1
|
Murali M, Latha J, Prakash PA, Sangeetha S, Selvakumaran B, Jaabir MSM. Characterization of [Ru(bpy)2(diamine)]2+ complexes and their DNA binding and cleavage, BSA interaction, cytotoxic, and anticancer mechanistic properties. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
2
|
Gulen B, Itzen A. Revisiting AMPylation through the lens of Fic enzymes. Trends Microbiol 2021; 30:350-363. [PMID: 34531089 DOI: 10.1016/j.tim.2021.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 08/04/2021] [Accepted: 08/09/2021] [Indexed: 11/30/2022]
Abstract
AMPylation, a post-translational modification (PTM) first discovered in the late 1960s, is catalyzed by adenosine monophosphate (AMP)-transferring enzymes. The observation that filamentation-induced-by-cyclic-AMP (fic) enzymes are associated with this unique PTM revealed that AMPylation plays a major role in hijacking of host signaling by pathogenic bacteria during infection. Studies over the past decade showed that AMPylation is conserved across all kingdoms of life and, outside their role in infection, also modulates cellular functions. Many aspects of AMPylation are yet to be uncovered. In this review we present the advancement in research on AMPylation and Fic enzymes as well as other distinct classes of enzymes that catalyze AMPylation.
Collapse
Affiliation(s)
- Burak Gulen
- Department of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf (UKE), Martinistr. 52, 20246, Hamburg, Germany; Present address: Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Aymelt Itzen
- Department of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf (UKE), Martinistr. 52, 20246, Hamburg, Germany.
| |
Collapse
|
3
|
Synthesis and biological evaluation of novel 1,3-diphenylurea quinoxaline derivatives as potent anticancer agents. Med Chem Res 2021. [DOI: 10.1007/s00044-021-02745-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
4
|
Zhang X, Sun J, Chen F, Qi H, Chen L, Sung YY, Huang Y, Lv A, Hu X. Phenotypic and genomic characterization of a Vibrio parahaemolyticus strain causing disease in Penaeus vannamei provides insights into its niche adaptation and pathogenic mechanism. Microb Genom 2021; 7. [PMID: 33952389 PMCID: PMC8209731 DOI: 10.1099/mgen.0.000549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The virulence of Vibrio parahaemolyticus is variable depending on its virulence determinants. A V. parahaemolyticus strain, in which the virulence is governed by the pirA and pirB genes, can cause acute hepatopancreatic necrosis disease (AHPND) in shrimps. Some V. parahaemolyticus that are non-AHPND strains also cause shrimp diseases and result in huge economic losses, while their pathogenicity and pathogenesis remain unclear. In this study, a non-AHPND V. parahaemolyticus, TJA114, was isolated from diseased Penaeus vannamei associated with a high mortality. To understand its virulence and adaptation to the external environment, whole-genome sequencing of this isolate was conducted, and its phenotypic profiles including pathogenicity, growth characteristics and nutritional requirements were investigated. Shrimps following artificial infection with this isolate presented similar clinical symptoms to the naturally diseased ones and generated obvious pathological lesions. The growth characteristics indicated that the isolate TJA114 could grow well under different salinity (10–55 p.p.t.), temperature (23–37 °C) and pH (6–10) conditions. Phenotype MicroArray results showed that this isolate could utilize a variety of carbon sources, amino acids and a range of substrates to help itself adapt to the high hyperosmotic and alkaline environments. Antimicrobial-susceptibility test showed that it was a multidrug-resistant bacterium. The whole-genomic analysis showed that this V. parahaemolyticus possessed many important functional genes associated with multidrug resistance, stress response, adhesions, haemolysis, putative secreted proteases, dedicated protein secretion systems and a variety of nutritional metabolic mechanisms. These annotated functional genes were confirmed by the phenotypic profiles. The results in this study indicated that this V. parahaemolyticus isolate possesses a high pathogenicity and strong environmental adaptability.
Collapse
Affiliation(s)
- Xue Zhang
- Tianjin Key Laboratory of Aqua-ecology and Aquaculture, Fisheries College, Tianjin Agricultural University, Tianjin 300384, PR China
| | - Jingfeng Sun
- Tianjin Key Laboratory of Aqua-ecology and Aquaculture, Fisheries College, Tianjin Agricultural University, Tianjin 300384, PR China
| | - Feng Chen
- Tianjin Key Laboratory of Aqua-ecology and Aquaculture, Fisheries College, Tianjin Agricultural University, Tianjin 300384, PR China
| | - Hongli Qi
- Tianjin Key Laboratory of Aqua-ecology and Aquaculture, Fisheries College, Tianjin Agricultural University, Tianjin 300384, PR China
| | - Limei Chen
- Tianjin Key Laboratory of Aqua-ecology and Aquaculture, Fisheries College, Tianjin Agricultural University, Tianjin 300384, PR China
| | - Yeong Yik Sung
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu 21030, Malaysia
| | - Yadong Huang
- Tianjin Hengqian Aquaculture Co. Ltd, Tianjin 300270, PR China
| | - Aijun Lv
- Tianjin Key Laboratory of Aqua-ecology and Aquaculture, Fisheries College, Tianjin Agricultural University, Tianjin 300384, PR China
| | - Xiucai Hu
- Tianjin Key Laboratory of Aqua-ecology and Aquaculture, Fisheries College, Tianjin Agricultural University, Tianjin 300384, PR China
| |
Collapse
|
5
|
Lian L, Xue J, Li W, Ren J, Tang F, Liu Y, Xue F, Dai J. VscF in T3SS1 Helps to Translocate VPA0226 in Vibrio parahaemolyticus. Front Cell Infect Microbiol 2021; 11:652432. [PMID: 33869083 PMCID: PMC8047418 DOI: 10.3389/fcimb.2021.652432] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/15/2021] [Indexed: 12/16/2022] Open
Abstract
In Vibrio parahaemolyticus, type III secretion system 1 (T3SS1) is a major virulence factor that delivers effectors into the host eukaryotic cytoplasm; however, studies on its infection mechanism are currently limited. To determine the function of the vscF gene, we constructed the vscF deletion mutant ΔvscF and complementation strain CΔvscF. Compared with those of wild-type POR-1 and CΔvscF, the cytotoxic, adherent, and apoptotic abilities of ΔvscF in HeLa cells were significantly reduced (P < 0.01). Furthermore, in infected HeLa cells, the mutant strain reduced the translocation rates of VP1683 and VP1686 effectors compared to the wild-type and complementation strains. A BLAST search showed that vscF is homologous to the MixH needle protein of Shigella flexneri, indicating that the vscF gene encodes the needle protein of T3SS1 in V. parahaemolyticus. Additional translocation assays showed that VPA0226 translocated into the HeLa eukaryotic cytoplasm via T3SS1, secretion assays showed that VPA0226 can be secreted to supernatant by T3SS1, indicating that VPA0226 belongs to the unpublished class of T3SS1 effectors. In conclusion, our data indicate an essential role of vscF in V. parahaemolyticus T3SS1 and revealed that VPA0226 can be secreted into the host cell cytoplasm via T3SS1. This study provides insights into a previously unexplored aspect of T3SS1, which is expected to contribute to the understanding of its infection mechanism.
Collapse
Affiliation(s)
- Lele Lian
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jiao Xue
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Wanjun Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jianluan Ren
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Fang Tang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yongjie Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Feng Xue
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jianjun Dai
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
6
|
Pathaw L, Khamrang T, Selvakumaran B, Murali M, Arul Prakash P, Mohamed Jaabir MS, Velusamy M. Synthesis, structure, characterization and biological evaluation of 3‐substituted 1‐pyridin‐2‐ylimidazo[1,5‐
a
]pyridine‐based copper(I)–phosphine complexes for anticancer drug screening. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Larica Pathaw
- Department of Chemistry North‐Eastern Hill University Shillong India
| | | | - Balasubramaniam Selvakumaran
- Coordination and Bioinorganic Chemistry Research Laboratory, Department of Chemistry National College (Autonomous) Tiruchirappalli India
| | - Mariappan Murali
- Coordination and Bioinorganic Chemistry Research Laboratory, Department of Chemistry National College (Autonomous) Tiruchirappalli India
| | - Pitchan Arul Prakash
- Department of Biotechnology and Microbiology National College (Autonomous) Tiruchirappalli India
| | | | - Marappan Velusamy
- Department of Chemistry North‐Eastern Hill University Shillong India
| |
Collapse
|
7
|
Wen Y, Ouyang C, Li Q, Rees TW, Qiu K, Ji L, Chao H. Synthesis, characterization and anticancer mechanism studies of fluorinated cyclometalated ruthenium(ii) complexes. Dalton Trans 2020; 49:7044-7052. [PMID: 32406463 DOI: 10.1039/d0dt01412e] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The drug-resistance of cancer cells has become a major obstacle to the development of clinical drugs for chemotherapy. In order to overcome cisplatin-resistance, seven cyclometalated ruthenium(ii) complexes were synthesized with a varying degree of fluorine substitution, for use as anticancer agents. A cytotoxicity assay testified that the complexes possessed a more cytotoxic effect than cisplatin towards the cisplatin-resistant cell line A549R. The number of fluorine atoms regulated the lipophilicity of the complexes, but the relationship was not linear. Ru1 containing one fluorine atom had the highest lipophilicity and the best therapeutic effect. The complexes enter cells through an energy-dependent pathway and then localize in the nuclei and mitochondria. The complexes induced nuclear dysfunction by the inhibition of DNA replication as well as mitochondrial dysfunction by the loss of membrane potential. The damage to these vital organelles leads to cell apoptosis via the caspase 3/7 pathway. Our results indicated that the modulation of the number of fluorine atoms in therapeutic agents can have a profound effect and Ru1 is a complex with a high potential as a drug for the treatment of cisplatin-resistant cancer.
Collapse
Affiliation(s)
- Ya Wen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China.
| | - Cheng Ouyang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China.
| | - Quanwen Li
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Thomas W Rees
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China.
| | - Kangqiang Qiu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China.
| | - Liangnian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China.
