1
|
Kamble K, Kumar U, Aahra H, Yadav M, Bhola S, Gupta S. A novel ER stress regulator ARL6IP5 induces reticulophagy to ameliorate the prion burden. Autophagy 2024:1-21. [PMID: 39394963 DOI: 10.1080/15548627.2024.2410670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 09/20/2024] [Accepted: 09/26/2024] [Indexed: 10/14/2024] Open
Abstract
Prion disease is a fatal and infectious neurodegenerative disorder caused by the trans-conformation conversion of PRNP/PrPC to PRNP/PrPSc. Accumulated PRNP/PrPSc-induced ER stress causes chronic unfolded protein response (UPR) activation, which is one of the fundamental steps in prion disease progression. However, the role of various ER-resident proteins in prion-induced ER stress is elusive. This study demonstrated that ARL6IP5 is compensatory upregulated in response to chronically activated UPR in the cellular prion disease model (RML-ScN2a). Furthermore, overexpression of ARL6IP5 overcomes ER stress by lowering the expression of chronically activated UPR pathway proteins. We discovered that ARL6IP5 induces reticulophagy to reduce the PRNP/PrPSc burden by releasing ER stress. Conversely, the knockdown of ARL6IP5 leads to inefficient macroautophagic/autophagic flux and elevated PRNP/PrPSc burden. Our study also uncovered that ARL6IP5-induced reticulophagy depends on Ca2+-mediated AMPK activation and can induce 3 MA-inhibited autophagic flux. The detailed mechanistic study revealed that ARL6IP5-induced reticulophagy involves interaction with soluble reticulophagy receptor CALCOCO1 and lysosomal marker LAMP1, leading to degradation in lysosomes. Here, we delineate the role of ARL6IP5 as a novel ER stress regulator and reticulophagy inducer that can effectively reduce the misfolded PRNP/PrPSc burden. Our research opens up a new avenue of selective autophagy in prion disease and represents a potential therapeutic target.Abbreviations: ARL6IP5: ADP ribosylation factor-like GTPase 6 interacting protein 5; AMPK: adenosine 5'-monophosphate (AMP)-activated protein kinase; CALCOCO1: calcium binding and coiled-coil domain 1; CQ: chloroquine; DAPI: 4'6-diamino-2-phenylindole; ER: endoplasmic reticulum; ERPHS: reticulophagy/ER-phagy sites; KD: knockdown; KD-CON: knockdown control; LAMP1: lysosomal-associated membrane protein 1; MAP1LC3/LC3, microtubule-associated protein 1 light chain 3; MTOR: mechanistic target of rapamycin kinase; MβCD: methyl beta cyclodextrin; 3 MA: 3-methyladenine; OE: overexpression; OE-CON: empty vector control; PrDs: prion diseases; PRNP/PrPC: cellular prion protein (Kanno blood group); PRNP/PrPSc: infectious scrapie misfolded PRNP; Tm: tunicamycin; UPR: unfolded protein response; UPS: ubiquitin-proteasome system.
Collapse
Affiliation(s)
- Kajal Kamble
- Molecular Sciences Lab, National Institute of Immunology, New Delhi, India
| | - Ujjwal Kumar
- Structural Immunology Lab, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Harsh Aahra
- Molecular Sciences Lab, National Institute of Immunology, New Delhi, India
| | - Mohit Yadav
- Immuno-Metabolism Lab, National Institute of Immunology, New Delhi, India
| | - Sumnil Bhola
- Molecular Sciences Lab, National Institute of Immunology, New Delhi, India
| | - Sarika Gupta
- Molecular Sciences Lab, National Institute of Immunology, New Delhi, India
| |
Collapse
|
2
|
Banik P, Ray K, Kamps J, Chen QY, Luesch H, Winklhofer KF, Tatzelt J. VCP/p97 mediates nuclear targeting of non-ER-imported prion protein to maintain proteostasis. Life Sci Alliance 2024; 7:e202302456. [PMID: 38570188 PMCID: PMC10992997 DOI: 10.26508/lsa.202302456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/05/2024] Open
Abstract
Mistargeting of secretory proteins in the cytosol can trigger their aggregation and subsequent proteostasis decline. We have identified a VCP/p97-dependent pathway that directs non-ER-imported prion protein (PrP) into the nucleus to prevent the formation of toxic aggregates in the cytosol. Upon impaired translocation into the ER, PrP interacts with VCP/p97, which facilitates nuclear import mediated by importin-ß. Notably, the cytosolic interaction of PrP with VCP/p97 and its nuclear import are independent of ubiquitination. In vitro experiments revealed that VCP/p97 binds non-ubiquitinated PrP and prevents its aggregation. Inhibiting binding of PrP to VCP/p97, or transient proteotoxic stress, promotes the formation of self-perpetuating and partially proteinase resistant PrP aggregates in the cytosol, which compromised cellular proteostasis and disrupted further nuclear targeting of PrP. In the nucleus, RNAs keep PrP in a soluble and non-toxic conformation. Our study revealed a novel ubiquitin-independent role of VCP/p97 in the nuclear targeting of non-imported secretory proteins and highlights the impact of the chemical milieu in triggering protein misfolding.
Collapse
Affiliation(s)
- Papiya Banik
- https://ror.org/04tsk2644 Department Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| | - Koustav Ray
- https://ror.org/04tsk2644 Department Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| | - Janine Kamps
- https://ror.org/04tsk2644 Department Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
- Cluster of Excellence RESOLV, Bochum, Germany
| | - Qi-Yin Chen
- https://ror.org/02y3ad647 Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, FL, USA
| | - Hendrik Luesch
- https://ror.org/02y3ad647 Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, FL, USA
| | - Konstanze F Winklhofer
- https://ror.org/04tsk2644 Department Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
- Cluster of Excellence RESOLV, Bochum, Germany
| | - Jörg Tatzelt
- https://ror.org/04tsk2644 Department Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
- Cluster of Excellence RESOLV, Bochum, Germany
| |
Collapse
|
3
|
Cordeiro Y, Freire MHO, Wiecikowski AF, do Amaral MJ. (Dys)functional insights into nucleic acids and RNA-binding proteins modulation of the prion protein and α-synuclein phase separation. Biophys Rev 2023; 15:577-589. [PMID: 37681103 PMCID: PMC10480379 DOI: 10.1007/s12551-023-01067-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 05/22/2023] [Indexed: 09/09/2023] Open
Abstract
Prion diseases are prototype of infectious diseases transmitted by a protein, the prion protein (PrP), and are still not understandable at the molecular level. Heterogenous species of aggregated PrP can be generated from its monomer. α-synuclein (αSyn), related to Parkinson's disease, has also shown a prion-like pathogenic character, and likewise PrP interacts with nucleic acids (NAs), which in turn modulate their aggregation. Recently, our group and others have characterized that NAs and/or RNA-binding proteins (RBPs) modulate recombinant PrP and/or αSyn condensates formation, and uncontrolled condensation might precede pathological aggregation. Tackling abnormal phase separation of neurodegenerative disease-related proteins has been proposed as a promising therapeutic target. Therefore, understanding the mechanism by which polyanions, like NAs, modulate phase transitions intracellularly, is key to assess their role on toxicity promotion and neuronal death. Herein we discuss data on the nucleic acids binding properties and phase separation ability of PrP and αSyn with a special focus on their modulation by NAs and RBPs. Furthermore, we provide insights into condensation of PrP and/or αSyn in the light of non-trivial subcellular locations such as the nuclear and cytosolic environments.
Collapse
Affiliation(s)
- Yraima Cordeiro
- Faculty of Pharmacy, Universidade Federal do Rio de Janeiro, Av Carlos Chagas Filho 373, bloco B, subsolo Sala 36, Rio de Janeiro, RJ 21941-902 Brazil
| | - Maria Heloisa O. Freire
- Faculty of Pharmacy, Universidade Federal do Rio de Janeiro, Av Carlos Chagas Filho 373, bloco B, subsolo Sala 36, Rio de Janeiro, RJ 21941-902 Brazil
| | - Adalgisa Felippe Wiecikowski
- Faculty of Pharmacy, Universidade Federal do Rio de Janeiro, Av Carlos Chagas Filho 373, bloco B, subsolo Sala 36, Rio de Janeiro, RJ 21941-902 Brazil
| | - Mariana Juliani do Amaral
- Faculty of Pharmacy, Universidade Federal do Rio de Janeiro, Av Carlos Chagas Filho 373, bloco B, subsolo Sala 36, Rio de Janeiro, RJ 21941-902 Brazil
| |
Collapse
|
4
|
Tuğrul B, Balcan E, Öztel Z, Çöllü F, Gürcü B. Prion protein-dependent regulation of p53-MDM2 crosstalk during endoplasmic reticulum stress and doxorubicin treatments might be essential for cell fate in human breast cancer cell line, MCF-7. Exp Cell Res 2023:113656. [PMID: 37245583 DOI: 10.1016/j.yexcr.2023.113656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/09/2023] [Accepted: 05/21/2023] [Indexed: 05/30/2023]
Abstract
In this study, we investigated the effect of doxorubicin and tunicamycin treatment alone or in combination on MDM-, Cul9-and prion protein (PrP)-mediated subcellular regulation of p53 in the context of apoptosis and autophagy. MTT analysis was performed to determine the cytotoxic effect of the agents. Apoptosis was monitorized by ELISA, flow cytometry and JC-1 assay. Monodansylcadaverine assay was performed for autophagy. Western blotting and immunofluorescence were performed to determine p53, MDM2, CUL9 and PrP levels. Doxorubicin increased p53, MDM2 and CUL9 levels in a dose-dependent manner. Expression of p53 and MDM2 was higher at the 0.25 μM concentration of tunicamycin compared to the control, but it decreased at 0.5 μM and 1 μM concentrations. CUL9 expression was significantly decreased only after treatment of tunicamycin at 0.25 μM. According to its glycosylation status, the upper band of PrP increased only in combination treatment. In combination treatment, p53 expression was higher than control, whereas MDM2 and CUL9 expressions were decreased. Combination treatments may make MCF-7 cells more susceptible to apoptosis rather than autophagy. In conclusion, PrP may be important in determining the fate of cell death through crosstalk between proteins such as p53 and MDM2 under endoplasmic reticulum (ER) stress conditions. Further studies are needed to obtain in-depth information on these potential molecular networks.
Collapse
Affiliation(s)
- Berrin Tuğrul
- Manisa Celal Bayar University, Faculty of Science and Letters, Department of Biology, Molecular Biology Section, 45140, Yunusemre, Manisa, Turkey.
| | - Erdal Balcan
- Manisa Celal Bayar University, Faculty of Science and Letters, Department of Biology, Molecular Biology Section, 45140, Yunusemre, Manisa, Turkey.
| | - Zübeyde Öztel
- Manisa Celal Bayar University, Faculty of Science and Letters, Department of Biology, Molecular Biology Section, 45140, Yunusemre, Manisa, Turkey.
| | - Fatih Çöllü
- Manisa Celal Bayar University, Faculty of Science and Letters, Department of Biology, Zoology Section, 45140, Yunusemre, Manisa, Turkey.
| | - Beyhan Gürcü
- Manisa Celal Bayar University, Faculty of Science and Letters, Department of Biology, Zoology Section, 45140, Yunusemre, Manisa, Turkey.
| |
Collapse
|
5
|
Lozada Ortiz J, Betancor M, Pérez Lázaro S, Bolea R, Badiola JJ, Otero A. Endoplasmic reticulum stress and ubiquitin-proteasome system impairment in natural scrapie. Front Mol Neurosci 2023; 16:1175364. [PMID: 37152434 PMCID: PMC10160437 DOI: 10.3389/fnmol.2023.1175364] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/06/2023] [Indexed: 05/09/2023] Open
Abstract
Chronic accumulation of misfolded proteins such as PrPSc can alter the endoplasmic reticulum homeostasis triggering the unfolded protein response (UPR). In this pathogenic event, the molecular chaperones play an important role. Several reports in humans and animals have suggested that neurodegeneration is related to endoplasmic reticulum stress in diseases caused by the accumulation of misfolded proteins. In this study, we investigated the expression of three endoplasmic reticulum stress markers: PERK (protein kinase R-like endoplasmic reticulum kinase), BiP (binding immunoglobulin protein), and PDI (Protein Disulfide Isomerase). In addition, we evaluated the accumulation of ubiquitin as a marker for protein degradation mediated by the proteasome. These proteins were studied in brain tissues of sheep affected by scrapie in clinical and preclinical stages of the disease. Results were compared with those observed in healthy controls. Scrapie-infected sheep showed significant higher levels of PERK, BiP/Grp78 and PDI than healthy animals. As we observed before in models of spontaneous prion disease, PDI was the most altered ER stress marker between scrapie-infected and healthy sheep. Significantly increased intraneuronal and neuropil ubiquitinated deposits were observed in certain brain areas in scrapie-affected animals compared to controls. Our results suggest that the neuropathological and neuroinflammatory phenomena that develop in prion diseases cause endoplasmic reticulum stress in brain cells triggering the UPR. In addition, the significantly higher accumulation of ubiquitin aggregates in scrapie-affected animals suggests an impairment of the ubiquitin-proteasome system in natural scrapie. Therefore, these proteins may contribute as biomarkers and/or therapeutic targets for prion diseases.
