1
|
Caramiello AM, Bellucci MC, Ottaviano E, Ancona S, Borghi E, Volonterio A. Synthesis of amphiphilic hydantoin-based universal peptidomimetics as antibiotic agents. Org Biomol Chem 2023; 21:7702-7706. [PMID: 37698587 DOI: 10.1039/d3ob01247f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Three model hydantoin-based universal peptidomimetics were designed and synthetized. Their preferred amphiphilic β-turn conformation was assessed using molecular modeling and NMR experiments, and their antibacterial activity was tested against Gram-positive and Gram-negative bacteria strains, which demonstrated that these compounds could be a captivating class of antibiotics to fight emergent drug resistance.
Collapse
Affiliation(s)
- Alessio M Caramiello
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, via Mancinelli 7, 20131 Milano, Italy.
| | - Maria Cristina Bellucci
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, via Celoria 2, 20131 Milano, Italy
| | - Emerenziana Ottaviano
- Department of Health Sciences, Università degli Studi di Milano, via Di Rudinì 8, 20142, Milan, Italy
| | - Silvia Ancona
- Department of Health Sciences, Università degli Studi di Milano, via Di Rudinì 8, 20142, Milan, Italy
| | - Elisa Borghi
- Department of Health Sciences, Università degli Studi di Milano, via Di Rudinì 8, 20142, Milan, Italy
| | - Alessandro Volonterio
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, via Mancinelli 7, 20131 Milano, Italy.
| |
Collapse
|
2
|
Kotov V, Killer M, Jungnickel KEJ, Lei J, Finocchio G, Steinke J, Bartels K, Strauss J, Dupeux F, Humm AS, Cornaciu I, Márquez JA, Pardon E, Steyaert J, Löw C. Plasticity of the binding pocket in peptide transporters underpins promiscuous substrate recognition. Cell Rep 2023; 42:112831. [PMID: 37467108 DOI: 10.1016/j.celrep.2023.112831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/09/2023] [Accepted: 07/03/2023] [Indexed: 07/21/2023] Open
Abstract
Proton-dependent oligopeptide transporters (POTs) are promiscuous transporters of the major facilitator superfamily that constitute the main route of entry for a wide range of dietary peptides and orally administrated peptidomimetic drugs. Given their clinical and pathophysiological relevance, several POT homologs have been studied extensively at the structural and molecular level. However, the molecular basis of recognition and transport of diverse peptide substrates has remained elusive. We present 14 X-ray structures of the bacterial POT DtpB in complex with chemically diverse di- and tripeptides, providing novel insights into the plasticity of the conserved central binding cavity. We analyzed binding affinities for more than 80 peptides and monitored uptake by a fluorescence-based transport assay. To probe whether all 8400 natural di- and tripeptides can bind to DtpB, we employed state-of-the-art molecular docking and machine learning and conclude that peptides with compact hydrophobic residues are the best DtpB binders.
Collapse
Affiliation(s)
- Vadim Kotov
- Center for Structural Systems Biology (CSSB), Notkestraße 85, 22607 Hamburg, Germany; European Molecular Biology Laboratory (EMBL) Hamburg, Notkestraße 85, 22607 Hamburg, Germany
| | - Maxime Killer
- Center for Structural Systems Biology (CSSB), Notkestraße 85, 22607 Hamburg, Germany; European Molecular Biology Laboratory (EMBL) Hamburg, Notkestraße 85, 22607 Hamburg, Germany; Faculty of Biosciences, Collaboration for Joint PhD Degree between EMBL and Heidelberg University, Hamburg, Germany
| | - Katharina E J Jungnickel
- Center for Structural Systems Biology (CSSB), Notkestraße 85, 22607 Hamburg, Germany; European Molecular Biology Laboratory (EMBL) Hamburg, Notkestraße 85, 22607 Hamburg, Germany
| | - Jian Lei
- Center for Structural Systems Biology (CSSB), Notkestraße 85, 22607 Hamburg, Germany; European Molecular Biology Laboratory (EMBL) Hamburg, Notkestraße 85, 22607 Hamburg, Germany; State Key Laboratory of Biotherapy and Cancer Center, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, People's Republic of China
| | - Giada Finocchio
- Center for Structural Systems Biology (CSSB), Notkestraße 85, 22607 Hamburg, Germany; European Molecular Biology Laboratory (EMBL) Hamburg, Notkestraße 85, 22607 Hamburg, Germany
| | - Josi Steinke
- Center for Structural Systems Biology (CSSB), Notkestraße 85, 22607 Hamburg, Germany; European Molecular Biology Laboratory (EMBL) Hamburg, Notkestraße 85, 22607 Hamburg, Germany
| | - Kim Bartels
- Center for Structural Systems Biology (CSSB), Notkestraße 85, 22607 Hamburg, Germany; European Molecular Biology Laboratory (EMBL) Hamburg, Notkestraße 85, 22607 Hamburg, Germany
| | - Jan Strauss
- Center for Structural Systems Biology (CSSB), Notkestraße 85, 22607 Hamburg, Germany; European Molecular Biology Laboratory (EMBL) Hamburg, Notkestraße 85, 22607 Hamburg, Germany
| | - Florine Dupeux
- European Molecular Biology Laboratory (EMBL) Grenoble, 71 Avenue des Martyrs CS 90181, 38042 Grenoble Cedex 9, France
| | - Anne-Sophie Humm
- European Molecular Biology Laboratory (EMBL) Grenoble, 71 Avenue des Martyrs CS 90181, 38042 Grenoble Cedex 9, France
| | - Irina Cornaciu
- European Molecular Biology Laboratory (EMBL) Grenoble, 71 Avenue des Martyrs CS 90181, 38042 Grenoble Cedex 9, France
| | - José A Márquez
- European Molecular Biology Laboratory (EMBL) Grenoble, 71 Avenue des Martyrs CS 90181, 38042 Grenoble Cedex 9, France
| | - Els Pardon
- Structural Biology Brussels, Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium; VIB-VUB Center for Structural Biology, VIB, 1050 Brussels, Belgium
| | - Jan Steyaert
- Structural Biology Brussels, Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium; VIB-VUB Center for Structural Biology, VIB, 1050 Brussels, Belgium
| | - Christian Löw
- Center for Structural Systems Biology (CSSB), Notkestraße 85, 22607 Hamburg, Germany; European Molecular Biology Laboratory (EMBL) Hamburg, Notkestraße 85, 22607 Hamburg, Germany.
| |
Collapse
|
3
|
Omori A, Sasaki S, Kikukawa T, Shimono K, Miyauchi S. Elucidation of a Thermodynamical Feature Attributed to Substrate Binding to the Prokaryotic H +/Oligopeptide Cotransporter YdgR with Calorimetric Analysis: The Substrate Binding Driven by the Change in Entropy Implies the Release of Bound Water Molecules from the Binding Pocket. Biochemistry 2023. [PMID: 37163674 DOI: 10.1021/acs.biochem.2c00673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Here, we have elucidated the substrate recognition mechanism by a prokaryotic H+/oligopeptide cotransporter, YdgR, using isothermal titration calorimetry. Under acidic conditions (pH 6.0), the binding of a dipeptide, Val-Ala, to YdgR elicited endothermic enthalpy, which compensated for the increase in entropy due to dipeptide binding. A series of dipeptides were used in the binding titration. The dipeptides represent Val-X and X-Val, where X is Ala, Ser, Val, Tyr, or Phe. Most dipeptides revealed endothermic enthalpy, which was completely compensated by the increase in entropy due to dipeptide binding. The change in enthalpy due to binding correlated well with the change in entropy, whereas the Gibbs free energy involved in the binding of the dipeptide to YdgR remained unchanged irrespective of dipeptide sequences, implying that the binding reaction was driven by entropy, that is, the release of bound water molecules in the binding pocket. It is also important to clarify that, based on the prediction of water molecules in the ligand-binding pocket of YdgR, the release of three bound water molecules in the putative substrate binding pocket occurred through binding to YdgR. In the comparison of Val-X and X-Val dipeptides, the N-terminal region of the binding pocket might contain more bound water molecules than the C-terminal region. In light of these findings, we suggest that bound water molecules might play an important role in substrate recognition and binding by YdgR.
Collapse
Affiliation(s)
- Akiko Omori
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| | - Shotaro Sasaki
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| | - Takashi Kikukawa
- Faculty of Advanced Life Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo 060-0810, Japan
| | - Kazumi Shimono
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda Nishi-ku, Kumamoto 860-0082, Japan
| | - Seiji Miyauchi
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| |
Collapse
|
4
|
Gharabli H, Rafiq M, Iqbal A, Yan R, Aduri NG, Sharma N, Prabhala BK, Mirza O. Functional Characterization of the Putative POT from Clostridium perfringens. BIOLOGY 2023; 12:biology12050651. [PMID: 37237465 DOI: 10.3390/biology12050651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 05/28/2023]
Abstract
Proton-coupled oligopeptide transporters (POTs) are a fundamental part of the cellular transport machinery that provides plants, bacteria, and mammals with nutrition in the form of short peptides. However, POTs are not restricted to peptide transport; mammalian POTs have especially been in focus due to their ability to transport several peptidomimetics in the small intestine. Herein, we studied a POT from Clostridium perfringens (CPEPOT), which unexpectedly exhibited atypical characteristics. First, very little uptake of a fluorescently labelled peptide β-Ala-Lys-AMCA, an otherwise good substrate of several other bacterial POTs, was observed. Secondly, in the presence of a competitor peptide, enhanced uptake of β-Ala-Lys-AMCA was observed due to trans-stimulation. This effect was also observed even in the absence of a proton electrochemical gradient, suggesting that β-Ala-Lys-AMCA uptake mediated by CPEPOT is likely through the substrate-concentration-driving exchange mechanism, unlike any other functionally characterized bacterial POTs.
Collapse
Affiliation(s)
- Hani Gharabli
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Maria Rafiq
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Anna Iqbal
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Ruyu Yan
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Nanda G Aduri
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Neha Sharma
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Bala K Prabhala
- Department of Physics, Chemistry and Pharmacy, Faculty of Science, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark
| | - Osman Mirza
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| |
Collapse
|
5
|
Sauve S, Williamson J, Polasa A, Moradi M. Ins and Outs of Rocker Switch Mechanism in Major Facilitator Superfamily of Transporters. MEMBRANES 2023; 13:membranes13050462. [PMID: 37233523 DOI: 10.3390/membranes13050462] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/20/2023] [Accepted: 04/23/2023] [Indexed: 05/27/2023]
Abstract
The major facilitator superfamily (MFS) of transporters consists of three classes of membrane transporters: symporters, uniporters, and antiporters. Despite such diverse functions, MFS transporters are believed to undergo similar conformational changes within their distinct transport cycles, known as the rocker-switch mechanism. While the similarities between conformational changes are noteworthy, the differences are also important since they could potentially explain the distinct functions of symporters, uniporters, and antiporters of the MFS superfamily. We reviewed a variety of experimental and computational structural data on a select number of antiporters, symporters, and uniporters from the MFS family to compare the similarities and differences of the conformational dynamics of three different classes of transporters.
