1
|
Riabkova NS, Bogomolova AP, Kogan AE, Katrukha IA, Vylegzhanina AV, Pevzner DV, Alieva AK, Bereznikova AV, Katrukha AG. Interaction of heparin with human cardiac troponin complex and its influence on the immunodetection of troponins in human blood samples. Clin Chem Lab Med 2024; 62:2316-2325. [PMID: 38738903 DOI: 10.1515/cclm-2024-0066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/17/2024] [Indexed: 05/14/2024]
Abstract
OBJECTIVES Heparin is a highly charged polysaccharide used as an anticoagulant to prevent blood coagulation in patients with presumed myocardial infarction and to prepare heparin plasma samples for laboratory tests. There are conflicting data regarding the effects of heparin on the measurement of cardiac isoforms of troponin I (cTnI) and troponin T (cTnT), which are used for the immunodiagnosis of acute myocardial infarction. In this study, we investigated the influence of heparin on the immunodetection of human cardiac troponins. METHODS Gel filtration (GF) techniques and sandwich fluoroimmunoassay were performed. The regions of сTnI and cTnT that are affected by heparin were investigated with a panel of anti-cTnI and anti-cTnT monoclonal antibodies, specific to different epitopes. RESULTS Heparin was shown to bind to the human cardiac full-size ternary troponin complex (ITC-complex) and free cTnT, which increased their apparent molecular weights in GF studies. Heparin did not bind to the low molecular weight ITC-complex and to binary cTnI-troponin С complex. We did not detect any sites on cTnI in the ITC-complex that were specifically affected by heparin. In contrast, cTnT regions limited to approximately 69-99, 119-138 and 145-164 amino acid residues (aar) in the ITC-complex and a region that lies approximately between 236 and 255 aar of free cTnT were prone to heparin influence. CONCLUSIONS Heparin binds to the ITC-complex via cTnT, interacting with several sites on the N-terminal and/or central parts of the cTnT molecule, which might influence the immunodetection of analytes in human blood.
Collapse
Affiliation(s)
- Natalia S Riabkova
- HyTest Ltd., Turku, Finland
- Department of Biochemistry, Biological Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - Agnessa P Bogomolova
- HyTest Ltd., Turku, Finland
- Department of Biochemistry, Biological Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - Alexander E Kogan
- HyTest Ltd., Turku, Finland
- Department of Biochemistry, Biological Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - Ivan A Katrukha
- HyTest Ltd., Turku, Finland
- Department of Biochemistry, Biological Faculty, Lomonosov Moscow State University, Moscow, Russia
| | | | - Dmitry V Pevzner
- National Medical Research Centre of Cardiology Named After Academician E.I. Chazov, Moscow, Russia
| | - Amina K Alieva
- National Medical Research Centre of Cardiology Named After Academician E.I. Chazov, Moscow, Russia
| | - Anastasia V Bereznikova
- HyTest Ltd., Turku, Finland
- Department of Biochemistry, Biological Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - Alexey G Katrukha
- HyTest Ltd., Turku, Finland
- Department of Biochemistry, Biological Faculty, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
2
|
Lindsay S, Li Y. Coarse-grained modeling of annexin A2-induced microdomain formation on a vesicle. Biophys J 2024; 123:2431-2442. [PMID: 38859585 PMCID: PMC11365106 DOI: 10.1016/j.bpj.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/04/2024] [Accepted: 06/06/2024] [Indexed: 06/12/2024] Open
Abstract
Annexin A2 (A2)-induced microdomain formation is a key step in biological processes such as Ca2+-mediated exocytosis in neuroendocrine cells. In this work, a total of 15 coarse-grained molecular dynamics simulations were performed on vesicle models having a diameter of approximately 250 Å for 15 μs each using the Martini2 force field. Five simulations were performed in the presence of 10 A2, 5 in the presence of A2 but absence of PIP2, and 5 simulations in the absence of A2 but presence of PIP2. Consistent results were generated among the simulations. A2-induced PIP2 microdomain formation was observed and shown to occur in three phases: A2-vesicle association, localized A2-induced PIP2 clustering, and A2 aggregation driving PIP2 microdomain formation. The relationship between A2 aggregation and PIP2 microdomain formation was quantitatively described using a novel method which calculated the variance among protein and lipid positions via the Fréchet mean. A large reduction in PIP2 variance was observed in the presence of A2 but not in its absence. This reduction in PIP2 variance was proportional to the reduction observed in A2 variance and demonstrates that the observed PIP2 microdomain formation is dependent upon A2 aggregation. The three-phase model of A2-induced microdomain formation generated in this work will serve as a valuable guide for further experimental studies and the development of novel A2 inhibitors. No microdomain formation was observed in the absence of A2 and minimal A2-membrane interaction was observed in the absence of PIP2.
Collapse
Affiliation(s)
- S Lindsay
- Department of Chemistry, East Carolina University, Greenville, North Carolina
| | - Y Li
- Department of Chemistry, East Carolina University, Greenville, North Carolina.
| |
Collapse
|
3
|
Doyle DA, DeAngelis PL, Ballard JD. CSPG4-dependent cytotoxicity for C. difficile TcdB is influenced by extracellular calcium and chondroitin sulfate. mSphere 2024; 9:e0009424. [PMID: 38470254 PMCID: PMC11036797 DOI: 10.1128/msphere.00094-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/13/2024] Open
Abstract
TcdB is an intracellular bacterial toxin indispensable to Clostridioides difficile infections. The ability to use chondroitin sulfate proteoglycan 4 (CSPG4) as a primary cell surface receptor is evolutionarily conserved by the two major variants of TcdB. As CSPG4 does not typically undergo receptor-mediated endocytosis, we sought to identify environmental factors that stabilize interactions between TcdB and CSPG4 to promote cell binding and entry into the cytosol. Using a series of TcdB receptor-binding mutants and cell lines with various receptor expression profiles, we discovered that extracellular Ca2+ promotes receptor-specific interactions with TcdB. Specifically, TcdB exhibits preferential binding to CSPG4 in the presence of Ca2+, with the absence of Ca2+ resulting in CSPG4-independent cell surface interactions. Furthermore, Ca2+ did not enhance TcdB binding to chondroitin sulfate (CS), the sole glycosaminoglycan of CSPG4. Instead, CS was found to impact the rate of cell entry by TcdB. Collectively, results from this study indicate that Ca2+ enhances cell binding by TcdB and CS interactions contribute to subsequent steps in cell entry. IMPORTANCE Clostridioides difficile is a leading cause of antibiotic-associated gastrointestinal illness, and many disease pathologies are caused by the toxin TcdB. TcdB engages multiple cell surface receptors, with receptor tropisms differing among the variants of the toxin. Chondroitin sulfate proteoglycan 4 (CSPG4) is a critical receptor for multiple forms of TcdB, and insights into TcdB-CSPG4 interactions are applicable to many disease-causing strains of C. difficile. CSPG4 is modified by chondroitin sulfate (CS) and contains laminin-G repeats stabilized by Ca2+, yet the relative contributions of CS and Ca2+ to TcdB cytotoxicity have not been determined. This study demonstrates distinct roles in TcdB cell binding and cell entry for Ca2+ and CS, respectively. These effects are specific to CSPG4 and contribute to the activities of a prominent isoform of TcdB that utilizes this receptor. These findings advance an understanding of factors contributing to TcdB's mechanism of action and contribution to C. difficile disease.
Collapse
Affiliation(s)
- D. Annie Doyle
- Department of Microbiology and Immunology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Paul L. DeAngelis
- Department of Biochemistry and Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Jimmy D. Ballard
- Department of Microbiology and Immunology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
4
|
Li M, Pedersen LC, Xu D. Targeting heparan sulfate-protein interactions with oligosaccharides and monoclonal antibodies. Front Mol Biosci 2023; 10:1194293. [PMID: 37275960 PMCID: PMC10235622 DOI: 10.3389/fmolb.2023.1194293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 05/10/2023] [Indexed: 06/07/2023] Open
Abstract
Heparan sulfate-binding proteins (HSBPs) are structurally diverse extracellular and membrane attached proteins that interact with HS under normal physiological conditions. Interactions with HS offer an additional level of control over the localization and function of HSBPs, which enables them to behave in a more refined manner. Because all cell signaling events start at the cell membrane, and cell-cell communication relies on translocation of soluble factors across the extracellular matrix, HS occupies an apical position in cellular signal transduction by interacting with hundreds of growth factors, cytokines, chemokines, enzymes, enzyme inhibitors, receptors and adhesion molecules. These extracellular and membrane proteins can play important roles in physiological and pathological conditions. For most HS-binding proteins, the interaction with HS represents an essential element in regulating their normal physiological functions. Such dependence on HS suggests that manipulating HS-protein interactions could be explored as a therapeutic strategy to selectively antagonize/activate HS-binding proteins. In this review, we will discuss current understanding of the diverse nature of HS-HSBP interactions, and the latest advancements in targeting the HS-binding site of HSBPs using structurally-defined HS oligosaccharides and monoclonal antibodies.
Collapse
Affiliation(s)
- Miaomiao Li
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, the State University of New York, Buffalo, NY, United States
| | - Lars C. Pedersen
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, United States
| | - Ding Xu
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, the State University of New York, Buffalo, NY, United States
| |
Collapse
|
5
|
Holmes SG, Nagarajan B, Desai UR. 3- O-Sulfation induces sequence-specific compact topologies in heparan sulfate that encode a dynamic sulfation code. Comput Struct Biotechnol J 2022; 20:3884-3898. [PMID: 35891779 PMCID: PMC9309406 DOI: 10.1016/j.csbj.2022.07.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/05/2022] [Accepted: 07/05/2022] [Indexed: 11/17/2022] Open
Abstract
Heparan sulfate (HS) is arguably the most diverse linear biopolymer that is known to modulate hundreds of proteins. Whereas the configurational and conformational diversity of HS is well established in terms of varying sulfation patterns and iduronic acid (IdoA) puckers, a linear helical topology resembling a cylindrical rod is the only topology thought to be occupied by the biopolymer. We reasoned that 3-O-sulfation, a rare modification in natural HS, may induce novel topologies that contribute to selective recognition of proteins. In this work, we studied a library of 24 distinct HS hexasaccharides using molecular dynamics (MD). We discovered novel compact (C) topologies that are populated significantly by a unique group of 3-O-sulfated sequences containing IdoA residues. 3-O-sulfated sequences containing glucuronic acid (GlcA) residue and sequences devoid of 3-O-sulfate groups did not exhibit high levels of the C topology and primarily exhibited only the canonical linear (L) form. The C topology arises under dynamical conditions due to rotation around an IdoA → GlcN glycosidic linkage, especially in psi (Ψ) torsion. At an atomistic level, the L → C transformation is a multi-factorial phenomenon engineered to reduce like-charge repulsion, release one or more HS-bound water molecules, and organize a bi-dentate "IdoA-cation-IdoA" interaction. These forces also drive an L → C transformation in a 3-O-sulfated octasaccharide, which has shown evidence of the unique C topology in the co-crystallized state. The 3-O-sulfate-based generation of unique, sequence-specific, compact topologies indicate that natural HS encodes a dynamic sulfation code that could be exploited for selective recognition of target proteins.
Collapse
Affiliation(s)
- Samuel G. Holmes
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA 23219, USA
| | - Balaji Nagarajan
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA 23219, USA
| | - Umesh R. Desai
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA 23219, USA
- Corresponding author at: Institute for Structural Biology, Drug Discovery, and Development, 800 E. Leigh Street, Suite 212, Richmond, VA 23219, USA.
| |
Collapse
|
6
|
Yim WWY, Yamamoto H, Mizushima N. Annexins A1 and A2 are recruited to larger lysosomal injuries independently of ESCRTs to promote repair. FEBS Lett 2022; 596:991-1003. [PMID: 35274304 DOI: 10.1002/1873-3468.14329] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/24/2022] [Accepted: 03/01/2022] [Indexed: 11/11/2022]
Abstract
Damaged lysosomes can be repaired by calcium release-dependent recruitment of the ESCRT machinery. However, the involvement of annexins, another group of calcium-responding membrane repair proteins, has not been fully addressed. Here, we show that although all ubiquitously expressed annexins (ANXA1, A2, A4, A5, A6, A7, and A11) localize to damaged lysosomes, only ANXA1 and ANXA2 are important for repair. Their recruitment is calcium-dependent, ESCRT-independent, and selective towards lysosomes with large injuries. Lysosomal leakage was more severe when ANXA1 or ANXA2 was depleted compared to that of ESCRT components. These findings suggest that ANXA1 and ANXA2 constitute an additional repair mechanism that serves to minimize leakage from damaged lysosomes.
