylation and plasma membrane recruitment of p190A RhoGAP. Knockdown of p190A RhoGAP reversed Gab2-mediated effects on stress fibers and focal adhesions. The identification of a novel pathway downstream of Gab2 involving negative regulation of RhoA by p190A RhoGAP sheds new light on the role of Gab2 in cancer progression.
Collapse
Affiliation(s)
- Maria Teresa Herrera Abreu
- Cancer Research Program and Phospholipid Biology Group, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Yang Y, Jiang B, Huo Y, Primo L, Dahl JS, Benjamin TL, Luo J. Shp2 suppresses PyMT-induced transformation in mouse fibroblasts by inhibiting Stat3 activity. Virology 2010; 409:204-10. [PMID: 21056449 DOI: 10.1016/j.virol.2010.09.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 07/28/2010] [Accepted: 09/29/2010] [Indexed: 12/30/2022]
Abstract
We have examined the effect of expression of the protein tyrosine phosphatase Shp2 on transformation by the mouse polyoma virus middle T antigen (PyMT). Gain-of-function mutations in Shp2 indicate that it may serve as an oncogene in several types of human leukemia. Paradoxically, however, some catalytically dominant-negative mutations of Shp2 have also been identified in leukemia and neuroblastomas. In this study, we show that Shp2 suppresses transformation induced by PyMT, the major polyoma viral oncoprotein known to act through binding and activation of pp60(c-src). Over-expression of a catalytically inactive Shp2 mutant in NIH3T3 cells significantly enhanced PyMT-induced transformation. Conversely, re-introduction of Shp2 into Shp2-deficient cells strongly inhibited PyMT-induced transformation and tumorigenesis. Short hairpin RNA (shRNA)-mediated Shp2 knockdown potentiated PyMT-induced transformation. Finally, we present evidence that the transformation-suppressive effects of Shp2 are mediated at least partially through the inhibition of signal transducers and activators of transcription 3.
Collapse
Affiliation(s)
- Ying Yang
- Laboratory of Vascular Biology, Institute of Molecular Medicine, Peking University, Beijing 100871, China.
| | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Docking proteins comprise a distinct category of intracellular, noncatalytic signalling protein, that function downstream of a variety of receptor and receptor-associated tyrosine kinases and regulate diverse physiological and pathological processes. The growth factor receptor bound 2-associated binder/Daughter of Sevenless, insulin receptor substrate, fibroblast growth factor receptor substrate 2 and downstream of tyrosine kinases protein families fall into this category. This minireview focuses on the structure, function and regulation of these proteins.
Collapse
Affiliation(s)
- Tilman Brummer
- Centre for Biological Systems Analysis (ZBSA), Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | | | | |
Collapse
|
44
|
Li G, Wang Z, Miskimen KL, Zhang Y, Tse W, Bunting KD. Gab2 promotes hematopoietic stem cell maintenance and self-renewal synergistically with STAT5. PLoS One 2010; 5:e9152. [PMID: 20161778 PMCID: PMC2818849 DOI: 10.1371/journal.pone.0009152] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Accepted: 01/19/2010] [Indexed: 12/22/2022] Open
Abstract
Background Grb2-associated binding (Gab) adapter proteins play major roles in coordinating signaling downstream of hematopoietic cytokine receptors. In hematopoietic cells, Gab2 can modulate phosphatidylinositol–3 kinase and mitogen associated protein kinase activities and regulate the long-term multilineage competitive repopulating activity of hematopoietic stem cells (HSCs). Gab2 may also act in a linear pathway upstream or downstream of signal transducer and activator of transcription-5 (STAT5), a major positive regulator of HSC function. Therefore, we aimed to determine whether Gab2 and STAT5 function in hematopoiesis in a redundant or non-redundant manner. Methodology/Principal Findings To do this we generated Gab2 mutant mice with heterozygous and homozygous deletions of STAT5. In heterozygous STAT5 mutant mice, deficiencies in HSC/multipotent progenitors were reflected by decreased long-term repopulating activity. This reduction in repopulation function was mirrored in the reduced growth response to early-acting cytokines from sorted double mutant c-Kit+Lin−Sca-1+ (KLS) cells. Importantly, in non-ablated newborn mice, the host steady-state engraftment ability was impaired by loss of Gab2 in heterozygous STAT5 mutant background. Fetal liver cells isolated from homozygous STAT5 mutant mice lacking Gab2 showed significant reduction in HSC number (KLS CD150+CD48−), reduced HSC survival, and dramatic loss of self-renewal potential as measured by serial transplantation. Conclusions/Significance These data demonstrate new functions for Gab2 in hematopoiesis in a manner that is non-redundant with STAT5. Furthermore, important synergy between STAT5 and Gab2 was observed in HSC self-renewal, which might be exploited to optimize stem cell-based therapeutics.