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China. and MOE Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 400201, P. R. China
| |
Collapse
|
8
|
Ranatunga M, Rai R, Richardson SCW, Dyer P, Harbige L, Deacon A, Pecorino L, Getti GTM. Leishmania aethiopica cell-to-cell spreading involves caspase-3, AkT, and NF-κB but not PKC-δ activation and involves uptake of LAMP-1-positive bodies containing parasites. FEBS J 2020; 287:1777-1797. [PMID: 31804757 DOI: 10.1111/febs.15166] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 08/27/2019] [Accepted: 12/04/2019] [Indexed: 11/25/2022]
Abstract
Development of human leishmaniasis is dependent on the ability of intracellular Leishmania parasites to spread and enter macrophages. The mechanism through which free promastigotes and amastigotes bind and enter host macrophages has been previously investigated; however, little is known about intracellular trafficking and cell-to-cell spreading. In this study, the mechanism involved in the spreading of Leishmania aethiopica and Leishmania mexicana was investigated. A significant increase in phosphatidylserine (PS) exhibition, cytochrome C release, and active caspase-3 expression was detected (P < 0.05) during L. aethiopica, but not L. mexicana spreading. A decrease (P < 0.05) of protein kinase B (Akt) protein and BCL2-associated agonist of cell death (BAD) phosphorylation was also observed. The nuclear factor kappa-light-chain enhancer of activated B cells (NF-kB) signaling pathway and pro-apoptotic protein protein kinase C delta (PKC-δ) were downregulated while inhibition of caspase-3 activation prevented L. aethiopica spreading. Overall suggesting that L. aethiopica induces host cell's apoptosis during spreading in a caspase-3-dependent manner. The trafficking of amastigotes within macrophages following cell-to-cell spreading differed from that of axenic parasites and involved co-localization with lysosomal-associated membrane protein 1 (LAMP-1) within 10 min postinfection. Interestingly, following infection with axenic amastigotes and promastigotes, co-localization of parasites with LAMP-1-positive structures took place at 1 and 4 h, respectively, suggesting that the membrane coat and LAMP-1 protein were derived from the donor cell. Collectively, these findings indicate that host cell apoptosis, demonstrated by PS exhibition, caspase-3 activation, cytochrome C release, downregulation of Akt, BAD phosphorylation, NF-kB activation, and independent of PKC-δ expression, is involved in L. aethiopica spreading. Moreover, L. aethiopica parasites associate with LAMP-rich structures when taken up by neighboring macrophages.
Collapse
Affiliation(s)
| | - Rajeev Rai
- University of Greenwich at Medway, Kent, UK
| | | | - Paul Dyer
- University of Greenwich at Medway, Kent, UK
| | | | | | | | | |
Collapse
|
9
|
Song XQ, Wang ZG, Wang Y, Huang YY, Sun YX, Ouyang Y, Xie CZ, Xu JY. Syntheses, characterization, DNA/HSA binding ability and antitumor activities of a family of isostructural binuclear lanthanide complexes containing hydrazine Schiff base. J Biomol Struct Dyn 2019; 38:733-743. [DOI: 10.1080/07391102.2019.1587511] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Xue-Qing Song
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, P. R. China
| | - Zhi-Gang Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, P. R. China
| | - Yang Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, P. R. China
| | - Yu-Ying Huang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, P. R. China
| | - Yu-Xuan Sun
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, P. R. China
| | - Yan Ouyang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, P. R. China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin, P. R. China
| | - Cheng-Zhi Xie
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, P. R. China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin, P. R. China
| | - Jing-Yuan Xu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, P. R. China
| |
Collapse
|
10
|
Xu L, Zhang PP, Fang XQ, Liu Y, Wang JQ, Zhou HZ, Chen ST, Chao H. A ruthenium(II) complex containing a p-cresol group induces apoptosis in human cervical carcinoma cells through endoplasmic reticulum stress and reactive oxygen species production. J Inorg Biochem 2019; 191:126-134. [DOI: 10.1016/j.jinorgbio.2018.11.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 11/21/2018] [Accepted: 11/25/2018] [Indexed: 10/27/2022]
|
11
|
Zhang Y, Hu L, Qiu Y, Osei-Adjei G, Tang H, Zhang Y, Zhang R, Sheng X, Xu S, Yang W, Yang H, Yin Z, Yang R, Huang X, Zhou D. QsvR integrates into quorum sensing circuit to control Vibrio parahaemolyticus virulence. Environ Microbiol 2019; 21:1054-1067. [PMID: 30623553 DOI: 10.1111/1462-2920.14524] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/22/2018] [Accepted: 01/05/2019] [Indexed: 11/29/2022]
Abstract
Vibrio parahaemolyticus, the leading cause of seafood-associated gastroenteritis worldwide, requires the two type-III secretion systems (T3SS1 and T3SS2) and a thermostable direct hemolysin (encoded by tdh1 and tdh2) for full virulence. The tdh genes and the T3SS2 gene cluster constitute an 80 kb pathogenicity island known as Vp-PAI located on the chromosome II. Expression of T3SS1 and Vp-PAI is regulated in a quorum sensing (QS)-dependent manner but its detailed mechanisms remain unknown. Herein, we show that three factors (QS regulators AphA and OpaR and an AraC-type transcriptional regulator QsvR) form a complex regulatory network to control the expression of T3SS1 and Vp-PAI genes. At low cell density (LCD), whereas Vp-PAI expression is repressed, T3SS1 genes are induced by AphA, which directly binds (an operator region of) the exsBAD-vscBCD operon. At high cell density (HCD), the bacterium turns off T3SS1 expression by replacing AphA with OpaR, triggering the induction of Vp-PAI. Furthermore, QsvR binds to the regulatory regions of all the tested T3SS1 and Vp-PAI genes to activate their transcription at HCD. Taken together, our data highlight how multiple QS regulators contribute to the pathogenicity of V. parahaemolyticus by precisely controlling the expression of major virulence determinants during different stages of growth.
Collapse
Affiliation(s)
- Yiquan Zhang
- Department of Biochemistry, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, People's Republic of China
| | - Linghui Hu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, People's Republic of China
| | - Yue Qiu
- Department of Biochemistry, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, People's Republic of China
| | - George Osei-Adjei
- Department of Biochemistry, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, People's Republic of China
| | - Hao Tang
- Department of Biochemistry, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, People's Republic of China
| | - Ying Zhang
- Department of Biochemistry, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, People's Republic of China
| | - Rui Zhang
- Department of Biochemistry, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, People's Republic of China
| | - Xiumei Sheng
- Department of Biochemistry, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, People's Republic of China
| | - Shungao Xu
- Department of Biochemistry, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, People's Republic of China
| | - Wenhui Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, People's Republic of China
| | - Huiying Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, People's Republic of China
| | - Zhe Yin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, People's Republic of China
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, People's Republic of China
| | - Xinxiang Huang
- Department of Biochemistry, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, People's Republic of China
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, People's Republic of China
| |
Collapse
|
12
|
Zhang J, Hu J, Peng K, Song W, Zhi S, Yang E, Zhao J, Hou H. Chemical biology suggests pleiotropic effects for a novel hexanuclear copper(ii) complex inducing apoptosis in hepatocellular carcinoma cells. Chem Commun (Camb) 2019; 55:11944-11947. [DOI: 10.1039/c9cc05995d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new hexanuclear copper(ii) complex proved potential chemotherapeutic applicability in inducing apoptosis in cancer calls by acting on multiple targets and signaling pathways.
Collapse
Affiliation(s)
- Junshuai Zhang
- College of Material and Chemical Engineering
- Henan University of Urban Construction
- Henan 467036
- P. R. China
| | - Jiyong Hu
- College of Material and Chemical Engineering
- Henan University of Urban Construction
- Henan 467036
- P. R. China
| | - Kun Peng
- Institute of Inorganic Chemistry
- University of Wuerzburg
- Bavaria 97074
- Germany
| | - Wei Song
- College of Material and Chemical Engineering
- Henan University of Urban Construction
- Henan 467036
- P. R. China
| | - Shuangcheng Zhi
- College of Material and Chemical Engineering
- Henan University of Urban Construction
- Henan 467036
- P. R. China
| | - Endian Yang
- College of Material and Chemical Engineering
- Henan University of Urban Construction
- Henan 467036
- P. R. China
| | - Jin’an Zhao
- College of Material and Chemical Engineering
- Henan University of Urban Construction
- Henan 467036
- P. R. China
- College of Chemistry and Molecular Engineering
| | - Hongwei Hou
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou 450001
- China
| |
Collapse
|
13
|
Ouyang M, Zeng L, Huang H, Jin C, Liu J, Chen Y, Ji L, Chao H. Fluorinated cyclometalated iridium(iii) complexes as mitochondria-targeted theranostic anticancer agents. Dalton Trans 2017; 46:6734-6744. [DOI: 10.1039/c7dt01043e] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cyclometalated iridium(iii) complexes bearing different numbers of fluorine atoms were developed to induce apoptosis via mitochondrial pathways and demonstrated much better anticancer activities than the widely used clinical chemotherapeutic agent cisplatin.
Collapse
Affiliation(s)
- Miao Ouyang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- P. R. China
| | - Leli Zeng
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- P. R. China
| | - Huaiyi Huang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- P. R. China
| | - Chengzhi Jin
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- P. R. China
| | - Jiangping Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- P. R. China
| | - Yu Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- P. R. China
| | - Liangnian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- P. R. China
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- P. R. China
| |
Collapse
|
14
|
Abstract
Two-hybrid systems, sometimes termed interaction traps, are genetic systems designed to find and analyze interactions between proteins. The most common systems are yeast based (commonly Saccharomyces cerevisae) and rely on the functional reconstitution of the GAL4 transcriptional activator. Reporter genes, such as the lacZ gene of Escherichia coli (encodes β-galactosidase), are placed under GAL4-dependent transcriptional control to provide quick and reliable detection of protein interactions. In this method the use of a yeast-based two-hybrid system is described to study protein interactions between components of type III secretion systems.