Collapse
Affiliation(s)
- Willa Wen-You Yim
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Hayashi Yamamoto
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Noboru Mizushima
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| |
Collapse
|
7
|
Giles JB, Miller EC, Steiner HE, Karnes JH. Elucidation of Cellular Contributions to Heparin-Induced Thrombocytopenia Using Omic Approaches. Front Pharmacol 2022; 12:812830. [PMID: 35126147 PMCID: PMC8814424 DOI: 10.3389/fphar.2021.812830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/31/2021] [Indexed: 11/23/2022] Open
Abstract
Heparin-induced thrombocytopenia (HIT) is an unpredictable, complex, immune-mediated adverse drug reaction associated with a high mortality. Despite decades of research into HIT, fundamental knowledge gaps persist regarding HIT likely due to the complex and unusual nature of the HIT immune response. Such knowledge gaps include the identity of a HIT immunogen, the intrinsic roles of various cell types and their interactions, and the molecular basis that distinguishes pathogenic and non-pathogenic PF4/heparin antibodies. While a key feature of HIT, thrombocytopenia, implicates platelets as a seminal cell fragment in HIT pathogenesis, strong evidence exists for critical roles of multiple cell types. The rise in omic technologies over the last decade has resulted in a number of agnostic, whole system approaches for biological research that may be especially informative for complex phenotypes. Applying multi-omics techniques to HIT has the potential to bring new insights into HIT pathophysiology and identify biomarkers with clinical utility. In this review, we review the clinical, immunological, and molecular features of HIT with emphasis on key cell types and their roles. We then address the applicability of several omic techniques underutilized in HIT, which have the potential to fill knowledge gaps related to HIT biology.
Collapse
Affiliation(s)
- Jason B. Giles
- Department of Pharmacy Practice and Science, University of Arizona College of Pharmacy, Tucson, AZ, United States
| | - Elise C. Miller
- Department of Pharmacy Practice and Science, University of Arizona College of Pharmacy, Tucson, AZ, United States
| | - Heidi E. Steiner
- Department of Pharmacy Practice and Science, University of Arizona College of Pharmacy, Tucson, AZ, United States
| | - Jason H. Karnes
- Department of Pharmacy Practice and Science, University of Arizona College of Pharmacy, Tucson, AZ, United States,Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, United States,*Correspondence: Jason H. Karnes,
| |
Collapse
|
8
|
Masomian M, Lalani S, Poh CL. Molecular Docking of SP40 Peptide towards Cellular Receptors for Enterovirus 71 (EV-A71). Molecules 2021; 26:molecules26216576. [PMID: 34770987 PMCID: PMC8587434 DOI: 10.3390/molecules26216576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/13/2021] [Accepted: 10/26/2021] [Indexed: 11/16/2022] Open
Abstract
Enterovirus 71 (EV-A71) is one of the predominant etiological agents of hand, foot and mouth disease (HMFD), which can cause severe central nervous system infections in young children. There is no clinically approved vaccine or antiviral agent against HFMD. The SP40 peptide, derived from the VP1 capsid of EV-A71, was reported to be a promising antiviral peptide that targeted the host receptor(s) involved in viral attachment or entry. So far, the mechanism of action of SP40 peptide is unknown. In this study, interactions between ten reported cell receptors of EV-A71 and the antiviral SP40 peptide were evaluated through molecular docking simulations, followed by in vitro receptor blocking with specific antibodies. The preferable binding region of each receptor to SP40 was predicted by global docking using HPEPDOCK and the cell receptor-SP40 peptide complexes were refined using FlexPepDock. Local molecular docking using GOLD (Genetic Optimization for Ligand Docking) showed that the SP40 peptide had the highest binding score to nucleolin followed by annexin A2, SCARB2 and human tryptophanyl-tRNA synthetase. The average GoldScore for 5 top-scoring models of human cyclophilin, fibronectin, human galectin, DC-SIGN and vimentin were almost similar. Analysis of the nucleolin-SP40 peptide complex showed that SP40 peptide binds to the RNA binding domains (RBDs) of nucleolin. Furthermore, receptor blocking by specific monoclonal antibody was performed for seven cell receptors of EV-A71 and the results showed that the blocking of nucleolin by anti-nucleolin alone conferred a 93% reduction in viral infectivity. Maximum viral inhibition (99.5%) occurred when SCARB2 was concurrently blocked with anti-SCARB2 and the SP40 peptide. This is the first report to reveal the mechanism of action of SP40 peptide in silico through molecular docking analysis. This study provides information on the possible binding site of SP40 peptide to EV-A71 cellular receptors. Such information could be useful to further validate the interaction of the SP40 peptide with nucleolin by site-directed mutagenesis of the nucleolin binding site.
Collapse
Affiliation(s)
- Malihe Masomian
- Correspondence: (M.M.); (C.L.P.); Tel.: +603-74918622 (ext. 7603) (M.M.); +603-74918622 (ext. 7338) (C.L.P.)
| | | | - Chit Laa Poh
- Correspondence: (M.M.); (C.L.P.); Tel.: +603-74918622 (ext. 7603) (M.M.); +603-74918622 (ext. 7338) (C.L.P.)
| |
Collapse
|
9
|
Hu Y, Park N, Seo KS, Park JY, Somarathne RP, Olivier AK, Fitzkee NC, Thornton JA. Pneumococcal surface adhesion A protein (PsaA) interacts with human Annexin A2 on airway epithelial cells. Virulence 2021; 12:1841-1854. [PMID: 34233589 PMCID: PMC8274441 DOI: 10.1080/21505594.2021.1947176] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Streptococcus pneumoniae (pneumococcus) is a normal colonizer of the human nasopharynx capable of causing serious invasive disease. Since colonization of the nasopharynx is a prerequisite for progression to invasive diseases, the development of future protein-based vaccines requires an understanding of the intimate interaction of bacterial adhesins with host receptors. In this study, we identified that pneumococcal surface adhesin A (PsaA), a highly conserved pneumococcal protein known to play an important role in colonization of pneumococcus, can interact with Annexin A2 (ANXA2) on Detroit 562 nasopharyngeal epithelial cells. Lentiviral expression of ANXA2 in HEK 293 T/17 cells, which normally express minimal ANXA2, significantly increased pneumococcal adhesion. Blocking of ANXA2 with recombinant PsaA negatively impacted pneumococcal adherence to ANXA2-transduced HEK cells. These results suggest that ANXA2 is an important host cellular receptor for pneumococcal colonization.
Collapse
Affiliation(s)
- Yoonsung Hu
- Department of Biological Sciences, Mississippi State University, Mississippi State, USA
| | - Nogi Park
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, USA
| | - Keun Seok Seo
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, USA
| | - Joo Youn Park
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, USA
| | - Radha P Somarathne
- Department of Chemistry, Mississippi State University, Mississippi State, USA
| | - Alicia K Olivier
- Department of Population and Pathobiology, College of Veterinary Medicine, Mississippi State University, MS, USA
| | - Nicholas C Fitzkee
- Department of Chemistry, Mississippi State University, Mississippi State, USA
| | - Justin A Thornton
- Department of Biological Sciences, Mississippi State University, Mississippi State, USA
| |
Collapse
|
10
|
Maszota-Zieleniak M, Marcisz M, Kogut MM, Siebenmorgen T, Zacharias M, Samsonov SA. Evaluation of replica exchange with repulsive scaling approach for docking glycosaminoglycans. J Comput Chem 2021; 42:1040-1053. [PMID: 33768554 DOI: 10.1002/jcc.26496] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/19/2021] [Accepted: 01/27/2021] [Indexed: 12/14/2022]
Abstract
Glycosaminoglycans (GAGs), long linear periodic anionic polysaccharides, are key molecules in the extracellular matrix (ECM). Therefore, deciphering their role in the biologically relevant context is important for fundamental understanding of the processes ongoing in ECM and for establishing new strategies in the regenerative medicine. Although GAGs represent a number of computational challenges, molecular docking is a powerful tool for analysis of their interactions. Despite the recent development of GAG-specific docking approaches, there is plenty of room for improvement. Here, replica exchange molecular dynamics with repulsive scaling (REMD-RS) recently proved to be a successful approach for protein-protein complexes, was applied to dock GAGs. In this method, effective pairwise radii are increased in different Hamiltonian replicas. REMD-RS is shown to be an attractive alternative to classical docking approaches for GAGs. This work contributes to setting up of GAG-specific computational protocols and provides new insights into the nature of these biological systems.
Collapse
Affiliation(s)
| | | | | | - Till Siebenmorgen
- Physics Department, Technical University of Munich, Garching, Germany
| | - Martin Zacharias
- Physics Department, Technical University of Munich, Garching, Germany
| | | |
Collapse
|
11
|
Fabbiano F, Corsi J, Gurrieri E, Trevisan C, Notarangelo M, D'Agostino VG. RNA packaging into extracellular vesicles: An orchestra of RNA-binding proteins? J Extracell Vesicles 2020; 10:e12043. [PMID: 33391635 PMCID: PMC7769857 DOI: 10.1002/jev2.12043] [Citation(s) in RCA: 140] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 11/17/2020] [Accepted: 12/03/2020] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) are heterogeneous membranous particles released from the cells through different biogenetic and secretory mechanisms. We now conceive EVs as shuttles mediating cellular communication, carrying a variety of molecules resulting from intracellular homeostatic mechanisms. The RNA is a widely detected cargo and, impressively, a recognized functional intermediate that elects EVs as modulators of cancer cell phenotypes, determinants of disease spreading, cell surrogates in regenerative medicine, and a source for non-invasive molecular diagnostics. The mechanistic elucidation of the intracellular events responsible for the engagement of RNA into EVs will significantly improve the comprehension and possibly the prediction of EV "quality" in association with cell physiology. Interestingly, the application of multidisciplinary approaches, including biochemical as well as cell-based and computational strategies, is increasingly revealing an active RNA-packaging process implicating RNA-binding proteins (RBPs) in the sorting of coding and non-coding RNAs. In this review, we provide a comprehensive view of RBPs recently emerging as part of the EV biology, considering the scenarios where: (i) individual RBPs were detected in EVs along with their RNA substrates, (ii) RBPs were detected in EVs with inferred RNA targets, and (iii) EV-transcripts were found to harbour sequence motifs mirroring the activity of RBPs. Proteins so far identified are members of the hnRNP family (hnRNPA2B1, hnRNPC1, hnRNPG, hnRNPH1, hnRNPK, and hnRNPQ), as well as YBX1, HuR, AGO2, IGF2BP1, MEX3C, ANXA2, ALIX, NCL, FUS, TDP-43, MVP, LIN28, SRP9/14, QKI, and TERT. We describe the RBPs based on protein domain features, current knowledge on the association with human diseases, recognition of RNA consensus motifs, and the need to clarify the functional significance in different cellular contexts. We also summarize data on previously identified RBP inhibitor small molecules that could also be introduced in EV research as potential modulators of vesicular RNA sorting.
Collapse
Affiliation(s)
- Fabrizio Fabbiano
- Department of CellularComputational and Integrative Biology (CIBIO)University of TrentoTrentoItaly
| | - Jessica Corsi
- Department of CellularComputational and Integrative Biology (CIBIO)University of TrentoTrentoItaly
| | - Elena Gurrieri
- Department of CellularComputational and Integrative Biology (CIBIO)University of TrentoTrentoItaly
| | - Caterina Trevisan
- Department of CellularComputational and Integrative Biology (CIBIO)University of TrentoTrentoItaly
| | - Michela Notarangelo
- Department of CellularComputational and Integrative Biology (CIBIO)University of TrentoTrentoItaly
| | - Vito G. D'Agostino
- Department of CellularComputational and Integrative Biology (CIBIO)University of TrentoTrentoItaly
| |
Collapse
|
12
|
Whitmore EK, Martin D, Guvench O. Constructing 3-Dimensional Atomic-Resolution Models of Nonsulfated Glycosaminoglycans with Arbitrary Lengths Using Conformations from Molecular Dynamics. Int J Mol Sci 2020; 21:ijms21207699. [PMID: 33080973 PMCID: PMC7589010 DOI: 10.3390/ijms21207699] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/15/2020] [Accepted: 10/15/2020] [Indexed: 12/24/2022] Open
Abstract
Glycosaminoglycans (GAGs) are the linear carbohydrate components of proteoglycans (PGs) and are key mediators in the bioactivity of PGs in animal tissue. GAGs are heterogeneous, conformationally complex, and polydisperse, containing up to 200 monosaccharide units. These complexities make studying GAG conformation a challenge for existing experimental and computational methods. We previously described an algorithm we developed that applies conformational parameters (i.e., all bond lengths, bond angles, and dihedral angles) from molecular dynamics (MD) simulations of nonsulfated chondroitin GAG 20-mers to construct 3-D atomic-resolution models of nonsulfated chondroitin GAGs of arbitrary length. In the current study, we applied our algorithm to other GAGs, including hyaluronan and nonsulfated forms of dermatan, keratan, and heparan and expanded our database of MD-generated GAG conformations. Here, we show that individual glycosidic linkages and monosaccharide rings in 10- and 20-mers of hyaluronan and nonsulfated dermatan, keratan, and heparan behave randomly and independently in MD simulation and, therefore, using a database of MD-generated 20-mer conformations, that our algorithm can construct conformational ensembles of 10- and 20-mers of various GAG types that accurately represent the backbone flexibility seen in MD simulations. Furthermore, our algorithm efficiently constructs conformational ensembles of GAG 200-mers that we would reasonably expect from MD simulations.