Collapse
Affiliation(s)
- Stephanie Sauve
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA
| | - Joseph Williamson
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA
| | - Adithya Polasa
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA
| | - Mahmoud Moradi
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA
| |
Collapse
|
6
|
Ayoub N, Roth P, Ucurum Z, Fotiadis D, Hirschi S. Structural and biochemical insights into His-tag-induced higher-order oligomerization of membrane proteins by cryo-EM and size exclusion chromatography. J Struct Biol 2023; 215:107924. [PMID: 36462717 DOI: 10.1016/j.jsb.2022.107924] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 11/18/2022] [Accepted: 11/26/2022] [Indexed: 12/05/2022]
Abstract
Structural and functional characterization of proteins as well as the design of targeted drugs heavily rely on recombinant protein expression and purification. The polyhistidine-tag (His-tag) is among the most prominent examples of affinity tags used for the isolation of recombinant proteins from their expression hosts. Short peptide tags are commonly considered not to interfere with the structure of the tagged protein and tag removal is frequently neglected. This study demonstrates the formation of higher-order oligomers based on the example of two His-tagged membrane proteins, the dimeric arginine-agmatine antiporter AdiC and the pentameric light-driven proton pump proteorhodopsin. Size exclusion chromatography revealed the formation of tetrameric AdiC and decameric as well as pentadecameric proteorhodopsin through specific interactions between their His-tags. In addition, single particle cryo-electron microscopy (cryo-EM) allowed structural insights into the three-dimensional arrangement of the higher-order oligomers and the underlying His-tag-mediated interactions. These results reinforce the importance of considering the length and removal of affinity purification tags and illustrate how neglect can lead to potential interference with downstream biophysical or biochemical characterization of the target protein.
Collapse
Affiliation(s)
- Nooraldeen Ayoub
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland
| | - Patrick Roth
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland
| | - Zöhre Ucurum
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland
| | - Dimitrios Fotiadis
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland.
| | - Stephan Hirschi
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland.
| |
Collapse
|
7
|
Stauffer M, Jeckelmann JM, Ilgü H, Ucurum Z, Boggavarapu R, Fotiadis D. Peptide transporter structure reveals binding and action mechanism of a potent PEPT1 and PEPT2 inhibitor. Commun Chem 2022; 5:23. [PMID: 36697632 PMCID: PMC9814568 DOI: 10.1038/s42004-022-00636-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/27/2022] [Indexed: 01/28/2023] Open
Abstract
Inhibitors for membrane transporters have been shown to be indispensable as drugs and tool compounds. The proton-dependent oligopeptide transporters PEPT1 and PEPT2 from the SLC15 family play important roles in human and mammalian physiology. With Lys[Z(NO2)]-Val (LZNV), a modified Lys-Val dipeptide, a potent transport inhibitor for PEPT1 and PEPT2 is available. Here we present the crystal structure of the peptide transporter YePEPT in complex with LZNV. The structure revealed the molecular interactions for inhibitor binding and a previously undescribed mostly hydrophobic pocket, the PZ pocket, involved in interaction with LZNV. Comparison with a here determined ligand-free structure of the transporter unveiled that the initially absent PZ pocket emerges through conformational changes upon inhibitor binding. The provided biochemical and structural information constitutes an important framework for the mechanistic understanding of inhibitor binding and action in proton-dependent oligopeptide transporters.
Collapse
Affiliation(s)
- Mirko Stauffer
- grid.5734.50000 0001 0726 5157Institute of Biochemistry and Molecular Medicine, and Swiss National Centre of Competence in Research (NCCR) TransCure, University of Bern, Bern, Switzerland
| | - Jean-Marc Jeckelmann
- grid.5734.50000 0001 0726 5157Institute of Biochemistry and Molecular Medicine, and Swiss National Centre of Competence in Research (NCCR) TransCure, University of Bern, Bern, Switzerland
| | - Hüseyin Ilgü
- grid.5734.50000 0001 0726 5157Institute of Biochemistry and Molecular Medicine, and Swiss National Centre of Competence in Research (NCCR) TransCure, University of Bern, Bern, Switzerland
| | - Zöhre Ucurum
- grid.5734.50000 0001 0726 5157Institute of Biochemistry and Molecular Medicine, and Swiss National Centre of Competence in Research (NCCR) TransCure, University of Bern, Bern, Switzerland
| | - Rajendra Boggavarapu
- grid.5734.50000 0001 0726 5157Institute of Biochemistry and Molecular Medicine, and Swiss National Centre of Competence in Research (NCCR) TransCure, University of Bern, Bern, Switzerland ,grid.67105.350000 0001 2164 3847Present Address: Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH USA
| | - Dimitrios Fotiadis
- grid.5734.50000 0001 0726 5157Institute of Biochemistry and Molecular Medicine, and Swiss National Centre of Competence in Research (NCCR) TransCure, University of Bern, Bern, Switzerland
| |
Collapse
|
8
|
Hörömpöli D, Ciglia C, Glüsenkamp KH, Haustedt LO, Falkenstein-Paul H, Bendas G, Berscheid A, Brötz-Oesterhelt H. The Antibiotic Negamycin Crosses the Bacterial Cytoplasmic Membrane by Multiple Routes. Antimicrob Agents Chemother 2021; 65:e00986-20. [PMID: 33468467 PMCID: PMC8097410 DOI: 10.1128/aac.00986-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 01/12/2021] [Indexed: 11/26/2022] Open
Abstract
Negamycin is a natural pseudodipeptide antibiotic with promising activity against Gram-negative and Gram-positive bacteria, including Enterobacteriaceae, Pseudomonas aeruginosa, and Staphylococcus aureus, and good efficacy in infection models. It binds to ribosomes with a novel binding mode, stimulating miscoding and inhibiting ribosome translocation. We were particularly interested in studying how the small, positively charged natural product reaches its cytoplasmic target in Escherichia coli Negamycin crosses the cytoplasmic membrane by multiple routes depending on environmental conditions. In a peptide-free medium, negamycin uses endogenous peptide transporters for active translocation, preferentially the dipeptide permease Dpp. However, in the absence of functional Dpp or in the presence of outcompeting nutrient peptides, negamycin can still enter the cytoplasm. We observed a contribution of the DppA homologs SapA and OppA, as well as of the proton-dependent oligopeptide transporter DtpD. Calcium strongly improves the activity of negamycin against both Gram-negative and Gram-positive bacteria, especially at concentrations around 2.5 mM, reflecting human blood levels. Calcium forms a complex with negamycin and facilitates its interaction with negatively charged phospholipids in bacterial membranes. Moreover, decreased activity at acidic pH and under anaerobic conditions points to a role of the membrane potential in negamycin uptake. Accordingly, improved activity at alkaline pH could be linked to increased uptake of [3H]negamycin. The diversity of options for membrane translocation is reflected by low resistance rates. The example of negamycin demonstrates that membrane passage of antibiotics can be multifaceted and that for cytoplasmic anti-Gram-negative drugs, understanding of permeation and target interaction are equally important.
Collapse
Affiliation(s)
- Daniel Hörömpöli
- Interfaculty Institute of Microbiology and Infection Medicine, Department of Microbial Bioactive Compounds, University of Tuebingen, Tuebingen, Germany
- German Center of Infection Research (DZIF), Partner Site Tuebingen, Tuebingen, Germany
| | - Catherine Ciglia
- Institute of Pharmaceutical Biology, University of Duesseldorf, Duesseldorf, Germany
| | | | | | - Hildegard Falkenstein-Paul
- Pharmaceutical Institute, Department of Pharmaceutical & Cell Biological Chemistry, University of Bonn, Bonn, Germany
| | - Gerd Bendas
- Pharmaceutical Institute, Department of Pharmaceutical & Cell Biological Chemistry, University of Bonn, Bonn, Germany
| | - Anne Berscheid
- Interfaculty Institute of Microbiology and Infection Medicine, Department of Microbial Bioactive Compounds, University of Tuebingen, Tuebingen, Germany
- German Center of Infection Research (DZIF), Partner Site Tuebingen, Tuebingen, Germany
- Institute of Pharmaceutical Biology, University of Duesseldorf, Duesseldorf, Germany
| | - Heike Brötz-Oesterhelt
- Interfaculty Institute of Microbiology and Infection Medicine, Department of Microbial Bioactive Compounds, University of Tuebingen, Tuebingen, Germany
- German Center of Infection Research (DZIF), Partner Site Tuebingen, Tuebingen, Germany
- Institute of Pharmaceutical Biology, University of Duesseldorf, Duesseldorf, Germany
- Cluster of Excellence 2124: Controlling Microbes to Fight Infection, Tuebingen, Germany
| |
Collapse
|
9
|
Recent advances in understanding prodrug transport through the SLC15 family of proton-coupled transporters. Biochem Soc Trans 2021; 48:337-346. [PMID: 32219385 PMCID: PMC7200629 DOI: 10.1042/bst20180302] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 02/15/2020] [Accepted: 03/04/2020] [Indexed: 12/28/2022]
Abstract
Solute carrier (SLC) transporters play important roles in regulating the movement of small molecules and ions across cellular membranes. In mammals, they play an important role in regulating the uptake of nutrients and vitamins from the diet, and in controlling the distribution of their metabolic intermediates within the cell. Several SLC families also play an important role in drug transport and strategies are being developed to hijack SLC transporters to control and regulate drug transport within the body. Through the addition of amino acid and peptide moieties several novel antiviral and anticancer agents have been developed that hijack the proton-coupled oligopeptide transporters, PepT1 (SCL15A1) and PepT2 (SLC15A2), for improved intestinal absorption and renal retention in the body. A major goal is to understand the rationale behind these successes and expand the library of prodrug molecules that utilise SLC transporters. Recent co-crystal structures of prokaryotic homologues of the human PepT1 and PepT2 transporters have shed important new insights into the mechanism of prodrug recognition. Here, I will review recent developments in our understanding of ligand recognition and binding promiscuity within the SLC15 family, and discuss current models for prodrug recognition.
Collapse
|
10
|
Lasitza‐Male T, Bartels K, Jungwirth J, Wiggers F, Rosenblum G, Hofmann H, Löw C. Membrane Chemistry Tunes the Structure of a Peptide Transporter. Angew Chem Int Ed Engl 2020; 59:19121-19128. [PMID: 32744783 PMCID: PMC7590137 DOI: 10.1002/anie.202008226] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Indexed: 01/02/2023]
Abstract
Membrane proteins require lipid bilayers for function. While lipid compositions reach enormous complexities, high-resolution structures are usually obtained in artificial detergents. To understand whether and how lipids guide membrane protein function, we use single-molecule FRET to probe the dynamics of DtpA, a member of the proton-coupled oligopeptide transporter (POT) family, in various lipid environments. We show that detergents trap DtpA in a dynamic ensemble with cytoplasmic opening. Only reconstitutions in more native environments restore cooperativity, allowing an opening to the extracellular side and a sampling of all relevant states. Bilayer compositions tune the abundance of these states. A novel state with an extreme cytoplasmic opening is accessible in bilayers with anionic head groups. Hence, chemical diversity of membranes translates into structural diversity, with the current POT structures only sampling a portion of the full structural space.