Collapse
Affiliation(s)
- Matthew L Nilles
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, USA.
| |
Collapse
|
15
|
Xu X, Sivaramasamy E, Jin S, Li F, Xiang J. Establishment and characterization of a skin epidermal cell line from mud loach, Misgurnus anguillicaudatus, (MASE) and its interaction with three bacterial pathogens. FISH & SHELLFISH IMMUNOLOGY 2016; 55:444-451. [PMID: 27288257 DOI: 10.1016/j.fsi.2016.06.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 06/01/2016] [Accepted: 06/06/2016] [Indexed: 06/06/2023]
Abstract
A continuous skin epidermal cell line from mud Loach (Misgurnus anguillicaudatus) (MASE cell line) was established with its application in bacteria infection demonstrated in this study. Primary MASE cell culture was initiated at 26 °C in Dulbecco's modified Eagle medium/F12 medium (1:1; pH7.2) supplemented with 20% fetal bovine serum (FBS). The primary MASE cells in spindle morphology proliferated into a confluent monolayer within 2 weeks, and were continuously subcultured even in 10% FBS- DMEM/F12 after 10 passages. Impacts of medium and temperature on the growth of the cells were examined. The optimum growth was found in DMEM/F12 with 20% FBS and at 26 °C. The MASE cells have been subcultured steadily over Passage 90 with a population doubling time of 53.3 h at Passage 60. Chromosome analysis revealed that 60.5% of MASE cells at Passage 60 maintained the normal diploid chromosome number (50) with a normal karyotype of 10m+4sm + 36t. Bacteria from the three species (Aeromonas veronii, Vibrio parahaemolyticus and Escherichia coli) were used to investigate the interactions between bacteria and cellular hosts. The three strains could be attached to the MASE cells and replicate at different levels. A. veronii could induce apoptosis in the MASE cells, with highest adherence rate among the three strains, whereas V. parahaemolyticus could cause highest cell death rate through a non-apoptotic cell death pathway, with high level of replication. The results revealed that different bacteria could interact with the MASE cells in different manners, and divergent pathways might lie in mediating cell death when cellular hosts confronted with pathogen infection. Therefore, the MASE cell line may serve as a useful tool for studying the interaction between skin bacteria and fish cells.
Collapse
Affiliation(s)
- Xiaohui Xu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Rd., Qingdao, 266071, China
| | - Elayaraja Sivaramasamy
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Rd., Qingdao, 266071, China
| | - Songjun Jin
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Rd., Qingdao, 266071, China
| | - Fuhua Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Rd., Qingdao, 266071, China
| | - Jianhai Xiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Rd., Qingdao, 266071, China.
| |
Collapse
|
16
|
Liao G, Chen X, Wu J, Qian C, Wang Y, Ji L, Chao H. Ruthenium(II) polypyridyl complexes as dual inhibitors of telomerase and topoisomerase. Dalton Trans 2016; 44:15145-56. [PMID: 25604798 DOI: 10.1039/c4dt03585b] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
One novel ruthenium polypyridyl complex, [Ru(bpy)2(icip)](2+) (1), and two previously reported ruthenium polypyridyl complexes, [Ru(bpy)2(pdppz)](2+) ()2 and [Ru(bpy)2(tactp)](2+) (3) (bpy = 2,2'-bipyridine, icip = 2-(indeno[2,1-b]chromen-6-yl)-1H-imidazo[4,5-f][1,10]phenanthroline, pdppz = phenanthro[4,5-abc]dipyrido[3,2-h:2',3'-j]phenazine, tactp = 4,5,9,18-tetraazachryseno[9,10-b]-triphenylene), have been synthesised. As expected, these complexes show inhibition towards telomerase by inducing and stabilising the G-quadruplex structure, and behave as topoisomerase I/II poisons at the same time. Additionally, the acute and chronic cytotoxicities of the complexes are considered. Furthermore, cell apoptosis experiments are used to briefly study the mechanism. Because studies involving multi-target inhibition towards topoisomerase and telomerase of Ru(II) complexes have not been reported previously, the present research may help to develop innovative chemical strategies and therapies.
Collapse
Affiliation(s)
- Guoliang Liao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
17
|
Zhou XQ, Li Y, Zhang DY, Nie Y, Li ZJ, Gu W, Liu X, Tian JL, Yan SP. Copper complexes based on chiral Schiff-base ligands: DNA/BSA binding ability, DNA cleavage activity, cytotoxicity and mechanism of apoptosis. Eur J Med Chem 2016; 114:244-56. [DOI: 10.1016/j.ejmech.2016.02.055] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 02/17/2016] [Accepted: 02/24/2016] [Indexed: 11/25/2022]
|
18
|
Zeng L, Chen Y, Liu J, Huang H, Guan R, Ji L, Chao H. Ruthenium(II) Complexes with 2-Phenylimidazo[4,5-f][1,10]phenanthroline Derivatives that Strongly Combat Cisplatin-Resistant Tumor Cells. Sci Rep 2016; 6:19449. [PMID: 26763798 PMCID: PMC4725915 DOI: 10.1038/srep19449] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 12/14/2015] [Indexed: 02/06/2023] Open
Abstract
Cisplatin was the first metal-based therapeutic agent approved for the treatment of human cancers, but its clinical activity is greatly limited by tumor drug resistance. This work utilized the parent complex [Ru(phen)2(PIP)](2+) (1) to develop three Ru(II) complexes (2-4) with different positional modifications. These compounds exhibited similar or superior cytotoxicities compared to cisplatin in HeLa, A549 and multidrug-resistant (A549R) tumor cell lines. Complex 4, the most potent member of the series, was highly active against A549R cancer cells (IC50 = 0.8 μM). This complex exhibited 178-fold better activity than cisplatin (IC50 = 142.5 μM) in A549R cells. 3D multicellular A549R tumor spheroids were also used to confirm the high proliferative and cytotoxic activity of complex 4. Complex 4 had the greatest cellular uptake and had a tendency to accumulate in the mitochondria of A549R cells. Further mechanistic studies showed that complex 4 induced A549R cell apoptosis via inhibition of thioredoxin reductase (TrxR), elevated intracellular ROS levels, mitochondrial dysfunction and cell cycle arrest, making it an outstanding candidate for overcoming cisplatin resistance.
Collapse
Affiliation(s)
- Leli Zeng
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Yu Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Jiangping Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Huaiyi Huang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Ruilin Guan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Liangnian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| |
Collapse
|
19
|
Huang H, Zhang P, Chen Y, Qiu K, Jin C, Ji L, Chao H. Synthesis, characterization and biological evaluation of labile intercalative ruthenium(ii) complexes for anticancer drug screening. Dalton Trans 2016; 45:13135-45. [DOI: 10.1039/c6dt01270a] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
[Ru(tpy)(N^N)Cl]+ were synthesized for anticancer evolution. Ru2–Ru4 were dual-mode DNA-binding complexes and exhibited higher DNA binding affinity, better cellular uptake efficiency and higher anticancer activity than Ru1.
Collapse
Affiliation(s)
- Huaiyi Huang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry and Chemical Engineering
- Sun Yat-Sen University
- Guangzhou 510275
- P. R. China
| | - Pingyu Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry and Chemical Engineering
- Sun Yat-Sen University
- Guangzhou 510275
- P. R. China
| | - Yu Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry and Chemical Engineering
- Sun Yat-Sen University
- Guangzhou 510275
- P. R. China
| | - Kangqiang Qiu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry and Chemical Engineering
- Sun Yat-Sen University
- Guangzhou 510275
- P. R. China
| | - Chengzhi Jin
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry and Chemical Engineering
- Sun Yat-Sen University
- Guangzhou 510275
- P. R. China
| | - Liangnian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry and Chemical Engineering
- Sun Yat-Sen University
- Guangzhou 510275
- P. R. China
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry and Chemical Engineering
- Sun Yat-Sen University
- Guangzhou 510275
- P. R. China
| |
Collapse
|
20
|
He Y, Wang H, Chen L. Comparative secretomics reveals novel virulence-associated factors of Vibrio parahaemolyticus. Front Microbiol 2015; 6:707. [PMID: 26236293 PMCID: PMC4505105 DOI: 10.3389/fmicb.2015.00707] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 06/26/2015] [Indexed: 01/03/2023] Open
Abstract
Vibrio parahaemolyticus is a causative agent of serious human seafood-borne gastroenteritis disease and even death. In this study, for the first time, we obtained the secretomic profiles of seven V. parahaemolyticus strains of clinical and food origins. The strains exhibited various toxic genotypes and phenotypes of antimicrobial susceptibility and heavy metal resistance, five of which were isolated from aquatic products in Shanghai, China. Fourteen common extracellular proteins were identified from the distinct secretomic profiles using the two-dimensional gel electrophoresis (2-DE) and liquid chromatography tandem mass spectrometry (LC-MS/MS) techniques. Of these, half were involved in protein synthesis and sugar transport of V. parahaemolyticus. Strikingly, six identified proteins were virulence-associated factors involved in the pathogenicity of some other pathogenic bacteria, including the translation elongation factor EF-Tu, pyridoxine 5′-phosphate synthase, σ54 modulation protein, dihydrolipoyl dehydrogenase, transaldolase and phosphoglycerate kinase. In addition, comparative secretomics also revealed several extracellular proteins that have not been described in any bacteria, such as the ribosome-recycling factor, translation elongation factor EF-Ts, phosphocarrier protein HPr and maltose-binding protein MalE. The results in this study will facilitate the better understanding of the pathogenesis of V. parahaemolyticus and provide data in support of novel vaccine candidates against the leading seafood-borne pathogen worldwide.