Collapse
|
6
|
Palazzo FC, Sitia R, Tempio T. Selective Secretion of KDEL-Bearing Proteins: Mechanisms and Functions. Front Cell Dev Biol 2022; 10:967875. [PMID: 35912099 PMCID: PMC9326092 DOI: 10.3389/fcell.2022.967875] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 06/24/2022] [Indexed: 11/13/2022] Open
Abstract
In multicellular organisms, cells must continuously exchange messages with the right meaning, intensity, and duration. Most of these messages are delivered through cognate interactions between membrane and secretory proteins. Their conformational maturation is assisted by a vast array of chaperones and enzymes, ensuring the fidelity of intercellular communication. These folding assistants reside in the early secretory compartment (ESC), a functional unit that encompasses endoplasmic reticulum (ER), intermediate compartment and cis-Golgi. Most soluble ESC residents have C-terminal KDEL-like motifs that prevent their transport beyond the Golgi. However, some accumulate in the ER, while others in downstream stations, implying different recycling rates. Moreover, it is now clear that cells can actively secrete certain ESC residents but not others. This essay discusses the physiology of their differential intracellular distribution, and the mechanisms that may ensure selectivity of release.
Collapse
|
7
|
APP deficiency and HTRA2 modulates PrPc proteostasis in human cancer cells. BBA ADVANCES 2022; 2:100035. [PMID: 37082595 PMCID: PMC10074928 DOI: 10.1016/j.bbadva.2021.100035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 12/09/2021] [Accepted: 12/14/2021] [Indexed: 11/23/2022] Open
Abstract
Cellular protein homeostasis (proteostasis) requires an accurate balance between protein biosynthesis, folding, and degradation, and its instability is causally related to human diseases and cancers. Here, we created numerous engineered cancer cell lines targeting APP (amyloid ß precursor protein) and/or PRNP (cellular prion) genes and we showed that APP knocking-down impaired PRNP mRNA level and vice versa, suggesting a link between their gene regulation. PRNPKD, APPKD and PRNPKD/APPKD HeLa cells encountered major difficulties to grow in a 3D tissue-like environment. Unexpectedly, we found a cytoplasmic accumulation of the PrPc protein without PRNP gene up regulation, in both APPKD and APPKO HeLa cells. Interestingly, APP and/or PRNP gene ablation enhanced the chaperone/serine protease HTRA2 gene expression, which is a protein processing quality factor involved in Alzheimer's disease. Importantly, HTRA2 gene silencing decreased PRNP mRNA level and lowered PrPc protein amounts, and conversely, HTRA2 overexpression increased PRNP gene regulation and enhanced membrane-anchored and cytoplasmic PrPc fractions. PrPc, APP and HTRA2 destabilized membrane-associated CD24 protein, suggesting changes in the lipid raft structure. Our data show for the first time that APP and the dual chaperone/serine protease HTRA2 protein could modulate PrPc proteostasis hampering cancer cell behavior.
Collapse
|
8
|
LncRNAs induce oxidative stress and spermatogenesis by regulating endoplasmic reticulum genes and pathways. Aging (Albany NY) 2021; 13:13764-13787. [PMID: 34001678 PMCID: PMC8202879 DOI: 10.18632/aging.202971] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 11/08/2020] [Indexed: 12/17/2022]
Abstract
Oligozoospermia or low sperm count is a leading cause of male infertility worldwide. Despite decades of work on non-coding RNAs (ncRNAs) as regulators of spermatogenesis, fertilization, and male fertility, the literature on the function of long non-coding RNAs (lncRNAs) in human oligozoospermia is scarce. We integrated lncRNA and mRNA sequencing data from 12 human normozoospermic and oligozoospermic samples and comprehensively analyzed the function of differentially expressed lncRNAs (DE lncRNAs) and mRNAs (DE mRNAs) in male infertility. The target genes of DE lncRNAs were identified using a Gaussian graphical model. Gene ontology terms and Kyoto Encyclopedia of Genes and Genomes pathways were primarily enriched in protein transport and localization to the endoplasmic reticulum (ER). The lncRNA–mRNA co-expression network revealed cis- and trans-regulated target genes of lncRNAs. The transcriptome data implicated DE lncRNAs and DE mRNAs and their target genes in the accumulation of unfolded proteins in sperm ER, PERK-EIF2 pathway-induced ER stress, oxidative stress, and sperm cell apoptosis in individuals with oligozoospermia. These findings suggest that the identified lncRNAs and pathways could serve as effective therapeutic targets for male infertility.
Collapse
|
9
|
Hoefer F, Groettrup M. Silencing of the proteasome and oxidative stress impair endoplasmic reticulum targeting and signal cleavage of a prostate carcinoma antigen. Biochem Biophys Res Commun 2021; 554:56-62. [PMID: 33774280 DOI: 10.1016/j.bbrc.2021.03.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 03/04/2021] [Indexed: 10/21/2022]
Abstract
The endoplasmic reticulum (ER) is an organelle with high protein density and therefore prone to be damaged by protein aggregates. One proposed preventive measure is a pre-emptive quality control pathway that attenuates ER import during protein folding stress. ER resident proteins are targeted into the ER via signal peptides cleaved rapidly upon ER insertion by the ER signal peptidase. Here we show that the ER insertion and cleavage of the ER-targeting peptide of the prostate carcinoma antigen prostate stem cell antigen (PSCA) is retarded and strongly reduced when the proteasome is inhibited or genetically silenced. Also overexpression of the C-terminally extended ubiquitin variant Ub2-UBB+1 or oxidative stress attenuated signal peptide processing. Proteasome inhibition likewise protracted ER signal processing of the ER targeted hormone leptin and the MHC class I molecule H-2Dd. These findings, which are consistent with a pre-emptive ER quality control pathway, may explain why an immunodominant MHC class I peptide ligand of PSCA spanning its ER signal peptidase cleavage site is efficiently generated in the cytoplasm from PSCA precursors that fail to reach the ER.
Collapse
Affiliation(s)
- Franziska Hoefer
- Division of Immunology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Marcus Groettrup
- Division of Immunology, Department of Biology, University of Konstanz, Konstanz, Germany; Biotechnology Institute Thurgau at the University of Konstanz, Kreuzlingen, Switzerland.
| |
Collapse
|
10
|
Otero A, Betancor M, Eraña H, Fernández Borges N, Lucas JJ, Badiola JJ, Castilla J, Bolea R. Prion-Associated Neurodegeneration Causes Both Endoplasmic Reticulum Stress and Proteasome Impairment in a Murine Model of Spontaneous Disease. Int J Mol Sci 2021; 22:ijms22010465. [PMID: 33466523 PMCID: PMC7796520 DOI: 10.3390/ijms22010465] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 01/08/2023] Open
Abstract
Prion diseases are a group of neurodegenerative disorders that can be spontaneous, familial or acquired by infection. The conversion of the prion protein PrPC to its abnormal and misfolded isoform PrPSc is the main event in the pathogenesis of prion diseases of all origins. In spontaneous prion diseases, the mechanisms that trigger the formation of PrPSc in the central nervous system remain unknown. Several reports have demonstrated that the accumulation of PrPSc can induce endoplasmic reticulum (ER) stress and proteasome impairment from the early stages of the prion disease. Both mechanisms lead to an increment of PrP aggregates in the secretory pathway, which could explain the pathogenesis of spontaneous prion diseases. Here, we investigate the role of ER stress and proteasome impairment during prion disorders in a murine model of spontaneous prion disease (TgVole) co-expressing the UbG76V-GFP reporter, which allows measuring the proteasome activity in vivo. Spontaneously prion-affected mice showed a significantly higher accumulation of the PKR-like ER kinase (PERK), the ER chaperone binding immunoglobulin protein (BiP/Grp78), the ER protein disulfide isomerase (PDI) and the UbG76V-GFP reporter than age-matched controls in certain brain areas. The upregulation of PERK, BiP, PDI and ubiquitin was detected from the preclinical stage of the disease, indicating that ER stress and proteasome impairment begin at early stages of the spontaneous disease. Strong correlations were found between the deposition of these markers and neuropathological markers of prion disease in both preclinical and clinical mice. Our results suggest that both ER stress and proteasome impairment occur during the pathogenesis of spontaneous prion diseases.
Collapse
Affiliation(s)
- Alicia Otero
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Universidad de Zaragoza IA2 IIS Aragón, 50013 Zaragoza, Spain; (A.O.); (M.B.); (J.J.B.)
| | - Marina Betancor
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Universidad de Zaragoza IA2 IIS Aragón, 50013 Zaragoza, Spain; (A.O.); (M.B.); (J.J.B.)
| | - Hasier Eraña
- ATLAS Molecular Pharma S.L., Parque tecnológico de Bizkaia, 48160 Derio, Spain;
- Center for Cooperative Research in Biosciences (CIC bioGUNE) Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160 Derio, Spain; (N.F.B.); (J.C.)
| | - Natalia Fernández Borges
- Center for Cooperative Research in Biosciences (CIC bioGUNE) Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160 Derio, Spain; (N.F.B.); (J.C.)
| | - José J. Lucas
- Centro de Biología Molecular ‘Severo Ochoa’ (CBMSO) CSIC/UAM, 28049 Madrid, Spain;
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain
| | - Juan José Badiola
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Universidad de Zaragoza IA2 IIS Aragón, 50013 Zaragoza, Spain; (A.O.); (M.B.); (J.J.B.)
| | - Joaquín Castilla
- Center for Cooperative Research in Biosciences (CIC bioGUNE) Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160 Derio, Spain; (N.F.B.); (J.C.)
- IKERBasque Basque Foundation for Science, 48009 Bilbao, Spain
| | - Rosa Bolea
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Universidad de Zaragoza IA2 IIS Aragón, 50013 Zaragoza, Spain; (A.O.); (M.B.); (J.J.B.)
- Correspondence:
| |
Collapse
|
11
|
Yakubu UM, Catumbela CSG, Morales R, Morano KA. Understanding and exploiting interactions between cellular proteostasis pathways and infectious prion proteins for therapeutic benefit. Open Biol 2020; 10:200282. [PMID: 33234071 PMCID: PMC7729027 DOI: 10.1098/rsob.200282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Several neurodegenerative diseases of humans and animals are caused by the misfolded prion protein (PrPSc), a self-propagating protein infectious agent that aggregates into oligomeric, fibrillar structures and leads to cell death by incompletely understood mechanisms. Work in multiple biological model systems, from simple baker's yeast to transgenic mouse lines, as well as in vitro studies, has illuminated molecular and cellular modifiers of prion disease. In this review, we focus on intersections between PrP and the proteostasis network, including unfolded protein stress response pathways and roles played by the powerful regulators of protein folding known as protein chaperones. We close with analysis of promising therapeutic avenues for treatment enabled by these studies.