Collapse
Affiliation(s)
- Tanya Lasitza‐Male
- Department of Structural BiologyWeizmann Institute of ScienceHerzl St. 2347610001RehovotIsrael
| | - Kim Bartels
- Centre for Structural Systems Biology (CSSB)DESY and European Molecular Biology Laboratory HamburgNotkestrasse 8522607HamburgGermany
| | - Jakub Jungwirth
- Department of Chemical and Biological PhysicsWeizmann Institute of ScienceHerzl St. 2347610001RehovotIsrael
| | - Felix Wiggers
- Department of Structural BiologyWeizmann Institute of ScienceHerzl St. 2347610001RehovotIsrael
| | - Gabriel Rosenblum
- Department of Structural BiologyWeizmann Institute of ScienceHerzl St. 2347610001RehovotIsrael
| | - Hagen Hofmann
- Department of Structural BiologyWeizmann Institute of ScienceHerzl St. 2347610001RehovotIsrael
| | - Christian Löw
- Centre for Structural Systems Biology (CSSB)DESY and European Molecular Biology Laboratory HamburgNotkestrasse 8522607HamburgGermany
- Department of Medical Biochemistry and BiophysicsKarolinska Institutet17177StockholmSweden
| |
Collapse
|
11
|
Nemoto TK, Ohara Nemoto Y. Dipeptidyl-peptidases: Key enzymes producing entry forms of extracellular proteins in asaccharolytic periodontopathic bacterium Porphyromonas gingivalis. Mol Oral Microbiol 2020; 36:145-156. [PMID: 33006264 PMCID: PMC8048996 DOI: 10.1111/omi.12317] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/17/2020] [Accepted: 09/24/2020] [Indexed: 02/06/2023]
Abstract
Porphyromonas gingivalis, a pathogen of chronic periodontitis, is an asaccharolytic microorganism that solely utilizes nutritional amino acids as its energy source and cellular constituents. The bacterium is considered to incorporate proteinaceous nutrients mainly as dipeptides, thus exopeptidases that produce dipeptides from polypeptides are critical for survival and proliferation. We present here an overview of dipeptide production by P. gingivalis mediated by dipeptidyl-peptidases (DPPs), e.g., DPP4, DPP5, DPP7, and DPP11, serine exopeptidases localized in periplasm, which release dipeptides from the N-terminus of polypeptides. Additionally, two other exopeptidases, acylpeptidyl-oligopeptidase (AOP) and prolyl tripeptidyl-peptidase A (PTP-A), which liberate N-terminal acylated di-/tri-peptides and tripeptides with Pro at the third position, respectively, provide polypeptides in an acceptable form for DPPs. Hence, a large fraction of dipeptides is produced from nutritional polypeptides by DPPs with differential specificities in combination with AOP and PTP-A. The resultant dipeptides are then incorporated across the inner membrane mainly via a proton-dependent oligopeptide transporter (POT), a member of the major facilitator superfamily. Recent studies also indicate that DPP4 and DPP7 directly link between periodontal and systemic diseases, such as type 2 diabetes mellitus and coagulation abnormality, respectively. Therefore, these dipeptide-producing and incorporation molecules are considered to be potent targets for prevention and treatment of periodontal and related systemic diseases.
Collapse
Affiliation(s)
- Takayuki K Nemoto
- Department of Oral Molecular Biology, Course of Medical and Dental Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yuko Ohara Nemoto
- Department of Oral Molecular Biology, Course of Medical and Dental Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
12
|
Lasitza‐Male T, Bartels K, Jungwirth J, Wiggers F, Rosenblum G, Hofmann H, Löw C. Membrane Chemistry Tunes the Structure of a Peptide Transporter. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Tanya Lasitza‐Male
- Department of Structural Biology Weizmann Institute of Science Herzl St. 234 7610001 Rehovot Israel
| | - Kim Bartels
- Centre for Structural Systems Biology (CSSB) DESY and European Molecular Biology Laboratory Hamburg Notkestrasse 85 22607 Hamburg Germany
| | - Jakub Jungwirth
- Department of Chemical and Biological Physics Weizmann Institute of Science Herzl St. 234 7610001 Rehovot Israel
| | - Felix Wiggers
- Department of Structural Biology Weizmann Institute of Science Herzl St. 234 7610001 Rehovot Israel
| | - Gabriel Rosenblum
- Department of Structural Biology Weizmann Institute of Science Herzl St. 234 7610001 Rehovot Israel
| | - Hagen Hofmann
- Department of Structural Biology Weizmann Institute of Science Herzl St. 234 7610001 Rehovot Israel
| | - Christian Löw
- Centre for Structural Systems Biology (CSSB) DESY and European Molecular Biology Laboratory Hamburg Notkestrasse 85 22607 Hamburg Germany
- Department of Medical Biochemistry and Biophysics Karolinska Institutet 17177 Stockholm Sweden
| |
Collapse
|
13
|
Ohara-Nemoto Y, Sarwar MT, Shimoyama Y, Kobayakawa T, Nemoto TK. Preferential dipeptide incorporation of Porphyromonas gingivalis mediated by proton-dependent oligopeptide transporter (Pot). FEMS Microbiol Lett 2020; 367:6041718. [PMID: 33338236 DOI: 10.1093/femsle/fnaa204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/24/2020] [Indexed: 11/13/2022] Open
Abstract
Multiple dipeptidyl-peptidases (DPPs) are present in the periplasmic space of Porphyromonas gingivalis, an asaccharolytic periodontopathic bacterium. Dipeptides produced by DPPs are presumed to be transported into the bacterial cells and metabolized to generate energy and cellular components. The present study aimed to identify a transporter responsible for dipeptide uptake in the bacterium. A real-time metabolic analysis demonstrated that P. gingivalis preferentially incorporated Gly-Xaa dipeptides, and then, single amino acids, tripeptides and longer oligopeptides to lesser extents. Heterologous expression of the P. gingivalis serine/threonine transporter (SstT; PGN_1460), oligopeptide transporter (Opt; PGN_1518) and proton-dependent oligopeptide transporter (Pot; PGN_0135) genes demonstrated that Escherichia coli expressing Pot exclusively incorporated Gly-Gly, while SstT managed Ser uptake and Opt was responsible for Gly-Gly-Gly uptake. Dipeptide uptake was significantly decreased in a P. gingivalis Δpot strain and further suppressed in a Δpot-Δopt double-deficient strain. In addition, the growth of the Δpot strain was markedly attenuated and the Δpot-Δopt strain scarcely grew, whereas the ΔsstT strain grew well almost like wild type. Consequently, these results demonstrate that predominant uptake of dipeptide in P. gingivalis is mostly managed by Pot. We thus propose that Pot is a potential therapeutic target of periodontal disease and P. gingivalis-related systemic diseases.
Collapse
Affiliation(s)
- Yuko Ohara-Nemoto
- Department of Oral Molecular Biology, Course of Medical and Dental Sciences, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan
| | - Mohammad Tanvir Sarwar
- Department of Oral Molecular Biology, Course of Medical and Dental Sciences, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan
| | - Yu Shimoyama
- Division of Molecular Microbiology, Department of Microbiology, Iwate Medical University, 1-1-1 Idai-dori, Yahaba-cho, Iwate 028-3694, Japan
| | - Takeshi Kobayakawa
- Department of Oral Molecular Biology, Course of Medical and Dental Sciences, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan
| | - Takayuki K Nemoto
- Department of Oral Molecular Biology, Course of Medical and Dental Sciences, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan
| |
Collapse
|
14
|
Castelletto V, Edwards-Gayle CJC, Hamley IW, Barrett G, Seitsonen J, Ruokolainen J, de Mello LR, da Silva ER. Model self-assembling arginine-based tripeptides show selective activity against Pseudomonas bacteria. Chem Commun (Camb) 2020; 56:615-618. [DOI: 10.1039/c9cc07257h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Three model arginine-rich tripeptides RXR (X = W, F or non-natural residue 2-napthylalanine) were investigated as antimicrobial agents, with a specific focus to target Pseudomonas aeruginosa through membrane lysis.
Collapse
Affiliation(s)
| | | | - Ian W. Hamley
- Department of Chemistry
- University of Reading
- Reading RG6 6AD
- UK
| | - Glyn Barrett
- School of Biological Sciences
- University of Reading
- Reading RG6 6UR
- UK
| | - Jani Seitsonen
- Nanomicroscopy Center
- Aalto University
- FIN-02150 Espoo
- Finland
| | | | | | | |
Collapse
|
15
|
Abstract
Here, we present a protocol for the functional characterization of the H+-coupled human peptide transporter PepT1 and sufficient notes to transfer the protocol to the Na+-coupled sugar transporter SGLT1, the organic cation transporter OCT2, the Na+/Ca2+ exchanger NCX, and the neuronal glutamate transporter EAAT3.The assay was developed for the commercially available SURFE2R N1 instrument (Nanion Technologies GmbH) which applies solid supported membrane (SSM)-based electrophysiology. This technique is widely used for the functional characterization of membrane transporters with more than 100 different transporters characterized so far. The technique is cost-effective, easy to use, and capable of high-throughput measurements.SSM-based electrophysiology utilizes SSM-coated gold sensors to physically adsorb membrane vesicles containing the protein of interest. A fast solution exchange provides the substrate and activates transport. For the measurement of PepT1 activity, we applied a peptide concentration jump to activate H+/peptide symport. Proton influx charges the sensor. A capacitive current is measured reflecting the transport activity of PepT1 . Multiple measurements on the same sensor allow for comparison of transport activity under different conditions. Here, we determine EC50 for PepT1-mediated glycylglycine transport and perform an inhibition experiment using the specific peptide inhibitor Lys[Z(NO2)]-Val.
Collapse
|
16
|
Liang H, Mao Y, Sun Y, Gao H. Transcriptional regulator ArcA mediates expression of oligopeptide transport systems both directly and indirectly in Shewanella oneidensis. Sci Rep 2019; 9:13839. [PMID: 31554843 PMCID: PMC6761289 DOI: 10.1038/s41598-019-50201-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 09/09/2019] [Indexed: 11/09/2022] Open
Abstract
In γ-proteobacterial species, such as Escherichia coli, the Arc (anoxic redox control) two-component system plays a major role in mediating the metabolic transition from aerobiosis to anaerobiosis, and thus is crucial for anaerobic growth but dispensable for aerobic growth. In Shewanella oneidensis, a bacterium renowned for respiratory versatility, Arc (SoArc) primarily affects aerobic growth. To date, how this occurs has remained largely unknown although the growth defect resulting from the loss of DNA-binding response regulator SoArcA is tryptone-dependent. In this study, we demonstrated that the growth defect is in part linked to utilization of oligopeptides and di-tripeptides, and peptide uptake but not peptide degradation is significantly affected by the SoArcA loss. A systematic characterization of major small peptide uptake systems manifests that ABC peptide transporter Sap and four proton-dependent oligopeptide transporters (POTs) are responsible for transport of oligopeptides and di-tripeptides respectively. Among them, Sap and DtpA (one of POTs) are responsive to the SoarcA mutation but only dtpA is under the direct control of SoArcA. We further showed that both Sap and DtpA, when overproduced, improve growth of the SoarcA mutant. While the data firmly establish a link between transport of oligopeptides and di-tripeptides and the SoarcA mutation, other yet-unidentified factors are implicated in the growth defect resulting from the SoArcA loss.