Collapse
Affiliation(s)
- Yu He
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), China Ministry of Agriculture, College of Food Science and Technology, Shanghai Ocean University Shanghai, China
| | - Hua Wang
- Department of Food Science and Technology, The Ohio State University Columbus, OH, USA
| | - Lanming Chen
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), China Ministry of Agriculture, College of Food Science and Technology, Shanghai Ocean University Shanghai, China
| |
Collapse
|
21
|
O’Halloran S, O’Leary A, Kuijper T, Downer EJ. MyD88 acts as an adaptor protein for inflammatory signalling induced by amyloid-β in macrophages. Immunol Lett 2014; 162:109-18. [DOI: 10.1016/j.imlet.2014.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 07/18/2014] [Accepted: 08/03/2014] [Indexed: 10/24/2022]
|
22
|
Huang H, Zhang P, Yu B, Chen Y, Wang J, Ji L, Chao H. Targeting Nucleus DNA with a Cyclometalated Dipyridophenazineruthenium(II) Complex. J Med Chem 2014; 57:8971-83. [DOI: 10.1021/jm501095r] [Citation(s) in RCA: 187] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Huaiyi Huang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Pingyu Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Bole Yu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Yu Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Jinquan Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Liangnian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| |
Collapse
|
23
|
Haley BJ, Kokashvili T, Tskshvediani A, Janelidze N, Mitaishvili N, Grim CJ, Constantin de Magny G, Chen AJ, Taviani E, Eliashvili T, Tediashvili M, Whitehouse CA, Colwell RR, Huq A. Molecular diversity and predictability of Vibrio parahaemolyticus along the Georgian coastal zone of the Black Sea. Front Microbiol 2014; 5:45. [PMID: 24575085 PMCID: PMC3918589 DOI: 10.3389/fmicb.2014.00045] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 01/21/2014] [Indexed: 11/25/2022] Open
Abstract
Vibrio parahaemolyticus is a leading cause of seafood-related gastroenteritis and is also an autochthonous member of marine and estuarine environments worldwide. One-hundred seventy strains of V. parahaemolyticus were isolated from water and plankton samples collected along the Georgian coast of the Black Sea during 28 months of sample collection. All isolated strains were tested for presence of tlh, trh, and tdh. A subset of strains were serotyped and tested for additional factors and markers of pandemicity. Twenty-six serotypes, five of which are clinically relevant, were identified. Although all 170 isolates were negative for tdh, trh, and the Kanagawa Phenomenon, 7 possessed the GS-PCR sequence and 27 the 850 bp sequence of V. parahaemolyticus pandemic strains. The V. parahaemolyticus population in the Black Sea was estimated to be genomically heterogeneous by rep-PCR and the serodiversity observed did not correlate with rep-PCR genomic diversity. Statistical modeling was used to predict presence of V. parahaemolyticus as a function of water temperature, with strongest concordance observed for Green Cape site samples (Percent of total variance = 70, P < 0.001). Results demonstrate a diverse population of V. parahaemolyticus in the Black Sea, some of which carry pandemic markers, with increased water temperature correlated to an increase in abundance of V. parahaemolyticus.
Collapse
Affiliation(s)
- Bradd J Haley
- Maryland Pathogen Research Institute, University of Maryland College Park, MD, USA
| | - Tamar Kokashvili
- George Eliava Institute of Bacteriophages, Microbiology and Virology Tbilisi, Georgia
| | - Ana Tskshvediani
- George Eliava Institute of Bacteriophages, Microbiology and Virology Tbilisi, Georgia
| | - Nino Janelidze
- George Eliava Institute of Bacteriophages, Microbiology and Virology Tbilisi, Georgia
| | - Nino Mitaishvili
- George Eliava Institute of Bacteriophages, Microbiology and Virology Tbilisi, Georgia
| | - Christopher J Grim
- Maryland Pathogen Research Institute, University of Maryland College Park, MD, USA ; University of Maryland Institute for Advanced Computer Sciences, University of Maryland College Park, MD, USA
| | | | - Arlene J Chen
- Maryland Pathogen Research Institute, University of Maryland College Park, MD, USA
| | - Elisa Taviani
- Maryland Pathogen Research Institute, University of Maryland College Park, MD, USA
| | - Tamar Eliashvili
- George Eliava Institute of Bacteriophages, Microbiology and Virology Tbilisi, Georgia
| | - Marina Tediashvili
- George Eliava Institute of Bacteriophages, Microbiology and Virology Tbilisi, Georgia
| | - Chris A Whitehouse
- U.S. Army Medical Research Institute of Infectious Diseases Fort Detrick, MD, USA
| | - Rita R Colwell
- Maryland Pathogen Research Institute, University of Maryland College Park, MD, USA ; University of Maryland Institute for Advanced Computer Sciences, University of Maryland College Park, MD, USA ; Bloomberg School of Public Health, Johns Hopkins University Baltimore, MD, USA ; CosmosID™ College Park, MD, USA
| | - Anwar Huq
- Maryland Pathogen Research Institute, University of Maryland College Park, MD, USA ; School of Public Health, Maryland Institute for Applied Environmental Health, University of Maryland College Park, MD, USA
| |
Collapse
|
24
|
Qian C, Wang JQ, Song CL, Wang LL, Ji LN, Chao H. The induction of mitochondria-mediated apoptosis in cancer cells by ruthenium(II) asymmetric complexes. Metallomics 2014; 5:844-54. [PMID: 23483103 DOI: 10.1039/c3mt20270d] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Four ruthenium(ii) asymmetric complexes, [Ru(bpy)2(PAIDH)](2+) (bpy = 2,2'-bipyridine, PAIDH = 2-pyridyl-1H-anthra[1,2-d]imidazole-6,11-dione, ), [Ru(phen)2(PAIDH)](2+) (phen = 1,10-phenanthroline, ), [Ru(dmp)2(PAIDH)](2+) (dmp = 4,7-dimethyl-1,10-phenanthroline, ) and [Ru(dip)2(PAIDH)](2+) (dip = 4,7-diphenyl-1,10-phenanthroline, ), have been synthesized and characterized. These complexes displayed potent anti-proliferation activity against various cancer cell lines and had high selectivity between tumor cells and normal cells. HeLa cells exhibited the highest sensitivity to complex , accounting for the greatest cellular uptake. Complex was shown to accumulate preferentially in the mitochondria of HeLa cells and induced apoptosis via the mitochondrial pathway, which involved ROS generation, mitochondrial membrane potential depolarisation, and Bcl-2 and caspase family members activation. These results demonstrated that complex induced cancer cell apoptosis by acting on mitochondrial pathways.
Collapse
Affiliation(s)
- Chen Qian
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou, P. R. China
| | | | | | | | | | | |
Collapse
|
25
|
Kumar BK, Deekshit VK, Rai P, Shekar M, Karunasagar I, Karunasagar I. Presence of T3SS2β genes in trh⁺ Vibrio parahaemolyticus isolated from seafood harvested along Mangalore coast, India. Lett Appl Microbiol 2014; 58:440-6. [PMID: 24372411 DOI: 10.1111/lam.12210] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 12/19/2013] [Accepted: 12/20/2013] [Indexed: 10/25/2022]
Abstract
UNLABELLED Vibrio parahaemolyticus is a seafood-borne pathogen autochthonous to the marine and estuarine ecosystem, responsible for gastroenteritis when contaminated raw seafood is consumed. The pathogenicity has been associated with thermostable direct haemolysin (TDH) and TDH-related haemolysin (TRH). Of late, the presence of T3SS2α and T3SS2β gene clusters has been well documented in clinical isolates of Vibrio parahaemolyticus and known to play an essential role in pathogenesis. However, reports on the presence of T3SSβ genes in V. parahaemolyticus isolated from the seafood and/or environmental samples are scanty. In this study, we have identified and analysed the distribution of the T3SS2β genes in V. parahaemolyticus isolated from seafood harvested along southwest coast of India. Results showed that T3SS2β genes are solely associated with trh⁺ and tdh⁺ /trh⁺ strains of V. parahaemolyticus. Reverse transcriptase PCR (RT-PCR) showed that the T3SS2β genes identified in trh⁺ V. parahaemolyticus were transcriptionally active. To our knowledge, this study appears to be the first description on the presence of T3SS2β-positive V. parahaemolyticus isolated from seafood in India. The study of T3SS2 along with other virulence factors will help in better understanding of the risk of seafood-borne illness due to V. parahaemolyticus. SIGNIFICANCE AND IMPACT OF THE STUDY T3SSs (α or β) are the important virulence factors of Vibrio parahaemolyticus that contribute to their pathogenicity in humans. This study demonstrated the presence of T3SS2β genes in V. parahaemolyticus isolated from the seafood harvested along Mangalore coast. RT-PCR showed that the T3SS2β genes identified in seafood isolates of V. parahaemolyticus were found to be functional. To the best of our knowledge, this is the first description of T3SS2β genes in trh⁺ V. parahaemolyticus isolated from seafood in India. The presence of T3SS2 along with other virulence factors such as TDH and/or TRH highlights a potential health risk for seafood consumers.
Collapse
Affiliation(s)
- B K Kumar
- Department of Fisheries Microbiology, UNESCO-MIRCEN for Marine Biotechnology, Karnataka Veterinary, Animal and Fisheries Sciences University, College of Fisheries, Mangalore, India
| | | | | | | | | | | |
Collapse
|
26
|
Wang JQ, Zhang PY, Qian C, Hou XJ, Ji LN, Chao H. Mitochondria are the primary target in the induction of apoptosis by chiral ruthenium(II) polypyridyl complexes in cancer cells. J Biol Inorg Chem 2013; 19:335-48. [PMID: 24287874 DOI: 10.1007/s00775-013-1069-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 11/12/2013] [Indexed: 12/22/2022]
Abstract
A series of novel chiral ruthenium(II) polypyridyl complexes (Δ-Ru1, Λ-Ru1, Δ-Ru2, Λ-Ru2, Δ-Ru3, Λ-Ru3) were synthesized and evaluated to determine their antiproliferative activities. Colocalization, inductively coupled plasma mass spectrometry, and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay studies showed that these ruthenium(II) complexes accumulated preferentially in the mitochondria and exhibited cytotoxicity against various cancer cells in vitro. The complex Δ-Ru1 is of particular interest because it was found to have half-maximal inhibitory concentrations comparable to those of cisplatin and better activity than cisplatin against a cisplatin-resistant cell line, A549-CP/R. Δ-Ru1 induced alterations in the mitochondrial membrane potential and triggered intrinsic mitochondria-mediated apoptosis in HeLa cells, which involved the regulation of Bcl-2 family members and the activation of caspases. Taken together, these data suggest that Δ-Ru1 may be a novel mitochondria-targeting anticancer agent.