Collapse
Affiliation(s)
- Unekwu M Yakubu
- Department of Microbiology and Molecular Genetics, McGovern Medical School at UTHealth, Houston, TX USA.,MD Anderson UTHealth Graduate School at UTHealth, Houston, TX USA
| | - Celso S G Catumbela
- MD Anderson UTHealth Graduate School at UTHealth, Houston, TX USA.,Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, McGovern Medical School at UTHealth, Houston, TX USA
| | - Rodrigo Morales
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, McGovern Medical School at UTHealth, Houston, TX USA.,Centro integrativo de biología y química aplicada (CIBQA), Universidad Bernardo O'Higgins, Santiago, Chile
| | - Kevin A Morano
- Department of Microbiology and Molecular Genetics, McGovern Medical School at UTHealth, Houston, TX USA
| |
Collapse
|
12
|
Ghemrawi R, Khair M. Endoplasmic Reticulum Stress and Unfolded Protein Response in Neurodegenerative Diseases. Int J Mol Sci 2020; 21:E6127. [PMID: 32854418 PMCID: PMC7503386 DOI: 10.3390/ijms21176127] [Citation(s) in RCA: 191] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/14/2020] [Accepted: 08/20/2020] [Indexed: 12/13/2022] Open
Abstract
The endoplasmic reticulum (ER) is an important organelle involved in protein quality control and cellular homeostasis. The accumulation of unfolded proteins leads to an ER stress, followed by an adaptive response via the activation of the unfolded protein response (UPR), PKR-like ER kinase (PERK), inositol-requiring transmembrane kinase/endoribonuclease 1α (IRE1α) and activating transcription factor 6 (ATF6) pathways. However, prolonged cell stress activates apoptosis signaling leading to cell death. Neuronal cells are particularly sensitive to protein misfolding, consequently ER and UPR dysfunctions were found to be involved in many neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and prions diseases, among others characterized by the accumulation and aggregation of misfolded proteins. Pharmacological UPR modulation in affected tissues may contribute to the treatment and prevention of neurodegeneration. The association between ER stress, UPR and neuropathology is well established. In this review, we provide up-to-date evidence of UPR activation in neurodegenerative disorders followed by therapeutic strategies targeting the UPR and ameliorating the toxic effects of protein unfolding and aggregation.
Collapse
Affiliation(s)
- Rose Ghemrawi
- College of Pharmacy, Al Ain University, Abu Dhabi 112612, UAE
| | - Mostafa Khair
- Core Technology Platforms, New York University Abu Dhabi, Abu Dhabi 129188, UAE;
| |
Collapse
|
13
|
Mohammadi B, Linsenmeier L, Shafiq M, Puig B, Galliciotti G, Giudici C, Willem M, Eden T, Koch-Nolte F, Lin YH, Tatzelt J, Glatzel M, Altmeppen HC. Transgenic Overexpression of the Disordered Prion Protein N1 Fragment in Mice Does Not Protect Against Neurodegenerative Diseases Due to Impaired ER Translocation. Mol Neurobiol 2020; 57:2812-2829. [PMID: 32367491 PMCID: PMC7253391 DOI: 10.1007/s12035-020-01917-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 04/07/2020] [Indexed: 12/14/2022]
Abstract
The structurally disordered N-terminal half of the prion protein (PrPC) is constitutively released into the extracellular space by an endogenous proteolytic cleavage event. Once liberated, this N1 fragment acts neuroprotective in ischemic conditions and interferes with toxic peptides associated with neurodegenerative diseases, such as amyloid-beta (Aβ) in Alzheimer’s disease. Since analog protective effects of N1 in prion diseases, such as Creutzfeldt-Jakob disease, have not been studied, and given that the protease releasing N1 has not been identified to date, we have generated and characterized transgenic mice overexpressing N1 (TgN1). Upon intracerebral inoculation of TgN1 mice with prions, no protective effects were observed at the levels of survival, clinical course, neuropathological, or molecular assessment. Likewise, primary neurons of these mice did not show protection against Aβ toxicity. Our biochemical and morphological analyses revealed that this lack of protective effects is seemingly due to an impaired ER translocation of the disordered N1 resulting in its cytosolic retention with an uncleaved signal peptide. Thus, TgN1 mice represent the first animal model to prove the inefficient ER translocation of intrinsically disordered domains (IDD). In contrast to earlier studies, our data challenge roles of cytoplasmic N1 as a cell penetrating peptide or as a potent “anti-prion” agent. Lastly, our study highlights both the importance of structured domains in the nascent chain for proteins to be translocated and aspects to be considered when devising novel N1-based therapeutic approaches against neurodegenerative diseases.
Collapse
Affiliation(s)
- Behnam Mohammadi
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Luise Linsenmeier
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Mohsin Shafiq
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Berta Puig
- Department of Neurology, Experimental Research in Stroke and Inflammation (ERSI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Giovanna Galliciotti
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Camilla Giudici
- Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-University, Munich, Germany
| | - Michael Willem
- Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-University, Munich, Germany
| | - Thomas Eden
- Institute of Immunology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Friedrich Koch-Nolte
- Institute of Immunology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Yu-Hsuan Lin
- Institute of Biochemistry and Pathobiochemistry, Biochemistry of Neurodegenerative Diseases, Ruhr University Bochum, Bochum, Germany
| | - Jörg Tatzelt
- Institute of Biochemistry and Pathobiochemistry, Biochemistry of Neurodegenerative Diseases, Ruhr University Bochum, Bochum, Germany
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Hermann C Altmeppen
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany.
| |
Collapse
|
14
|
Durrant C, Fuehring JI, Willemetz A, Chrétien D, Sala G, Ghidoni R, Katz A, Rötig A, Thelestam M, Ermonval M, Moore SEH. Defects in Galactose Metabolism and Glycoconjugate Biosynthesis in a UDP-Glucose Pyrophosphorylase-Deficient Cell Line Are Reversed by Adding Galactose to the Growth Medium. Int J Mol Sci 2020; 21:ijms21062028. [PMID: 32188137 PMCID: PMC7139386 DOI: 10.3390/ijms21062028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/05/2020] [Accepted: 03/10/2020] [Indexed: 12/28/2022] Open
Abstract
UDP-glucose (UDP-Glc) is synthesized by UGP2-encoded UDP-Glc pyrophosphorylase (UGP) and is required for glycoconjugate biosynthesis and galactose metabolism because it is a uridyl donor for galactose-1-P (Gal1P) uridyltransferase. Chinese hamster lung fibroblasts harboring a hypomrphic UGP(G116D) variant display reduced UDP-Glc levels and cannot grow if galactose is the sole carbon source. Here, these cells were cultivated with glucose in either the absence or presence of galactose in order to investigate glycoconjugate biosynthesis and galactose metabolism. The UGP-deficient cells display < 5% control levels of UDP-Glc/UDP-Gal and > 100-fold reduction of [6-3H]galactose incorporation into UDP-[6-3H]galactose, as well as multiple deficits in glycoconjugate biosynthesis. Cultivation of these cells in the presence of galactose leads to partial restoration of UDP-Glc levels, galactose metabolism and glycoconjugate biosynthesis. The Vmax for recombinant human UGP(G116D) with Glc1P is 2000-fold less than that of the wild-type protein, and UGP(G116D) displayed a mildly elevated Km for Glc1P, but no activity of the mutant enzyme towards Gal1P was detectable. To conclude, although the mechanism behind UDP-Glc/Gal production in the UGP-deficient cells remains to be determined, the capacity of this cell line to change its glycosylation status as a function of extracellular galactose makes it a useful, reversible model with which to study different aspects of galactose metabolism and glycoconjugate biosynthesis.
Collapse
Affiliation(s)
- Christelle Durrant
- INSERM U1149, Université de Paris, 16 rue Henri Huchard, 75018 Paris, France; (C.D.); (A.W.)
| | - Jana I. Fuehring
- Institute for Clinical Biochemistry, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany;
| | - Alexandra Willemetz
- INSERM U1149, Université de Paris, 16 rue Henri Huchard, 75018 Paris, France; (C.D.); (A.W.)
| | - Dominique Chrétien
- UMR1163, Université Paris Decartes, Sorbonnes Paris Cité, Institut Imagine, 24 Boulevard du Montparnasse, 75015 Paris, France; (D.C.); (A.R.)
| | - Giusy Sala
- “Aldo Ravelli” Research Center and Department of Health Sciences, University of Milan, 20146 Milan, Italy; (G.S.); (R.G.)
| | - Riccardo Ghidoni
- “Aldo Ravelli” Research Center and Department of Health Sciences, University of Milan, 20146 Milan, Italy; (G.S.); (R.G.)
| | - Abram Katz
- Department of Physiology and Pharmacology, Karolinska Institutet, 17177 Stockholm, Sweden;
| | - Agnès Rötig
- UMR1163, Université Paris Decartes, Sorbonnes Paris Cité, Institut Imagine, 24 Boulevard du Montparnasse, 75015 Paris, France; (D.C.); (A.R.)
| | - Monica Thelestam
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden;
| | - Myriam Ermonval
- Institut Pasteur, Department of Virology, 25 rue du Dr. Roux, 75015 Paris, France;
| | - Stuart E. H. Moore
- INSERM U1149, Université de Paris, 16 rue Henri Huchard, 75018 Paris, France; (C.D.); (A.W.)
- Correspondence:
| |
Collapse
|
15
|
Thapa S, Abdelaziz DH, Abdulrahman BA, Schatzl HM. Sephin1 Reduces Prion Infection in Prion-Infected Cells and Animal Model. Mol Neurobiol 2020; 57:2206-2219. [PMID: 31981074 DOI: 10.1007/s12035-020-01880-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 01/15/2020] [Indexed: 02/05/2023]
Abstract
Prion diseases are fatal infectious neurodegenerative disorders in human and animals caused by misfolding of the cellular prion protein (PrPC) into the infectious isoform PrPSc. These diseases have the potential to transmit within or between species, and no cure is available to date. Targeting the unfolded protein response (UPR) as an anti-prion therapeutic approach has been widely reported for prion diseases. Here, we describe the anti-prion effect of the chemical compound Sephin1 which has been shown to protect in mouse models of protein misfolding diseases including amyotrophic lateral sclerosis (ALS) and multiple sclerosis (MS) by selectively inhibiting the stress-induced regulatory subunit of protein phosphatase 1, thus prolonging eIF2α phosphorylation. We show here that Sephin1 dose and time dependently reduced PrPSc in different neuronal cell lines which were persistently infected with various prion strains. In addition, prion seeding activity was reduced in Sephin1-treated cells. Importantly, we found that Sephin1 significantly overcame the endoplasmic reticulum (ER) stress induced in treated cells, as measured by lower expression of stress-induced aberrant prion protein. In a mouse model of prion infection, intraperitoneal treatment with Sephin1 significantly prolonged survival of prion-infected mice. When combining Sephin1 with the neuroprotective drug metformin, the survival of prion-infected mice was also prolonged. These results suggest that Sephin1 could be a potential anti-prion drug selectively targeting one component of the UPR pathway.
Collapse
Affiliation(s)
- Simrika Thapa
- Calgary Prion Research Unit, University of Calgary, Calgary, Alberta, Canada.,Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, TRW 2D10, 3280 Hospital Drive NW, Calgary, Alberta, T2N 4Z6, Canada.,Hotchkiss Brain Institute (HBI), University of Calgary, Calgary, Alberta, Canada
| | - Dalia H Abdelaziz
- Calgary Prion Research Unit, University of Calgary, Calgary, Alberta, Canada.,Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, TRW 2D10, 3280 Hospital Drive NW, Calgary, Alberta, T2N 4Z6, Canada.,Hotchkiss Brain Institute (HBI), University of Calgary, Calgary, Alberta, Canada.,Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Basant A Abdulrahman
- Calgary Prion Research Unit, University of Calgary, Calgary, Alberta, Canada.,Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, TRW 2D10, 3280 Hospital Drive NW, Calgary, Alberta, T2N 4Z6, Canada.,Hotchkiss Brain Institute (HBI), University of Calgary, Calgary, Alberta, Canada.,Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Hermann M Schatzl
- Calgary Prion Research Unit, University of Calgary, Calgary, Alberta, Canada. .,Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, TRW 2D10, 3280 Hospital Drive NW, Calgary, Alberta, T2N 4Z6, Canada. .,Hotchkiss Brain Institute (HBI), University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
16
|
Fregno I, Molinari M. Proteasomal and lysosomal clearance of faulty secretory proteins: ER-associated degradation (ERAD) and ER-to-lysosome-associated degradation (ERLAD) pathways. Crit Rev Biochem Mol Biol 2019; 54:153-163. [PMID: 31084437 DOI: 10.1080/10409238.2019.1610351] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
About 40% of the eukaryotic cell's proteins are inserted co- or post-translationally in the endoplasmic reticulum (ER), where they attain the native structure under the assistance of resident molecular chaperones and folding enzymes. Subsequently, these proteins are secreted from cells or are transported to their sites of function at the plasma membrane or in organelles of the secretory and endocytic compartments. Polypeptides that are not delivered within the ER (mis-localized proteins, MLPs) are rapidly destroyed by cytosolic proteasomes, with intervention of the membrane protease ZMPSTE24 if they remained trapped in the SEC61 translocation machinery. Proteins that enter the ER, but fail to attain the native structure are rapidly degraded to prevent toxic accumulation of aberrant gene products. The ER does not contain degradative devices and the majority of misfolded proteins generated in this biosynthetic compartment are dislocated across the membrane for degradation by cytosolic 26S proteasomes by mechanisms and pathways collectively defined as ER-associated degradation (ERAD). Proteins that do not engage ERAD factors, that enter aggregates or polymers, are too large, display chimico/physical features that prevent dislocation across the ER membrane (ERAD-resistant misfolded proteins) are delivered to endo-lysosome for clearance, by mechanisms and pathways collectively defined as ER-to-lysosomes-associated degradation (ERLAD). Emerging evidences lead us to propose ERLAD as an umbrella term that includes the autophagic and non-autophagic pathways activated and engaged by ERAD-resistant misfolded proteins generated in the ER for delivery to degradative endo-lysosomes.