Collapse
Affiliation(s)
- Huihui Liang
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yinting Mao
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yijuan Sun
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China.,Research Center of Siyuan Natural Pharmacy and Biotoxicology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Haichun Gao
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China. .,Research Center of Siyuan Natural Pharmacy and Biotoxicology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
17
|
Wang J, Cooper DL, Zhan W, Wu D, He H, Sun S, Lovett ST, Xu B. Diglycine Enables Rapid Intrabacterial Hydrolysis for Activating Anbiotics against Gram-negative Bacteria. Angew Chem Int Ed Engl 2019; 58:10631-10634. [PMID: 31167041 PMCID: PMC6656590 DOI: 10.1002/anie.201905230] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Indexed: 11/09/2022]
Abstract
Antimicrobial drug resistance demands novel approaches for improving the efficacy of antibiotics, especially against Gram-negative bacteria. Herein, we report that conjugating a diglycine (GG) to an antibiotic prodrug drastically accelerates intrabacterial ester-bond hydrolysis required for activating the antibiotic. Specifically, the attachment of GG to chloramphenicol succinate (CLsu) generates CLsuGG, which exhibits about an order of magnitude higher inhibitory efficacy than CLsu against Escherichia coli. Further studies reveal that CLsuGG undergoes rapid hydrolysis, catalyzed by intrabacterial esterases (e.g., BioH and YjfP), to generate chloramphenicol (CL) in E. coli. Importantly, the conjugate exhibits lower cytotoxicity to bone marrow stromal cells than CL. Structural analogues of CLsuGG indicate that the conjugation of GG to an antibiotic prodrug is an effective strategy for accelerating enzymatic prodrug hydrolysis and enhancing the antibacterial efficacy of antibiotics.
Collapse
Affiliation(s)
- Jiaqing Wang
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA, 02454, USA
| | - Deani L Cooper
- Department of Biology, Brandeis University, 415 South Street, Waltham, MA, 02454, USA
| | - Wenjun Zhan
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA, 02454, USA
| | - Difei Wu
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA, 02454, USA
| | - Hongjian He
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA, 02454, USA
| | - Shenghuan Sun
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA, 02454, USA
| | - Susan T Lovett
- Department of Biology, Brandeis University, 415 South Street, Waltham, MA, 02454, USA
| | - Bing Xu
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA, 02454, USA
| |
Collapse
|
18
|
Wang J, Cooper DL, Zhan W, Wu D, He H, Sun S, Lovett ST, Xu B. Diglycine Enables Rapid Intrabacterial Hydrolysis for Activating Anbiotics against Gram‐negative Bacteria. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201905230] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Jiaqing Wang
- Department of Chemistry Brandeis University 415 South Street Waltham MA 02454 USA
| | - Deani L. Cooper
- Department of Biology Brandeis University 415 South Street Waltham MA 02454 USA
| | - Wenjun Zhan
- Department of Chemistry Brandeis University 415 South Street Waltham MA 02454 USA
| | - Difei Wu
- Department of Chemistry Brandeis University 415 South Street Waltham MA 02454 USA
| | - Hongjian He
- Department of Chemistry Brandeis University 415 South Street Waltham MA 02454 USA
| | - Shenghuan Sun
- Department of Chemistry Brandeis University 415 South Street Waltham MA 02454 USA
| | - Susan T. Lovett
- Department of Biology Brandeis University 415 South Street Waltham MA 02454 USA
| | - Bing Xu
- Department of Chemistry Brandeis University 415 South Street Waltham MA 02454 USA
| |
Collapse
|
19
|
Jeckelmann JM, Fotiadis D. Volta Phase Plate Cryo-EM Structure of the Human Heterodimeric Amino Acid Transporter 4F2hc-LAT2. Int J Mol Sci 2019; 20:ijms20040931. [PMID: 30795505 PMCID: PMC6413005 DOI: 10.3390/ijms20040931] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 02/15/2019] [Accepted: 02/18/2019] [Indexed: 01/29/2023] Open
Abstract
Heteromeric amino acid transporters (HATs) are protein complexes that catalyze the transport of amino acids across plasma membranes. HATs are composed of two subunits, a heavy and a light subunit, which belong to the solute carrier (SLC) families SLC3 and SLC7. The two subunits are linked by a conserved disulfide bridge. Several human diseases are associated with loss of function or overexpression of specific HATs making them drug targets. The human HAT 4F2hc-LAT2 (SLC3A2-SLC7A8) is specific for the transport of large neutral L-amino acids and specific amino acid-related compounds. Human 4F2hc-LAT2 can be functionally overexpressed in the methylotrophic yeast Pichia pastoris and pure recombinant protein purified. Here we present the first cryo-electron microscopy (cryo-EM) 3D-map of a HAT, i.e., of the human 4F2hc-LAT2 complex. The structure could be determined at ~13 Å resolution using direct electron detector and Volta phase plate technologies. The 3D-map displays two prominent densities of different sizes. The available X-ray structure of the 4F2hc ectodomain fitted nicely into the smaller density revealing the relative position of 4F2hc with respect to LAT2 and the membrane plane.
Collapse
Affiliation(s)
- Jean-Marc Jeckelmann
- Institute of Biochemistry and Molecular Medicine, and Swiss National Centre of Competence in Research (NCCR) TransCure, University of Bern, CH-3012 Bern, Switzerland.
| | - Dimitrios Fotiadis
- Institute of Biochemistry and Molecular Medicine, and Swiss National Centre of Competence in Research (NCCR) TransCure, University of Bern, CH-3012 Bern, Switzerland.
| |
Collapse
|
20
|
Ural-Blimke Y, Flayhan A, Strauss J, Rantos V, Bartels K, Nielsen R, Pardon E, Steyaert J, Kosinski J, Quistgaard EM, Löw C. Structure of Prototypic Peptide Transporter DtpA from E. coli in Complex with Valganciclovir Provides Insights into Drug Binding of Human PepT1. J Am Chem Soc 2019; 141:2404-2412. [DOI: 10.1021/jacs.8b11343] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Yonca Ural-Blimke
- Centre for Structural Systems Biology (CSSB), DESY and European Molecular Biology Laboratory Hamburg, Notkestrasse 85, D-22607 Hamburg, Germany
| | - Ali Flayhan
- Centre for Structural Systems Biology (CSSB), DESY and European Molecular Biology Laboratory Hamburg, Notkestrasse 85, D-22607 Hamburg, Germany
| | - Jan Strauss
- Centre for Structural Systems Biology (CSSB), DESY and European Molecular Biology Laboratory Hamburg, Notkestrasse 85, D-22607 Hamburg, Germany
| | - Vasileios Rantos
- Centre for Structural Systems Biology (CSSB), DESY and European Molecular Biology Laboratory Hamburg, Notkestrasse 85, D-22607 Hamburg, Germany
| | - Kim Bartels
- Centre for Structural Systems Biology (CSSB), DESY and European Molecular Biology Laboratory Hamburg, Notkestrasse 85, D-22607 Hamburg, Germany
| | - Rolf Nielsen
- Centre for Structural Systems Biology (CSSB), DESY and European Molecular Biology Laboratory Hamburg, Notkestrasse 85, D-22607 Hamburg, Germany
| | - Els Pardon
- Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Brussels 1050, Belgium
- VIB-VUB Center for Structural Biology, VIB, Brussels 1050, Belgium
| | - Jan Steyaert
- Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Brussels 1050, Belgium
- VIB-VUB Center for Structural Biology, VIB, Brussels 1050, Belgium
| | - Jan Kosinski
- Centre for Structural Systems Biology (CSSB), DESY and European Molecular Biology Laboratory Hamburg, Notkestrasse 85, D-22607 Hamburg, Germany
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Esben M. Quistgaard
- Centre for Structural Systems Biology (CSSB), DESY and European Molecular Biology Laboratory Hamburg, Notkestrasse 85, D-22607 Hamburg, Germany
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Scheeles väg 2, SE-17177 Stockholm, Sweden
- Department of Molecular Biology and Genetics − DANDRITE, Gustav Wieds Vej 10, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Christian Löw
- Centre for Structural Systems Biology (CSSB), DESY and European Molecular Biology Laboratory Hamburg, Notkestrasse 85, D-22607 Hamburg, Germany
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Scheeles väg 2, SE-17177 Stockholm, Sweden
| |
Collapse
|
21
|
Structural basis for prodrug recognition by the SLC15 family of proton-coupled peptide transporters. Proc Natl Acad Sci U S A 2019; 116:804-809. [PMID: 30602453 PMCID: PMC6338836 DOI: 10.1073/pnas.1813715116] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Poor oral bioavailability is one of the leading causes of compound failure in drug development and a major challenge for the pharmaceutical industry. A successful approach to address this challenge has been the development of prodrugs that target the intestinal peptide transporter, PepT1 (SLC15A1). PepT1 exhibits a remarkably promiscuous binding site and is known to transport many different drug molecules, making it an excellent target for prodrug design and delivery. However, the structural basis for drug recognition remains largely unknown. Here we present the structure of a bacterial homolog of PepT1 bound to both an antiviral prodrug, valacyclovir, and anticancer drug 5-aminolevulinic acid. These structures enable a pharmacophore model to be developed that will aid future prodrug design. A major challenge in drug development is the optimization of intestinal absorption and cellular uptake. A successful strategy has been to develop prodrug molecules, which hijack solute carrier (SLC) transporters for active transport into the body. The proton-coupled oligopeptide transporters, PepT1 and PepT2, have been successfully targeted using this approach. Peptide transporters display a remarkable capacity to recognize a diverse library of di- and tripeptides, making them extremely promiscuous and major contributors to the pharmacokinetic profile of several important drug classes, including beta-lactam antibiotics and antiviral and antineoplastic agents. Of particular interest has been their ability to recognize amino acid and peptide-based prodrug molecules, thereby providing a rational approach to improving drug transport into the body. However, the structural basis for prodrug recognition has remained elusive. Here we present crystal structures of a prokaryotic homolog of the mammalian transporters in complex with the antiviral prodrug valacyclovir and the peptide-based photodynamic therapy agent, 5-aminolevulinic acid. The valacyclovir structure reveals that prodrug recognition is mediated through both the amino acid scaffold and the ester bond, which is commonly used to link drug molecules to the carrier’s physiological ligand, whereas 5-aminolevulinic acid makes far fewer interactions compared with physiological peptides. These structures provide a unique insight into how peptide transporters interact with xenobiotic molecules and provide a template for further prodrug development.