Collapse
Affiliation(s)
- Elizabeth K. Whitmore
- Department of Pharmaceutical Sciences and Administration, University of New England School of Pharmacy, 716 Stevens Avenue, Portland, ME 04103, USA; (E.K.W.); (D.M.)
- Graduate School of Biomedical Science and Engineering, University of Maine, 5775 Stodder Hall, Orono, ME 04469, USA
| | - Devon Martin
- Department of Pharmaceutical Sciences and Administration, University of New England School of Pharmacy, 716 Stevens Avenue, Portland, ME 04103, USA; (E.K.W.); (D.M.)
- Graduate School of Biomedical Science and Engineering, University of Maine, 5775 Stodder Hall, Orono, ME 04469, USA
| | - Olgun Guvench
- Department of Pharmaceutical Sciences and Administration, University of New England School of Pharmacy, 716 Stevens Avenue, Portland, ME 04103, USA; (E.K.W.); (D.M.)
- Graduate School of Biomedical Science and Engineering, University of Maine, 5775 Stodder Hall, Orono, ME 04469, USA
- Correspondence: ; Tel.: +1-207-221-4171
| |
Collapse
|
13
|
Xie Y, Sheng Y, Li Q, Ju S, Reyes J, Lebrilla CB. Determination of the glycoprotein specificity of lectins on cell membranes through oxidative proteomics. Chem Sci 2020; 11:9501-9512. [PMID: 34094216 PMCID: PMC8162070 DOI: 10.1039/d0sc04199h] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 08/13/2020] [Indexed: 12/25/2022] Open
Abstract
The cell membrane is composed of a network of glycoconjugates including glycoproteins and glycolipids that presents a dense matrix of carbohydrates playing critical roles in many biological processes. Lectin-based technology has been widely used to characterize glycoconjugates in tissues and cell lines. However, their specificity toward their putative glycan ligand and sensitivity in situ have been technologically difficult to study. Additionally, because they recognize primarily glycans, the underlying glycoprotein targets are generally not known. In this study, we employed lectin proximity oxidative labeling (Lectin PROXL) to identify cell surface glycoproteins that contain glycans that are recognized by lectins. Commonly used lectins were modified with a probe to produce hydroxide radicals in the proximity of the labeled lectins. The underlying polypeptides of the glycoproteins recognized by the lectins are oxidized and identified by the standard proteomic workflow. As a result, approximately 70% of identified glycoproteins were oxidized in situ by all the lectin probes, while only 5% of the total proteins were oxidized. The correlation between the glycosites and oxidation sites demonstrated the effectiveness of the lectin probes. The specificity and sensitivity of each lectin were determined using site-specific glycan information obtained through glycomic and glycoproteomic analyses. Notably, the sialic acid-binding lectins and the fucose-binding lectins had higher specificity and sensitivity compared to other lectins, while those that were specific to high mannose glycans have poor sensitivity and specificity. This method offers an unprecedented view of the interactions of lectins with specific glycoproteins as well as protein networks that are mediated by specific glycan types on cell membranes.
Collapse
Affiliation(s)
- Yixuan Xie
- Department of Chemistry, University of California Davis Davis California USA
| | - Ying Sheng
- Department of Chemistry, Biochemistry, Molecular, Cellular and Developmental Biology Graduate Group, University of California Davis Davis California USA
| | - Qiongyu Li
- Department of Chemistry, University of California Davis Davis California USA
| | - Seunghye Ju
- Department of Chemistry, University of California Davis Davis California USA
| | - Joe Reyes
- Marine Science Institute, University of the Philippines Diliman Quezon City Philippines
| | - Carlito B Lebrilla
- Department of Chemistry, University of California Davis Davis California USA
- Department of Biochemistry, University of California Davis Davis California USA
| |
Collapse
|
14
|
Stelling MP, Motta JM, Mashid M, Johnson WE, Pavão MS, Farrell NP. Metal ions and the extracellular matrix in tumor migration. FEBS J 2020; 286:2950-2964. [PMID: 31379111 DOI: 10.1111/febs.14986] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/22/2019] [Accepted: 07/06/2019] [Indexed: 12/15/2022]
Abstract
In this review, we explore the roles of divalent metal ions in structure and function within the extracellular matrix (ECM), specifically, their interaction with glycosaminoglycans (GAGs) during tumor progression. Metals and GAGs have been individually associated with physiological and pathological processes, however, their combined activities in regulating cell behavior and ECM remodeling have not been fully explored to date. During tumor progression, divalent metals and GAGs participate in central processes, such as cell migration and angiogenesis, either by modulating cell surface molecules, as well as soluble signaling factors. In addition, studies on metals and polysaccharides interactions have been of great value, as they provide structural information that can be correlated with function. Finally, we believe that understanding how metals are regulated in physiological and pathological conditions is paramount for the development of new treatment strategies, as well as diagnostic and exploratory tools.
Collapse
Affiliation(s)
- Mariana P Stelling
- Instituto Federal de Educacao, Educação, Ciência e Tecnologia do Rio de Janeiro, Brazil
| | | | | | | | | | | |
Collapse
|
15
|
Annexin Lectins: Ca 2+-Dependent Heparin-Binding Activity, Phosphatidylserine-Binding Activity, and Anticoagulant Activity. Methods Mol Biol 2020. [PMID: 32306365 DOI: 10.1007/978-1-0716-0430-4_57] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Among numerous heparin-binding proteins identified in animal tissues and body fluids, annexins are unique because their activies depend on their Ca2+ binding. Annexins are known to have other Ca2+-dependent activities. For example, they bind to phosphatidylserine in the plasma membrane, and some of them exhibit potent anticoagulant activity. This chapter describes three protocols that measure the Ca2+-dependent activities using recombinant annexins: solid-phase heparin-binding assay using bovine serum albumin-conjugated heparin, solid-phase phosphatidylserine-binding assay, and plasma coagulation inhibition assay.
Collapse
|
16
|
Whitmore EK, Vesenka G, Sihler H, Guvench O. Efficient Construction of Atomic-Resolution Models of Non-Sulfated Chondroitin Glycosaminoglycan Using Molecular Dynamics Data. Biomolecules 2020; 10:biom10040537. [PMID: 32252422 PMCID: PMC7226628 DOI: 10.3390/biom10040537] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/30/2020] [Accepted: 04/01/2020] [Indexed: 12/22/2022] Open
Abstract
Glycosaminoglycans (GAGs) are linear, structurally diverse, conformationally complex carbohydrate polymers that may contain up to 200 monosaccharides. These characteristics present a challenge for studying GAG conformational thermodynamics at atomic resolution using existing experimental methods. Molecular dynamics (MD) simulations can overcome this challenge but are only feasible for short GAG polymers. To address this problem, we developed an algorithm that applies all conformational parameters contributing to GAG backbone flexibility (i.e., bond lengths, bond angles, and dihedral angles) from unbiased all-atom explicit-solvent MD simulations of short GAG polymers to rapidly construct models of GAGs of arbitrary length. The algorithm was used to generate non-sulfated chondroitin 10- and 20-mer ensembles which were compared to MD-generated ensembles for internal validation. End-to-end distance distributions in constructed and MD-generated ensembles have minimal differences, suggesting that our algorithm produces conformational ensembles that mimic the backbone flexibility seen in simulation. Non-sulfated chondroitin 100- and 200-mer ensembles were constructed within a day, demonstrating the efficiency of the algorithm and reduction in time and computational cost compared to simulation.
Collapse
Affiliation(s)
- Elizabeth K. Whitmore
- Department of Pharmaceutical Sciences, University of New England College of Pharmacy, 716 Stevens Avenue, Portland, ME 04103, USA; (E.K.W.); (G.V.); (H.S.)
- Graduate School of Biomedical Science and Engineering, University of Maine, 5775 Stodder Hall, Orono, ME 04469, USA
| | - Gabriel Vesenka
- Department of Pharmaceutical Sciences, University of New England College of Pharmacy, 716 Stevens Avenue, Portland, ME 04103, USA; (E.K.W.); (G.V.); (H.S.)
| | - Hanna Sihler
- Department of Pharmaceutical Sciences, University of New England College of Pharmacy, 716 Stevens Avenue, Portland, ME 04103, USA; (E.K.W.); (G.V.); (H.S.)
| | - Olgun Guvench
- Department of Pharmaceutical Sciences, University of New England College of Pharmacy, 716 Stevens Avenue, Portland, ME 04103, USA; (E.K.W.); (G.V.); (H.S.)
- Graduate School of Biomedical Science and Engineering, University of Maine, 5775 Stodder Hall, Orono, ME 04469, USA
- Correspondence: ; Tel.: +1-207-221-4171
| |
Collapse
|
17
|
Sandoval DR, Gomez Toledo A, Painter CD, Tota EM, Sheikh MO, West AMV, Frank MM, Wells L, Xu D, Bicknell R, Corbett KD, Esko JD. Proteomics-based screening of the endothelial heparan sulfate interactome reveals that C-type lectin 14a (CLEC14A) is a heparin-binding protein. J Biol Chem 2020; 295:2804-2821. [PMID: 31964714 DOI: 10.1074/jbc.ra119.011639] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/10/2020] [Indexed: 12/21/2022] Open
Abstract
Animal cells express heparan sulfate proteoglycans that perform many important cellular functions by way of heparan sulfate-protein interactions. The identification of membrane heparan sulfate-binding proteins is challenging because of their low abundance and the need for extensive enrichment. Here, we report a proteomics workflow for the identification and characterization of membrane-anchored and extracellular proteins that bind heparan sulfate. The technique is based on limited proteolysis of live cells in the absence of denaturation and fixation, heparin-affinity chromatography, and high-resolution LC-MS/MS, and we designate it LPHAMS. Application of LPHAMS to U937 monocytic and primary murine and human endothelial cells identified 55 plasma membrane, extracellular matrix, and soluble secreted proteins, including many previously unidentified heparin-binding proteins. The method also facilitated the mapping of the heparin-binding domains, making it possible to predict the location of the heparin-binding site. To validate the discovery feature of LPHAMS, we characterized one of the newly-discovered heparin-binding proteins, C-type lectin 14a (CLEC14A), a member of the C-type lectin family that modulates angiogenesis. We found that the C-type lectin domain of CLEC14A binds one-to-one to heparin with nanomolar affinity, and using molecular modeling and mutagenesis, we mapped its heparin-binding site. CLEC14A physically interacted with other glycosaminoglycans, including endothelial heparan sulfate and chondroitin sulfate E, but not with neutral or sialylated oligosaccharides. The LPHAMS technique should be applicable to other cells and glycans and provides a way to expand the repertoire of glycan-binding proteins for further study.