Collapse
Affiliation(s)
- Jin-Quan Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | | | | | | | | | | |
Collapse
|
27
|
Kumano M, Miyake H, Abolghait SK, Behnsawy HM, Fujisawa M. β4-integrin-mediated cytotoxic activity of AexU in human prostate cancer PC3 cells. Oncol Lett 2013; 6:1482-1486. [PMID: 24179545 PMCID: PMC3813740 DOI: 10.3892/ol.2013.1542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 08/02/2013] [Indexed: 11/06/2022] Open
Abstract
The present study aimed to characterize the cytotoxic activity of AexU, an effector-mediating type three secretion system (TTSS) of gram-negative bacteria, in human prostate cancer cells, focusing on the association with β4-integrin expression. The cytotoxic effects of AexU either alone or in combination with chemotherapeutic agents were evaluated using several human prostate cancer cell lines. Human prostate cancer PC3 cells, in which an expression vector containing siRNA targeting β4-integrin had been introduced, were established (PC3/sh-In), and the cytotoxic effects of AexU on the PC3/sh-In cells were compared with the PC3 cells that were transfected with a control vector (PC3/C). The expression levels of β4-integrin in the PC3 cells were markedly higher compared with those in the LNCaP or DU145 cells, and the cytotoxic effects of AexU in the PC3 cells were more pronounced compared with those in the LNCaP or DU145 cells. The sensitivity of the PC3 cells to docetaxel and cisplatin was significantly enhanced following treatment with AexU, resulting in a decrease in the IC50 of the two agents by ~90%. The cytotoxic effect of AexU in the PC3/C cells was more marked compared with that in the PC3/sh-In cells, and the phosphorylation of Akt in the PC3/C cells appeared to be significantly more inhibited by the treatment with AexU compared with the PC3/sh-In cells. In conclusion, treatment with AexU may be a useful therapeutic option for prostate cancer when β4-integrin is overexpressed. The treatment appears to exert its effects through growth inhibition and by enhancing the sensitivity of the cancer cells to chemotherapeutic agents.
Collapse
Affiliation(s)
- Masafumi Kumano
- Division of Urology, Kobe University Graduate School of Medicine, Kobe, Japan
| | | | | | | | | |
Collapse
|
28
|
A ruthenium(II) β-carboline complex induced p53-mediated apoptosis in cancer cells. Biochimie 2013; 95:2050-9. [DOI: 10.1016/j.biochi.2013.07.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Accepted: 07/16/2013] [Indexed: 01/15/2023]
|
29
|
Generation and Characterization of a scFv Antibody Against T3SS Needle of Vibrio parahaemolyticus. Indian J Microbiol 2013; 54:143-50. [PMID: 25320414 DOI: 10.1007/s12088-013-0428-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Accepted: 09/25/2013] [Indexed: 12/31/2022] Open
Abstract
Vibrio parahaemolyticus, a halophilic gram-negative bacterium, is a food-borne pathogen that largely inhabits marine and estuarine environments, and poses a serious threat to human and animal health all over the world. The hollow "needle" channel, a specific assemble of T3SS which exists in most of gram-negative bacteria, plays a key role in the transition of virulence effectors to host cells. In this study, needle protein VP1694 was successfully expressed and purified, and the fusion protein Trx-VP1694 was used to immunize Balb/c mice. Subsequently, a phage single-chain fragment variable antibody (scFv) library was constructed, and a specific scFv against VP1694 named scFv-FA7 was screened by phage display panning. To further identify the characters of scFv, the soluble expression vector pACYC-scFv-skp was constructed and the soluble scFv was purified by Ni(2+) affinity chromatography. ELISA analysis showed that the scFv-FA7 was specific to VP1694 antigen, and its affinity constant was 1.07 × 10(8 )L/mol. These results offer a molecular basis to prevent and cure diseases by scFv, and also provide a new strategy for further research on virulence mechanism of T3SS in V. parahaemolyticus by scFv.
Collapse
|
30
|
Johnson CN. Fitness factors in vibrios: a mini-review. MICROBIAL ECOLOGY 2013; 65:826-851. [PMID: 23306394 DOI: 10.1007/s00248-012-0168-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 12/13/2012] [Indexed: 06/01/2023]
Abstract
Vibrios are Gram-negative curved bacilli that occur naturally in marine, estuarine, and freshwater systems. Some species include human and animal pathogens, and some vibrios are necessary for natural systems, including the carbon cycle and osmoregulation. Countless in vivo and in vitro studies have examined the interactions between vibrios and their environment, including molecules, cells, whole animals, and abiotic substrates. Many studies have characterized virulence factors, attachment factors, regulatory factors, and antimicrobial resistance factors, and most of these factors impact the organism's fitness regardless of its external environment. This review aims to identify common attributes among factors that increase fitness in various environments, regardless of whether the environment is an oyster, a rabbit, a flask of immortalized mammalian cells, or a planktonic chitin particle. This review aims to summarize findings published thus far to encapsulate some of the basic similarities among the many vibrio fitness factors and how they frame our understanding of vibrio ecology. Factors representing these similarities include hemolysins, capsular polysaccharides, flagella, proteases, attachment factors, type III secretion systems, chitin binding proteins, iron acquisition systems, and colonization factors.
Collapse
Affiliation(s)
- Crystal N Johnson
- Department of Environmental Sciences, Louisiana State University, Baton Rouge, LA, USA.
| |
Collapse
|
31
|
A Vibrio parahaemolyticus T3SS effector mediates pathogenesis by independently enabling intestinal colonization and inhibiting TAK1 activation. Cell Rep 2013; 3:1690-702. [PMID: 23623501 DOI: 10.1016/j.celrep.2013.03.039] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2012] [Revised: 03/06/2013] [Accepted: 03/25/2013] [Indexed: 01/08/2023] Open
Abstract
Vibrio parahaemolyticus type III secretion system 2 (T3SS2) is essential for the organism's virulence, but the effectors required for intestinal colonization and induction of diarrhea by this pathogen have not been identified. Here, we identify a type III secretion system (T3SS2)-secreted effector, VopZ, that is essential for V. parahaemolyticus pathogenicity. VopZ plays distinct, genetically separable roles in enabling intestinal colonization and diarrheagenesis. Truncation of VopZ prevents V. parahaemolyticus colonization, whereas deletion of VopZ amino acids 38-62 abrogates V. parahaemolyticus-induced diarrhea and intestinal pathology but does not impair colonization. VopZ inhibits activation of the kinase TAK1 and thereby prevents the activation of MAPK and NF-κB signaling pathways, which lie downstream. In contrast, the VopZ internal deletion mutant cannot counter the activation of pathways regulated by TAK1. Collectively, our findings suggest that VopZ's inhibition of TAK1 is critical for V. parahaemolyticus to induce diarrhea and intestinal pathology.
Collapse
|
32
|
Silva DS, Pereira LMG, Moreira AR, Ferreira-da-Silva F, Brito RM, Faria TQ, Zornetta I, Montecucco C, Oliveira P, Azevedo JE, Pereira PJB, Macedo-Ribeiro S, do Vale A, dos Santos NMS. The apoptogenic toxin AIP56 is a metalloprotease A-B toxin that cleaves NF-κb P65. PLoS Pathog 2013; 9:e1003128. [PMID: 23468618 PMCID: PMC3585134 DOI: 10.1371/journal.ppat.1003128] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 11/28/2012] [Indexed: 12/15/2022] Open
Abstract
AIP56 (apoptosis-inducing protein of 56 kDa) is a major virulence factor of Photobacterium damselae piscicida (Phdp), a Gram-negative pathogen that causes septicemic infections, which are among the most threatening diseases in mariculture. The toxin triggers apoptosis of host macrophages and neutrophils through a process that, in vivo, culminates with secondary necrosis of the apoptotic cells contributing to the necrotic lesions observed in the diseased animals. Here, we show that AIP56 is a NF-κB p65-cleaving zinc-metalloprotease whose catalytic activity is required for the apoptogenic effect. Most of the bacterial effectors known to target NF-κB are type III secreted effectors. In contrast, we demonstrate that AIP56 is an A-B toxin capable of acting at distance, without requiring contact of the bacteria with the target cell. We also show that the N-terminal domain cleaves NF-κB at the Cys39-Glu40 peptide bond and that the C-terminal domain is involved in binding and internalization into the cytosol. The apoptosis inducing protein of 56 kDa (AIP56) is a key virulence factor secreted by Photobacterium damselae piscicida (Phdp), a Gram-negative bacterium that causes septicaemic infections in economically important marine fish species. It is known that AIP56 induces massive destruction of the phagocytic cells of the infected host, allowing the extracellular multiplication of the bacteria and contributing to the genesis of the pathology. Here we show that AIP56 acts by cleaving NF-κB p65. The NF-κB family of transcription factors is evolutionarily conserved and plays a central role in the host responses to microbial pathogen invasion, regulating the expression of inflammatory and anti-apoptotic genes. Pathogenic bacteria have evolved complex strategies to interfere with NF-κB signalling, usually by injecting protein effectors directly into the cell's cytosol through bacterial secretion machineries that require contact with host cells. In contrast, AIP56 acts at distance and has an intrinsic ability to reach the cytosol due to the presence of a C-terminal domain that functions as “delivery module.”