Collapse
|
22
|
Flayhan A, Mertens HDT, Ural-Blimke Y, Martinez Molledo M, Svergun DI, Löw C. Saposin Lipid Nanoparticles: A Highly Versatile and Modular Tool for Membrane Protein Research. Structure 2018; 26:345-355.e5. [PMID: 29413323 PMCID: PMC5807053 DOI: 10.1016/j.str.2018.01.007] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 11/27/2017] [Accepted: 01/10/2018] [Indexed: 11/30/2022]
Abstract
Saposin-derived lipid nanoparticles (SapNPs) are a new alternative tool for membrane protein reconstitution. Here we demonstrate the potential and advantages of SapNPs. We show that SapA has the lowest lipid specificity for SapNP formation. These nanoparticles are modular and offer a tunable range of size and composition depending on the stoichiometric ratio of lipid and saposin components. They are stable and exhibit features typical of lipid-bilayer systems. Our data suggest that SapNPs are versatile and can adapt to membrane proteins of various sizes and architectures. Using SapA and various types of lipids we could reconstitute membrane proteins of different transmembrane cross-sectional areas (from 14 to 56 transmembrane α helices). SapNP-reconstituted proteins bound their respective ligands and were more heat stable compared with the detergent-solubilized form. Moreover, SapNPs encircle membrane proteins in a compact way, allowing structural investigations of small membrane proteins in a detergent-free environment using small-angle X-ray scattering. SapA shows the lowest lipid specificity for SapNP formation SapNPs are versatile and can adapt to MPs of various sizes and architectures SapNP-reconstituted MPs are more stable than in detergent SapNPs encapsulate MPs in a compact manner
Collapse
Affiliation(s)
- Ali Flayhan
- Centre for Structural Systems Biology (CSSB), DESY, Notkestrasse 85, 22607 Hamburg, Germany; European Molecular Biology Laboratory Hamburg, Notkestrasse 85, 22607 Hamburg, Germany
| | - Haydyn D T Mertens
- European Molecular Biology Laboratory Hamburg, Notkestrasse 85, 22607 Hamburg, Germany
| | - Yonca Ural-Blimke
- Centre for Structural Systems Biology (CSSB), DESY, Notkestrasse 85, 22607 Hamburg, Germany; European Molecular Biology Laboratory Hamburg, Notkestrasse 85, 22607 Hamburg, Germany
| | - Maria Martinez Molledo
- Centre for Structural Systems Biology (CSSB), DESY, Notkestrasse 85, 22607 Hamburg, Germany; European Molecular Biology Laboratory Hamburg, Notkestrasse 85, 22607 Hamburg, Germany
| | - Dmitri I Svergun
- European Molecular Biology Laboratory Hamburg, Notkestrasse 85, 22607 Hamburg, Germany
| | - Christian Löw
- Centre for Structural Systems Biology (CSSB), DESY, Notkestrasse 85, 22607 Hamburg, Germany; European Molecular Biology Laboratory Hamburg, Notkestrasse 85, 22607 Hamburg, Germany; Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Scheeles väg 2, 17177 Stockholm, Sweden.
| |
Collapse
|
23
|
Kong HK, Pan Q, Lo WU, Liu X, Law COK, Chan TF, Ho PL, Lau TCK. Fine-tuning carbapenem resistance by reducing porin permeability of bacteria activated in the selection process of conjugation. Sci Rep 2018; 8:15248. [PMID: 30323356 PMCID: PMC6189183 DOI: 10.1038/s41598-018-33568-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 09/27/2018] [Indexed: 01/21/2023] Open
Abstract
Antibiotic resistance is an emerging public health issue. Plasmids are one of the popular carriers to disseminate resistance genes among pathogens. However, the response of plasmid-carrying bacteria to antibiotic treatment and how these bacteria evolve to increase their resistance remain elusive. In this study, we conjugated plasmid pNDM-HK to E. coli J53 recipient cells and selected survivors using different concentrations of the broad spectrum antibiotic meropenem. After selection, transconjugants conferred varying minimum inhibitory concentrations with respect to carbapenems. We sequenced and compared the transcriptomes of transconjugants that exhibited distinct carbapenem susceptibilities, and found that the loss of outer membrane proteins led to antibiotic resistance. Moreover, we identified a novel mutation, G63S, in transcription factor OmpR which moderates the expression of outer membrane proteins. The loss of porins was due to incapability of phosphorylation, which is essential for porin transcription and carbapenem resistance. We also characterized other genes that are regulated by ompR in this mutant, which contributed to bacterial antibiotic resistance. Overall, our studies suggest antibiotic pressure after conjugation might be an alternative pathway to promote antimicrobial resistance.
Collapse
Affiliation(s)
- Hoi-Kuan Kong
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong Special Administrative Region, Kowloon Tong, People's Republic of China
| | - Qing Pan
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong Special Administrative Region, Kowloon Tong, People's Republic of China
| | - Wai-U Lo
- Department of Microbiology and Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong Special Administrative Region, Kowloon Tong, People's Republic of China
| | - Xuan Liu
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong Special Administrative Region, Kowloon Tong, People's Republic of China
| | - Carmen O K Law
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong Special Administrative Region, Kowloon Tong, People's Republic of China
| | - Ting-Fung Chan
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, Kowloon Tong, People's Republic of China
| | - Pak-Leung Ho
- Department of Microbiology and Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong Special Administrative Region, Kowloon Tong, People's Republic of China
| | - Terrence Chi-Kong Lau
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong Special Administrative Region, Kowloon Tong, People's Republic of China.
| |
Collapse
|
24
|
Minhas GS, Bawdon D, Herman R, Rudden M, Stone AP, James AG, Thomas GH, Newstead S. Structural basis of malodour precursor transport in the human axilla. eLife 2018; 7:e34995. [PMID: 29966586 PMCID: PMC6059767 DOI: 10.7554/elife.34995] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 06/23/2018] [Indexed: 01/10/2023] Open
Abstract
Mammals produce volatile odours that convey different types of societal information. In Homo sapiens, this is now recognised as body odour, a key chemical component of which is the sulphurous thioalcohol, 3-methyl-3-sulfanylhexan-1-ol (3M3SH). Volatile 3M3SH is produced in the underarm as a result of specific microbial activity, which act on the odourless dipeptide-containing malodour precursor molecule, S-Cys-Gly-3M3SH, secreted in the axilla (underarm) during colonisation. The mechanism by which these bacteria recognise S-Cys-Gly-3M3SH and produce body odour is still poorly understood. Here we report the structural and biochemical basis of bacterial transport of S-Cys-Gly-3M3SH by Staphylococcus hominis, which is converted to the sulphurous thioalcohol component 3M3SH in the bacterial cytoplasm, before being released into the environment. Knowledge of the molecular basis of precursor transport, essential for body odour formation, provides a novel opportunity to design specific inhibitors of malodour production in humans.
Collapse
Affiliation(s)
- Gurdeep S Minhas
- Department of BiochemistryUniversity of OxfordOxfordUnited Kingdom
| | - Daniel Bawdon
- Department of BiologyUniversity of YorkYorkUnited Kingdom
| | - Reyme Herman
- Department of BiologyUniversity of YorkYorkUnited Kingdom
| | | | - Andrew P Stone
- Department of BiologyUniversity of YorkYorkUnited Kingdom
| | | | - Gavin H Thomas
- Department of BiologyUniversity of YorkYorkUnited Kingdom
| | - Simon Newstead
- Department of BiochemistryUniversity of OxfordOxfordUnited Kingdom
| |
Collapse
|
25
|
Alghamdi OA, King N, Jones GL, Moens PD. A new use of β-Ala-Lys (AMCA) as a transport reporter for PEPT1 and PEPT2 in renal brush border membrane vesicles from the outer cortex and outer medulla. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:960-964. [DOI: 10.1016/j.bbamem.2017.12.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/05/2017] [Accepted: 12/28/2017] [Indexed: 01/29/2023]
|
26
|
Prabhala BK, Aduri NG, Sharma N, Shaheen A, Sharma A, Iqbal M, Hansen PR, Brasen C, Gajhede M, Rahman M, Mirza O. The prototypical proton-coupled oligopeptide transporter YdgR from Escherichia coli facilitates chloramphenicol uptake into bacterial cells. J Biol Chem 2017; 293:1007-1017. [PMID: 29150447 DOI: 10.1074/jbc.m117.805960] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 11/07/2017] [Indexed: 11/06/2022] Open
Abstract
Chloramphenicol (Cam) is a broad-spectrum antibiotic used to combat bacterial infections in humans and animals. Cam export from bacterial cells is one of the mechanisms by which pathogens resist Cam's antibacterial effects, and several different proteins are known to facilitate this process. However, to date no report exists on any specific transport protein that facilitates Cam uptake. The proton-coupled oligopeptide transporter (POT) YdgR from Escherichia coli is a prototypical member of the POT family, functioning in proton-coupled uptake of di- and tripeptides. By following bacterial growth and conducting LC-MS-based assays we show here that YdgR facilitates Cam uptake. Some YdgR variants displaying reduced peptide uptake also exhibited reduced Cam uptake, indicating that peptides and Cam bind YdgR at similar regions. Homology modeling of YdgR, Cam docking, and mutational studies suggested a binding mode that resembles that of Cam binding to the multidrug resistance transporter MdfA. To our knowledge, this is the first report of Cam uptake into bacterial cells mediated by a specific transporter protein. Our findings suggest a specific bacterial transporter for drug uptake that might be targeted to promote greater antibiotic influx to increase cytoplasmic antibiotic concentration for enhanced cytotoxicity.
Collapse
Affiliation(s)
- Bala K Prabhala
- From the Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2100, Denmark and
| | - Nanda G Aduri
- From the Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2100, Denmark and
| | - Neha Sharma
- From the Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2100, Denmark and
| | - Aqsa Shaheen
- the Health Biotechnology Divisions, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Arpan Sharma
- From the Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2100, Denmark and
| | - Mazhar Iqbal
- the Health Biotechnology Divisions, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Paul R Hansen
- From the Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2100, Denmark and
| | - Christoffer Brasen
- From the Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2100, Denmark and
| | - Michael Gajhede
- From the Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2100, Denmark and
| | - Moazur Rahman
- the Health Biotechnology Divisions, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Osman Mirza
- From the Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2100, Denmark and
| |
Collapse
|
27
|
Several hPepT1-transported drugs are substrates of the Escherichia coli proton-coupled oligopeptide transporter YdgR. Res Microbiol 2017; 168:443-449. [DOI: 10.1016/j.resmic.2017.01.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 01/24/2017] [Accepted: 01/26/2017] [Indexed: 11/23/2022]
|
28
|
Fuentealba P, Aros C, Latorre Y, Martínez I, Marshall S, Ferrer P, Albiol J, Altamirano C. Genome-scale metabolic reconstruction for the insidious bacterium in aquaculture Piscirickettsia salmonis. BIORESOURCE TECHNOLOGY 2017; 223:105-114. [PMID: 27788423 DOI: 10.1016/j.biortech.2016.10.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 10/04/2016] [Accepted: 10/11/2016] [Indexed: 06/06/2023]
Abstract
Piscirickettsia salmonis is a fish bacterium that causes the disease piscirickettsiosis in salmonids. This pathology is partially controlled by vaccines. The lack of knowledge has hindered its culture on laboratory and industrial scale. The study describes the metabolic phenotype of P. salmonis in culture. This study presents the first genome-scale model (iPF215) of the LF-89 strain of P. salmonis, describing the central metabolic pathway, biosynthesis and molecule degradation and transport mechanisms. The model was adjusted with experiment data, allowing the identification of the capacities that were not predicted by the automatic annotation of the genome sequences. The iPF215 model is comprised of 417 metabolites, 445 reactions and 215 genes, was used to reproduce the growth of P. salmonis (μmax 0.052±0.005h-1). The metabolic reconstruction of the P. salmonis LF-89 strain obtained in this research provides a baseline that describes the metabolic capacities of the bacterium and is the basis for developing improvements to its cultivation for vaccine formulation.