Collapse
Affiliation(s)
- Daniel R Sandoval
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California 92093; Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, California 92093
| | - Alejandro Gomez Toledo
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California 92093
| | - Chelsea D Painter
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California 92093; Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, California 92093
| | - Ember M Tota
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093
| | - M Osman Sheikh
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| | - Alan M V West
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, California 92093
| | | | - Lance Wells
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| | - Ding Xu
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, New York 14214
| | - Roy Bicknell
- College of Medicine and Dentistry, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Kevin D Corbett
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California 92093
| | - Jeffrey D Esko
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California 92093; Glycobiology Research and Training Center, University of California, San Diego, La Jolla, California 92093.
| |
Collapse
|
18
|
Interactions between Sclerostin and Glycosaminoglycans. Glycoconj J 2019; 37:119-128. [PMID: 31828567 DOI: 10.1007/s10719-019-09900-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 11/20/2019] [Accepted: 11/26/2019] [Indexed: 12/11/2022]
Abstract
Sclerostin (SOST) is a glycoprotein having many important functions in the regulation of bone formation as a key negative regulator of Wnt signaling in bone. Surface plasmon resonance (SPR), which allows for a direct quantitative analysis of the label-free molecular interactions in real-time, has been widely used for the biophysical characterization of glycosaminoglycan (GAG)-protein interactions. In the present study, we report kinetics, structural analysis and the effects of physiological conditions (e.g., salt concentrations, Ca2+ and Zn2+concentrations) on the interactions between GAGs and recombinant human (rh) and recombinant mouse (rm) SOST using SPR. SPR results revealed that both SOSTs bind heparin with high affinity (rhSOST-heparin, KD~36 nM and rmSOST-heparin, KD~77 nM) and the shortest oligosaccharide of heparin that effectively competes with full size heparin for SOST binding is octadecasaccharide (18mer). This heparin binding protein also interacts with other highly sulfated GAGs including, disulfated-dermatan sulfate and chondroitin sulfate E. In addition, liquid chromatography-mass spectrometry was used to characterize the structure of sulfated GAGs that bound to SOST.
Collapse
|
19
|
Annexin A1 Contained in Extracellular Vesicles Promotes the Activation of Keratinocytes by Mesoglycan Effects: An Autocrine Loop Through FPRs. Cells 2019; 8:cells8070753. [PMID: 31331117 PMCID: PMC6679056 DOI: 10.3390/cells8070753] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/09/2019] [Accepted: 07/18/2019] [Indexed: 12/11/2022] Open
Abstract
We have recently demonstrated that mesoglycan, a fibrinolytic compound, may be a promising pro-healing drug for skin wound repair. We showed that mesoglycan induces migration, invasion, early differentiation, and translocation to the membrane of keratinocytes, as well as the secretion of annexin A1 (ANXA1), further involved in keratinocytes activation. These events are triggered by the syndecan-4 (SDC4)/PKCα pathway. SDC4 also participates to the formation and secretion of microvesicles (EVs) which may contribute to wound healing. EVs were isolated from HaCaT cells, as human immortalized keratinocytes, and then characterised by Western blotting, Field Emission-Scanning Electron Microscopy, and Dynamic Light Scattering. Their autocrine effects were investigated by Wound-Healing/invasion assays and confocal microscopy to analyse cell motility and differentiation, respectively. Here, we found that the mesoglycan increased the release of EVs which amplify its same effects. ANXA1 contained in the microvesicles is able to promote keratinocytes motility and differentiation by acting on Formyl Peptide Receptors (FPRs). Thus, the extracellular form of ANXA1 may be considered as a link to intensify the effects of mesoglycan. In this study, for the first time, we have identified an interesting autocrine loop ANXA1/EVs/FPRs in human keratinocytes, induced by mesoglycan.
Collapse
|
20
|
Kores K, Lešnik S, Bren U, Janežič D, Konc J. Discovery of Novel Potential Human Targets of Resveratrol by Inverse Molecular Docking. J Chem Inf Model 2019; 59:2467-2478. [PMID: 30883115 DOI: 10.1021/acs.jcim.8b00981] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Resveratrol is a polyphenol known for its antioxidant and anti-inflammatory properties, which support its use as a treatment for variety of diseases. There are already known connections of resveratrol to chemoprevention of cancer because of its ability to prevent tumor initiation and inhibit tumor promotion and progression. Resveratrol is also believed to be important in cardiovascular diseases and neurological disorders, such as Alzheimer's disease. Using an inverse molecular docking approach, we sought to find new potential targets of resveratrol. Docking of resveratrol into each ProBiS predicted binding site of >38 000 protein structures from the Protein Data Bank was examined, and a number of novel potential targets into which resveratrol was docked successfully were found. These explain known actions or predict new effects of resveratrol. The results included three human proteins that are already known to bind resveratrol. A majority of proteins discovered however have no already described connections with resveratrol. We report new potential target human proteins and proteins connected with different organisms into which resveratrol can dock. Our results reveal previously unknown potential target human proteins, whose connection with cardiovascular and neurological disorders could lead to new potential treatments for variety of diseases. We believe that our research could help in future experimental studies on revestratol bioactivity in humans.
Collapse
Affiliation(s)
- Katarina Kores
- University of Maribor , Faculty for Chemistry and Chemical Technology Maribor , Smetanova ulica 17 , SI-2000 Maribor , Slovenia
| | - Samo Lešnik
- National Institute of Chemistry , Hajdrihova 19 , SI-1000 Ljubljana , Slovenia
| | - Urban Bren
- University of Maribor , Faculty for Chemistry and Chemical Technology Maribor , Smetanova ulica 17 , SI-2000 Maribor , Slovenia.,National Institute of Chemistry , Hajdrihova 19 , SI-1000 Ljubljana , Slovenia.,University of Primorska , Faculty of Mathematics, Natural Sciences and Information Technology , Glagoljaška 8 , SI-6000 Koper , Slovenia
| | - Dušanka Janežič
- University of Primorska , Faculty of Mathematics, Natural Sciences and Information Technology , Glagoljaška 8 , SI-6000 Koper , Slovenia
| | - Janez Konc
- National Institute of Chemistry , Hajdrihova 19 , SI-1000 Ljubljana , Slovenia.,University of Primorska , Faculty of Mathematics, Natural Sciences and Information Technology , Glagoljaška 8 , SI-6000 Koper , Slovenia
| |
Collapse
|
21
|
Wheeler S, Schmid R, Sillence DJ. Lipid⁻Protein Interactions in Niemann⁻Pick Type C Disease: Insights from Molecular Modeling. Int J Mol Sci 2019; 20:E717. [PMID: 30736449 PMCID: PMC6387118 DOI: 10.3390/ijms20030717] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 01/31/2019] [Accepted: 02/03/2019] [Indexed: 12/19/2022] Open
Abstract
The accumulation of lipids in the late endosomes and lysosomes of Niemann⁻Pick type C disease (NPCD) cells is a consequence of the dysfunction of one protein (usually NPC1) but induces dysfunction in many proteins. We used molecular docking to propose (a) that NPC1 exports not just cholesterol, but also sphingosine, (b) that the cholesterol sensitivity of big potassium channel (BK) can be traced to a previously unappreciated site on the channel's voltage sensor, (c) that transient receptor potential mucolipin 1 (TRPML1) inhibition by sphingomyelin is likely an indirect effect, and (d) that phosphoinositides are responsible for both the mislocalization of annexin A2 (AnxA2) and a soluble NSF (N-ethylmaleimide Sensitive Fusion) protein attachment receptor (SNARE) recycling defect. These results are set in the context of existing knowledge of NPCD to sketch an account of the endolysosomal pathology key to this disease.
Collapse
Affiliation(s)
- Simon Wheeler
- School of Pharmacy, De Montfort University, The Gateway, Leicester LE1 9BH, UK.
| | - Ralf Schmid
- Leicester Institute of Structural and Chemical Biology, Henry Wellcome Building, University of Leicester, Lancaster Road, Leicester LE1 7RH, UK.
| | - Dan J Sillence
- School of Pharmacy, De Montfort University, The Gateway, Leicester LE1 9BH, UK.
| |
Collapse
|
22
|
Modulatory effects of fibronectin on calcium oxalate crystallization, growth, aggregation, adhesion on renal tubular cells, and invasion through extracellular matrix. J Biol Inorg Chem 2019; 24:235-246. [PMID: 30701361 DOI: 10.1007/s00775-019-01641-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 12/09/2018] [Indexed: 12/29/2022]
Abstract
Fibronectin, an extracellular matrix (ECM) protein, has been thought to be involved in pathogenic mechanisms of kidney stone disease, especially calcium oxalate (CaOx) type. Nevertheless, its precise roles in modulation of CaOx crystal remained unclear. We thus performed a systematic evaluation of effects of fibronectin on CaOx monohydrate (COM) crystal (the major causative chemical crystal in kidney stone formation) in various stages of kidney stone pathogenesis, including crystallization, crystal growth, aggregation, adhesion onto renal tubular cells, and invasion through ECM in renal interstitium. The data showed that fibronectin significantly decreased crystallization, growth and adhesive capability of COM crystals in a dose-dependent manner. In contrast, COM crystal aggregation and invasion through ECM migration chamber were significantly enhanced by fibronectin in a dose-dependent fashion. Sequence analysis revealed three calcium-binding and six oxalate-binding domains in fibronectin. Immunofluorescence study confirmed binding of fibronectin to COM crystals. Additionally, calcium- and oxalate-affinity assays confirmed depletion of both calcium and oxalate ions after incubation with fibronectin. Moreover, calcium-saturated and oxalate-saturated forms of fibronectin markedly reduced the modulatory activities of fibronectin on COM crystallization, crystal growth, aggregation, and adhesion onto the cells. These data strongly indicate the dual functions of fibronectin, which serves as an inhibitor for COM crystallization, crystal growth and adhesion onto renal tubular cells, but on the other hand, acts as a promoter for COM crystal aggregation and invasion through ECM. Finally, its COM crystal modulatory activities are most likely mediated through binding with calcium and oxalate ions on the crystals and in their environment.
Collapse
|
23
|
Csizmadia G, Farkas B, Spagina Z, Tordai H, Hegedűs T. Quantitative comparison of ABC membrane protein type I exporter structures in a standardized way. Comput Struct Biotechnol J 2018; 16:396-403. [PMID: 30425800 PMCID: PMC6222291 DOI: 10.1016/j.csbj.2018.10.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/12/2018] [Accepted: 10/13/2018] [Indexed: 12/24/2022] Open
Abstract
An increasing number of ABC membrane protein structures are determined by cryo-electron microscopy and X-ray crystallography, consequently identifying differences between their conformations has become an arising issue. Therefore, we propose to define standardized measures for ABC Type I exporter structure characterization. We set conformational vectors, conftors, which describe the relative orientation of domains and can highlight structural differences. In addition, continuum electrostatics calculations were performed to characterize the energetics of membrane insertion illuminating functionally crucial regions. In summary, the proposed metrics contribute to deeper understanding of ABC membrane proteins' structural features, structure validation, and analysis of movements observed in a molecular dynamics trajectory. Moreover, the concept of standardized metrics can be applied not only to ABC membrane protein structures (http://conftors.hegelab.org).