Collapse
Affiliation(s)
- Geqiang Li
- Division of Hematology-Oncology, Department of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | | | | | | | | | | |
Collapse
|
45
|
The GAB2 signaling scaffold promotes anchorage independence and drives a transcriptional response associated with metastatic progression of breast cancer. Oncogene 2009; 28:4444-55. [PMID: 19838208 DOI: 10.1038/onc.2009.296] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Acquisition of independence from anchorage to the extracellular matrix is a critical event for onset and progression of solid cancers. To identify and characterize new genes conferring anchorage independence, we transduced MCF10A human normal breast cells with a retroviral cDNA expression library and selected them by growth in suspension. Microarray analysis targeted on library-derived transcripts revealed robust and reproducible enrichment, after selection, of cDNAs encoding the scaffolding adaptor Gab2. Gab2 was confirmed to strongly promote anchorage-independent growth when overexpressed. Interestingly, downregulation by RNA interference of endogenous Gab2 in neoplastic cells did not affect their adherent growth, but abrogated their growth in soft agar. Gab2-driven anchorage independence was found to specifically involve activation of the Src-Stat3 signaling axis. A transcriptional 'signature' of 205 genes was obtained from GAB2-transduced, anchorage-independent MCF10A cells, and found to contain two main functional modules, controlling proliferation and cell adhesion/migration/invasion, respectively. Extensive validation on breast cancer data sets showed that the GAB2 signature provides a robust prognostic classifier for breast cancer metastatic relapse, largely independent from existing clinical and genomic indicators and from estrogen receptor status. This work highlights a pivotal role for GAB2 and its transcriptional targets in anchorage-independent growth and breast cancer metastatic progression.
Collapse
|
46
|
McPherson VA, Sharma N, Everingham S, Smith J, Zhu HH, Feng GS, Craig AWB. SH2 domain-containing phosphatase-2 protein-tyrosine phosphatase promotes Fc epsilon RI-induced activation of Fyn and Erk pathways leading to TNF alpha release from bone marrow-derived mast cells. THE JOURNAL OF IMMUNOLOGY 2009; 183:4940-7. [PMID: 19786542 DOI: 10.4049/jimmunol.0900702] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Clustering of the high affinity IgE receptor (Fc(epsilon)RI) in mast cells leads to degranulation and production of numerous cytokines and lipid mediators that promote allergic inflammation. Initiation of FFc(epsilon)RI signaling involves rapid tyrosine phosphorylation of Fc(epsilon)RI and membrane-localized adaptor proteins that recruit additional SH2 domain-containing proteins that dynamically regulate downstream signaling. SH2 domain-containing phosphatase-2 (SHP2) is a protein-tyrosine phosphatase implicated in Fc(epsilon)RI signaling, but whose function is not well defined. In this study, using a mouse model allowing temporal shp2 inactivation in bone marrow-derived mast cells (BMMCs), we provide insights into SHP2 functions in the Fc(epsilon)RI pathway. Although no overt defects in Fc(epsilon)RI-induced tyrosine phosphorylation were observed in SHP2 knock-out (KO) BMMCs, several proteins including Lyn and Syk kinases displayed extended phosphorylation kinetics compared with wild-type BMMCs. SHP2 was dispensable for Fc(epsilon)RI-induced degranulation of BMMCs, but was required for maximal activation of Erk and Jnk mitogen-activated protein kinases. SHP2 KO BMMCs displayed several phenotypes associated with reduced Fyn activity, including elevated phosphorylation of the inhibitory pY531 site in Fyn, impaired signaling to Grb2-associated binder 2, Akt/PKB, and IkappaB kinase, and decreased TNF-alpha release compared with control cells. This is likely due to elevated Lyn activity in SHP2 KO BMMCs, and the ability of Lyn to antagonize Fyn activity. Overall, our study identifies SHP2 as a positive effector of Fc(epsilon)RI-induced activation of Fyn/Grb2-associated binder 2/Akt and Ras/Erk pathways leading to TNF-alpha release from mast cells.