Collapse
Affiliation(s)
- Pablo Fuentealba
- Doctorado en Biotecnología, Pontificia Universidad Católica de Valparaíso - Universidad Federico Santa María, Valparaíso, Chile; Laboratorio of Cultivos Celulares, Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Camila Aros
- Laboratorio of Cultivos Celulares, Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Yesenia Latorre
- Laboratorio of Cultivos Celulares, Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Irene Martínez
- Laboratorio of Cultivos Celulares, Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Sergio Marshall
- Laboratorio of Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Curauma, Chile
| | - Pau Ferrer
- Laboratorio de Biología de Sistemas, Departamento Ingeniería Química, Universidad Autónoma de Barcelona, Barcelona, Spain
| | - Joan Albiol
- Laboratorio de Biología de Sistemas, Departamento Ingeniería Química, Universidad Autónoma de Barcelona, Barcelona, Spain
| | - Claudia Altamirano
- Laboratorio of Cultivos Celulares, Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile; CREAS CONICYT Regional GORE Valparaíso R0GI1004, Av. Universidad, Curauma, Chile.
| |
Collapse
|
29
|
Kitamura K, Kinsui EZB, Abe F. Critical role of the proton-dependent oligopeptide transporter (POT) in the cellular uptake of the peptidyl nucleoside antibiotic, blasticidin S. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1864:393-398. [PMID: 27916534 DOI: 10.1016/j.bbamcr.2016.11.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 11/22/2016] [Accepted: 11/29/2016] [Indexed: 11/28/2022]
Abstract
Blasticidin S (BlaS) interferes in the cell growth of both eukaryotes and prokaryotes. Its mode of action as a protein synthesis inhibitor has been investigated extensively. However, the mechanism of BlaS transport into the target cells is not understood well. Here, we show that Ptr2, a member of the proton-dependent oligopeptide transporter (POT) family, is responsible for the uptake of BlaS in yeasts Schizosaccharomyces pombe and Saccharomyces cerevisiae. Notably, some mutants of Ptr2 that are dysfunctional in dipeptide uptake were still competent to transport BlaS. Mouse-derived oligopeptide transporter PepT1 conferred BlaS sensitivity in the S. cerevisiae ptr2∆ mutant. Furthermore, bacterial POT family proteins also potentiated the BlaS sensitivity of E. coli. The role of the POT family oligopeptide transporters in the uptake of BlaS is conserved across species from bacteria to mammals.
Collapse
Affiliation(s)
- Kenji Kitamura
- Center for Gene Science, Hiroshima University, 1-4-2 Kagamiyama, Higashi-Hiroshima 739-8527, Japan.
| | | | - Fumiyoshi Abe
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, Sagamihara 252-5258, Japan
| |
Collapse
|
30
|
Garai P, Chandra K, Chakravortty D. Bacterial peptide transporters: Messengers of nutrition to virulence. Virulence 2016; 8:297-309. [PMID: 27589415 DOI: 10.1080/21505594.2016.1221025] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Bacteria possess numerous peptide transporters for importing peptides as nutrients. However, these peptide transporters are now consistently reported to play a role in the virulence of various bacterial pathogens. Their ability to transport peptides has implications in antibacterial therapy as well. Therefore, it would be instrumental to have complete knowledge about the role of peptide transporters in mediating this cross connection between metabolism and pathogenesis. Studies on various peptide transporters in bacterial pathogens have improved our understanding of this field. In this review, we have given an overview of the functioning of bacterial peptide transporters and their contribution in virulence of major bacterial pathogens.
Collapse
Affiliation(s)
- Preeti Garai
- a Department of Microbiology and Cell Biology , Indian Institute of Science , Bangalore , India
| | - Kasturi Chandra
- a Department of Microbiology and Cell Biology , Indian Institute of Science , Bangalore , India
| | - Dipshikha Chakravortty
- a Department of Microbiology and Cell Biology , Indian Institute of Science , Bangalore , India
| |
Collapse
|
31
|
Sharma N, Aduri NG, Iqbal A, Prabhala BK, Mirza O. Peptide Selectivity of the Proton-Coupled Oligopeptide Transporter from Neisseria meningitidis. J Mol Microbiol Biotechnol 2016; 26:312-9. [DOI: 10.1159/000447129] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 05/26/2016] [Indexed: 11/19/2022] Open
Abstract
Peptide transport in living organisms is facilitated by either primary transport, hydrolysis of ATP, or secondary transport, cotransport of protons. In this study, we focused on investigating the ligand specificity of the <i>Neisseria meningitidis</i> proton-coupled oligopeptide transporter (NmPOT). It has been shown that the gene encoding this transporter is upregulated during infection. NmPOT conformed to the typical chain length preference as observed in prototypical transporters of this family. In contrast to prototypical transporters, it was unable to accommodate a positively charged peptide residue at the C-terminus position of the substrate peptide. Sequence analysis of the active site of NmPOT displayed a distinctive aromatic patch, which has not been observed in any other transporters from this family. This aromatic patch may be involved in providing NmPOT with its atypical preferences. This study provides important novel information towards understanding how these transporters recognize their substrates.
Collapse
|
32
|
Intestinal barrier dysfunction: implications for chronic inflammatory conditions of the bowel. Nutr Res Rev 2016; 29:40-59. [DOI: 10.1017/s0954422416000019] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
AbstractThe intestinal epithelium of adult humans acts as a differentially permeable barrier that separates the potentially harmful contents of the lumen from the underlying tissues. Any dysfunction of this boundary layer that disturbs the homeostatic equilibrium between the internal and external environments may initiate and sustain a biochemical cascade that results in inflammation of the intestine. Key to such dysfunction are genetic, microbial and other environmental factors that, singularly or in combination, result in chronic inflammation that is symptomatic of inflammatory bowel disease (IBD). The aim of the present review is to assess the scientific evidence to support the hypothesis that defective transepithelial transport mechanisms and the heightened absorption of intact antigenic proinflammatory oligopeptides are important contributing factors in the pathogenesis of IBD.
Collapse
|
33
|
Stelzl T, Baranov T, Geillinger KE, Kottra G, Daniel H. Effect of N-glycosylation on the transport activity of the peptide transporter PEPT1. Am J Physiol Gastrointest Liver Physiol 2016; 310:G128-41. [PMID: 26585416 DOI: 10.1152/ajpgi.00350.2015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 11/10/2015] [Indexed: 01/31/2023]
Abstract
The intestinal peptide transporter PEPT1 provides bulk quantities of amino acids to epithelial cells. PEPT1 is a high-capacity and low-affinity solute carrier of the SLC15 family found in apical membranes of enterocytes in small intestine and distal colon. Surprisingly, murine PEPT1 (mPEPT1) has an apparent molecular mass of ∼95 kDa in the small intestine but ∼105 kDa in the large intestine. Here we describe studies on mPEPT1 protein glycosylation and how glycans affect transport function. Putative N-glycosylation sites of mPEPT1 were altered by site-directed mutagenesis followed by expression in Xenopus laevis oocytes. Replacement of six asparagine residues (N) at positions N50, N406, N439, N510, N515, and N532 by glutamine (Q) resulted in a decrease of the mPEPT1 mass by around 35 kDa. Electrophysiology revealed all glycosylation-deficient transporters to be functional with comparable expression levels in oocyte membranes. Strikingly, the mutant protein with N50Q exhibited a twofold decreased affinity for Gly-Sar but a 2.5-fold rise in the maximal inward currents compared with the wild-type protein. Elevated maximal transport currents were also recorded for cefadroxil and tri-l-alanine. Tracer flux studies performed with [(14)C]-Gly-Sar confirmed the reduction in substrate affinity and showed twofold increased maximal transport rates for the N50Q transporter. Elimination of individual N-glycosylation sites did not alter membrane expression in oocytes or overall transport characteristics except for the mutant protein N50Q. Because transporter surface density was not altered in N50Q, removal of the glycan at this location appears to accelerate the substrate turnover rate.
Collapse
Affiliation(s)
- Tamara Stelzl
- Chair of Nutritional Physiology, Technische Universität München, Freising, Germany; ZIEL, Institute for Food and Health, Freising, Germany
| | - Tatjana Baranov
- Chair of Nutritional Physiology, Technische Universität München, Freising, Germany; ZIEL, Institute for Food and Health, Freising, Germany
| | - Kerstin E Geillinger
- Chair of Nutritional Physiology, Technische Universität München, Freising, Germany; ZIEL, Institute for Food and Health, Freising, Germany
| | - Gabor Kottra
- Chair of Nutritional Physiology, Technische Universität München, Freising, Germany; ZIEL, Institute for Food and Health, Freising, Germany
| | - Hannelore Daniel
- Chair of Nutritional Physiology, Technische Universität München, Freising, Germany; ZIEL, Institute for Food and Health, Freising, Germany
| |
Collapse
|
34
|
Aduri NG, Prabhala BK, Ernst HA, Jørgensen FS, Olsen L, Mirza O. Salt Bridge Swapping in the EXXERFXYY Motif of Proton-coupled Oligopeptide Transporters. J Biol Chem 2015; 290:29931-40. [PMID: 26483552 DOI: 10.1074/jbc.m115.675603] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Indexed: 01/12/2023] Open
Abstract
Proton-coupled oligopeptide transporters (POTs) couple the inward transport of di- or tripeptides with an inwardly directed transport of protons. Evidence from several studies of different POTs has pointed toward involvement of a highly conserved sequence motif, E1XXE2RFXYY (from here on referred to as E1XXE2R), located on Helix I, in interactions with the proton. In this study, we investigated the intracellular substrate accumulation by motif variants with all possible combinations of glutamate residues changed to glutamine and arginine changed to a tyrosine, the latter being a natural variant found in the Escherichia coli POT YjdL. We found that YjdL motif variants with E1XXE2R, E1XXE2Y, E1XXQ2Y, or Q1XXE2Y were able to accumulate peptide, whereas those with E1XXQ2R, Q1XXE2R, or Q1XXQ2Y were unable to accumulate peptide, and Q1XXQ2R abolished uptake. These results suggest a mechanism that involves swapping of an intramotif salt bridge, i.e. R-E2 to R-E1, which is consistent with previous structural studies. Molecular dynamics simulations of the motif variants E1XXE2R and E1XXQ2R support this mechanism. The simulations showed that upon changing conformation arginine pushes Helix V, through interactions with the highly conserved FYING motif, further away from the central cavity in what could be a stabilization of an inward facing conformation. As E2 has been suggested to be the primary site for protonation, these novel findings show how protonation may drive conformational changes through interactions of two highly conserved motifs.
Collapse
Affiliation(s)
- Nanda G Aduri
- From the Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Bala K Prabhala
- From the Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Heidi A Ernst
- From the Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Flemming S Jørgensen
- From the Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Lars Olsen
- From the Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Osman Mirza
- From the Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark
| |
Collapse
|
35
|
Jensen JM, Aduri NG, Prabhala BK, Jahnsen R, Franzyk H, Mirza O. Critical role of a conserved transmembrane lysine in substrate recognition by the proton-coupled oligopeptide transporter YjdL. Int J Biochem Cell Biol 2014; 55:311-7. [PMID: 25261786 DOI: 10.1016/j.biocel.2014.09.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 09/12/2014] [Accepted: 09/15/2014] [Indexed: 11/16/2022]
Abstract
Proton-coupled oligopeptide transporters (POTs) utilize an electrochemical proton gradient to accumulate peptides in the cytoplasm. Changing the highly conserved active-site Lys117 in the Escherichia coli POT YjdL to glutamine resulted in loss of ligand affinity as well as inability to distinguish between a dipeptide ligand and the corresponding dipeptide amide. The radically changed pH(Bulk) profiles of Lys117Gln and Lys117Arg mutants indicate an important role of Lys117 in facilitating protonation of the transporter; a notion that is supported by the close proximity of Lys117 to the conserved ExxERFxYY POT motif previously shown to be involved in proton translocation. These results point toward a novel dual role of Lys117 in direct or indirect interaction with both proton and peptide.