Collapse
Key Words
- ABC proteins
- ABC, ATP binding cassette
- CFTR, cystic fibrosis transmembrane conductance regulator
- CG, coarse grained
- CH, coupling helix
- COG, center of geometry
- ICD, intracellular domain
- Membrane proteins
- NBD, nucleotide binding domain
- Quantitative structural properties
- Structure comparison
- Structure validation
- TH, transmembrane helix
- TM, transmembrane
- TMD, transmembrane domain
Collapse
Affiliation(s)
- Georgina Csizmadia
- MTA-SE Molecular Biophysics Research Group, Hungarian Academy of Sciences, Budapest, Hungary.,Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Bianka Farkas
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary.,Faculty of Information Technology, Pázmány Péter Catholic University, Budapest, Hungary
| | - Zoltán Spagina
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary.,Faculty of Information Technology, Pázmány Péter Catholic University, Budapest, Hungary
| | - Hedvig Tordai
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Tamás Hegedűs
- MTA-SE Molecular Biophysics Research Group, Hungarian Academy of Sciences, Budapest, Hungary.,Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
24
|
Young JY, Westbrook JD, Feng Z, Peisach E, Persikova I, Sala R, Sen S, Berrisford JM, Swaminathan GJ, Oldfield TJ, Gutmanas A, Igarashi R, Armstrong DR, Baskaran K, Chen L, Chen M, Clark AR, Di Costanzo L, Dimitropoulos D, Gao G, Ghosh S, Gore S, Guranovic V, Hendrickx PMS, Hudson BP, Ikegawa Y, Kengaku Y, Lawson CL, Liang Y, Mak L, Mukhopadhyay A, Narayanan B, Nishiyama K, Patwardhan A, Sahni G, Sanz-García E, Sato J, Sekharan MR, Shao C, Smart OS, Tan L, van Ginkel G, Yang H, Zhuravleva MA, Markley JL, Nakamura H, Kurisu G, Kleywegt GJ, Velankar S, Berman HM, Burley SK. Worldwide Protein Data Bank biocuration supporting open access to high-quality 3D structural biology data. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2018; 2018:4844086. [PMID: 29688351 PMCID: PMC5804564 DOI: 10.1093/database/bay002] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 01/02/2018] [Indexed: 11/24/2022]
Abstract
The Protein Data Bank (PDB) is the single global repository for experimentally determined 3D structures of biological macromolecules and their complexes with ligands. The worldwide PDB (wwPDB) is the international collaboration that manages the PDB archive according to the FAIR principles: Findability, Accessibility, Interoperability and Reusability. The wwPDB recently developed OneDep, a unified tool for deposition, validation and biocuration of structures of biological macromolecules. All data deposited to the PDB undergo critical review by wwPDB Biocurators. This article outlines the importance of biocuration for structural biology data deposited to the PDB and describes wwPDB biocuration processes and the role of expert Biocurators in sustaining a high-quality archive. Structural data submitted to the PDB are examined for self-consistency, standardized using controlled vocabularies, cross-referenced with other biological data resources and validated for scientific/technical accuracy. We illustrate how biocuration is integral to PDB data archiving, as it facilitates accurate, consistent and comprehensive representation of biological structure data, allowing efficient and effective usage by research scientists, educators, students and the curious public worldwide. Database URL: https://www.wwpdb.org/
Collapse
Affiliation(s)
- Jasmine Y Young
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - John D Westbrook
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Zukang Feng
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Ezra Peisach
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Irina Persikova
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Raul Sala
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Sanchayita Sen
- Protein Data Bank in Europe (PDBe), European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | - John M Berrisford
- Protein Data Bank in Europe (PDBe), European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | - G Jawahar Swaminathan
- Protein Data Bank in Europe (PDBe), European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | - Thomas J Oldfield
- Protein Data Bank in Europe (PDBe), European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | - Aleksandras Gutmanas
- Protein Data Bank in Europe (PDBe), European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | - Reiko Igarashi
- PDBj, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita-shi, Osaka 565-0871, Japan
| | - David R Armstrong
- Protein Data Bank in Europe (PDBe), European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | - Kumaran Baskaran
- BMRB, BioMagResBank, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | - Li Chen
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Minyu Chen
- PDBj, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita-shi, Osaka 565-0871, Japan
| | - Alice R Clark
- Protein Data Bank in Europe (PDBe), European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | - Luigi Di Costanzo
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Dimitris Dimitropoulos
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Guanghua Gao
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Sutapa Ghosh
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Swanand Gore
- Protein Data Bank in Europe (PDBe), European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | - Vladimir Guranovic
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Pieter M S Hendrickx
- Protein Data Bank in Europe (PDBe), European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | - Brian P Hudson
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Yasuyo Ikegawa
- PDBj, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita-shi, Osaka 565-0871, Japan
| | - Yumiko Kengaku
- PDBj, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita-shi, Osaka 565-0871, Japan
| | - Catherine L Lawson
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Yuhe Liang
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Lora Mak
- Protein Data Bank in Europe (PDBe), European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | - Abhik Mukhopadhyay
- Protein Data Bank in Europe (PDBe), European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | - Buvaneswari Narayanan
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Kayoko Nishiyama
- PDBj, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita-shi, Osaka 565-0871, Japan
| | - Ardan Patwardhan
- Protein Data Bank in Europe (PDBe), European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | - Gaurav Sahni
- Protein Data Bank in Europe (PDBe), European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | - Eduardo Sanz-García
- Protein Data Bank in Europe (PDBe), European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | - Junko Sato
- PDBj, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita-shi, Osaka 565-0871, Japan
| | - Monica R Sekharan
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Chenghua Shao
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Oliver S Smart
- Protein Data Bank in Europe (PDBe), European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | - Lihua Tan
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Glen van Ginkel
- Protein Data Bank in Europe (PDBe), European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | - Huanwang Yang
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Marina A Zhuravleva
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - John L Markley
- BMRB, BioMagResBank, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | - Haruki Nakamura
- PDBj, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita-shi, Osaka 565-0871, Japan
| | - Genji Kurisu
- PDBj, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita-shi, Osaka 565-0871, Japan
| | - Gerard J Kleywegt
- Protein Data Bank in Europe (PDBe), European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | - Sameer Velankar
- Protein Data Bank in Europe (PDBe), European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | - Helen M Berman
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Stephen K Burley
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA.,RCSB Protein Data Bank, San Diego Supercomputer Center and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA.,Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA.,Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, Little Albany St, New Brunswick, NJ 08901, USA
| |
Collapse
|
25
|
Katner SJ, Johnson WE, Peterson EJ, Page P, Farrell NP. Comparison of Metal-Ammine Compounds Binding to DNA and Heparin. Glycans as Ligands in Bioinorganic Chemistry. Inorg Chem 2018; 57:3116-3125. [PMID: 29473748 DOI: 10.1021/acs.inorgchem.7b03043] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We present spectroscopic and biophysical approaches to examine the affinity of metal-ammine coordination complexes for heparin as a model for heparan sulfate (HS). Similar to nucleic acids, the highly anionic nature of heparin means it is associated in vivo with physiologically relevant cations, and this work extends their bioinorganic chemistry to substitution-inert metal-ammine compounds (M). Both indirect and direct assays were developed. M compounds are competitive inhibitors of methylene blue (MB)-heparin binding, and the change in the absorbance of the dye in the presence or absence of heparin can be used as an indirect reporter of M-heparin affinity. A second indirect assay uses the change in fluorescence of TAMRA-R9, a nonaarginine linked to a fluorescent TAMRA moiety, as a reporter for M-heparin binding. Direct assays are surface plasmon resonance (SPR) and isothermal titration calorimetry (ITC). The Kd values for TriplatinNC-heparin varied to some extent depending on the technique from 33.1 ± 2 nM (ITC) to 66.4 ± 1.3 nM (MB absorbance assay) and 340 ± 30 nM (SPR). The differences are explained by the nature of the technique and the use of heparin of differing molecular weight. Indirect probes using the displacement of ethidium bromide from DNA or, separately, fluorescently labeled oligonucleotide (DNA-Fl) can measure the relative affinities of heparin and DNA for M compounds. These assays showed essentially equivalent affinity of TriplatinNC for heparin and DNA. The generality of these methods was confirmed with a series of mononuclear cobalt, ruthenium, and platinum compounds with significantly lower affinity because of their smaller overall positive charge but in the order [Co(NH3)6]3+ > [Ru(NH3)6]3+ > [Pt(NH3)4]2+. The results on heparin can be extrapolated to glycosoaminoglycans such as HS, emphasizing the relevance of glycan interactions in understanding the biological properties of coordination compounds and the utility of the metalloglycomics concept for extending bioinorganic chemistry to this class of important biomolecules.
Collapse
Affiliation(s)
- Samantha J Katner
- Department of Chemistry and Massey Cancer Center , Virginia Commonwealth University (VCU) , Richmond , Virginia 23284 , United States
| | - Wyatt E Johnson
- Department of Chemistry and Massey Cancer Center , Virginia Commonwealth University (VCU) , Richmond , Virginia 23284 , United States
| | - Erica J Peterson
- Department of Chemistry and Massey Cancer Center , Virginia Commonwealth University (VCU) , Richmond , Virginia 23284 , United States
| | - Phillip Page
- Reichert Technologies , Depew , New York 14043 , United States
| | - Nicholas P Farrell
- Department of Chemistry and Massey Cancer Center , Virginia Commonwealth University (VCU) , Richmond , Virginia 23284 , United States
| |
Collapse
|
26
|
Gore S, Sanz García E, Hendrickx PMS, Gutmanas A, Westbrook JD, Yang H, Feng Z, Baskaran K, Berrisford JM, Hudson BP, Ikegawa Y, Kobayashi N, Lawson CL, Mading S, Mak L, Mukhopadhyay A, Oldfield TJ, Patwardhan A, Peisach E, Sahni G, Sekharan MR, Sen S, Shao C, Smart OS, Ulrich EL, Yamashita R, Quesada M, Young JY, Nakamura H, Markley JL, Berman HM, Burley SK, Velankar S, Kleywegt GJ. Validation of Structures in the Protein Data Bank. Structure 2017; 25:1916-1927. [PMID: 29174494 PMCID: PMC5718880 DOI: 10.1016/j.str.2017.10.009] [Citation(s) in RCA: 173] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 09/08/2017] [Accepted: 10/27/2017] [Indexed: 11/01/2022]
Abstract
The Worldwide PDB recently launched a deposition, biocuration, and validation tool: OneDep. At various stages of OneDep data processing, validation reports for three-dimensional structures of biological macromolecules are produced. These reports are based on recommendations of expert task forces representing crystallography, nuclear magnetic resonance, and cryoelectron microscopy communities. The reports provide useful metrics with which depositors can evaluate the quality of the experimental data, the structural model, and the fit between them. The validation module is also available as a stand-alone web server and as a programmatically accessible web service. A growing number of journals require the official wwPDB validation reports (produced at biocuration) to accompany manuscripts describing macromolecular structures. Upon public release of the structure, the validation report becomes part of the public PDB archive. Geometric quality scores for proteins in the PDB archive have improved over the past decade.
Collapse
Affiliation(s)
- Swanand Gore
- Protein Data Bank in Europe (PDBe), European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Eduardo Sanz García
- Protein Data Bank in Europe (PDBe), European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Pieter M S Hendrickx
- Protein Data Bank in Europe (PDBe), European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Aleksandras Gutmanas
- Protein Data Bank in Europe (PDBe), European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK.
| | - John D Westbrook
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Huanwang Yang
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Zukang Feng
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Kumaran Baskaran
- BMRB, BioMagResBank, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - John M Berrisford
- Protein Data Bank in Europe (PDBe), European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Brian P Hudson
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Yasuyo Ikegawa
- PDBj, Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Naohiro Kobayashi
- PDBj, Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Catherine L Lawson
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Steve Mading
- BMRB, BioMagResBank, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Lora Mak
- Protein Data Bank in Europe (PDBe), European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Abhik Mukhopadhyay
- Protein Data Bank in Europe (PDBe), European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Thomas J Oldfield
- Protein Data Bank in Europe (PDBe), European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Ardan Patwardhan
- Protein Data Bank in Europe (PDBe), European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Ezra Peisach
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Gaurav Sahni
- Protein Data Bank in Europe (PDBe), European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Monica R Sekharan
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Sanchayita Sen
- Protein Data Bank in Europe (PDBe), European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Chenghua Shao
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Oliver S Smart
- Protein Data Bank in Europe (PDBe), European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Eldon L Ulrich
- BMRB, BioMagResBank, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Reiko Yamashita
- PDBj, Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Martha Quesada
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Jasmine Y Young
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Haruki Nakamura
- PDBj, Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - John L Markley
- BMRB, BioMagResBank, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Helen M Berman
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Stephen K Burley
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; RCSB Protein Data Bank, San Diego Supercomputer Center, University of California San Diego, La Jolla, CA 92093, USA; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA; Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08903, USA
| | - Sameer Velankar
- Protein Data Bank in Europe (PDBe), European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Gerard J Kleywegt
- Protein Data Bank in Europe (PDBe), European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| |
Collapse
|
27
|
Klingeborn M, Dismuke WM, Bowes Rickman C, Stamer WD. Roles of exosomes in the normal and diseased eye. Prog Retin Eye Res 2017; 59:158-177. [PMID: 28465248 PMCID: PMC5537591 DOI: 10.1016/j.preteyeres.2017.04.004] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 04/28/2017] [Accepted: 04/28/2017] [Indexed: 12/21/2022]
Abstract
Exosomes are nanometer-sized vesicles that are released by cells in a controlled fashion and mediate a plethora of extra- and intercellular activities. Some key functions of exosomes include cell-cell communication, immune modulation, extracellular matrix turnover, stem cell division/differentiation, neovascularization and cellular waste removal. While much is known about their role in cancer, exosome function in the many specialized tissues of the eye is just beginning to undergo rigorous study. Here we review current knowledge of exosome function in the visual system in the context of larger bodies of data from other fields, in both health and disease. Additionally, we discuss recent advances in the exosome field including use of exosomes as a therapeutic vehicle, exosomes as a source of biomarkers for disease, plus current standards for isolation and validation of exosome populations. Finally, we use this foundational information about exosomes in the eye as a platform to identify areas of opportunity for future research studies.