Collapse
Affiliation(s)
- Ilaria Fregno
- a Institute for Research in Biomedicine, Faculty of Biomedical Sciences , Università della Svizzera italiana (USI) , Bellinzona , Switzerland
| | - Maurizio Molinari
- a Institute for Research in Biomedicine, Faculty of Biomedical Sciences , Università della Svizzera italiana (USI) , Bellinzona , Switzerland.,b School of Life Sciences , École Polytechnique Fédérale de Lausanne , Lausanne , Switzerland
| |
Collapse
|
17
|
Gao Z, Peng M, Chen L, Yang X, Li H, Shi R, Wu G, Cai L, Song Q, Li C. Prion Protein Protects Cancer Cells against Endoplasmic Reticulum Stress Induced Apoptosis. Virol Sin 2019; 34:222-234. [PMID: 31020572 PMCID: PMC6513834 DOI: 10.1007/s12250-019-00107-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 02/28/2019] [Indexed: 12/20/2022] Open
Abstract
Unfolded protein response (UPR) is an adaptive reaction for cells to reduce endoplasmic reticulum (ER) stress. In many types of cancers, such as lung cancer and pancreatic cancer, cancer cells may harness ER stress to facilitate their survival and growth. Prion protein (PrP) is a glycosylated cell surface protein that has been shown to be up-regulated in many cancer cells. Since PrP is a protein prone to misfolding, ER stress can result in under-glycosylated PrP, which in turn may activate ER stress. To assess whether ER stress leads to the production of under-glycosylated PrP and whether under-glycosylated PrP may contribute to ER stress thus leading to cancer cell apoptosis, we treated different cancer cells with brefeldin A (BFA), thapsigargin (Thps), and tunicamycin (TM). We found that although BFA, Thps, and TM treatment activated UPR, only ATF4 was consistently activated by these reagents, but not other branches of ER stress. However, the canonical PERK-eIF2α-ATF4 did not account for the observed activation of ATF4 in lung cancer cells. In addition, BFA, but neither Thps nor TM, significantly stimulated the expression of cytosolic PrP. Finally, we found that the levels of PrP contributed to anti-apoptosis activity of BFA-induced cancer cell death. Thus, the pathway of BFA-induced persistent ER stress may be targeted for lung and pancreatic cancer treatment.
Collapse
Affiliation(s)
- Zhenxing Gao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Min Peng
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Liang Chen
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xiaowen Yang
- Department of the First Abdominal Surgery, Jiangxi Tumor Hospital, Nanchang, 330029, China
| | - Huan Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Run Shi
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Guiru Wu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Lili Cai
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Qibin Song
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Chaoyang Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
| |
Collapse
|
18
|
Thapa S, Abdulrahman B, Abdelaziz DH, Lu L, Ben Aissa M, Schatzl HM. Overexpression of quality control proteins reduces prion conversion in prion-infected cells. J Biol Chem 2018; 293:16069-16082. [PMID: 30154245 PMCID: PMC6187620 DOI: 10.1074/jbc.ra118.002754] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 08/09/2018] [Indexed: 11/06/2022] Open
Abstract
Prion diseases are fatal infectious neurodegenerative disorders in humans and other animals and are caused by misfolding of the cellular prion protein (PrPC) into the pathological isoform PrPSc. These diseases have the potential to transmit within or between species, including zoonotic transmission to humans. Elucidating the molecular and cellular mechanisms underlying prion propagation and transmission is therefore critical for developing molecular strategies for disease intervention. We have shown previously that impaired quality control mechanisms directly influence prion propagation. In this study, we manipulated cellular quality control pathways in vitro by stably and transiently overexpressing selected quality control folding (ERp57) and cargo (VIP36) proteins and investigated the effects of this overexpression on prion propagation. We found that ERp57 or VIP36 overexpression in persistently prion-infected neuroblastoma cells significantly reduces the amount of PrPSc in immunoblots and prion-seeding activity in the real-time quaking-induced conversion (RT-QuIC) assay. Using different cell lines infected with various prion strains confirmed that this effect is not cell type– or prion strain–specific. Moreover, de novo prion infection revealed that the overexpression significantly reduced newly formed PrPSc in acutely infected cells. ERp57-overexpressing cells significantly overcame endoplasmic reticulum stress, as revealed by expression of lower levels of the stress markers BiP and CHOP, accompanied by a decrease in PrP aggregates. Furthermore, application of ERp57-expressing lentiviruses prolonged the survival of prion-infected mice. Taken together, improved cellular quality control via ERp57 or VIP36 overexpression impairs prion propagation and could be utilized as a potential therapeutic strategy.
Collapse
Affiliation(s)
- Simrika Thapa
- From the Calgary Prion Research Unit, University of Calgary, Calgary, Alberta T2N 4Z6, Canada.,the Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta T2N 4Z6, Canada
| | - Basant Abdulrahman
- From the Calgary Prion Research Unit, University of Calgary, Calgary, Alberta T2N 4Z6, Canada.,the Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta T2N 4Z6, Canada.,the Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Helwan University, 11795 Cairo, Egypt, and
| | - Dalia H Abdelaziz
- From the Calgary Prion Research Unit, University of Calgary, Calgary, Alberta T2N 4Z6, Canada.,the Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta T2N 4Z6, Canada.,the Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Helwan University, 11795 Cairo, Egypt, and
| | - Li Lu
- From the Calgary Prion Research Unit, University of Calgary, Calgary, Alberta T2N 4Z6, Canada.,the Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta T2N 4Z6, Canada
| | - Manel Ben Aissa
- From the Calgary Prion Research Unit, University of Calgary, Calgary, Alberta T2N 4Z6, Canada.,the Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta T2N 4Z6, Canada
| | - Hermann M Schatzl
- From the Calgary Prion Research Unit, University of Calgary, Calgary, Alberta T2N 4Z6, Canada, .,the Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta T2N 4Z6, Canada.,the Departments of Veterinary Sciences and of Molecular Biology, University of Wyoming, Laramie, Wyoming 82071
| |
Collapse
|
19
|
Kadowaki H, Nishitoh H. Endoplasmic reticulum quality control by garbage disposal. FEBS J 2018; 286:232-240. [PMID: 29923316 DOI: 10.1111/febs.14589] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 06/12/2018] [Accepted: 06/18/2018] [Indexed: 11/30/2022]
Abstract
Various types of intracellular and extracellular stresses disturb homeostasis in the endoplasmic reticulum (ER) and, thus, trigger the ER stress response. Unavoidable and/or prolonged ER stress causes cell toxicity and occasionally cell death. The malfunction or death of irreplaceable cells leads to conformational diseases, including diabetes mellitus, ischemic diseases, metabolic diseases, and neurodegenerative diseases. In the past several decades, many studies have revealed the molecular mechanisms of the ER quality control system. Cells resolve ER stress by promptly and accurately reducing the amount of malfolded proteins. Recent reports have revealed that cells possess several types of ER-related disposal systems, including mRNA decay, proteasomal degradation, and autophagy. The removal of dispensable RNAs, proteins, and organelle parts may enable the effective maintenance of a functional ER. Here, we provide a comprehensive understanding of the ER quality control system by focusing on ER-related garbage disposal systems.
Collapse
Affiliation(s)
- Hisae Kadowaki
- Laboratory of Biochemistry and Molecular Biology, Department of Medical Sciences, University of Miyazaki, Japan
| | - Hideki Nishitoh
- Laboratory of Biochemistry and Molecular Biology, Department of Medical Sciences, University of Miyazaki, Japan
| |
Collapse
|
20
|
Molecular mechanism of ER stress-induced pre-emptive quality control involving association of the translocon, Derlin-1, and HRD1. Sci Rep 2018; 8:7317. [PMID: 29743537 PMCID: PMC5943263 DOI: 10.1038/s41598-018-25724-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 04/27/2018] [Indexed: 12/19/2022] Open
Abstract
The maintenance of endoplasmic reticulum (ER) homeostasis is essential for cell function. ER stress-induced pre-emptive quality control (ERpQC) helps alleviate the burden to a stressed ER by limiting further protein loading. We have previously reported the mechanisms of ERpQC, which includes a rerouting step and a degradation step. Under ER stress conditions, Derlin family proteins (Derlins), which are components of ER-associated degradation, reroute specific ER-targeting proteins to the cytosol. Newly synthesized rerouted polypeptides are degraded via the cytosolic chaperone Bag6 and the AAA-ATPase p97 in the ubiquitin-proteasome system. However, the mechanisms by which ER-targeting proteins are rerouted from the ER translocation pathway to the cytosolic degradation pathway and how the E3 ligase ubiquitinates ERpQC substrates remain unclear. Here, we show that ERpQC substrates are captured by the carboxyl-terminus region of Derlin-1 and ubiquitinated by the HRD1 E3 ubiquitin ligase prior to degradation. Moreover, HRD1 forms a large ERpQC-related complex composed of Sec61α and Derlin-1 during ER stress. These findings indicate that the association of the degradation factor HRD1 with the translocon and the rerouting factor Derlin-1 may be necessary for the smooth and effective clearance of ERpQC substrates.
Collapse
|
21
|
Luo XN, Song QQ, Yu J, Song J, Wang XL, Xia D, Sun P, Han J. Identification of the internal ribosome entry sites (IRES) of prion protein gene. Int J Biochem Cell Biol 2017; 93:46-51. [PMID: 29107182 DOI: 10.1016/j.biocel.2017.10.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 10/22/2017] [Accepted: 10/23/2017] [Indexed: 11/30/2022]
Abstract
Many studies demonstrated that there are several type bands of prion protein in cells. However, the formation of different prion protein bands is elusive. After several low molecular weight bands of prion protein appeared in SMB-S15 cells infected with scrapie agent Chandler, we think that IRES-dependent translation mechanism induced by prion is involved in the formation of prion protein bands. Then we designed a series of pPrP-GFP fusing plasmids and bicistronic plasmids to identify the IRES sites of prion protein gene and found 3 IRES sites inside of PrP mRNA. We also demonstrated that cap-independent translation of PrP was associated with the ER stress through Tunicamycin treatment. We still found that only IRE1 and PERK pathway regulated the IRES-dependent translation of PrP in this study. Our results indicated, we found that PrP gene had an IRES-dependent translation initiation mechanism and we successfully identified the IRESs inside of the prion protein gene.
Collapse
Affiliation(s)
- Xiao-Nuan Luo
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Qin-Qin Song
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jie Yu
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Juan Song
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xin-Ling Wang
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Dong Xia
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Peng Sun
- Inner Mongolia Medical University, Huhehot, China
| | - Jun Han
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.
| |
Collapse
|
22
|
Plant Ribosome-Inactivating Proteins: Progesses, Challenges and Biotechnological Applications (and a Few Digressions). Toxins (Basel) 2017; 9:toxins9100314. [PMID: 29023422 PMCID: PMC5666361 DOI: 10.3390/toxins9100314] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 09/29/2017] [Accepted: 10/03/2017] [Indexed: 12/11/2022] Open
Abstract
Plant ribosome-inactivating protein (RIP) toxins are EC3.2.2.22 N-glycosidases, found among most plant species encoded as small gene families, distributed in several tissues being endowed with defensive functions against fungal or viral infections. The two main plant RIP classes include type I (monomeric) and type II (dimeric) as the prototype ricin holotoxin from Ricinus communis that is composed of a catalytic active A chain linked via a disulphide bridge to a B-lectin domain that mediates efficient endocytosis in eukaryotic cells. Plant RIPs can recognize a universally conserved stem-loop, known as the α-sarcin/ ricin loop or SRL structure in 23S/25S/28S rRNA. By depurinating a single adenine (A4324 in 28S rat rRNA), they can irreversibly arrest protein translation and trigger cell death in the intoxicated mammalian cell. Besides their useful application as potential weapons against infected/tumor cells, ricin was also used in bio-terroristic attacks and, as such, constitutes a major concern. In this review, we aim to summarize past studies and more recent progresses made studying plant RIPs and discuss successful approaches that might help overcoming some of the bottlenecks encountered during the development of their biomedical applications.