Collapse
Affiliation(s)
- Johanne M Jensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nanda G Aduri
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bala K Prabhala
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rasmus Jahnsen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Henrik Franzyk
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Osman Mirza
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
36
|
2D and 3D crystallization of a bacterial homologue of human vitamin C membrane transport proteins. J Struct Biol 2014; 188:87-91. [PMID: 25160726 DOI: 10.1016/j.jsb.2014.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 08/18/2014] [Indexed: 11/15/2022]
Abstract
Most organisms are able to synthesize vitamin C whereas humans are not. In order to contribute to the elucidation of the molecular working mechanism of vitamin C transport through biological membranes, we cloned, overexpressed, purified, functionally characterized, and 2D- and 3D-crystallized a bacterial protein (UraDp) with 29% of amino acid sequence identity to the human sodium-dependent vitamin C transporter 1 (SVCT1). Ligand-binding experiments by scintillation proximity assay revealed that uracil is a substrate preferably bound to UraDp. For structural analysis, we report on the production of tubular 2D crystals and present a first projection structure of UraDp from negatively stained tubes. On the other hand the successful growth of UraDp 3D crystals and their crystallographic analysis is described. These 3D crystals, which diffract X-rays to 4.2Å resolution, pave the way towards the high-resolution crystal structure of a bacterial homologue with high amino acid sequence identity to human SVCT1.
Collapse
|
37
|
Prabhala BK, Aduri NG, Hald H, Mirza O. Investigation of the Substrate Specificity of the Proton Coupled Peptide Transporter PepTSo from Shewanella oneidensis. Int J Pept Res Ther 2014. [DOI: 10.1007/s10989-014-9427-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
38
|
Newstead S. Molecular insights into proton coupled peptide transport in the PTR family of oligopeptide transporters. Biochim Biophys Acta Gen Subj 2014; 1850:488-99. [PMID: 24859687 PMCID: PMC4331665 DOI: 10.1016/j.bbagen.2014.05.011] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 05/12/2014] [Accepted: 05/13/2014] [Indexed: 12/15/2022]
Abstract
Background Cellular uptake of small peptides is an important physiological process mediated by the PTR family of proton-coupled peptide transporters. In bacteria peptides can be used as a source of amino acids and nitrogen. Similarly in humans peptide transport is the principle route for the uptake and retention of dietary protein in the form of short di- and tri-peptides for cellular metabolism. Scope of the review Recent crystal structures of bacterial PTR family transporters, combined with biochemical studies of transport have revealed key molecular details underpinning ligand promiscuity and the mechanism of proton-coupled transport within the family. Major conclusions Pairs of salt bridge interactions between transmembrane helices work in tandem to orchestrate alternating access transport within the PTR family. Key roles for residues conserved between bacterial and eukaryotic homologues suggest a conserved mechanism of peptide recognition and transport that in some cases has been subtly modified in individual species. General significance Physiological studies on PepT1 and PepT2, the mammalian members of this family, have identified these transporters as being responsible for the uptake of many pharmaceutically important drug molecules, including antibiotics and antiviral medications and demonstrated their promiscuity can be used for improving the oral bioavailability of poorly absorbed compounds. The insights gained from recent structural studies combined with previous physiological and biochemical analyses are rapidly advancing our understanding of this medically important transporter superfamily. This article is part of a Special Issue entitled Structural biochemistry and biophysics of membrane proteins. Crystal structures of PTR family transporters Identification of mechanistically important salt bridge interactions. Conservation of key functional residues between bacterial and mammalian homologues. High resolution structural information on peptide binding.
Collapse
Affiliation(s)
- Simon Newstead
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| |
Collapse
|
39
|
Ilgü H, Jeckelmann JM, Gachet MS, Boggavarapu R, Ucurum Z, Gertsch J, Fotiadis D. Variation of the detergent-binding capacity and phospholipid content of membrane proteins when purified in different detergents. Biophys J 2014; 106:1660-70. [PMID: 24739165 PMCID: PMC4008799 DOI: 10.1016/j.bpj.2014.02.024] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 02/21/2014] [Accepted: 02/26/2014] [Indexed: 11/24/2022] Open
Abstract
Purified membrane proteins are ternary complexes consisting of protein, lipid, and detergent. Information about the amounts of detergent and endogenous phospholipid molecules bound to purified membrane proteins is largely lacking. In this systematic study, three model membrane proteins of different oligomeric states were purified in nine different detergents at commonly used concentrations and characterized biochemically and biophysically. Detergent-binding capacities and phospholipid contents of the model proteins were determined and compared. The insights on ternary complexes obtained from the experimental results, when put into a general context, are summarized as follows. 1), The amount of detergent and 2) the amount of endogenous phospholipids bound to purified membrane proteins are dependent on the size of the hydrophobic lipid-accessible protein surface areas and the physicochemical properties of the detergents used. 3), The size of the detergent and lipid belt surrounding the hydrophobic lipid-accessible surface of purified membrane proteins can be tuned by the appropriate choice of detergent. 4), The detergents n-nonyl-β-D-glucopyranoside and Cymal-5 have exceptional delipidating effects on ternary complexes. 5), The types of endogenous phospholipids bound to membrane proteins can vary depending on the detergent used for solubilization and purification. 6), Furthermore, we demonstrate that size-exclusion chromatography can be a suitable method for estimating the molecular mass of ternary complexes. The findings presented suggest a strategy to control and tune the numbers of detergent and endogenous phospholipid molecules bound to membrane proteins. These two parameters are potentially important for the successul crystallization of membrane proteins for structure determination by crystallographic approaches.
Collapse
Affiliation(s)
- Hüseyin Ilgü
- Institute of Biochemistry and Molecular Medicine, and Swiss National Centre of Competence in Research (NCCR) TransCure, University of Bern, Bern, Switzerland
| | - Jean-Marc Jeckelmann
- Institute of Biochemistry and Molecular Medicine, and Swiss National Centre of Competence in Research (NCCR) TransCure, University of Bern, Bern, Switzerland
| | - María Salomé Gachet
- Institute of Biochemistry and Molecular Medicine, and Swiss National Centre of Competence in Research (NCCR) TransCure, University of Bern, Bern, Switzerland
| | - Rajendra Boggavarapu
- Institute of Biochemistry and Molecular Medicine, and Swiss National Centre of Competence in Research (NCCR) TransCure, University of Bern, Bern, Switzerland
| | - Zöhre Ucurum
- Institute of Biochemistry and Molecular Medicine, and Swiss National Centre of Competence in Research (NCCR) TransCure, University of Bern, Bern, Switzerland
| | - Jürg Gertsch
- Institute of Biochemistry and Molecular Medicine, and Swiss National Centre of Competence in Research (NCCR) TransCure, University of Bern, Bern, Switzerland
| | - Dimitrios Fotiadis
- Institute of Biochemistry and Molecular Medicine, and Swiss National Centre of Competence in Research (NCCR) TransCure, University of Bern, Bern, Switzerland.
| |
Collapse
|
40
|
New insights into the substrate specificities of proton-coupled oligopeptide transporters from E. coli by a pH sensitive assay. FEBS Lett 2014; 588:560-5. [PMID: 24440353 DOI: 10.1016/j.febslet.2014.01.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 12/31/2013] [Accepted: 01/03/2014] [Indexed: 11/23/2022]
Abstract
Proton-coupled oligopeptide transporters (POTs) are secondary active transporters that facilitate di- and tripeptide uptake by coupling it to an inward directed proton electrochemical gradient. Here the substrate specificities of Escherichia coli POTs YdgR, YhiP and YjdL were investigated by means of a label free transport assay using the hydrophilic pH sensitive dye pyranine and POT overexpressing E. coli cells. The results confirm and extend the functional knowledge on E. coli POTs. In contrast to previous assumptions, alanine and trialanine appears to be substrates of YjdL, albeit poor compared to dipeptides. Similarly tetraalanine apparently is a substrate of both YdgR and YhiP.
Collapse
|
41
|
Kottra G, Spanier B, Verri T, Daniel H. Peptide transporter isoforms are discriminated by the fluorophore-conjugated dipeptides β-Ala- and d-Ala-Lys-N-7-amino-4-methylcoumarin-3-acetic acid. Physiol Rep 2013; 1:e00165. [PMID: 24744852 PMCID: PMC3970736 DOI: 10.1002/phy2.165] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 09/16/2013] [Accepted: 10/26/2013] [Indexed: 02/06/2023] Open
Abstract
Peptide transporters of the SLC15 family are classified by structure and function into PEPT1 (low‐affinity/high‐capacity) and PEPT2 (high‐affinity/low‐capacity) isoforms. Despite the differences in kinetics, both transporter isoforms are reckoned to transport essentially all possible di‐ and tripeptides. We here report that the fluorophore‐conjugated dipeptide derivatives β‐Ala‐Lys‐N‐7‐amino‐4‐methylcoumarin‐3‐acetic acid (β‐AK‐AMCA) and d‐Ala‐Lys‐N‐7‐amino‐4‐methylcoumarin‐3‐acetic acid (d‐AK‐AMCA) are transported by distinct PEPT isoforms in a species‐specific manner. Transport of the fluorophore peptides was studied (1) in vitro after heterologous expression in Xenopus oocytes of PEPT1 and PEPT2 isoforms from different vertebrate species and of PEPT1 and PEPT2 transporters from Caenorhabditis elegans by using electrophysiological and fluorescence methods and (2) in vivo in C. elegans by using fluorescence methods. Our results indicate that both substrates are transported by the vertebrate “renal‐type” and the C. elegans “intestinal‐type” peptide transporter only. A systematic analysis among species finds four predicted amino acid residues along the sequence that may account for the substrate uptake differences observed between the vertebrate PEPT1/nematode PEPT2 and the vertebrate PEPT2/nematode PEPT1 subtype. This selectivity on basis of isoforms and species may be helpful in better defining the structure–function determinants of the proteins of the SLC15 family. Peptide transporters of the SLC15 family can be classified by structure and function into the PEPT1 (low‐affinity/high‐capacity) and PEPT2 (high‐affinity/low‐capacity) phenotype. We found that the fluorophore‐conjugated dipeptide derivatives β‐Ala‐Lys‐N‐7‐amino‐4‐methylcoumarin‐3‐acetic acid (β‐AK‐AMCA) and d‐Ala‐Lys‐N‐7‐amino‐4‐methylcoumarin‐3‐acetic acid (d‐AK‐AMCA) are transported only by distinct PEPT isoforms in a species‐specific manner. This selectivity on basis of isoforms and species should be helpful in further defining the substrate‐binding domain of peptide transporters.
Collapse
Affiliation(s)
- Gabor Kottra
- ZIEL Research Center of Nutrition and Food Sciences, Abteilung Biochemie, Technische Universität München, Gregor-Mendel-Str. 2, Freising, D-85350, Germany
| | - Britta Spanier
- ZIEL Research Center of Nutrition and Food Sciences, Abteilung Biochemie, Technische Universität München, Gregor-Mendel-Str. 2, Freising, D-85350, Germany
| | - Tiziano Verri
- Laboratory of General Physiology, Department of Biological and Environmental Sciences and Technologies, University of Salento, via Provinciale Lecce-Monteroni, Lecce, I-73100, Italy
| | - Hannelore Daniel
- ZIEL Research Center of Nutrition and Food Sciences, Abteilung Biochemie, Technische Universität München, Gregor-Mendel-Str. 2, Freising, D-85350, Germany
| |
Collapse
|
42
|
Peptide transporter DtpA has two alternate conformations, one of which is promoted by inhibitor binding. Proc Natl Acad Sci U S A 2013; 110:E3978-86. [PMID: 24082128 DOI: 10.1073/pnas.1312959110] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Peptide transporters (PTRs) of the large PTR family facilitate the uptake of di- and tripeptides to provide cells with amino acids for protein synthesis and for metabolic intermediates. Although several PTRs have been structurally and functionally characterized, how drugs modulate peptide transport remains unclear. To obtain insight into this mechanism, we characterize inhibitor binding to the Escherichia coli PTR dipeptide and tripeptide permease A (DtpA), which shows substrate specificities similar to its human homolog hPEPT1. After demonstrating that Lys[Z-NO2]-Val, the strongest inhibitor of hPEPT1, also acts as a high-affinity inhibitor for DtpA, we used single-molecule force spectroscopy to localize the structural segments stabilizing the peptide transporter and investigated which of these structural segments change stability upon inhibitor binding. This characterization was done with DtpA embedded in the lipid membrane and exposed to physiologically relevant conditions. In the unbound state, DtpA adopts two main alternate conformations in which transmembrane α-helix (TMH) 2 is either stabilized (in ∼43% of DtpA molecules) or not (in ∼57% of DtpA molecules). The two conformations are understood to represent the inward- and outward-facing conformational states of the transporter. With increasing inhibitor concentration, the conformation characterized by a stabilized TMH 2 becomes increasingly prevalent, reaching ∼92% at saturation. Our measurements further suggest that Lys[Z-NO2]-Val interacts with discrete residues in TMH 2 that are important for ligand binding and substrate affinity. These interactions in turn stabilize TMH 2, thereby promoting the inhibited conformation of DtpA.