Collapse
Affiliation(s)
- Mikael Klingeborn
- Department of Ophthalmology, Duke Eye Center, Duke University, Durham, NC 27710, USA
| | - W Michael Dismuke
- Department of Ophthalmology, Duke Eye Center, Duke University, Durham, NC 27710, USA
| | - Catherine Bowes Rickman
- Department of Ophthalmology, Duke Eye Center, Duke University, Durham, NC 27710, USA; Department of Cell Biology, Duke University, Durham, NC 27710, USA
| | - W Daniel Stamer
- Department of Ophthalmology, Duke Eye Center, Duke University, Durham, NC 27710, USA; Department of Biomedical Engineering, Duke University, Durham, NC 27710, USA.
| |
Collapse
|
28
|
Shao C, Yang H, Westbrook JD, Young JY, Zardecki C, Burley SK. Multivariate Analyses of Quality Metrics for Crystal Structures in the PDB Archive. Structure 2017; 25:458-468. [PMID: 28216043 DOI: 10.1016/j.str.2017.01.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Revised: 01/19/2017] [Accepted: 01/29/2017] [Indexed: 11/18/2022]
Abstract
Following deployment of an augmented validation system by the Worldwide Protein Data Bank (wwPDB) partnership, the quality of crystal structures entering the PDB has improved. Of significance are improvements in quality measures now prominently displayed in the wwPDB validation report. Comparisons of PDB depositions made before and after introduction of the new reporting system show improvements in quality measures relating to pairwise atom-atom clashes, side-chain torsion angle rotamers, and local agreement between the atomic coordinate structure model and experimental electron density data. These improvements are largely independent of resolution limit and sample molecular weight. No significant improvement in the quality of associated ligands was observed. Principal component analysis revealed that structure quality could be summarized with three measures (Rfree, real-space R factor Z score, and a combined molecular geometry quality metric), which can in turn be reduced to a single overall quality metric readily interpretable by all PDB archive users.
Collapse
Affiliation(s)
- Chenghua Shao
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers University, The State University of New Jersey, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA.
| | - Huanwang Yang
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers University, The State University of New Jersey, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - John D Westbrook
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers University, The State University of New Jersey, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA; Institute for Quantitative Biomedicine, Rutgers University, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Jasmine Y Young
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers University, The State University of New Jersey, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Christine Zardecki
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers University, The State University of New Jersey, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Stephen K Burley
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers University, The State University of New Jersey, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA; Institute for Quantitative Biomedicine, Rutgers University, The State University of New Jersey, Piscataway, NJ 08854, USA; Rutgers Cancer Institute of New Jersey, Rutgers University, The State University of New Jersey, New Brunswick, NJ 08903, USA; RCSB Protein Databank, San Diego Supercomputer Center, University of California San Diego, La Jolla, CA 92093, USA; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
29
|
Ardon F, Markello RD, Hu L, Deutsch ZI, Tung CK, Wu M, Suarez SS. Dynamics of Bovine Sperm Interaction with Epithelium Differ Between Oviductal Isthmus and Ampulla. Biol Reprod 2016; 95:90. [PMID: 27605344 PMCID: PMC5176364 DOI: 10.1095/biolreprod.116.140632] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 09/01/2016] [Indexed: 11/04/2022] Open
Abstract
In mammals, many sperm that reach the oviduct are held in a reservoir by binding to epithelium. To leave the reservoir, sperm detach from the epithelium; however, they may bind and detach again as they ascend into the ampulla toward oocytes. In order to elucidate the nature of binding interactions along the oviduct, we compared the effects of bursts of strong fluid flow (as would be caused by oviductal contractions), heparin, and hyperactivation on detachment of bovine sperm bound in vitro to epithelium on intact folds of isthmic and ampullar mucosa. Intact folds of oviductal mucosa were used to represent the strong attachments of epithelial cells to each other and to underlying connective tissue that exist in vivo. Effects of heparin on binding were tested because heparin binds to the Binder of SPerm (BSP) proteins that attach sperm to oviductal epithelium. Sperm bound by their heads to beating cilia on both isthmic and ampullar epithelia and could not be detached by strong bursts of fluid flow. Addition of heparin immediately detached sperm from isthmic epithelium but not ampullar epithelium. Addition of 4-aminopyridine immediately stimulated hyperactivation of sperm but did not detach them from isthmic or ampullar epithelium unless added with heparin. These observations indicate that the nature of binding of sperm to ampullar epithelium differs from that of binding to isthmic epithelium; specifically, sperm bound to isthmic epithelium can be detached by heparin alone, while sperm bound to ampullar epithelium requires both heparin and hyperactivation to detach from the epithelium.
Collapse
Affiliation(s)
- Florencia Ardon
- Department of Biomedical Sciences, Cornell University, Ithaca, New York
| | - Ross D Markello
- Department of Biomedical Sciences, Cornell University, Ithaca, New York
| | - Lian Hu
- Department of Biomedical Sciences, Cornell University, Ithaca, New York Family Planning Research Institute, Huazhong University of Science and Technology, Wuhan, China
| | - Zarah I Deutsch
- Department of Biomedical Sciences, Cornell University, Ithaca, New York
| | - Chih-Kuan Tung
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York
| | - Mingming Wu
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York
| | - Susan S Suarez
- Department of Biomedical Sciences, Cornell University, Ithaca, New York
| |
Collapse
|
30
|
Mulloy B, Hogwood J, Gray E, Lever R, Page CP. Pharmacology of Heparin and Related Drugs. Pharmacol Rev 2016; 68:76-141. [PMID: 26672027 DOI: 10.1124/pr.115.011247] [Citation(s) in RCA: 227] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Heparin has been recognized as a valuable anticoagulant and antithrombotic for several decades and is still widely used in clinical practice for a variety of indications. The anticoagulant activity of heparin is mainly attributable to the action of a specific pentasaccharide sequence that acts in concert with antithrombin, a plasma coagulation factor inhibitor. This observation has led to the development of synthetic heparin mimetics for clinical use. However, it is increasingly recognized that heparin has many other pharmacological properties, including but not limited to antiviral, anti-inflammatory, and antimetastatic actions. Many of these activities are independent of its anticoagulant activity, although the mechanisms of these other activities are currently less well defined. Nonetheless, heparin is being exploited for clinical uses beyond anticoagulation and developed for a wide range of clinical disorders. This article provides a "state of the art" review of our current understanding of the pharmacology of heparin and related drugs and an overview of the status of development of such drugs.
Collapse
Affiliation(s)
- Barbara Mulloy
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., C.P.P.); National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, United Kingdom (J.H., E.G.); and University College London School of Pharmacy, London, United Kingdom (R.L.)
| | - John Hogwood
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., C.P.P.); National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, United Kingdom (J.H., E.G.); and University College London School of Pharmacy, London, United Kingdom (R.L.)
| | - Elaine Gray
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., C.P.P.); National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, United Kingdom (J.H., E.G.); and University College London School of Pharmacy, London, United Kingdom (R.L.)
| | - Rebecca Lever
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., C.P.P.); National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, United Kingdom (J.H., E.G.); and University College London School of Pharmacy, London, United Kingdom (R.L.)
| | - Clive P Page
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., C.P.P.); National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, United Kingdom (J.H., E.G.); and University College London School of Pharmacy, London, United Kingdom (R.L.)
| |
Collapse
|
31
|
Manissorn J, Thongboonkerd V. Characterizations of heparin-binding proteins in human urine by affinity purification-mass spectrometry and defining “L-x(2,3)-A-x(0,1)-L” as a novel heparin-binding motif. J Proteomics 2016; 142:53-61. [DOI: 10.1016/j.jprot.2016.04.043] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 04/16/2016] [Accepted: 04/28/2016] [Indexed: 01/10/2023]
|
32
|
Gesslbauer B, Derler R, Handwerker C, Seles E, Kungl AJ. Exploring the glycosaminoglycan-protein interaction network by glycan-mediated pull-down proteomics. Electrophoresis 2016; 37:1437-47. [PMID: 26970331 DOI: 10.1002/elps.201600043] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 02/29/2016] [Accepted: 02/29/2016] [Indexed: 01/13/2023]
Abstract
Glycosaminoglycans (GAGs) are linear, highly sulfated polysaccharides expressed by almost all animal cells. They occur as soluble molecules, or form proteoglycans by being O-linked to different core proteins on the cell surface and in the extracellular matrix. Due to their ability to interact with diverse proteins and to modulate their biologic functions, GAGs are main drivers of mammalian biology. However, to the present day, the human GAG binding proteome has only been insufficiently explored. The aim of this study was therefore to investigate the human GAG binding proteome of different sources by using the major GAG classes as ligands, and to explore the GAG-binding selectivity of the human plasma proteome. For this purpose, proteins were pulled down from immobilized low molecular weight heparin, heparan sulfate, and dermatan sulfate under different conditions and were identified by nano-LC/MS². Four hundred and fifty eight human GAG binding proteins have been identified, whereas plasma proteins showed clear differences in their GAG-binding specificity/selectivity and affinity. We were able to differentiate between proteins that bound to all three glycan ligands and proteins that showed selective binding to one or two glycan ligands. Moreover, step-gradient salt elution revealed different binding affinities toward different GAG ligands. On top of proteins with well-known GAG-binding properties we have identified formerly unknown GAG binders. Functional annotation of the identified GAG-binding proteins showed clusters of proteins that are involved in a variety of biological processes. The method described here is well suited for identifying GAG-binding proteins and for comparing human subproteomes with respect to binding to different GAG classes.
Collapse
Affiliation(s)
- Bernd Gesslbauer
- Institute of Pharmaceutical Sciences, University of Graz, Graz, Austria
| | - Rupert Derler
- Institute of Pharmaceutical Sciences, University of Graz, Graz, Austria
| | | | - Elisabeth Seles
- Institute of Pharmaceutical Sciences, University of Graz, Graz, Austria
| | - Andreas J Kungl
- Institute of Pharmaceutical Sciences, University of Graz, Graz, Austria.,ProtAffin Biotechnologie AG, Graz, Austria
| |
Collapse
|
33
|
The agmatine-containing poly(amidoamine) polymer AGMA1 binds cell surface heparan sulfates and prevents attachment of mucosal human papillomaviruses. Antimicrob Agents Chemother 2015; 59:5250-9. [PMID: 26077258 DOI: 10.1128/aac.00443-15] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 06/08/2015] [Indexed: 12/25/2022] Open
Abstract
The agmatine-containing poly(amidoamine) polymer AGMA1 was recently shown to inhibit the infectivity of several viruses, including human papillomavirus 16 (HPV-16), that exploit cell surface heparan sulfate proteoglycans (HSPGs) as attachment receptors. The aim of this work was to assess the antiviral activity of AGMA1 and its spectrum of activity against a panel of low-risk and high-risk HPVs and to elucidate its mechanism of action. AGMA1 was found to be a potent inhibitor of mucosal HPV types (i.e., types 16, 31, 45, and 6) in pseudovirus-based neutralization assays. The 50% inhibitory concentration was between 0.34 μg/ml and 0.73 μg/ml, and no evidence of cytotoxicity was observed. AGMA1 interacted with immobilized heparin and with cellular heparan sulfates, exerting its antiviral action by preventing virus attachment to the cell surface. The findings from this study indicate that AGMA1 is a leading candidate compound for further development as an active ingredient of a topical microbicide against HPV and other sexually transmitted viral infections.
Collapse
|
34
|
Raddum AM, Hollås H, Shumilin IA, Henklein P, Kretsinger R, Fossen T, Vedeler A. The native structure of annexin A2 peptides in hydrophilic environment determines their anti-angiogenic effects. Biochem Pharmacol 2015; 95:1-15. [PMID: 25772737 DOI: 10.1016/j.bcp.2015.02.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 02/27/2015] [Indexed: 01/23/2023]
Abstract
The progression of aggressive cancer occurs via angiogenesis and metastasis makes these processes important targets for the development of anti-cancer agents. However, recent studies have raised the concern that selective inhibition of angiogenesis results in a switch towards increased tumour growth and metastasis. Since Annexin A2 (AnxA2) is involved in both angiogenesis and metastasis, it may serve as an ideal target for the simultaneous inhibition of both processes. Based on the discovery that domains I (D(I)) and IV (D(IV)) of AnxA2 are potent inhibitors of angiogenesis, we designed seven peptides derived from these domains based on AnxA2 crystal structures. The peptides were expressed as fusion peptides to increase their folding and solubility. Light scattering, far-UV circular dichroism and thermal transition analyses were employed to investigate their aggregation tendencies, α-helical propensity and stability, respectively. 2,2,2-trifluoroethanol (50%) increased the α-helical propensities of all peptides, indicating that they may favour a hydrophobic environment, but did not enhance their thermal stability. D(I)-P2 appears to be the most stable and folded peptide in a hydrophilic environment. The secondary structure of D(I)-P2 was confirmed by nuclear magnetic resonance spectra. The effect of the seven AnxA2 peptides on the formation and integrity of capillary-like networks was studied in a co-culture system mimicking many of the angiogenesis-related processes. Notably, D(I)-P2 inhibited significantly network formation in this system, indicating that the folded D(I)-P2 peptide interferes with vascular endothelial growth factor-dependent pro-angiogenic processes. Thus, this peptide has the potential of being developed further as an anti-angiogenic drug.