Collapse
|
23
|
Shah SZA, Zhao D, Hussain T, Yang L. The Role of Unfolded Protein Response and Mitogen-Activated Protein Kinase Signaling in Neurodegenerative Diseases with Special Focus on Prion Diseases. Front Aging Neurosci 2017; 9:120. [PMID: 28507517 PMCID: PMC5410568 DOI: 10.3389/fnagi.2017.00120] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 04/12/2017] [Indexed: 12/25/2022] Open
Abstract
Prion diseases are neurodegenerative pathologies characterized by the accumulation of a protease-resistant form of the cellular prion protein named prion protein scrapie (PrPSc) in the brain. PrPSc accumulation in the endoplasmic reticulum (ER) result in a dysregulated calcium (Ca2+) homeostasis and subsequent initiation of unfolded protein response (UPR) leading to neuronal dysfunction and apoptosis. The molecular mechanisms for the transition between adaptation to ER stress and ER stress-induced apoptosis are still unclear. Mitogen-activated protein kinases (MAPKs) are serine/threonine protein kinases that rule the signaling of many extracellular stimuli from plasma membrane to the nucleus. However the identification of numerous points of cross talk between the UPR and MAPK signaling pathways may contribute to our understanding of the consequences of ER stress in prion diseases. Indeed the MAPK signaling network is known to regulate cell cycle progression and cell survival or death responses following a variety of stresses including misfolded protein response stress. In this article, we review the UPR signaling in prion diseases and discuss the triad of MAPK signaling pathways. We also describe the role played by MAPK signaling cascades in Alzheimer’s (AD) and Parkinson’s disease (PD). We will also overview the mechanisms of cell death and the role of MAPK signaling in prion disease progression and highlight potential avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Syed Zahid Ali Shah
- National Animal Transmissible Spongiform Encephalopathy Laboratory and Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural UniversityBeijing, China
| | - Deming Zhao
- National Animal Transmissible Spongiform Encephalopathy Laboratory and Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural UniversityBeijing, China
| | - Tariq Hussain
- National Animal Transmissible Spongiform Encephalopathy Laboratory and Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural UniversityBeijing, China
| | - Lifeng Yang
- National Animal Transmissible Spongiform Encephalopathy Laboratory and Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural UniversityBeijing, China
| |
Collapse
|
24
|
Castle AR, Gill AC. Physiological Functions of the Cellular Prion Protein. Front Mol Biosci 2017; 4:19. [PMID: 28428956 PMCID: PMC5382174 DOI: 10.3389/fmolb.2017.00019] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 03/22/2017] [Indexed: 01/09/2023] Open
Abstract
The prion protein, PrPC, is a small, cell-surface glycoprotein notable primarily for its critical role in pathogenesis of the neurodegenerative disorders known as prion diseases. A hallmark of prion diseases is the conversion of PrPC into an abnormally folded isoform, which provides a template for further pathogenic conversion of PrPC, allowing disease to spread from cell to cell and, in some circumstances, to transfer to a new host. In addition to the putative neurotoxicity caused by the misfolded form(s), loss of normal PrPC function could be an integral part of the neurodegenerative processes and, consequently, significant research efforts have been directed toward determining the physiological functions of PrPC. In this review, we first summarise important aspects of the biochemistry of PrPC before moving on to address the current understanding of the various proposed functions of the protein, including details of the underlying molecular mechanisms potentially involved in these functions. Over years of study, PrPC has been associated with a wide array of different cellular processes and many interacting partners have been suggested. However, recent studies have cast doubt on the previously well-established links between PrPC and processes such as stress-protection, copper homeostasis and neuronal excitability. Instead, the functions best-supported by the current literature include regulation of myelin maintenance and of processes linked to cellular differentiation, including proliferation, adhesion, and control of cell morphology. Intriguing connections have also been made between PrPC and the modulation of circadian rhythm, glucose homeostasis, immune function and cellular iron uptake, all of which warrant further investigation.
Collapse
|
25
|
Cai Y, Arikkath J, Yang L, Guo ML, Periyasamy P, Buch S. Interplay of endoplasmic reticulum stress and autophagy in neurodegenerative disorders. Autophagy 2016; 12:225-44. [PMID: 26902584 DOI: 10.1080/15548627.2015.1121360] [Citation(s) in RCA: 198] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The common underlying feature of most neurodegenerative diseases such as Alzheimer disease (AD), prion diseases, Parkinson disease (PD), and amyotrophic lateral sclerosis (ALS) involves accumulation of misfolded proteins leading to initiation of endoplasmic reticulum (ER) stress and stimulation of the unfolded protein response (UPR). Additionally, ER stress more recently has been implicated in the pathogenesis of HIV-associated neurocognitive disorders (HAND). Autophagy plays an essential role in the clearance of aggregated toxic proteins and degradation of the damaged organelles. There is evidence that autophagy ameliorates ER stress by eliminating accumulated misfolded proteins. Both abnormal UPR and impaired autophagy have been implicated as a causative mechanism in the development of various neurodegenerative diseases. This review highlights recent advances in the field on the role of ER stress and autophagy in AD, prion diseases, PD, ALS and HAND with the involvement of key signaling pathways in these processes and implications for future development of therapeutic strategies.
Collapse
Affiliation(s)
- Yu Cai
- a Department of Pharmacology and Experimental Neuroscience , University of Nebraska Medical Center , Omaha , NE , USA
| | - Jyothi Arikkath
- a Department of Pharmacology and Experimental Neuroscience , University of Nebraska Medical Center , Omaha , NE , USA.,b Developmental Neuroscience, Munroe-Meyer Institute, University of Nebraska Medical Center , Omaha , NE , USA
| | - Lu Yang
- a Department of Pharmacology and Experimental Neuroscience , University of Nebraska Medical Center , Omaha , NE , USA
| | - Ming-Lei Guo
- a Department of Pharmacology and Experimental Neuroscience , University of Nebraska Medical Center , Omaha , NE , USA
| | - Palsamy Periyasamy
- a Department of Pharmacology and Experimental Neuroscience , University of Nebraska Medical Center , Omaha , NE , USA
| | - Shilpa Buch
- a Department of Pharmacology and Experimental Neuroscience , University of Nebraska Medical Center , Omaha , NE , USA
| |
Collapse
|
26
|
Mays CE, Soto C. The stress of prion disease. Brain Res 2016; 1648:553-560. [PMID: 27060771 DOI: 10.1016/j.brainres.2016.04.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 04/01/2016] [Accepted: 04/05/2016] [Indexed: 01/31/2023]
Abstract
Prion diseases are fatal neurodegenerative disorders that include scrapie of sheep, bovine spongiform encephalopathy of cattle, chronic wasting disease of cervids, and Creutzfeldt-Jakob disease (CJD) of humans. The etiology for prion diseases can be infectious, sporadic, or hereditary. However, the common denominator for all types is the formation of a transmissible agent composed of a β-sheet-rich, misfolded version of the host-encoded prion protein (PrPC), known as PrPSc. PrPSc self-replicates through a template-assisted process that converts the α-helical conformation of PrPC into the disease-associated isoform. In parallel with PrPSc accumulation, spongiform change is pathologically observed in the central nervous system, where "holes" appear because of massive neuronal death. Here, we review the cellular pathways triggered in response to PrPSc formation and accumulation. Available data suggest that neuronal dysfunction and death may be caused by what originates as a cellular pro-survival response to chronic PrPSc accumulation. We also discuss what is known about the complex cross-talk between the endoplasmic reticulum stress components and the quality control pathways. Better knowledge about these processes may lead to innovative therapeutic strategies based on manipulating the stress response and its consequences for neurodegeneration. This article is part of a Special Issue entitled SI:ER stress.
Collapse
Affiliation(s)
- Charles E Mays
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, University of Texas Houston Medical School, Houston, TX 77030, USA
| | - Claudio Soto
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, University of Texas Houston Medical School, Houston, TX 77030, USA.
| |
Collapse
|
27
|
Abstract
Transmissible spongiform encephalopathies (TSEs), or prion diseases, are fatal neurodegenerative disorders characterised by long incubation period, short clinical duration, and transmissibility to susceptible species. Neuronal loss, spongiform changes, gliosis and the accumulation in the brain of the misfolded version of a membrane-bound cellular prion protein (PrP(C)), termed PrP(TSE), are diagnostic markers of these diseases. Compelling evidence links protein misfolding and its accumulation with neurodegenerative changes. Accordingly, several mechanisms of prion-mediated neurotoxicity have been proposed. In this paper, we provide an overview of the recent knowledge on the mechanisms of neuropathogenesis, the neurotoxic PrP species and the possible therapeutic approaches to treat these devastating disorders.
Collapse
|
28
|
Milisav I, Šuput D, Ribarič S. Unfolded Protein Response and Macroautophagy in Alzheimer's, Parkinson's and Prion Diseases. Molecules 2015; 20:22718-56. [PMID: 26694349 PMCID: PMC6332363 DOI: 10.3390/molecules201219865] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 11/30/2015] [Accepted: 12/09/2015] [Indexed: 12/13/2022] Open
Abstract
Proteostasis are integrated biological pathways within cells that control synthesis, folding, trafficking and degradation of proteins. The absence of cell division makes brain proteostasis susceptible to age-related changes and neurodegeneration. Two key processes involved in sustaining normal brain proteostasis are the unfolded protein response and autophagy. Alzheimer’s disease (AD), Parkinson’s disease (PD) and prion diseases (PrDs) have different clinical manifestations of neurodegeneration, however, all share an accumulation of misfolded pathological proteins associated with perturbations in unfolded protein response and macroautophagy. While both the unfolded protein response and macroautophagy play an important role in the prevention and attenuation of AD and PD progression, only macroautophagy seems to play an important role in the development of PrDs. Macroautophagy and unfolded protein response can be modulated by pharmacological interventions. However, further research is necessary to better understand the regulatory pathways of both processes in health and neurodegeneration to be able to develop new therapeutic interventions.
Collapse
Affiliation(s)
- Irina Milisav
- Institute of Pathophysiology, Faculty of Medicine, Zaloška 4, Ljubljana SI-1000, Slovenia.
- Faculty of Health Sciences, Zdravstvena pot 5, SI-1000 Ljubljana, Slovenija.
| | - Dušan Šuput
- Institute of Pathophysiology, Faculty of Medicine, Zaloška 4, Ljubljana SI-1000, Slovenia.
| | - Samo Ribarič
- Institute of Pathophysiology, Faculty of Medicine, Zaloška 4, Ljubljana SI-1000, Slovenia.
| |
Collapse
|
29
|
Trafficking and degradation pathways in pathogenic conversion of prions and prion-like proteins in neurodegenerative diseases. Virus Res 2015; 207:146-54. [DOI: 10.1016/j.virusres.2015.01.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 10/01/2014] [Accepted: 01/22/2015] [Indexed: 11/20/2022]
|
30
|
Torres M, Medinas DB, Matamala JM, Woehlbier U, Cornejo VH, Solda T, Andreu C, Rozas P, Matus S, Muñoz N, Vergara C, Cartier L, Soto C, Molinari M, Hetz C. The Protein-disulfide Isomerase ERp57 Regulates the Steady-state Levels of the Prion Protein. J Biol Chem 2015; 290:23631-45. [PMID: 26170458 DOI: 10.1074/jbc.m114.635565] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Indexed: 12/19/2022] Open
Abstract
Although the accumulation of a misfolded and protease-resistant form of the prion protein (PrP) is a key event in prion pathogenesis, the cellular factors involved in its folding and quality control are poorly understood. PrP is a glycosylated and disulfide-bonded protein synthesized at the endoplasmic reticulum (ER). The ER foldase ERp57 (also known as Grp58) is highly expressed in the brain of sporadic and infectious forms of prion-related disorders. ERp57 is a disulfide isomerase involved in the folding of a subset of glycoproteins in the ER as part of the calnexin/calreticulin cycle. Here, we show that levels of ERp57 increase mainly in neurons of Creutzfeldt-Jacob patients. Using gain- and loss-of-function approaches in cell culture, we demonstrate that ERp57 expression controls the maturation and total levels of wild-type PrP and mutant forms associated with human disease. In addition, we found that PrP physically interacts with ERp57, and also with the closest family member PDIA1, but not ERp72. Furthermore, we generated a conditional knock-out mouse for ERp57 in the nervous system and detected a reduction in the steady-state levels of the mono- and nonglycosylated forms of PrP in the brain. In contrast, ERp57 transgenic mice showed increased levels of endogenous PrP. Unexpectedly, ERp57 expression did not affect the susceptibility of cells to ER stress in vitro and in vivo. This study identifies ERp57 as a new modulator of PrP levels and may help with understanding the consequences of ERp57 up-regulation observed in human disease.