Collapse
|
43
|
Structural insights into substrate recognition in proton-dependent oligopeptide transporters. EMBO Rep 2013; 14:804-10. [PMID: 23867627 DOI: 10.1038/embor.2013.107] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 06/27/2013] [Accepted: 06/28/2013] [Indexed: 11/09/2022] Open
Abstract
Short-chain peptides are transported across membranes through promiscuous proton-dependent oligopeptide transporters (POTs)--a subfamily of the major facilitator superfamily (MFS). The human POTs, PEPT1 and PEPT2, are also involved in the absorption of various drugs in the gut as well as transport to target cells. Here, we present a structure of an oligomeric POT transporter from Shewanella oneidensis (PepTSo2), which was crystallized in the inward open conformation in complex with the peptidomimetic alafosfalin. All ligand-binding residues are highly conserved and the structural insights presented here are therefore likely to also apply to human POTs.
Collapse
|
44
|
Structural basis for dynamic mechanism of proton-coupled symport by the peptide transporter POT. Proc Natl Acad Sci U S A 2013; 110:11343-8. [PMID: 23798427 DOI: 10.1073/pnas.1301079110] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Proton-dependent oligopeptide transporters (POTs) are major facilitator superfamily (MFS) proteins that mediate the uptake of peptides and peptide-like molecules, using the inwardly directed H(+) gradient across the membrane. The human POT family transporter peptide transporter 1 is present in the brush border membrane of the small intestine and is involved in the uptake of nutrient peptides and drug molecules such as β-lactam antibiotics. Although previous studies have provided insight into the overall structure of the POT family transporters, the question of how transport is coupled to both peptide and H(+) binding remains unanswered. Here we report the high-resolution crystal structures of a bacterial POT family transporter, including its complex with a dipeptide analog, alafosfalin. These structures revealed the key mechanistic and functional roles for a conserved glutamate residue (Glu310) in the peptide binding site. Integrated structural, biochemical, and computational analyses suggested a mechanism for H(+)-coupled peptide symport in which protonated Glu310 first binds the carboxyl group of the peptide substrate. The deprotonation of Glu310 in the inward open state triggers the release of the bound peptide toward the intracellular space and salt bridge formation between Glu310 and Arg43 to induce the state transition to the occluded conformation.
Collapse
|
45
|
Jensen JM, Simonsen FC, Mastali A, Hald H, Lillebro I, Diness F, Olsen L, Mirza O. Biophysical characterization of the proton-coupled oligopeptide transporter YjdL. Peptides 2012; 38:89-93. [PMID: 22940668 DOI: 10.1016/j.peptides.2012.08.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 08/15/2012] [Accepted: 08/16/2012] [Indexed: 01/31/2023]
Abstract
Proton-coupled oligopeptide transporters (POTs) utilize the electrochemical proton gradient to facilitate uptake of di- or tripeptide molecules. YjdL is one of four POTs found in Escherichia coli. It has shown an extraordinary preference for di- rather than tripeptides, and is therefore significantly different from prototypical POTs such as the human hPepT1. Nonetheless YjdL contains several highly conserved POT residues, which include Glu388 that is located in the putative substrate binding cavity. Here we present biophysical characterization of WT-YjdL and Glu388Gln. Isothermal titration calorimetrical studies exhibit a K(d) of 14 μM for binding of Ala-Lys to WT-YjdL. Expectedly, no binding could be detected for the tripeptide Ala-Ala-Lys. Surprisingly however, binding could not be detected for Ala-Gln, although earlier studies indicated inhibitory potencies of Ala-Gln to be comparable to Ala-Lys (IC(50) values of 0.6 compared to 0.3mM). Finally, Ala-Lys binding to Glu388Gln was also undetectable which may support a previously suggested role in interaction with the ligand peptide N-terminus.
Collapse
Affiliation(s)
- Johanne Mørch Jensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Jensen JM, Ismat F, Szakonyi G, Rahman M, Mirza O. Probing the putative active site of YjdL: an unusual proton-coupled oligopeptide transporter from E. coli. PLoS One 2012; 7:e47780. [PMID: 23110099 PMCID: PMC3478282 DOI: 10.1371/journal.pone.0047780] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 09/17/2012] [Indexed: 12/20/2022] Open
Abstract
YjdL from E. coli is an unusual proton-coupled oligopeptide transporter (POT). Unlike prototypical POTs, dipeptides are preferred over tripeptides, in particular dipeptides with a positively charged C-terminal residue. To further understand this difference in peptide specificity, the sequences of YjdL and YdgR, a prototypical E. coli POT, were compared in light of the crystal structure of a POT from Shewanella oneidensis. Several residues found in the putative active site were mutated and the activities of the mutated variants were assessed in terms of substrate uptake assays, and changes in specificity in terms of uptake inhibition. Most strikingly, changing the YjdL specific Asp392 to the conserved Ser in YjdL obliterated the preference for a positively charged C-terminal residue. Based on this unique finding and previously published results indicating that the dipeptide N-terminus may interact with Glu388, a preliminary orientation model of a dipeptide in the YjdL cavity is presented. Single site mutations of particularly Ala281 and Trp278 support the presented orientation. A dipeptide bound in the cavity of YjdL appears to be oriented such that the N-terminal side chain protrudes into a sub pocket that opens towards the extracellular space. The C-terminal side chain faces in the opposite direction into a sub pocket that faces the cytoplasm. These data indicated a stabilizing effect on a bulky N-terminal residue by an Ala281Phe variant and on the dipeptide backbone by Trp278. In the presented orientation model, Tyr25 and Tyr58 both appear to be in proximity of the dipeptide backbone while Lys117 appears to be in proximity of the peptide C-terminus. Mutational studies of these conserved residues highlight their functional importance.
Collapse
Affiliation(s)
- Johanne Mørch Jensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
47
|
Alternating access mechanism in the POT family of oligopeptide transporters. EMBO J 2012; 31:3411-21. [PMID: 22659829 PMCID: PMC3419923 DOI: 10.1038/emboj.2012.157] [Citation(s) in RCA: 170] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 05/03/2012] [Indexed: 01/16/2023] Open
Abstract
Proton-dependent oligopeptide transporters are required for the uptake of diet-derived peptides in all kingdoms of life. The crystal structure of a bacterial transporter in the inward open conformation, together with a published structure in an occluded conformation, reveals the peptide transport mechanism. Short chain peptides are actively transported across membranes as an efficient route for dietary protein absorption and for maintaining cellular homeostasis. In mammals, peptide transport occurs via PepT1 and PepT2, which belong to the proton-dependent oligopeptide transporter, or POT family. The recent crystal structure of a bacterial POT transporter confirmed that they belong to the major facilitator superfamily of secondary active transporters. Despite the functional characterization of POT family members in bacteria, fungi and mammals, a detailed model for peptide recognition and transport remains unavailable. In this study, we report the 3.3-Å resolution crystal structure and functional characterization of a POT family transporter from the bacterium Streptococcus thermophilus. Crystallized in an inward open conformation the structure identifies a hinge-like movement within the C-terminal half of the transporter that facilitates opening of an intracellular gate controlling access to a central peptide-binding site. Our associated functional data support a model for peptide transport that highlights the importance of salt bridge interactions in orchestrating alternating access within the POT family.
Collapse
|
48
|
Vondenhoff GHM, Van Aerschot A. Microcin C: biosynthesis, mode of action, and potential as a lead in antibiotics development. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2011; 30:465-74. [PMID: 21888539 DOI: 10.1080/15257770.2011.583972] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The natural compound Microcin C (McC) is a Trojan horse inhibitor of aspartyl tRNA synthetases endowed with strong antibacterial properties, in which a heptapeptide moiety is responsible for active transport of the inhibitory metabolite part into the bacterial cell. The intracellularly formed aspartyl AMP analogue carries a chemically more stable phosphoramidate linkage, in comparison to the labile aspartyl-adenylate, and in addition is esterified with a 3-aminopropyl moiety. Therefore, this compound can target aspartyl-tRNA synthetase. The biochemical production and secretion of McC, and the possibilities to develop new classes of antibiotics using the McC Trojan horse concept in combination with sulfamoylated adenosine analogues will be discussed briefly.
Collapse
Affiliation(s)
- Gaston H M Vondenhoff
- Laboratory of Medicinal Chemistry, Rega Institute for Medical Research, Katholieke Universiteit Leuven, Leuven, Belgium
| | | |
Collapse
|
49
|
Jeckelmann JM, Harder D, Mari SA, Meury M, Ucurum Z, Müller DJ, Erni B, Fotiadis D. Structure and function of the glucose PTS transporter from Escherichia coli. J Struct Biol 2011; 176:395-403. [DOI: 10.1016/j.jsb.2011.09.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 09/26/2011] [Accepted: 09/27/2011] [Indexed: 11/27/2022]
|
50
|
Newstead S. Towards a structural understanding of drug and peptide transport within the proton-dependent oligopeptide transporter (POT) family. Biochem Soc Trans 2011; 39:1353-8. [PMID: 21936814 DOI: 10.1042/bst0391353] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
One of the principal aims of modern drug design is the targeted delivery of drugs within the body, such as to the central nervous system, combined with their exclusion from the liver and kidneys, which break down foreign molecules and subsequently eliminate them. Many of the commonly prescribed drugs are transported into cells and across the plasma membrane via endogenous membrane transporters, whose principal roles are the uptake of essential nutrients for metabolism. In many cases, such drug transport is serendipitous as they are simply mistaken as 'natural' compounds. Many of these transporters could, however, be targeted more efficiently, improving drug absorption, distribution and retention. The molecular details of these drug-transporter interactions, however, are at best poorly understood, in large part through the absence of any high-resolution structural information. To address this issue, we recently determined the structure of a prokaryotic peptide transporter, PepTSo from Shewanella oneidensis, which shares a high degree of sequence similarity and functional characteristics with the human PepT1 and PepT2 proteins. PepT1 and PepT2 contribute significantly to the oral bioavailability and pharmacokinetic properties of a number of important drug families, including antibiotics, antivirals and anticancer agents. The crystal structure of PepTSo provides the first high-resolution model of a drug importer and provides the starting point for understanding drug and peptide transport within the human body.
Collapse
Affiliation(s)
- Simon Newstead
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| |
Collapse
|