Collapse
Affiliation(s)
- Victor A McPherson
- Department of Biochemistry, Queen's University, Kingston, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
47
|
Wöhrle FU, Daly RJ, Brummer T. Function, regulation and pathological roles of the Gab/DOS docking proteins. Cell Commun Signal 2009; 7:22. [PMID: 19737390 PMCID: PMC2747914 DOI: 10.1186/1478-811x-7-22] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Accepted: 09/08/2009] [Indexed: 01/13/2023] Open
Abstract
Since their discovery a little more than a decade ago, the docking proteins of the Gab/DOS family have emerged as important signalling elements in metazoans. Gab/DOS proteins integrate and amplify signals from a wide variety of sources including growth factor, cytokine and antigen receptors as well as cell adhesion molecules. They also contribute to signal diversification by channelling the information from activated receptors into signalling pathways with distinct biological functions. Recent approaches in protein biochemistry and systems biology have revealed that Gab proteins are subject to complex regulation by feed-forward and feedback phosphorylation events as well as protein-protein interactions. Thus, Gab/DOS docking proteins are at the centre of entire signalling subsystems and fulfil an important if not essential role in many physiological processes. Furthermore, aberrant signalling by Gab proteins has been increasingly linked to human diseases from various forms of neoplasia to Alzheimer's disease. In this review, we provide a detailed overview of the structure, effector functions, regulation and evolution of the Gab/DOS family. We also summarize recent findings implicating Gab proteins, in particular the Gab2 isoform, in leukaemia, solid tumours and other human diseases.
Collapse
Affiliation(s)
- Franziska U Wöhrle
- Centre for Biological Systems Analysis (ZBSA), Albert-Ludwigs-University of Freiburg, Germany.
| | | | | |
Collapse
|
48
|
Masson K, Rönnstrand L. Oncogenic signaling from the hematopoietic growth factor receptors c-Kit and Flt3. Cell Signal 2009; 21:1717-26. [PMID: 19540337 DOI: 10.1016/j.cellsig.2009.06.002] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Revised: 06/04/2009] [Accepted: 06/09/2009] [Indexed: 01/01/2023]
Abstract
Signal transduction in response to growth factors is a strictly controlled process with networks of feedback systems, highly selective interactions and finely tuned on-and-off switches. In the context of cancer, detailed signaling studies have resulted in the development of some of the most frequently used means of therapy, with several well established examples such as the small molecule inhibitors imatinib and dasatinib in the treatment of chronic myeloid leukemia. Impaired function of receptor tyrosine kinases is implicated in various types of tumors, and much effort is put into mapping the many interactions and downstream pathways. Here we discuss the hematopoietic growth factor receptors c-Kit and Flt3 and their downstream signaling in normal as well as malignant cells. Both receptors are members of the same family of tyrosine kinases and crucial mediators of stem-and progenitor-cell proliferation and survival in response to ligand stimuli from the surrounding microenvironment. Gain-of-function mutations/alterations render the receptors constitutively and ligand-independently activated, resulting in aberrant signaling which is a crucial driving force in tumorigenesis. Frequently found mutations in c-Kit and Flt3 are point mutations of aspartic acid 816 and 835 respectively, in the activation loop of the kinase domains. Several other point mutations have been identified, but in the case of Flt3, the most common alterations are internal tandem duplications (ITDs) in the juxtamembrane region, reported in approximately 30% of patients with acute myeloid leukemia (AML). During the last couple of years, the increasing understanding of c-Kit and Flt3 signaling has also revealed the complexity of these receptor systems. The impact of gain-of-function mutations of c-Kit and Flt3 in different malignancies is well established and shown to be of clinical relevance in both prognosis and therapy. Many inhibitors of both c-Kit or Flt3 or of their downstream substrates are in clinical trials with encouraging results, and targeted therapy using a combination of such inhibitors is considered a promising approach for future treatments.