Collapse
Affiliation(s)
- Daniela S. Silva
- Fish Immunology and Vaccinology, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Liliana M. G. Pereira
- Fish Immunology and Vaccinology, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Ana R. Moreira
- Fish Immunology and Vaccinology, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Frederico Ferreira-da-Silva
- Protein Production and Purification, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Rui M. Brito
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
- Chemistry Department, Faculty of Science and Technology, University of Coimbra, Coimbra, Portugal
| | - Tiago Q. Faria
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | - Irene Zornetta
- Dipartimento di Scienze Biomediche dell'Università di Padova and Instituto di Neuroscienze del CNR, Padova, Italy
| | - Cesare Montecucco
- Dipartimento di Scienze Biomediche dell'Università di Padova and Instituto di Neuroscienze del CNR, Padova, Italy
| | - Pedro Oliveira
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Jorge E. Azevedo
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
- Organelle Biogenesis and Function, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Pedro J. B. Pereira
- Biomolecular Structure, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Sandra Macedo-Ribeiro
- Protein Crystallography, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Ana do Vale
- Fish Immunology and Vaccinology, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Nuno M. S. dos Santos
- Fish Immunology and Vaccinology, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- * E-mail:
| |
Collapse
|
33
|
Higa N, Toma C, Koizumi Y, Nakasone N, Nohara T, Masumoto J, Kodama T, Iida T, Suzuki T. Vibrio parahaemolyticus effector proteins suppress inflammasome activation by interfering with host autophagy signaling. PLoS Pathog 2013; 9:e1003142. [PMID: 23357873 PMCID: PMC3554609 DOI: 10.1371/journal.ppat.1003142] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 12/05/2012] [Indexed: 12/12/2022] Open
Abstract
Bacterial pathogens utilize pore-forming toxins or sophisticated secretion systems to establish infection in hosts. Recognition of these toxins or secretion system by nucleotide-binding oligomerization domain leucine-rich repeat proteins (NLRs) triggers the assembly of inflammasomes, the multiprotein complexes necessary for caspase-1 activation and the maturation of inflammatory cytokines such as IL-1β or IL-18. Here we demonstrate that both the NLRP3 and NLRC4 inflammasomes are activated by thermostable direct hemolysins (TDHs) and type III secretion system 1 (T3SS1) in response to V. parahaemolyticus infection. Furthermore, we identify T3SS1 secreted effector proteins, VopQ and VopS, which induce autophagy and the inactivation of Cdc42, respectively, to prevent mainly NLRC4 inflammasome activation. VopQ and VopS interfere with the assembly of specks in infected macrophages. These data suggest that bacterial effectors interfere with inflammasome activation and contribute to bacterial evasion from the host inflammatory responses. V. parahaemolyticus is Gram-negative pathogen that causes a food poisoning in human. To date, a number of bacterial factors that play a role in V. parahaemolyticus virulence have been characterized, yet little is known about the host factors contributing to the disease process and susceptibility to these pathogens. IL-1β, in addition to TNF-α, is thought to be involved in inflammatory responses and disease development during infection with the pathogen, but the mechanisms of IL-1β production remain poorly defined. In this work we found that both the NLRP3 and NLRC4 inflammasomes are activated by thermostable direct hemolysins (TDHs) and type III secretion system 1 (T3SS1) in response to V. parahaemolyticus infection. The activated inflammasomes then triggers the activation of caspase-1, a cysteine protease that is essential for IL-1β processing and release. Furthermore, we identified T3SS1 secreted effector proteins, VopQ and VopS, which prevent mainly NLRC4 inflammasome activation. VopQ and VopS induce autophagy and the inactivation of Rho GTPases, including Cdc42, respectively, and these cellular events interfere with the assembly of specks, the platform of inflammasome activation. Collectively, T3SS1 effector-based suppression of inflammasome activation may provide important insights into bacterial strategies for evading inflammasome-mediated host immune responses.
Collapse
Affiliation(s)
- Naomi Higa
- Department of Molecular Bacteriology and Immunology, Graduate School of Medicine, University of the Ryukyus, Nishihara, Okinawa, Japan
| | - Claudia Toma
- Department of Molecular Bacteriology and Immunology, Graduate School of Medicine, University of the Ryukyus, Nishihara, Okinawa, Japan
| | - Yukiko Koizumi
- Department of Molecular Bacteriology and Immunology, Graduate School of Medicine, University of the Ryukyus, Nishihara, Okinawa, Japan
| | - Noboru Nakasone
- Department of Molecular Bacteriology and Immunology, Graduate School of Medicine, University of the Ryukyus, Nishihara, Okinawa, Japan
| | - Toshitsugu Nohara
- Department of Molecular Bacteriology and Immunology, Graduate School of Medicine, University of the Ryukyus, Nishihara, Okinawa, Japan
| | - Junya Masumoto
- Department of Pathogenomics, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Toshio Kodama
- International Research Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Tetsuya Iida
- International Research Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Toshihiko Suzuki
- Department of Molecular Bacteriology and Immunology, Graduate School of Medicine, University of the Ryukyus, Nishihara, Okinawa, Japan
- * E-mail:
| |
Collapse
|
34
|
Structural mechanism of ubiquitin and NEDD8 deamidation catalyzed by bacterial effectors that induce macrophage-specific apoptosis. Proc Natl Acad Sci U S A 2012; 109:20395-400. [PMID: 23175788 DOI: 10.1073/pnas.1210831109] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Targeting eukaryotic proteins for deamidation modification is increasingly appreciated as a general bacterial virulence mechanism. Here, we present an atomic view of how a bacterial deamidase effector, cycle-inhibiting factor homolog in Burkholderia pseudomallei (CHBP), recognizes its host targets, ubiquitin (Ub) and Ub-like neural precursor cell expressed, developmentally down-regulated 8 (NEDD8), and catalyzes site-specific deamidation. Crystal structures of CHBP-Ub/NEDD8 complexes show that Ub and NEDD8 are similarly cradled by a large cleft in CHBP with four contacting surfaces. The pattern of Ub/NEDD8 recognition by CHBP resembles that by the E1 activation enzyme, which critically involves the Lys-11 surface in Ub/NEDD8. Close examination of the papain-like catalytic center reveals structural determinants of CHBP being an obligate glutamine deamidase. Molecular-dynamics simulation identifies Gln-31/Glu-31 of Ub/NEDD8 as one key determinant of CHBP substrate preference for NEDD8. Inspired by the idea of using the unique bacterial activity as a tool, we further discover that CHBP-catalyzed NEDD8 deamidation triggers macrophage-specific apoptosis, which predicts a previously unknown macrophage-specific proapoptotic signal that is negatively regulated by neddylation-mediated protein ubiquitination/degradation.
Collapse
|
35
|
Genetic diversity of clinical and environmental Vibrio parahaemolyticus strains from the Pacific Northwest. Appl Environ Microbiol 2012; 78:8631-8. [PMID: 23042162 DOI: 10.1128/aem.01531-12] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Since 1997, cases of Vibrio parahaemolyticus-related gastroenteritis from the consumption of raw oysters harvested in Washington State have been higher than historical levels. These cases have shown little or no correlation with concentrations of potentially pathogenic V. parahaemolyticus (positive for the thermostable direct hemolysin gene, tdh) in oysters, although significant concentrations of tdh(+) V. parahaemolyticus strains were isolated from shellfish-growing areas in the Pacific Northwest (PNW). We compared clinical and environmental strains isolated from the PNW to those from other geographic regions within the United States and Asia for the presence of virulence-associated genes, including the thermostable direct hemolysin (tdh), the thermostable-related hemolysin (trh), urease (ureR), the pandemic group specific markers orf8 and toxRS, and genes encoding both type 3 secretion systems (T3SS1 and T3SS2). The majority of clinical strains from the PNW were positive for tdh, trh, and ureR genes, while a significant proportion of environmental isolates were tdh(+) but trh negative. Hierarchical clustering grouped the majority of these clinical isolates into a cluster distinct from that including the pandemic strain RIMD2210633, clinical isolates from other geographical regions, and tdh(+), trh-negative environmental isolates from the PNW. We detected T3SS2-related genes (T3SS2β) in environmental strains that were tdh and trh negative. The presence of significant concentrations of tdh(+), trh-negative environmental strains in the PNW that have not been responsible for illness and T3SS2β in tdh- and trh-negative strains emphasizes the diversity in this species and the need to identify additional virulence markers for this bacterium to improve risk assessment tools for the detection of this pathogen.
Collapse
|
36
|
Ritchie JM, Rui H, Zhou X, Iida T, Kodoma T, Ito S, Davis BM, Bronson RT, Waldor MK. Inflammation and disintegration of intestinal villi in an experimental model for Vibrio parahaemolyticus-induced diarrhea. PLoS Pathog 2012; 8:e1002593. [PMID: 22438811 PMCID: PMC3305451 DOI: 10.1371/journal.ppat.1002593] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 02/01/2012] [Indexed: 12/17/2022] Open
Abstract
Vibrio parahaemolyticus is a leading cause of seafood-borne gastroenteritis in many parts of the world, but there is limited knowledge of the pathogenesis of V. parahaemolyticus-induced diarrhea. The absence of an oral infection-based small animal model to study V. parahaemolyticus intestinal colonization and disease has constrained analyses of the course of infection and the factors that mediate it. Here, we demonstrate that infant rabbits oro-gastrically inoculated with V. parahaemolyticus develop severe diarrhea and enteritis, the main clinical and pathologic manifestations of disease in infected individuals. The pathogen principally colonizes the distal small intestine, and this colonization is dependent upon type III secretion system 2. The distal small intestine is also the major site of V. parahaemolyticus-induced tissue damage, reduced epithelial barrier function, and inflammation, suggesting that disease in this region of the gastrointestinal tract accounts for most of the diarrhea that accompanies V. parahaemolyticus infection. Infection appears to proceed through a characteristic sequence of steps that includes remarkable elongation of microvilli and the formation of V. parahaemolyticus-filled cavities within the epithelial surface, and culminates in villus disruption. Both depletion of epithelial cell cytoplasm and epithelial cell extrusion contribute to formation of the cavities in the epithelial surface. V. parahaemolyticus also induces proliferation of epithelial cells and recruitment of inflammatory cells, both of which occur before wide-spread damage to the epithelium is evident. Collectively, our findings suggest that V. parahaemolyticus damages the host intestine and elicits disease via previously undescribed processes and mechanisms. The marine bacterium Vibrio parahaemolyticus is a leading cause worldwide of gastroenteritis linked to the consumption of contaminated seafood. Despite the prevalence of V. parahaemolyticus-induced gastroenteritis, there is limited understanding of how this pathogen causes disease in the intestine. In part, the paucity of knowledge results from the absence of an oral infection-based animal model of the human disease. We developed a simple oral infection-based infant rabbit model of V. parahaemolyticus-induced intestinal pathology and diarrhea. This experimental model enabled us to define several previously unknown but key features of the pathology elicited by this organism. We found that V. parahaemolyticus chiefly colonizes the distal small intestine and that the organism's second type III secretion system is essential for colonization. The epithelial surface of the distal small intestine is also the major site of V. parahaemolyticus-induced damage, which arises via a characteristic sequence of events culminating in the formation of V. parahaemolyticus-filled cavities in the epithelial surface. This experimental model will transform future studies aimed at deciphering the bacterial and host factors/processes that contribute to disease, as well as enable testing of new therapeutics to prevent and/or combat infection.