Collapse
Affiliation(s)
| | | | | | | | | | - Torgils Fossen
- Centre for Pharmacy and Department of Chemistry, University of Bergen, Norway
| | - Anni Vedeler
- Department of Biomedicine, University of Bergen.
| |
Collapse
|
35
|
Monteiro ME, Sarmento MJ, Fernandes F. Role of calcium in membrane interactions by PI(4,5)P₂-binding proteins. Biochem Soc Trans 2014; 42:1441-6. [PMID: 25233429 DOI: 10.1042/bst20140149] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Ca²⁺ and phosphatidylinositol 4,5-bisphosphate [PI(4,5)P₂] are key agents in membrane-associated signalling events. Their temporal and spatial regulation is crucial for activation or recruitment of proteins in the plasma membrane. In fact, the interaction of several signalling proteins with PI(4,5)P₂ has been shown to be tightly regulated and dependent on the presence of Ca²⁺, with co-operative binding in some cases. In these proteins, PI(4,5)P₂ and Ca²⁺ binding typically occurs at different binding sites. In addition, several PI(4,5)P₂-binding proteins are known targets of calmodulin (CaM), which, depending on the presence of calcium, can compete with PI(4,5)P₂ for protein interaction, translating Ca²⁺ transient microdomains into variations of PI(4,5)P₂ lateral organization in time and space. The present review highlights different examples of calcium-dependent PI(4,5)P₂-binding proteins and discusses the possible impact of this dual regulation on fine-tuning of protein activity by triggering target membrane binding in the presence of subtle changes in the levels of calcium or PI(4,5)P₂.
Collapse
Affiliation(s)
- Marina E Monteiro
- *Centro de Química-Física Molecular and IN-Instituto de Nanociência e Nanotecnologia, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Maria J Sarmento
- *Centro de Química-Física Molecular and IN-Instituto de Nanociência e Nanotecnologia, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Fábio Fernandes
- *Centro de Química-Física Molecular and IN-Instituto de Nanociência e Nanotecnologia, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
36
|
Mottarella SE, Beglov D, Beglova N, Nugent MA, Kozakov D, Vajda S. Docking server for the identification of heparin binding sites on proteins. J Chem Inf Model 2014; 54:2068-78. [PMID: 24974889 PMCID: PMC4184157 DOI: 10.1021/ci500115j] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Many proteins of widely differing functionality and structure are capable of binding heparin and heparan sulfate. Since crystallizing protein-heparin complexes for structure determination is generally difficult, computational docking can be a useful approach for understanding specific interactions. Previous studies used programs originally developed for docking small molecules to well-defined pockets, rather than for docking polysaccharides to highly charged shallow crevices that usually bind heparin. We have extended the program PIPER and the automated protein-protein docking server ClusPro to heparin docking. Using a molecular mechanics energy function for scoring and the fast Fourier transform correlation approach, the method generates and evaluates close to a billion poses of a heparin tetrasaccharide probe. The docked structures are clustered using pairwise root-mean-square deviations as the distance measure. It was shown that clustering of heparin molecules close to each other but having different orientations and selecting the clusters with the highest protein-ligand contacts reliably predicts the heparin binding site. In addition, the centers of the five most populated clusters include structures close to the native orientation of the heparin. These structures can provide starting points for further refinement by methods that account for flexibility such as molecular dynamics. The heparin docking method is available as an advanced option of the ClusPro server at http://cluspro.bu.edu/ .
Collapse
Affiliation(s)
- Scott E Mottarella
- Program in Bioinformatics and ‡Department of Biomedical Engineering, Boston University , 44 Cummington Street, Boston, Massachusetts 02215, United States
| | | | | | | | | | | |
Collapse
|
37
|
Rego J, Crisp J, Moura A, Nouwens A, Li Y, Venus B, Corbet N, Corbet D, Burns B, Boe-Hansen G, McGowan M. Seminal plasma proteome of electroejaculated Bos indicus bulls. Anim Reprod Sci 2014; 148:1-17. [DOI: 10.1016/j.anireprosci.2014.04.016] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 04/16/2014] [Accepted: 04/30/2014] [Indexed: 12/30/2022]
|
38
|
Zhang F, Liang X, Beaudet JM, Lee Y, Linhardt RJ. The Effects of Metal Ions on Heparin/Heparin Sulfate-Protein Interactions. ACTA ACUST UNITED AC 2014; 1. [PMID: 28890953 DOI: 10.19104/jbtr.2014.101] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Heparin/heparin sulfate (HS) interacts with a number of proteins thereby playing an essential role in the regulation of many physiological processes. The understanding of heparin/HS-protein interactions at the molecular level is of fundamental importance to biology and will aid in the development of highly specific glycan-based therapeutic agents. The heparin-binding proteins (HBPs) interact with sulfated domains of heparin/HS chains primarily through ionic attraction between negatively charged groups in HS/heparin chains and basic amino acid residues within the protein. Reports in literature have been shown that heparin molecules have a high affinity for a wide range of metal ions. In the present study, we used surface plasmon resonance (SPR) to study the effects of metal ions (under physiological and non-physiological concentrations) on heparin/HS-protein interactions. The results showed that under non-physiological of metal ion concentration, different metal ions showed different effects on heparin binding to fibroblast growth factor-1 (FGF1) and interleakin-7 (IL7). While the effects of individual metal ion at physiological concentrations had little impact on protein binding, the mixed metal ions reduced the FGF1/heparin or IL7/heparin binding affinity, changing its binding profile.
Collapse
Affiliation(s)
- Fuming Zhang
- Department of Chemical and Biological Engineering, Zhejiang Gongshang, University, Hangzhou 310025, China
| | - Xinle Liang
- Department of Bioengineering, School of Food Science and Biotechnology, Zhejiang Gongshang, University, Hangzhou 310025, China
| | - Julie M Beaudet
- Department of Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Yujin Lee
- Department of Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Robert J Linhardt
- Department of Chemical and Biological Engineering, Zhejiang Gongshang, University, Hangzhou 310025, China.,Department of Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.,Departments of Chemistry and Chemical Biology and Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| |
Collapse
|
39
|
Abstract
Numerous proteins, including cytokines and chemokines, enzymes and enzyme inhibitors, extracellular matrix proteins, and membrane receptors, bind heparin. Although they are traditionally classified as heparin-binding proteins, under normal physiological conditions these proteins actually interact with the heparan sulfate chains of one or more membrane or extracellular proteoglycans. Thus, they are more appropriately classified as heparan sulfate-binding proteins (HSBPs). This review provides an overview of the various modes of interaction between heparan sulfate and HSBPs, emphasizing biochemical and structural insights that improve our understanding of the many biological functions of heparan sulfate.
Collapse
Affiliation(s)
- Ding Xu
- Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, California 92093; ,
| | | |
Collapse
|
40
|
Gesslbauer B, Theuer M, Schweiger D, Adage T, Kungl AJ. New targets for glycosaminoglycans and glycosaminoglycans as novel targets. Expert Rev Proteomics 2013; 10:77-95. [PMID: 23414361 DOI: 10.1586/epr.12.75] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Biological functions of a variety of proteins are mediated via their interaction with glycosaminoglycans (GAGs). The structural diversity within the wide GAG landscape provides individual interaction sites for a multitude of proteins involved in several pathophysiological processes. This 'GAG angle' of such proteins as well as their specific GAG ligands give rise to novel therapeutic concepts for drug development. Current glycomic technologies to elucidate the glycan structure-function relationships, methods to investigate the selectivity and specificity of glycan-protein interactions and existing therapeutic approaches to interfere with GAG-protein interactions are discussed.
Collapse
Affiliation(s)
- Bernd Gesslbauer
- ProtAffin Biotechnologie AG, Reininghausstrasse 13a, 8020 Graz, Austria
| | | | | | | | | |
Collapse
|
41
|
Annexin A2 and S100A10 regulate human papillomavirus type 16 entry and intracellular trafficking in human keratinocytes. J Virol 2013; 87:7502-15. [PMID: 23637395 DOI: 10.1128/jvi.00519-13] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Human papillomaviruses (HPVs) cause benign and malignant tumors of the mucosal and cutaneous epithelium. The initial events regulating HPV infection impact the establishment of viral persistence, which is requisite for malignant progression of HPV-infected lesions. However, the precise mechanisms involved in HPV entry into host cells, including the cellular factors regulating virus uptake, are not clearly defined. We show that HPV16 exposure to human keratinocytes initiates epidermal growth factor receptor (EGFR)-dependent Src protein kinase activation that results in phosphorylation and extracellular translocation of annexin A2 (AnxA2). HPV16 particles interact with AnxA2 in association with S100A10 as a heterotetramer at the cell surface in a Ca(2+)-dependent manner, and the interaction appears to involve heparan-sulfonated proteoglycans. We show multiple lines of evidence that this interaction promotes virus uptake into host cells. An antibody to AnxA2 prevents HPV16 internalization, whereas an antibody to S100A10 blocks infection at a late endosomal/lysosomal site. These results suggest that AnxA2 and S100A10 have separate roles during HPV16 binding, entry, and trafficking. Our data additionally imply that AnxA2 and S100A10 may be involved in regulating the intracellular trafficking of virus particles prior to nuclear delivery of the viral genome.
Collapse
|
42
|
Domains I and IV of annexin A2 affect the formation and integrity of in vitro capillary-like networks. PLoS One 2013; 8:e60281. [PMID: 23555942 PMCID: PMC3612057 DOI: 10.1371/journal.pone.0060281] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 02/24/2013] [Indexed: 12/19/2022] Open
Abstract
Annexin A2 (AnxA2) is a widely expressed multifunctional protein found in different cellular compartments. In spite of lacking a hydrophobic signal peptide, AnxA2 is found at the cell surface of endothelial cells, indicative of a role in angiogenesis. Increased extracellular levels of AnxA2 in tumours correlate with neoangiogenesis, metastasis and poor prognosis. We hypothesised that extracellular AnxA2 may contribute to angiogenesis by affecting endothelial cell-cell interactions and motility. To address this question, we studied the effect of heterotetrameric and monomeric forms of AnxA2, as well as its two soluble domains on the formation and maintenance of capillary-like structures by using an in vitro co-culture system consisting of endothelial and smooth muscle cells. In particular, addition of purified domains I and IV of AnxA2 potently inhibited the vascular endothelial growth factor (VEGF)-dependent formation of the capillary-like networks in a dose-dependent manner. In addition, these AnxA2 domains disrupted endothelial cell-cell contacts in preformed capillary-like networks, resulting in the internalisation of vascular endothelial (VE)-cadherin and the formation of VE-cadherin-containing filopodia-like structures between the endothelial cells, suggesting increased cell motility. Addition of monoclonal AnxA2 antibodies, in particular against Tyr23 phosphorylated AnxA2, also strongly inhibited network formation in the co-culture system. These results suggest that extracellular AnxA2, most likely in its Tyr phosphorylated form, plays a pivotal role in angiogenesis. The exogenously added AnxA2 domains most likely mediate their effects by competing with endogenous AnxA2 for extracellular factors necessary for the initiation and maintenance of angiogenesis, such as those involved in the formation/integrity of cell-cell contacts.
Collapse
|
43
|
Annexin A2 heterotetramer: structure and function. Int J Mol Sci 2013; 14:6259-305. [PMID: 23519104 PMCID: PMC3634455 DOI: 10.3390/ijms14036259] [Citation(s) in RCA: 222] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 03/02/2013] [Accepted: 03/05/2013] [Indexed: 12/12/2022] Open
Abstract
Annexin A2 is a pleiotropic calcium- and anionic phospholipid-binding protein that exists as a monomer and as a heterotetrameric complex with the plasminogen receptor protein, S100A10. Annexin A2 has been proposed to play a key role in many processes including exocytosis, endocytosis, membrane organization, ion channel conductance, and also to link F-actin cytoskeleton to the plasma membrane. Despite an impressive list of potential binding partners and regulatory activities, it was somewhat unexpected that the annexin A2-null mouse should show a relatively benign phenotype. Studies with the annexin A2-null mouse have suggested important functions for annexin A2 and the heterotetramer in fibrinolysis, in the regulation of the LDL receptor and in cellular redox regulation. However, the demonstration that depletion of annexin A2 causes the depletion of several other proteins including S100A10, fascin and affects the expression of at least sixty-one genes has confounded the reports of its function. In this review we will discuss the annexin A2 structure and function and its proposed physiological and pathological roles.