Collapse
Affiliation(s)
- Mauricio Torres
- From the Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago 8380453, Chile, the Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Center for Molecular Studies of the Cell, University of Chile, Santiago 8380453, Chile
| | - Danilo B Medinas
- From the Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago 8380453, Chile, the Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Center for Molecular Studies of the Cell, University of Chile, Santiago 8380453, Chile
| | - José Manuel Matamala
- From the Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago 8380453, Chile, the Department of Neurological Sciences, Faculty of Medicine, University of Chile, Santiago 7500691, Chile
| | - Ute Woehlbier
- From the Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago 8380453, Chile, the Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Center for Molecular Studies of the Cell, University of Chile, Santiago 8380453, Chile
| | - Víctor Hugo Cornejo
- From the Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago 8380453, Chile, the Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Center for Molecular Studies of the Cell, University of Chile, Santiago 8380453, Chile
| | - Tatiana Solda
- the Institute for Research in Biomedicine, Bellinzona CH6500, Switzerland
| | - Catherine Andreu
- From the Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago 8380453, Chile, the Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Center for Molecular Studies of the Cell, University of Chile, Santiago 8380453, Chile
| | - Pablo Rozas
- From the Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago 8380453, Chile, the Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Center for Molecular Studies of the Cell, University of Chile, Santiago 8380453, Chile
| | - Soledad Matus
- From the Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago 8380453, Chile, the Neurounion Biomedical Foundation, CENPAR, Santiago 7630614, Chile
| | - Natalia Muñoz
- From the Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago 8380453, Chile, the Neurounion Biomedical Foundation, CENPAR, Santiago 7630614, Chile
| | - Carmen Vergara
- the Department of Neurological Sciences, Faculty of Medicine, University of Chile, Santiago 7500691, Chile
| | - Luis Cartier
- the Department of Neurological Sciences, Faculty of Medicine, University of Chile, Santiago 7500691, Chile
| | - Claudio Soto
- the Department of Neurology, University of Texas Medical School, Houston, Texas 77030, and
| | - Maurizio Molinari
- the Institute for Research in Biomedicine, Bellinzona CH6500, Switzerland, the Università della Svizzera Italiana, Lugano CH6900, Switzerland, the Ecole Polytechnique Fédérale de Lausanne, School of Life Sciences, Lausanne CH1015, Switzerland
| | - Claudio Hetz
- From the Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago 8380453, Chile, the Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Center for Molecular Studies of the Cell, University of Chile, Santiago 8380453, Chile, the Harvard School of Public Health, Boston, Massachusetts 02115
| |
Collapse
|
31
|
Hiramatsu N, Chiang WC, Kurt TD, Sigurdson CJ, Lin JH. Multiple Mechanisms of Unfolded Protein Response-Induced Cell Death. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:1800-8. [PMID: 25956028 PMCID: PMC4484218 DOI: 10.1016/j.ajpath.2015.03.009] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 02/09/2015] [Accepted: 03/26/2015] [Indexed: 12/12/2022]
Abstract
Eukaryotic cells fold and assemble membrane and secreted proteins in the endoplasmic reticulum (ER), before delivery to other cellular compartments or the extracellular environment. Correctly folded proteins are released from the ER, and poorly folded proteins are retained until they achieve stable conformations; irreparably misfolded proteins are targeted for degradation. Diverse pathological insults, such as amino acid mutations, hypoxia, or infection, can overwhelm ER protein quality control, leading to misfolded protein buildup, causing ER stress. To cope with ER stress, eukaryotic cells activate the unfolded protein response (UPR) by increasing levels of ER protein-folding enzymes and chaperones, enhancing the degradation of misfolded proteins, and reducing protein translation. In mammalian cells, three ER transmembrane proteins, inositol-requiring enzyme-1 (IRE1; official name ERN1), PKR-like ER kinase (PERK; official name EIF2AK3), and activating transcription factor-6, control the UPR. The UPR signaling triggers a set of prodeath programs when the cells fail to successfully adapt to ER stress or restore homeostasis. ER stress and UPR signaling are implicated in the pathogenesis of diverse diseases, including neurodegeneration, cancer, diabetes, and inflammation. This review discusses the current understanding in both adaptive and apoptotic responses as well as the molecular mechanisms instigating apoptosis via IRE1 and PERK signaling. We also examine how IRE1 and PERK signaling may be differentially used during neurodegeneration arising in retinitis pigmentosa and prion infection.
Collapse
Affiliation(s)
- Nobuhiko Hiramatsu
- Department of Pathology, University of California-San Diego, La Jolla, California
| | - Wei-Chieh Chiang
- Department of Pathology, University of California-San Diego, La Jolla, California
| | - Timothy D Kurt
- Department of Pathology, University of California-San Diego, La Jolla, California
| | | | - Jonathan H Lin
- Department of Pathology, University of California-San Diego, La Jolla, California.
| |
Collapse
|
32
|
Davis EM, Kim J, Menasche BL, Sheppard J, Liu X, Tan AC, Shen J. Comparative Haploid Genetic Screens Reveal Divergent Pathways in the Biogenesis and Trafficking of Glycophosphatidylinositol-Anchored Proteins. Cell Rep 2015; 11:1727-36. [PMID: 26074080 DOI: 10.1016/j.celrep.2015.05.026] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 04/17/2015] [Accepted: 05/11/2015] [Indexed: 11/30/2022] Open
Abstract
Glycophosphatidylinositol-anchored proteins (GPI-APs) play essential roles in physiology, but their biogenesis and trafficking have not been systematically characterized. Here, we took advantage of the recently available haploid genetics approach to dissect GPI-AP pathways in human cells using prion protein (PrP) and CD59 as model molecules. Our screens recovered a large number of common and unexpectedly specialized factors in the GPI-AP pathways. PIGN, PGAP2, and PIGF, which encode GPI anchor-modifying enzymes, were selectively isolated in the CD59 screen, suggesting that GPI anchor composition significantly influences the biogenesis of GPI-APs in a substrate-dependent manner. SEC62 and SEC63, which encode components of the ER-targeting machinery, were selectively recovered in the PrP screen, indicating that they do not constitute a universal route for the biogenesis of mammalian GPI-APs. Together, these comparative haploid genetic screens demonstrate that, despite their similarity in overall architecture and subcellular localization, GPI-APs follow markedly distinct biosynthetic and trafficking pathways.
Collapse
Affiliation(s)
- Eric M Davis
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado at Boulder, Boulder, CO 80309, USA
| | - Jihye Kim
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Bridget L Menasche
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado at Boulder, Boulder, CO 80309, USA
| | - Jacob Sheppard
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado at Boulder, Boulder, CO 80309, USA
| | - Xuedong Liu
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, CO 80309, USA
| | - Aik-Choon Tan
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Jingshi Shen
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado at Boulder, Boulder, CO 80309, USA.
| |
Collapse
|
33
|
Soto C, Satani N. The intricate mechanisms of neurodegeneration in prion diseases. Trends Mol Med 2015; 17:14-24. [PMID: 20889378 DOI: 10.1016/j.molmed.2010.09.001] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 08/27/2010] [Accepted: 09/01/2010] [Indexed: 12/20/2022]
Abstract
Prion diseases are a group of infectious neurodegenerative diseases with an entirely novel mechanism of transmission, involving a protein-only infectious agent that propagates the disease by transmitting protein conformational changes. The disease results from extensive and progressive brain degeneration. The molecular mechanisms involved in neurodegeneration are not entirely known but involve multiple processes operating simultaneously and synergistically in the brain, including spongiform degeneration, synaptic alterations, brain inflammation, neuronal death and the accumulation of protein aggregates. Here, we review the pathways implicated in prion-induced brain damage and put the pieces together into a possible model of neurodegeneration in prion disorders. A more comprehensive understanding of the molecular basis of brain degeneration is essential to develop a much needed therapy for these devastating diseases.
Collapse
Affiliation(s)
- Claudio Soto
- Mitchell Center for Alzheimer's disease and related Brain disorders, Department of Neurology, University of Texas Houston Medical School, 6431 Fannin St, Houston, TX 77030, USA
| | | |
Collapse
|
34
|
Subcellular distribution of the prion protein in sickness and in health. Virus Res 2015; 207:136-45. [PMID: 25683509 DOI: 10.1016/j.virusres.2015.02.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 02/03/2015] [Accepted: 02/03/2015] [Indexed: 11/22/2022]
Abstract
The cellular prion protein (PrP(C)) is an ubiquitously expressed glycoprotein that is most abundant in the central nervous system. It is thought to play a role in many cellular processes, including neuroprotection, but may also contribute to Alzheimer's disease and some cancers. However, it is best known for its central role in the prion diseases, such as Creutzfeldt-Jakob disease (CJD), bovine spongiform encephalopathy (BSE), and scrapie. These protein misfolding diseases can be sporadic, acquired, or genetic and are caused by refolding of endogenous PrP(C) into a beta sheet-rich, pathogenic form, PrP(Sc). Once prions are present in the central nervous system, they increase and spread during a long incubation period that is followed by a relatively short clinical disease phase, ending in death. PrP molecules can be broadly categorized as either 'good' (cellular) PrP(C) or 'bad' (scrapie prion-type) PrP(Sc), but both populations are heterogeneous and different forms of PrP(C) may influence various cellular activities. Both PrP(C) and PrP(Sc) are localized predominantly at the cell surface, with the C-terminus attached to the plasma membrane via a glycosyl-phosphatidylinositol (GPI) anchor and both can exist in cleaved forms. PrP(C) also has cytosolic and transmembrane forms, and PrP(Sc) is known to exist in a variety of conformations and aggregation states. Here, we discuss the roles of different PrP isoforms in sickness and in health, and show the subcellular distributions of several forms of PrP that are particularly relevant for PrP(C) to PrP(Sc) conversion and prion-induced pathology in the hippocampus.
Collapse
|
35
|
Song Z, Zhao D, Yang L. Metabolism of minor isoforms of prion proteins: Cytosolic prion protein and transmembrane prion protein. Neural Regen Res 2014; 8:2868-78. [PMID: 25206608 PMCID: PMC4146015 DOI: 10.3969/j.issn.1673-5374.2013.30.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 09/09/2013] [Indexed: 12/24/2022] Open
Abstract
Transmissible spongiform encephalopathy or prion disease is triggered by the conversion from cellular prion protein to pathogenic prion protein. Growing evidence has concentrated on prion protein configuration changes and their correlation with prion disease transmissibility and pathogenicity. In vivo and in vitro studies have shown that several cytosolic forms of prion protein with specific topological structure can destroy intracellular stability and contribute to prion protein pathogenicity. In this study, the latest molecular chaperone system associated with endoplasmic reticulum-associated protein degradation, the endoplasmic reticulum resident protein quality-control system and the ubiquitination proteasome system, is outlined. The molecular chaperone system directly correlates with the prion protein degradation pathway. Understanding the molecular mechanisms will help provide a fascinating avenue for further investigations on prion disease treatment and prion protein-induced neurodegenerative diseases.