Collapse
Affiliation(s)
- Jennifer M. Ritchie
- Brigham and Women's Hospital/Harvard Medical School and HHMI, Boston, Massachusetts, United States of America
- * E-mail: (MKW); (JMR)
| | - Haopeng Rui
- Brigham and Women's Hospital/Harvard Medical School and HHMI, Boston, Massachusetts, United States of America
| | - Xiaohui Zhou
- Brigham and Women's Hospital/Harvard Medical School and HHMI, Boston, Massachusetts, United States of America
| | - Tetsuya Iida
- Department of Bacterial Infections, International Research Center for Infectious Diseases, Osaka University, Suita, Osaka, Japan
| | - Toshio Kodoma
- Laboratory of Genomic Research on Pathogenic Bacteria, International Research Center for Infectious Diseases, Osaka University, Suita, Osaka, Japan
| | - Susuma Ito
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Brigid M. Davis
- Brigham and Women's Hospital/Harvard Medical School and HHMI, Boston, Massachusetts, United States of America
| | - Roderick T. Bronson
- Department of Microbiology & Immunology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Matthew K. Waldor
- Brigham and Women's Hospital/Harvard Medical School and HHMI, Boston, Massachusetts, United States of America
- * E-mail: (MKW); (JMR)
| |
Collapse
|
37
|
Xu L, Xie YY, Zhong NJ, Liang ZH, He J, Huang HL, Liu YJ. DNA-binding and photocleavage, cytotoxicity, apoptosis and antioxidant activity studies of ruthenium(II) complexes. TRANSIT METAL CHEM 2012. [DOI: 10.1007/s11243-011-9575-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
38
|
Kou JF, Qian C, Wang JQ, Chen X, Wang LL, Chao H, Ji LN. Chiral ruthenium(II) anthraquinone complexes as dual inhibitors of topoisomerases I and II. J Biol Inorg Chem 2011; 17:81-96. [PMID: 21858685 DOI: 10.1007/s00775-011-0831-6] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2011] [Accepted: 07/30/2011] [Indexed: 10/17/2022]
Abstract
DNA topoisomerases (I and II) have been one of the excellent targets in anticancer drug development. Here two chiral ruthenium(II) anthraquinone complexes, Δ- and Λ-[Ru(bpy)(2)(ipad)](2+), where bpy is 2,2'-bipyridine and ipad is 2-(anthracene-9,10-dione-2-yl)imidazo[4,5-f][1,10]phenanthroline, were synthesized and characterized. As expected, both of the Ru(II) complexes intercalate into DNA base pairs and possess an obviously greater affinity with DNA. Topoisomerase inhibition and DNA strand passage assay confirmed that the two complexes are efficient dual inhibitors of topoisomerases I and II by interference with the DNA religation. In MTT cytotoxicity studies, two Ru(II) complexes exhibited antitumor activity against HeLa, MCF-7, HepG2 and BEL-7402 tumor cell lines. Flow cytometry analysis shows an increase in the percentage of cells with apoptotic morphological features in the sub-G1 phase for Ru(II) complexes. Nuclear chromatin cleavage has also been observed from AO/EB staining assay and alkaline single-cell gel electrophoresis (comet assay). The results demonstrated that Δ- and Λ-[Ru(bpy)(2)(ipad)](2+) act as dual inhibitors of topoisomerases I and II, and cause DNA damage that can lead to cell cycle arrest and/or cell death by apoptosis.
Collapse
Affiliation(s)
- Jun-Feng Kou
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
The nuclear factor-κB (NF-κB) family of transcription factors plays a central part in the host response to infection by microbial pathogens, by orchestrating the innate and acquired host immune responses. The NF-κB proteins are activated by diverse signalling pathways that originate from many different cellular receptors and sensors. Many successful pathogens have acquired sophisticated mechanisms to regulate the NF-κB signalling pathways by deploying subversive proteins or hijacking the host signalling molecules. Here, we describe the mechanisms by which viruses and bacteria micromanage the host NF-κB signalling circuitry to favour the continued survival of the pathogen.
Collapse
Affiliation(s)
- Masmudur M Rahman
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, 1600 SW Archer Road, PO Box 100266, Gainesville, Florida, USA
| | | |
Collapse
|
40
|
Wan F, Lenardo MJ. Specification of DNA binding activity of NF-kappaB proteins. Cold Spring Harb Perspect Biol 2010; 1:a000067. [PMID: 20066093 DOI: 10.1101/cshperspect.a000067] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nuclear factor-kappaB (NF-kappaB) is a pleiotropic mediator of inducible and specific gene regulation involving diverse biological activities including immune response, inflammation, cell proliferation, and death. The fine-tuning of the NF-kappaB DNA binding activity is essential for its fundamental function as a transcription factor. An increasing body of literature illustrates that this process can be elegantly and specifically controlled at multiple levels by different protein subsets. In particular, the recent identification of a non-Rel subunit of NF-kappaB itself provides a new way to understand the selective high-affinity DNA binding specificity of NF-kappaB conferred by a synergistic interaction within the whole complex. Here, we review the mechanism of the specification of DNA binding activity of NF-kappaB complexes, one of the most important aspects of NF-kappaB transcriptional control.
Collapse
Affiliation(s)
- Fengyi Wan
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
41
|
Zhou X, Konkel ME, Call DR. Regulation of type III secretion system 1 gene expression in Vibrio parahaemolyticus is dependent on interactions between ExsA, ExsC, and ExsD. Virulence 2010; 1:260-72. [PMID: 21178451 PMCID: PMC3073295 DOI: 10.4161/viru.1.4.12318] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Revised: 04/22/2010] [Accepted: 04/23/2010] [Indexed: 01/12/2023] Open
Abstract
Vibrio parahaemolyticus ExsA is the transcriptional regulator for type III secretion system 1 (T3SS1) while ExsD blocks T3SS1 expression. Herein we show that deletion of exsC from V. parahaemolyticus blocked synthesis of T3SS1-dependent proteins under inducing conditions (contact with HeLa cells), while in trans complementation of the ΔexsC strain with wild-type exsC restored protein synthesis. Under non-inducing conditions (Luria broth plus salt), in trans expression of exsC in a wild-type strain resulted in synthesis and secretion of T3SS1-dependent proteins. Deletion of exsC does not affect the synthesis of ExsA while expression of T3SS1 genes is independent of ExsC in the absence of ExsD. Co-expression of recombinant proteins with different antigenic tags demonstrated that ExsC binds ExsD and that the N-terminal amino acids of ExsC (positions 7 to 12) are required for binding. Co-expression and purification of antigentically tagged ExsA and ExsD demonstrated that ExsD directly binds ExsA and presumably prevents ExsA from binding promoter regions of T3SS1 genes. Collectively these data demonstrate that ExsD binds ExsA to block expression of T3SS1 genes, while ExsC binds ExsD to permit expression of T3SS1 genes. ExsA, ExsC, and ExsD from V. parahaemolyticus appear to be functional orthologues of their Pseudomonas aeruginosa counterparts.
Collapse
Affiliation(s)
- Xiaohui Zhou
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, USA
| | | | | |
Collapse
|
42
|
Zhang P, Chen J, Liang Y. DNA binding, cytotoxicity, and apoptotic-inducing activity of ruthenium(II) polypyridyl complex. Acta Biochim Biophys Sin (Shanghai) 2010; 42:440-9. [PMID: 20705582 DOI: 10.1093/abbs/gmq040] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
There is considerable interest in the interactions of ruthenium (Ru)(II) complexes with DNA as well as the biological impact of the interactions. Here, by using isothermal titration calorimetry, viscosity measurement, and circular dichroism, we investigated the interactions of a new Ru(II) complex, [Ru(dmp)(2)PMIP](2+){dmp = 2,9-dimethyl-1,10-phenanthroline, PMIP = 2-(4-methylphenyl)imidazo[4,5-f]1,10-phenanthroline}, with calf thymus DNA (CT DNA). The Ru(II) polypyridyl complex and CT DNA formed a tight 1:1 complex with a binding constant of exceeding 10(6) M(-1) and with a binding mode of intercalation. Cell viability experiments indicated that the Ru(II) complex showed significant dose-dependent cytotoxicity to human lung tumor cell line A549. Further flow cytometry experiments showed that the cytotoxic Ru(II) complex induced apoptosis of human lung cancer cell line A549. Our data demonstrated that the Ru(II) polypyridyl complex binds to DNA and thereby induces apoptosis in tumor cells, suggesting that anti-tumor activity of the Ru(II) complex could be related to its interaction with DNA.