Collapse
|
44
|
Ozorowski G, Milton S, Luecke H. Structure of a C-terminal AHNAK peptide in a 1:2:2 complex with S100A10 and an acetylated N-terminal peptide of annexin A2. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:92-104. [PMID: 23275167 PMCID: PMC3532133 DOI: 10.1107/s0907444912043429] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 10/18/2012] [Indexed: 01/22/2023]
Abstract
AHNAK, a large 629 kDa protein, has been implicated in membrane repair, and the annexin A2-S100A10 heterotetramer [(p11)(2)(AnxA2)(2))] has high affinity for several regions of its 1002-amino-acid C-terminal domain. (p11)(2)(AnxA2)(2) is often localized near the plasma membrane, and this C2-symmetric platform is proposed to be involved in the bridging of membrane vesicles and trafficking of proteins to the plasma membrane. All three proteins co-localize at the intracellular face of the plasma membrane in a Ca(2+)-dependent manner. The binding of AHNAK to (p11)(2)(AnxA2)(2) has been studied previously, and a minimal binding motif has been mapped to a 20-amino-acid peptide corresponding to residues 5654-5673 of the AHNAK C-terminal domain. Here, the 2.5 Å resolution crystal structure of this 20-amino-acid peptide of AHNAK bound to the AnxA2-S100A10 heterotetramer (1:2:2 symmetry) is presented, which confirms the asymmetric arrangement first described by Rezvanpour and coworkers and explains why the binding motif has high affinity for (p11)(2)(AnxA2)(2). Binding of AHNAK to the surface of (p11)(2)(AnxA2)(2) is governed by several hydrophobic interactions between side chains of AHNAK and pockets on S100A10. The pockets are large enough to accommodate a variety of hydrophobic side chains, allowing the consensus sequence to be more general. Additionally, the various hydrogen bonds formed between the AHNAK peptide and (p11)(2)(AnxA2)(2) most often involve backbone atoms of AHNAK; as a result, the side chains, particularly those that point away from S100A10/AnxA2 towards the solvent, are largely interchangeable. While the structure-based consensus sequence allows interactions with various stretches of the AHNAK C-terminal domain, comparison with other S100 structures reveals that the sequence has been optimized for binding to S100A10. This model adds new insight to the understanding of the specific interactions that occur in this membrane-repair scaffold.
Collapse
Affiliation(s)
- Gabriel Ozorowski
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697-3900, USA
- Center for Biomembrane Systems, University of California, Irvine, Irvine, CA 92697-3900, USA
| | - Saskia Milton
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697-3900, USA
| | - Hartmut Luecke
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697-3900, USA
- Center for Biomembrane Systems, University of California, Irvine, Irvine, CA 92697-3900, USA
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697, USA
- Department of Computer Science, University of California, Irvine, Irvine, CA 92697, USA
| |
Collapse
|
45
|
Woodham AW, Da Silva DM, Skeate JG, Raff AB, Ambroso MR, Brand HE, Isas JM, Langen R, Kast WM. The S100A10 subunit of the annexin A2 heterotetramer facilitates L2-mediated human papillomavirus infection. PLoS One 2012; 7:e43519. [PMID: 22927980 PMCID: PMC3425544 DOI: 10.1371/journal.pone.0043519] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 07/23/2012] [Indexed: 12/13/2022] Open
Abstract
Mucosotropic, high-risk human papillomaviruses (HPV) are sexually transmitted viruses that are causally associated with the development of cervical cancer. The most common high-risk genotype, HPV16, is an obligatory intracellular virus that must gain entry into host epithelial cells and deliver its double stranded DNA to the nucleus. HPV capsid proteins play a vital role in these steps. Despite the critical nature of these capsid protein-host cell interactions, the precise cellular components necessary for HPV16 infection of epithelial cells remains unknown. Several neutralizing epitopes have been identified for the HPV16 L2 minor capsid protein that can inhibit infection after initial attachment of the virus to the cell surface, which suggests an L2-specific secondary receptor or cofactor is required for infection, but so far no specific L2-receptor has been identified. Here, we demonstrate that the annexin A2 heterotetramer (A2t) contributes to HPV16 infection and co-immunoprecipitates with HPV16 particles on the surface of epithelial cells in an L2-dependent manner. Inhibiting A2t with an endogenous annexin A2 ligand, secretory leukocyte protease inhibitor (SLPI), or with an annexin A2 antibody significantly reduces HPV16 infection. With electron paramagnetic resonance, we demonstrate that a previously identified neutralizing epitope of L2 (aa 108-120) specifically interacts with the S100A10 subunit of A2t. Additionally, mutation of this L2 region significantly reduces binding to A2t and HPV16 pseudovirus infection. Furthermore, downregulation of A2t with shRNA significantly decreases capsid internalization and infection by HPV16. Taken together, these findings indicate that A2t contributes to HPV16 internalization and infection of epithelial cells and this interaction is dependent on the presence of the L2 minor capsid protein.
Collapse
Affiliation(s)
- Andrew W. Woodham
- Departments of Molecular Microbiology & Immunology, University of Southern California, Los Angeles, California, United States of America
| | - Diane M. Da Silva
- Department of Obstetrics & Gynecology, University of Southern California, Los Angeles, California, United States of America
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, United States of America
| | - Joseph G. Skeate
- Departments of Molecular Microbiology & Immunology, University of Southern California, Los Angeles, California, United States of America
| | - Adam B. Raff
- Departments of Molecular Microbiology & Immunology, University of Southern California, Los Angeles, California, United States of America
| | - Mark R. Ambroso
- Department of Biochemistry & Molecular Biology, University of Southern California, Los Angeles, California, United States of America
| | - Heike E. Brand
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, United States of America
| | - J. Mario Isas
- Department of Biochemistry & Molecular Biology, University of Southern California, Los Angeles, California, United States of America
| | - Ralf Langen
- Department of Biochemistry & Molecular Biology, University of Southern California, Los Angeles, California, United States of America
| | - W. Martin Kast
- Departments of Molecular Microbiology & Immunology, University of Southern California, Los Angeles, California, United States of America
- Department of Obstetrics & Gynecology, University of Southern California, Los Angeles, California, United States of America
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, United States of America
| |
Collapse
|
46
|
Langeslay DJ, Young RP, Beni S, Beecher CN, Mueller LJ, Larive CK. Sulfamate proton solvent exchange in heparin oligosaccharides: evidence for a persistent hydrogen bond in the antithrombin-binding pentasaccharide Arixtra. Glycobiology 2012; 22:1173-82. [PMID: 22593556 DOI: 10.1093/glycob/cws085] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Sulfamate groups (NHSO(3)(-)) are important structural elements in the glycosaminoglycans (GAGs) heparin and heparan sulfate (HS). In this work, proton nuclear magnetic resonance (NMR) line-shape analysis is used to explore the solvent exchange properties of the sulfamate NH groups within heparin-related mono-, di-, tetra- and pentasaccharides as a function of pH and temperature. The results of these experiments identified a persistent hydrogen bond within the Arixtra (fondaparinux sodium) pentasaccharide between the internal glucosamine sulfamate NH and the adjacent 3-O-sulfo group. This discovery provides new insights into the solution structure of the Arixtra pentasaccharide and suggests that 3-O-sulfation of the heparin N-sulfoglucosamine (GlcNS) residues pre-organize the secondary structure in a way that facilitates binding to antithrombin-III. NMR studies of the GlcNS NH groups can provide important information about heparin structure complementary to that available from NMR spectral analysis of the carbon-bound protons.
Collapse
Affiliation(s)
- Derek J Langeslay
- Department of Chemistry, University of California-Riverside, Riverside, CA 92521, USA
| | | | | | | | | | | |
Collapse
|
47
|
Kurochkina N, Choekyi T. Helix–helix interfaces and ligand binding. J Theor Biol 2011; 283:92-102. [DOI: 10.1016/j.jtbi.2011.05.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2011] [Revised: 04/18/2011] [Accepted: 05/12/2011] [Indexed: 11/25/2022]
|
48
|
Seo Y, Schenauer MR, Leary JA. Biologically Relevant Metal-Cation Binding Induces Conformational Changes in Heparin Oligosaccharides as Measured by Ion Mobility Mass Spectrometry. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2011; 303:191-198. [PMID: 21731426 PMCID: PMC3124288 DOI: 10.1016/j.ijms.2011.02.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Heparin interacts with many proteins and is involved in biological processes such as anticoagulation, angiogenesis, and antitumorigenic activities. These heparin-protein interactions can be influenced by the binding of various metal ions to these complexes. In particular, physiologically relevant metal cations influence heparin-protein conformations through electronic interactions inherent to this polyanion. In this study, we employed ion mobility mass spectrometry (IMMS) to observe conformational changes that occur in fully-sulfated heparin octasaccharides after the successive addition of metal ions. Our results indicate that binding of positive counter ions causes a decrease in collision cross section (CCS) measurements, thus promoting a more compact octasaccharide structure.
Collapse
Affiliation(s)
- Youjin Seo
- Departments of Chemistry and Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | | | | |
Collapse
|
49
|
Ori A, Wilkinson MC, Fernig DG. A systems biology approach for the investigation of the heparin/heparan sulfate interactome. J Biol Chem 2011; 286:19892-904. [PMID: 21454685 DOI: 10.1074/jbc.m111.228114] [Citation(s) in RCA: 183] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A large body of evidence supports the involvement of heparan sulfate (HS) proteoglycans in physiological processes such as development and diseases including cancer and neurodegenerative disorders. The role of HS emerges from its ability to interact and regulate the activity of a vast number of extracellular proteins including growth factors and extracellular matrix components. A global view on how protein-HS interactions influence the extracellular proteome and, consequently, cell function is currently lacking. Here, we systematically investigate the functional and structural properties that characterize HS-interacting proteins and the network they form. We collected 435 human proteins interacting with HS or the structurally related heparin by integrating literature-derived and affinity proteomics data. We used this data set to identify the topological features that distinguish the heparin/HS-interacting network from the rest of the extracellular proteome and to analyze the enrichment of gene ontology terms, pathways, and domain families in heparin/HS-binding proteins. Our analysis revealed that heparin/HS-binding proteins form a highly interconnected network, which is functionally linked to physiological and pathological processes that are characteristic of higher organisms. Therefore, we then investigated the existence of a correlation between the expansion of domain families characteristic of the heparin/HS interactome and the increase in biological complexity in the metazoan lineage. A strong positive correlation between the expansion of the heparin/HS interactome and biosynthetic machinery and organism complexity emerged. The evolutionary role of HS was reinforced by the presence of a rudimentary HS biosynthetic machinery in a unicellular organism at the root of the metazoan lineage.
Collapse
Affiliation(s)
- Alessandro Ori
- Institute of Integrative Biology and Centre for Glycobiology, University of Liverpool, Liverpool, United Kingdom
| | | | | |
Collapse
|
50
|
Horlacher T, Noti C, de Paz JL, Bindschädler P, Hecht ML, Smith DF, Fukuda MN, Seeberger PH. Characterization of annexin A1 glycan binding reveals binding to highly sulfated glycans with preference for highly sulfated heparan sulfate and heparin. Biochemistry 2011; 50:2650-9. [PMID: 21370880 DOI: 10.1021/bi101121a] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Annexin A1 is a multifunctional, calcium-dependent phospholipid binding protein involved in a host of processes including inflammation, regulation of neuroendocrine signaling, apoptosis, and membrane trafficking. Binding of annexin A1 to glycans has been implicated in cell attachment and modulation of annexin A1 function. A detailed characterization of the glycan binding preferences of annexin A1 using carbohydrate microarrays and surface plasmon resonance served as a starting point to understand the role of glycan binding in annexin A1 function. Glycan array analysis identified annexin A1 binding to a series of sulfated oligosaccharides and revealed for the first time that annexin A1 binds to sulfated non-glycosaminoglycan carbohydrates. Using heparin/heparan sulfate microarrays, highly sulfated heparan sulfate/heparin were identified as preferred ligands of annexin A1. Binding of annexin A1 to heparin/heparan sulfate is calcium- but not magnesium-dependent. An in-depth structure-activity relationship of annexin A1-heparan sulfate interactions was established using chemically defined sugars. For the first time, a calcium-dependent heparin binding protein was characterized with such an approach. N-Sulfation and 2-O-sulfation were identified as particularly important for binding.
Collapse
Affiliation(s)
- T Horlacher
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, D-14476 Potsdam, Germany
| | | | | | | | | | | | | | | |
Collapse
|