Collapse
Affiliation(s)
- Zhiqi Song
- State Key Laboratory for Agrobiotechnology, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Deming Zhao
- State Key Laboratory for Agrobiotechnology, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Lifeng Yang
- State Key Laboratory for Agrobiotechnology, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| |
Collapse
|
36
|
Rodrigo-Brenni MC, Gutierrez E, Hegde RS. Cytosolic quality control of mislocalized proteins requires RNF126 recruitment to Bag6. Mol Cell 2014; 55:227-37. [PMID: 24981174 PMCID: PMC4104027 DOI: 10.1016/j.molcel.2014.05.025] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 04/07/2014] [Accepted: 05/06/2014] [Indexed: 01/22/2023]
Abstract
Approximately 30% of eukaryotic proteins contain hydrophobic signals for localization to the secretory pathway. These proteins can be mislocalized in the cytosol due to mutations in their targeting signals, certain stresses, or intrinsic inefficiencies in their translocation. Mislocalized proteins (MLPs) are protected from aggregation by the Bag6 complex and degraded by a poorly characterized proteasome-dependent pathway. Here, we identify the ubiquitin ligase RNF126 as a key component of the MLP degradation pathway. In vitro reconstitution and fractionation studies reveal that RNF126 is the primary Bag6-dependent ligase. RNF126 is recruited to the N-terminal Ubl domain of Bag6 and preferentially ubiquitinates juxtahydrophobic lysine residues on Bag6-associated clients. Interfering with RNF126 recruitment in vitro prevents ubiquitination, and RNF126 depletion in cells partially stabilizes a Bag6 client. Bag6-dependent ubiquitination can be recapitulated with purified components, paving the way for mechanistic analyses of downstream steps in this cytosolic quality control pathway. The chaperone Bag6 recruits the ubiquitin ligase RNF126 to its Ubl domain RNF126 is necessary and sufficient for optimal ubiquitination of Bag6 clients Purified Bag6-client complex supports ubiquitination by recombinant RNF126 Bag6-associated mislocalized protein is stabilized by loss of RNF126 in cells
Collapse
Affiliation(s)
| | - Erik Gutierrez
- Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ramanujan S Hegde
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| |
Collapse
|
37
|
Targeting the unfolded protein response in neurodegeneration: A new approach to therapy. Neuropharmacology 2014; 76 Pt A:169-74. [DOI: 10.1016/j.neuropharm.2013.08.034] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 08/23/2013] [Accepted: 08/27/2013] [Indexed: 11/24/2022]
|
38
|
Prions Ex Vivo: What Cell Culture Models Tell Us about Infectious Proteins. Int J Cell Biol 2013; 2013:704546. [PMID: 24282413 PMCID: PMC3825132 DOI: 10.1155/2013/704546] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 09/03/2013] [Indexed: 11/25/2022] Open
Abstract
Prions are unconventional infectious agents that are composed of misfolded aggregated prion protein. Prions replicate their conformation by template-assisted conversion of the endogenous prion protein PrP. Templated conversion of soluble proteins into protein aggregates is also a hallmark of other neurodegenerative diseases. Alzheimer's disease or Parkinson's disease are not considered infectious diseases, although aggregate pathology appears to progress in a stereotypical fashion reminiscent of the spreading behavior ofmammalian prions. While basic principles of prion formation have been studied extensively, it is still unclear what exactly drives PrP molecules into an infectious, self-templating conformation. In this review, we discuss crucial steps in the life cycle of prions that have been revealed in ex vivo models. Importantly, the persistent propagation of prions in mitotically active cells argues that cellular processes are in place that not only allow recruitment of cellular PrP into growing prion aggregates but also enable the multiplication of infectious seeds that are transmitted to daughter cells. Comparison of prions with other protein aggregates demonstrates that not all the characteristics of prions are equally shared by prion-like aggregates. Future experiments may reveal to which extent aggregation-prone proteins associated with other neurodegenerative diseases can copy the replication strategies of prions.
Collapse
|
39
|
Tipper D, Martinez-Vilchez I, Markgren L, Kagalwala DZ. Mammalian Prion protein expression in yeast; a model for transmembrane insertion. Prion 2013; 7:477-87. [PMID: 24141197 DOI: 10.4161/pri.26850] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The prion protein (PrP), a GPI-anchored glycoprotein, is inefficiently secreted by mammalian microsomes, 50% being found as transmembrane (TM) proteins with the central TM1 segment spanning the membrane. TM1 hydrophobicity is marginal for lateral membrane insertion, which is primarily driven by hydrophobic interaction between the ER translocon and substrates in transit. Most inserted TM1 has its N-terminus in the ER lumen (Ntm orientation), as expected for arrest of normal secretion. However, 20% is found in inverted Ctm orientation. These are minor species in vivo, presumably a consequence of efficient quality control. PrP mutations that increase TM1 hydrophobicity result in increased Ctm insertion, both in vitro and in mouse brain, and a strong correlation is found between CtmPrP insertion and neuropathology in transgenic mice; a copper-dependent pathogenicity mechanism is suggested. PrP fusions with a C-terminal epitope tag, when expressed in yeast cells at moderate levels, appear to interact efficiently with the translocon, providing a useful model for testing the effects of PrP mutations on TM insertion and orientation. However, secretion of PrP by the mammalian translocon requires the TRAP complex, absent in yeast, where essentially all PrP ends up as TM species, 85-90% Ntm and 10-15% Ctm. Although yeast is, therefore, an incomplete mimic of mammalian PrP trafficking, effects on Ctm insertion of mutations increasing TM1 hydrophobicity closely reflect those seen in vitro. Electrostatic substrate-translocon interactions are a major determinant of TM protein insertion orientation and the yeast model was used to investigate the role of the large negative charge difference across TM1, a likely cause of translocation delay that would favor TM insertion and Ctm orientation. An increase in ΔCh from -5 to -7 caused a marked increase in Ctm insertion, while a decrease to -3 or -1 allowed 35 and about 65% secretion, respectively. Utility of the yeast model and the role of this charge difference in driving PrP membrane insertion are confirmed.
Collapse
Affiliation(s)
- Donald Tipper
- Microbiology and Physiological Systems Department; University of Massachusetts Medical School; Worcester MA USA
| | | | - Lucas Markgren
- Mathematics Department; Doherty Memorial High School; Worcester MA USA
| | - Din Z Kagalwala
- Department of Anesthesiology; Hackensack University Medical Center; Hackensack, NJ USA
| |
Collapse
|
40
|
Non-secreted clusterin isoforms are translated in rare amounts from distinct human mRNA variants and do not affect Bax-mediated apoptosis or the NF-κB signaling pathway. PLoS One 2013; 8:e75303. [PMID: 24073260 PMCID: PMC3779157 DOI: 10.1371/journal.pone.0075303] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 08/14/2013] [Indexed: 01/08/2023] Open
Abstract
Clusterin, also known as apolipoprotein J, is expressed from a variety of tissues and implicated in pathological disorders such as neurodegenerative diseases, ischemia and cancer. In contrast to secretory clusterin (sCLU), which acts as an extracellular chaperone, the synthesis, subcellular localization and function(s) of intracellular CLU isoforms is currently a matter of intense discussion. By investigating human CLU mRNAs we here unravel mechanisms leading to the synthesis of distinct CLU protein isoforms and analyze their subcellular localization and their impact on apoptosis and on NF-κB-activity. Quantitative PCR-analyses revealed the expression of four different stress-inducible CLU mRNA variants in non-cancer and cancer cell lines. In all cell lines variant 1 represents the most abundant mRNA, whereas all other variants collectively account for no more than 0.34% of total CLU mRNA, even under stressed conditions. Overexpression of CLU cDNAs combined with in vitro mutagenesis revealed distinct translational start sites including a so far uncharacterized non-canonical CUG start codon. We show that all exon 2-containing mRNAs encode sCLU and at least three non-glycosylated intracellular isoforms, CLU1‑449, CLU21‑449 and CLU34‑449, which all reside in the cytosol of unstressed and stressed HEK‑293 cells. The latter is the only form expressed from an alternatively spliced mRNA variant lacking exon 2. Functional analysis revealed that none of these cytosolic CLU forms modulate caspase-mediated intrinsic apoptosis or significantly affects TNF-α-induced NF-κB-activity. Therefore our data challenge some of the current ideas regarding the physiological functions of CLU isoforms in pathologies.
Collapse
|
41
|
Bertolotti M, Bestetti S, Medrano-Fernandez I, Sitia R. Response to Marinelli and Marchissio. Antioxid Redox Signal 2013; 19:897. [PMID: 23952014 DOI: 10.1089/ars.2013.5505rs] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Milena Bertolotti
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Stefano Bestetti
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
- Fondazione Centro San Raffaele, Ospedale San Raffaele, Milan, Italy
| | - Iria Medrano-Fernandez
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Roberto Sitia
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| |
Collapse
|
42
|
Song Z, Zhao D, Yang L. Molecular mechanisms of neurodegeneration mediated by dysfunctional subcellular organelles in transmissible spongiform encephalopathies. Acta Biochim Biophys Sin (Shanghai) 2013; 45:452-64. [PMID: 23439666 DOI: 10.1093/abbs/gmt014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Transmissible spongiform encephalopathies refer to a group of infectious neurodegenerative diseases with an entirely novel mechanism of transmission and pathophysiology including synaptic damage, dendritic atrophy, vacuolization, and microglial activation. Extensive neuronal loss is the main cause of chronic brain deterioration and fatal outcome of prion diseases. As the final outcome of pathological alterations, neuronal death is a prominent feature of all prion diseases. The mechanisms responsible for prion diseases are not well understood. A more comprehensive understanding of the molecular basis of neuronal damage is essential for the development of an effective therapy for transmissible spongiform encephalopathies and other neurodegenerative diseases sharing similar features. Here, we review the molecular mechanisms of mitochondrial dysfunction and endoplasmic reticulum stress-mediated neuronal death, which play crucial roles in the pathogenisis of prion diseases.
Collapse
Affiliation(s)
- Zhiqi Song
- State Key Laboratories for Agrobiotechnology, China Agricultural University, Beijing 100193, China
| | | | | |
Collapse
|
43
|
Déry MA, Jodoin J, Ursini-Siegel J, Aleynikova O, Ferrario C, Hassan S, Basik M, LeBlanc AC. Endoplasmic reticulum stress induces PRNP prion protein gene expression in breast cancer. Breast Cancer Res 2013; 15:R22. [PMID: 23497519 PMCID: PMC3672785 DOI: 10.1186/bcr3398] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2012] [Accepted: 03/01/2013] [Indexed: 01/11/2023] Open
Abstract
Introduction High prion protein (PrP) levels are associated with breast, colon and gastric cancer resistance to treatment and with a poor prognosis for the patients. However, little is known about the underlying molecular mechanism(s) regulating human PrP gene (PRNP) expression in cancers. Because endoplasmic reticulum (ER) stress is associated with solid tumors, we investigated a possible regulation of PRNP gene expression by ER stress. Methods Published microarray databases of breast cancer tissues and breast carcinoma cell lines were analyzed for PrP mRNA and ER stress marker immunoglobulin heavy chain binding protein (BiP) levels. Breast cancer tissue microarrays (TMA) were immunostained for BiP and PrP. Breast carcinoma MCF-7, MDA-MB-231, HS578T and HCC1500 cells were treated with three different ER stressors - Brefeldin A, Tunicamycin, Thapsigargin - and levels of PrP mRNA or protein assessed by RT-PCR and Western blot analyses. A human PRNP promoter-luciferase reporter was used to assess transcriptional activation by ER stressors. Site-directed mutagenesis identified the ER stress response elements (ERSE). Chromatin immunoprecipitation (ChIP) analyses were done to identify the ER stress-mediated transcriptional regulators. The role of cleaved activating transcription factor 6α (ΔATF6α) and spliced X-box protein-1 (sXBP1) in PRNP gene expression was assessed with over-expression or silencing techniques. The role of PrP protection against ER stress was assessed with PrP siRNA and by using Prnp null cell lines. Results We find that mRNA levels of BiP correlated with PrP transcript levels in breast cancer tissues and breast carcinoma cell lines. PrP mRNA levels were enriched in the basal subtype and were associated with poor prognosis in breast cancer patients. Higher PrP and BiP levels correlated with increasing tumor grade in TMA. ER stress was a positive regulator of PRNP gene transcription in MCF-7 cells and luciferase reporter assays identified one ER stress response element (ERSE) conserved among primates and rodents and three primate-specific ERSEs that regulated PRNP gene expression. Among the various transactivators of the ER stress-regulated unfolded protein response (UPR), ATF6α and XBP1 transactivated PRNP gene expression, but the ability of these varied in different cell types. Functionally, PrP delayed ER stress-induced cell death. Conclusions These results establish PRNP as a novel ER stress-regulated gene that could increase survival in breast cancers.
Collapse
|
44
|
Bravo R, Parra V, Gatica D, Rodriguez AE, Torrealba N, Paredes F, Wang ZV, Zorzano A, Hill JA, Jaimovich E, Quest AFG, Lavandero S. Endoplasmic reticulum and the unfolded protein response: dynamics and metabolic integration. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 301:215-90. [PMID: 23317820 DOI: 10.1016/b978-0-12-407704-1.00005-1] [Citation(s) in RCA: 418] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The endoplasmic reticulum (ER) is a dynamic intracellular organelle with multiple functions essential for cellular homeostasis, development, and stress responsiveness. In response to cellular stress, a well-established signaling cascade, the unfolded protein response (UPR), is activated. This intricate mechanism is an important means of re-establishing cellular homeostasis and alleviating the inciting stress. Now, emerging evidence has demonstrated that the UPR influences cellular metabolism through diverse mechanisms, including calcium and lipid transfer, raising the prospect of involvement of these processes in the pathogenesis of disease, including neurodegeneration, cancer, diabetes mellitus and cardiovascular disease. Here, we review the distinct functions of the ER and UPR from a metabolic point of view, highlighting their association with prevalent pathologies.