Collapse
Affiliation(s)
- Kristina Masson
- Experimental Clinical Chemistry, Wallenberg Laboratory, Department of Laboratory Medicine, Malmö University Hospital, Lund University, 20502 Malmö, Sweden
| | | |
Collapse
|
49
|
Phosphorylation-dependent binding of 14-3-3 terminates signalling by the Gab2 docking protein. EMBO J 2009; 27:2305-16. [PMID: 19172738 DOI: 10.1038/emboj.2008.159] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Grb2-associated binder (Gab)2 functions downstream of a variety of receptor and cytoplasmic tyrosine kinases as a docking platform for specific signal transducers and performs important functions in both normal physiology and oncogenesis. Gab2 signalling is promoted by its association with specific receptors through the adaptor Grb2. However, the molecular mechanisms that attenuate Gab2 signals have remained unclear. We now demonstrate that growth factor-induced phosphorylation of Gab2 on two residues, S210 and T391, leads to recruitment of 14-3-3 proteins. Together, these events mediate negative-feedback regulation, as Gab2(S210A/T391A) exhibits sustained receptor association and signalling and promotes cell proliferation and transformation. Importantly, introduction of constitutive 14-3-3-binding sites into Gab2 renders it refractory to receptor activation, demonstrating that site-selective binding of 14-3-3 proteins is sufficient to terminate Gab2 signalling. Furthermore, this is associated with reduced binding of Grb2. This leads to a model where signal attenuation occurs because 14-3-3 promotes dissociation of Gab2 from Grb2, and thereby uncouples Gab2 from the receptor complex. This represents a novel regulatory mechanism with implications for diverse tyrosine kinase signalling systems.
Collapse
|
50
|
Agosti V, Karur V, Sathyanarayana P, Besmer P, Wojchowski DM. A KIT juxtamembrane PY567 -directed pathway provides nonredundant signals for erythroid progenitor cell development and stress erythropoiesis. Exp Hematol 2008; 37:159-71. [PMID: 19100679 DOI: 10.1016/j.exphem.2008.10.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2008] [Revised: 10/06/2008] [Accepted: 10/14/2008] [Indexed: 10/21/2022]
Abstract
OBJECTIVE KITL/KIT can elicit diverse sets of signals within lymphoid, myeloid, mast, and erythroid lineages, and exert distinct effects on growth, survival, migration, adhesion, and secretory responses. Presently, we have applied a PY-mutant allele knockin approach to specifically assess possible roles for KIT-PY567 and KIT-PY719 sites, and coupled pathways, during erythropoiesis. MATERIALS AND METHODS Mouse models used to investigate this problem include those harboring knocked-in KIT(Y567F/Y567F), KIT(Y569F/Y569F), KIT(Y719F,Y719F), and KIT(Y567F/Y567F:Y569F/Y569F) alleles. The erythron was stressed by myelosuppression using 5-fluorouracil, and by phenylhydrazine-induced hemolysis. In addition, optimized systems for ex vivo analyses of bone marrow and splenic erythropoiesis were employed to more directly analyze possible stage-specific effects on erythroid cell growth, survival, development and KIT signaling events. RESULTS In Kit(Y567F/Y567F) mice, steady-state erythropoiesis was unperturbed while recovery from anemia due to 5-fluorouracil or phenylhydrazine was markedly impaired. Deficiencies in erythroid progenitor expansion occurred both in the bone marrow and the spleen. Responses to chronic erythropoietin dosing were also compromised. Ex vivo, Kit(Y567F/Y567F) (pro)erythroblast development was skewed from a Kit(pos)CD71(high) stage toward a subsequent Kit(neg)CD71(high) compartment. Proliferation and, to an extent, survival capacities were also compromised. Similar stage-specific defects existed for erythroid progenitors from Kit(Y567F/Y567F:Y569F/Y569F) but not KIT(Y719F/Y719F) mice. Kit(Y567F/Y567F) erythroblasts were used further to analyze KIT-PY567-dependent signals. MEK-1,2/ERK-1,2 signaling was unaffected while AKT, p70S6K, and especially JNK2/p54 pathways were selectively attenuated. CONCLUSIONS Nonredundant KIT-PY567-directed erythroblast-intrinsic signals are selectively critical for stress erythropoiesis. Investigations also add to an understanding of how KIT directs distinct outcomes among diverse progenitors and lineages.
Collapse
Affiliation(s)
- Valter Agosti
- Developmental Biology Program, Sloan-Kettering Institute, New York, NY, USA
| | | | | | | | | |
Collapse
|