Collapse
Affiliation(s)
- Roberto Bravo
- Center for Molecular Studies of the Cell, University of Chile, Santiago, Chile
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Inhibition of protein translocation at the endoplasmic reticulum promotes activation of the unfolded protein response. Biochem J 2012; 442:639-48. [PMID: 22145777 PMCID: PMC3286858 DOI: 10.1042/bj20111220] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Selective small-molecule inhibitors represent powerful tools for the dissection of complex biological processes. ESI (eeyarestatin I) is a novel modulator of ER (endoplasmic reticulum) function. In the present study, we show that in addition to acutely inhibiting ERAD (ER-associated degradation), ESI causes production of mislocalized polypeptides that are ubiquitinated and degraded. Unexpectedly, our results suggest that these non-translocated polypeptides promote activation of the UPR (unfolded protein response), and indeed we can recapitulate UPR activation with an alternative and quite distinct inhibitor of ER translocation. These results suggest that the accumulation of non-translocated proteins in the cytosol may represent a novel mechanism that contributes to UPR activation.
Collapse
|
46
|
Alais S, Soto-Rifo R, Balter V, Gruffat H, Manet E, Schaeffer L, Darlix JL, Cimarelli A, Raposo G, Ohlmann T, Leblanc P. Functional mechanisms of the cellular prion protein (PrP(C)) associated anti-HIV-1 properties. Cell Mol Life Sci 2012; 69:1331-52. [PMID: 22076653 PMCID: PMC11114771 DOI: 10.1007/s00018-011-0879-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 10/15/2011] [Accepted: 10/24/2011] [Indexed: 12/22/2022]
Abstract
The cellular prion protein PrP(C)/CD230 is a GPI-anchor protein highly expressed in cells from the nervous and immune systems and well conserved among vertebrates. In the last decade, several studies suggested that PrP(C) displays antiviral properties by restricting the replication of different viruses, and in particular retroviruses such as murine leukemia virus (MuLV) and the human immunodeficiency virus type 1 (HIV-1). In this context, we previously showed that PrP(C) displays important similarities with the HIV-1 nucleocapsid protein and found that PrP(C) expression in a human cell line strongly reduced HIV-1 expression and virus production. Using different PrP(C) mutants, we report here that the anti-HIV-1 properties are mostly associated with the amino-terminal 24-KRPKP-28 basic domain. In agreement with its reported RNA chaperone activity, we found that PrP(C) binds to the viral genomic RNA of HIV-1 and negatively affects its translation. Using a combination of biochemical and cell imaging strategies, we found that PrP(C) colocalizes with the virus assembly machinery at the plasma membrane and at the virological synapse in infected T cells. Depletion of PrP(C) in infected T cells and microglial cells favors HIV-1 replication, confirming its negative impact on the HIV-1 life cycle.
Collapse
Affiliation(s)
- Sandrine Alais
- Université de Lyon, 69000 Lyon, France
- Human virology department, INSERM U758, 69007 Lyon, France
- Ecole Normale Supérieure de Lyon, 69007 Lyon, France
| | - Ricardo Soto-Rifo
- Université de Lyon, 69000 Lyon, France
- Human virology department, INSERM U758, 69007 Lyon, France
- Ecole Normale Supérieure de Lyon, 69007 Lyon, France
| | - Vincent Balter
- Université de Lyon, 69000 Lyon, France
- Ecole Normale Supérieure de Lyon, 69007 Lyon, France
- CNRS UMR 5276 “Laboratoire de Géologie de Lyon”, Lyon, France
| | - Henri Gruffat
- Université de Lyon, 69000 Lyon, France
- Human virology department, INSERM U758, 69007 Lyon, France
- Ecole Normale Supérieure de Lyon, 69007 Lyon, France
| | - Evelyne Manet
- Université de Lyon, 69000 Lyon, France
- Human virology department, INSERM U758, 69007 Lyon, France
- Ecole Normale Supérieure de Lyon, 69007 Lyon, France
| | - Laurent Schaeffer
- Université de Lyon, 69000 Lyon, France
- Ecole Normale Supérieure de Lyon, 69007 Lyon, France
- Laboratoire de Biologie Moléculaire de la Cellule (LBMC) UMR5239 CNRS/ENS/Université de Lyon/HCL, Ecole Normale Supérieure de Lyon, 69007 Lyon, France
| | - Jean Luc Darlix
- Université de Lyon, 69000 Lyon, France
- Human virology department, INSERM U758, 69007 Lyon, France
- Ecole Normale Supérieure de Lyon, 69007 Lyon, France
| | - Andrea Cimarelli
- Université de Lyon, 69000 Lyon, France
- Human virology department, INSERM U758, 69007 Lyon, France
- Ecole Normale Supérieure de Lyon, 69007 Lyon, France
| | - Graça Raposo
- Structure and Membrane Compartments and PICT-IBiSA, Institut Curie, CNRS-UMR144, 12 Rue Lhomond, 75005 Paris, France
| | - Théophile Ohlmann
- Université de Lyon, 69000 Lyon, France
- Human virology department, INSERM U758, 69007 Lyon, France
- Ecole Normale Supérieure de Lyon, 69007 Lyon, France
| | - Pascal Leblanc
- Université de Lyon, 69000 Lyon, France
- Human virology department, INSERM U758, 69007 Lyon, France
- Ecole Normale Supérieure de Lyon, 69007 Lyon, France
- Laboratoire de Biologie Moléculaire de la Cellule (LBMC) UMR5239 CNRS/ENS/Université de Lyon/HCL, Ecole Normale Supérieure de Lyon, 69007 Lyon, France
| |
Collapse
|
47
|
Torres M, Encina G, Soto C, Hetz C. Abnormal calcium homeostasis and protein folding stress at the ER: A common factor in familial and infectious prion disorders. Commun Integr Biol 2011; 4:258-61. [PMID: 21980554 DOI: 10.4161/cib.4.3.15019] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2011] [Accepted: 01/30/2011] [Indexed: 12/12/2022] Open
Abstract
Prion-related disorders (PrDs) are caused by the accumulation of a misfolded and protease-resistant form of the cellular prion, leading to neuronal dysfunction and massive neuronal loss. In humans, PrDs have distinct etiologies including sporadic, infectious and familial forms, which present common clinical features; however, the possible existence of common neuropathogenic events are not known. Several studies suggest that alterations in protein folding and quality control mechanisms at the endoplasmic reticulum (ER) are a common factor involved in PrDs. However, the mechanism underlying ER dysfunction in PrDs remains unknown. We have recently reported that alterations in ER calcium homeostasis are common pathological events observed in both infectious and familial PrD models. Perturbation in calcium homeostasis directly correlated with the occurrence of ER stress and higher susceptibility to protein folding stress. We envision a model where alterations in ER function are central and common events underlying prion pathogenesis, leading to general alterations on protein homeostasis networks.
Collapse
Affiliation(s)
- Mauricio Torres
- Center for Molecular Studies of the Cell; Institute of Biomedical Sciences; University of Chile; Santiago, Chile
| | | | | | | |
Collapse
|
48
|
Protein targeting and degradation are coupled for elimination of mislocalized proteins. Nature 2011; 475:394-7. [PMID: 21743475 PMCID: PMC3150218 DOI: 10.1038/nature10181] [Citation(s) in RCA: 204] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Accepted: 05/06/2011] [Indexed: 12/23/2022]
Abstract
A substantial proportion of the genome encodes membrane proteins that are delivered to the endoplasmic reticulum by dedicated targeting pathways1. Membrane proteins that fail targeting must be rapidly degraded to avoid aggregation and disruption of cytosolic protein homeostasis2,3. The mechanisms of mislocalized protein (MLP) degradation are unknown. Here, we reconstitute MLP degradation in vitro to identify factors involved in this pathway. We find that nascent membrane proteins tethered to ribosomes are not substrates for ubiquitination unless they are released into the cytosol. Their inappropriate release results in capture by the Bag6 complex, a recently identified ribosome-associating chaperone4. Bag6 complex capture depends on unprocessed or non-inserted hydrophobic domains that distinguish MLPs from potential cytosolic proteins. A subset of these Bag6 clients is transferred to TRC40 for membrane insertion, while the remainder are rapidly ubiquitinated. Depletion of the Bag6 complex impairs efficient ubiquitination selectively of MLPs. Thus, by its presence on ribosomes synthesizing nascent membrane proteins, the Bag6 complex links targeting and ubiquitination pathways. We propose that such coupling permits fast-tracking of MLPs for degradation without futile engagement of cytosolic folding machinery.
Collapse
|
49
|
Yap YHY, Say YH. Resistance against apoptosis by the cellular prion protein is dependent on its glycosylation status in oral HSC-2 and colon LS 174T cancer cells. Cancer Lett 2011; 306:111-9. [DOI: 10.1016/j.canlet.2011.02.040] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 02/23/2011] [Accepted: 02/24/2011] [Indexed: 11/25/2022]
|
50
|
Quaglio E, Restelli E, Garofoli A, Dossena S, De Luigi A, Tagliavacca L, Imperiale D, Migheli A, Salmona M, Sitia R, Forloni G, Chiesa R. Expression of mutant or cytosolic PrP in transgenic mice and cells is not associated with endoplasmic reticulum stress or proteasome dysfunction. PLoS One 2011; 6:e19339. [PMID: 21559407 PMCID: PMC3084828 DOI: 10.1371/journal.pone.0019339] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Accepted: 03/27/2011] [Indexed: 12/20/2022] Open
Abstract
The cellular pathways activated by mutant prion protein (PrP) in genetic prion diseases, ultimately leading to neuronal dysfunction and degeneration, are not known. Several mutant PrPs misfold in the early secretory pathway and reside longer in the endoplasmic reticulum (ER) possibly stimulating ER stress-related pathogenic mechanisms. To investigate whether mutant PrP induced maladaptive responses, we checked key elements of the unfolded protein response (UPR) in transgenic mice, primary neurons and transfected cells expressing two different mutant PrPs. Because ER stress favors the formation of untranslocated PrP that might aggregate in the cytosol and impair proteasome function, we also measured the activity of the ubiquitin proteasome system (UPS). Molecular, biochemical and immunohistochemical analyses found no increase in the expression of UPR-regulated genes, such as Grp78/Bip, CHOP/GADD153, or ER stress-dependent splicing of the mRNA encoding the X-box-binding protein 1. No alterations in UPS activity were detected in mutant mouse brains and primary neurons using the UbG76V-GFP reporter and a new fluorogenic peptide for monitoring proteasomal proteolytic activity in vivo. Finally, there was no loss of proteasome function in neurons in which endogenous PrP was forced to accumulate in the cytosol by inhibiting cotranslational translocation. These results indicate that neither ER stress, nor perturbation of proteasome activity plays a major pathogenic role in prion diseases.
Collapse
Affiliation(s)
- Elena Quaglio
- Dulbecco Telethon Institute, Milan, Italy
- Department of Neuroscience, Mario Negri Institute for Pharmacological Research, Milan, Italy
| | - Elena Restelli
- Dulbecco Telethon Institute, Milan, Italy
- Department of Neuroscience, Mario Negri Institute for Pharmacological Research, Milan, Italy
| | - Anna Garofoli
- Dulbecco Telethon Institute, Milan, Italy
- Department of Neuroscience, Mario Negri Institute for Pharmacological Research, Milan, Italy
| | - Sara Dossena
- Dulbecco Telethon Institute, Milan, Italy
- Department of Neuroscience, Mario Negri Institute for Pharmacological Research, Milan, Italy
| | - Ada De Luigi
- Department of Biochemistry and Molecular Pharmacology, Mario Negri Institute for Pharmacological Research, Milan, Italy
| | - Luigina Tagliavacca
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute and Università Vita-Salute San Raffaele, Milan, Italy
| | - Daniele Imperiale
- Neurology Unit, Human Prion Diseases Center D.O.M.P., Maria Vittoria Hospital, Torino, Italy
| | - Antonio Migheli
- Neurology Unit, Human Prion Diseases Center D.O.M.P., Maria Vittoria Hospital, Torino, Italy
| | - Mario Salmona
- Department of Biochemistry and Molecular Pharmacology, Mario Negri Institute for Pharmacological Research, Milan, Italy
| | - Roberto Sitia
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute and Università Vita-Salute San Raffaele, Milan, Italy
| | - Gianluigi Forloni
- Department of Neuroscience, Mario Negri Institute for Pharmacological Research, Milan, Italy
| | - Roberto Chiesa
- Dulbecco Telethon Institute, Milan, Italy
- Department of Neuroscience, Mario Negri Institute for Pharmacological Research, Milan, Italy
- * E-mail:
| |
Collapse
|