Collapse
|
43
|
Vp1659 is a Vibrio parahaemolyticus type III secretion system 1 protein that contributes to translocation of effector proteins needed to induce cytolysis, autophagy, and disruption of actin structure in HeLa cells. J Bacteriol 2010; 192:3491-502. [PMID: 20418402 DOI: 10.1128/jb.01493-09] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Vibrio parahaemolyticus harbors two type III secretion systems (T3SSs; T3SS1 and T3SS2), of which T3SS1 is involved in host cell cytotoxicity. T3SS1 expression is positively regulated by ExsA, and it is negatively regulated by ExsD. We compared the secretion profiles of a wild-type strain (NY-4) of V. parahaemolyticus with those of an ExsD deletion mutant (DeltaexsD) and with a strain of NY-4 that overexpresses T3SS1 (NY-4:pexsA). From this comparison, we detected a previously uncharacterized protein, Vp1659, which shares some sequence homology with LcrV from Yersinia. We show that vp1659 expression is positively regulated by ExsA and is negatively regulated by ExsD. Vp1659 is specifically secreted by T3SS1 of V. parahaemolyticus, and Vp1659 is not required for the successful extracellular secretion of another T3SS1 protein, Vp1656. Mechanical fractionation showed that Vp1659 is translocated into HeLa cells in a T3SS1-dependent manner and that deletion of Vp1659 does not prevent VopS from being translocated into HeLa cells during infection. Deletion of vp1659 significantly reduces cytotoxicity when HeLa cells are infected by V. parahaemolyticus, while complementation of the Deltavp1659 strain restores cytotoxicity. Differential staining showed that Vp1659 is required to induce membrane permeability in HeLa cells. We also show evidence that Vp1659 is required for actin rearrangement and the induction of autophagy. On the basis of these data, we conclude that Vp1659 is a T3SS1-associated protein that is a component of the secretion apparatus and that it is necessary for the efficient translocation of effector proteins into epithelial cells.
Collapse
|
44
|
Contribution of Vibrio parahaemolyticus virulence factors to cytotoxicity, enterotoxicity, and lethality in mice. Infect Immun 2010; 78:1772-80. [PMID: 20086084 DOI: 10.1128/iai.01051-09] [Citation(s) in RCA: 163] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Vibrio parahaemolyticus, one of the human-pathogenic vibrios, causes three major types of clinical illness: gastroenteritis, wound infections, and septicemia. Thermostable direct hemolysin (TDH) secreted by this bacterium has been considered a major virulence factor of gastroenteritis because it has biological activities, including cytotoxic and enterotoxic activities. Previous reports revealed that V. parahaemolyticus strain RIMD2210633, which contains tdh, has two sets of type III secretion system (T3SS) genes on chromosomes 1 and 2 (T3SS1 and T3SS2, respectively) and that T3SS1 is responsible for cytotoxicity and T3SS2 is involved in enterotoxicity, as well as in cytotoxic activity. However, the relative importance and contributions of TDH and the two T3SSs to V. parahaemolyticus pathogenicity are not well understood. In this study, we constructed mutant strains with nonfunctional T3SSs from the V. parahaemolyticus strain containing tdh, and then the pathogenicities of the wild-type and mutant strains were evaluated by assessing their cytotoxic activities against HeLa, Caco-2, and RAW 264 cells, their enterotoxic activities in rabbit ileal loops, and their lethality in a murine infection model. We demonstrated that T3SS1 was involved in cytotoxic activities against all cell lines used in this study, while T3SS2 and TDH had cytotoxic effects on a limited number of cell lines. T3SS2 was the major contributor to V. parahaemolyticus-induced enterotoxicity. Interestingly, we found that both T3SS1 and TDH played a significant role in lethal activity in a murine infection model. Our findings provide new indications that these virulence factors contribute to and orchestrate each distinct aspect of the pathogenicity of V. parahaemolyticus.
Collapse
|
45
|
Zhu XM, Yao YM, Liang HP, Liu F, Dong N, Yu Y, Sheng ZY. Effect of high mobility group box-1 protein on apoptosis of peritoneal macrophages. Arch Biochem Biophys 2009; 492:54-61. [DOI: 10.1016/j.abb.2009.09.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Revised: 09/27/2009] [Accepted: 09/28/2009] [Indexed: 10/20/2022]
|
46
|
Chao G, Jiao X, Zhou X, Yang Z, Pan Z, Huang J, Zhou L, Qian X. Systematic functional pandemic strain-specific genes, three genomic islands, two T3SSs in foodborne, and clinical Vibrio parahaemolyticus isolates in China. Foodborne Pathog Dis 2009; 6:689-98. [PMID: 19425827 DOI: 10.1089/fpd.2009.0274] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Vibrio parahaemolyticus is one of the most important pathogens capable of causing foodborne gastroenteritis in China, Japan, and other countries. Pathogenic V. parahaemolyticus has been known to produce either thermostable direct hemolysin (TDH), TDH-related hemolysin (TRH), or both. The emergence of a new clone in 1995, V. parahaemolyticus O3:K6, has resulted in the first documented pandemic spread of V. parahaemolyticus. In this study, 235 isolates from clinical and food sources were characterized by determining the presence of known virulence factors (tdh, trh), systematic genetic markers (toxRS/new, pandemic group-specific sequence [PGS], orf8) specific for V. parahaemolyticus O3:K6 clone and its clonal derivatives, three important genomic islands (GIs) (VPaI-1, VPaI-5, and VPaI-7), and two type III secretion systems (T3SS1 and T3SS2). Our results showed that all 235 isolates harbored all or part of the T3SS1 genes. All the 103 tdh-positive strains harbored all or part of the VPaI-7 and T3SS2 genes. A total of 91 isolates including six foodborne isolates belonged to a pandemic clone in which eight isolates lacked orf8. All pandemic strains harbored VPaI-1 and VPaI-5 except one O4:K68 strain that lacked VPaI-5 altogether. Twelve clinical pathogenic strains had VPaI-7 and T3SS2 but lacked VPaI-1 and VPaI-5. Thirteen nonpathogenic clinical strains and 119 foodborne strains, including six foodborne pathogenic trh-positive strains, only harbored T3SS1 genes. These results indicated that O3:K6 and its serovariants were the main pandemic clone in China. VPaI-1 and VPaI-5 genes were specifically correlated with pandemic strains while VPaI-7 and T3SS2 were closely associated with tdh-positive strains.
Collapse
|
47
|
A Legionella type IV effector activates the NF-kappaB pathway by phosphorylating the IkappaB family of inhibitors. Proc Natl Acad Sci U S A 2009; 106:13725-30. [PMID: 19666608 DOI: 10.1073/pnas.0907200106] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
NF-kappaB is critical in innate immune defense responses against invading microbial pathogens. Legionella pneumophila infection of lung macrophages causes Legionnaire's disease with pneumonia symptoms. A set of NF-kappaB-controlled genes involved in inflammation and anti-apoptosis are up-regulated in macrophages upon L. pneumophila infection in a Legionella Dot/Icm type IV secretion system-dependent manner. Among approximately 100 Dot/Icm substrates screened, we identified LegK1 as the sole Legionella protein that harbors a highly potent NF-kappaB-stimulating activity. LegK1 does not affect MAPK and IFN pathways. Activation of the NF-kappaB pathway by LegK1 requires its eukaryotic-like Ser/Thr kinase activity and is independent of upstream components in the NF-kappaB pathway, including TRAFs, NIK, MEKK3, and TAK1. Cell-free reconstitution revealed that LegK1 stimulated NF-kappaB activation in the absence of IKKalpha and IKKbeta, and LegK1 efficiently phosphorylated IkappaBalpha on Ser-32 and Ser-36 both in vitro and in cells. LegK1 seems to mimic the host IKK as LegK1 also directly phosphorylated other IkappaB family of inhibitors including p100 in the noncanonical NF-kappaB pathway. Phosphorylation of p100 by LegK1 led to its maturation into p52. Thus, LegK1 is a bacterial effector that directly activates the host NF-kappaB signaling and likely plays important roles in modulating macrophage defense or inflammatory responses during L. pneumophila infection.
Collapse
|
48
|
Zhang M, Yang F, Yang F, Chen J, Zheng CY, Liang Y. Cytotoxic aggregates of alpha-lactalbumin induced by unsaturated fatty acid induce apoptosis in tumor cells. Chem Biol Interact 2009; 180:131-42. [PMID: 19497410 DOI: 10.1016/j.cbi.2009.03.019] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2008] [Revised: 03/26/2009] [Accepted: 03/27/2009] [Indexed: 10/20/2022]
Abstract
The effects of three fatty acids on cytotoxic aggregate formation of Ca(2+)-depleted bovine alpha-lactalbumin (apo-BLA) have been studied by UV absorbance spectroscopy and transmission electron microscopy. The experimental results demonstrate that two unsaturated fatty acids, oleic acid and linoleic acid, and one saturated fatty acid, stearic acid, induce the intermediate of apo-BLA at pH 4.0-4.5 to form amorphous aggregates in time- and concentration-dependent manners. These aggregates are dissolved under physiological conditions at 37 degrees C and further characterized by fluorescence spectroscopy, circular dichroism and time-of-flight mass spectrometry. Our data here indicate that the structural characteristics of these aggregates are similar to those of HAMLET/BAMLET (human/bovine alpha-lactalbumin made lethal to tumor cells), a complex of the partially unfolded alpha-lactalbumin with oleic acid. Cell viability experiments indicate the aggregates of apo-BLA induced by oleic acid and linoleic acid show significant dose-dependent cytotoxicity to human lung tumor cells of A549 but those induced by stearic acid have no toxicity to tumor cells. Furthermore, the cytotoxic aggregates of apo-BLA induced by both unsaturated fatty acids induce apoptosis of human lung cancer cell line A549, suggesting that such cytotoxic aggregates of apo-BLA could be potential antitumor drugs. The present study provides insight into the mechanism of fatty acid-dependent oligomerization and cytotoxicity of alpha-lactalbumin, and will be helpful in the understanding of the molecular mechanism of HAMLET/BAMLET formation.
Collapse
Affiliation(s)
- Min Zhang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | | | | | | | | | | |
Collapse
|
49
|
Vibrio parahaemolyticus orchestrates a multifaceted host cell infection by induction of autophagy, cell rounding, and then cell lysis. Proc Natl Acad Sci U S A 2008; 105:12497-502. [PMID: 18713860 DOI: 10.1073/pnas.0802773105] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The bacterial pathogen Vibrio parahaemolyticus utilizes a type III secretion system to cause death of host cells within hours of infection. We report that cell death is completely independent of apoptosis and occurs by a mechanism in which injection of multiple type III effectors causes induction of autophagy, cell rounding, and the subsequent release of cellular contents. Autophagy is detected by the appearance of lipidated light chain 3 (LC3) and by increases in punctae and vacuole formation. Electron microscopy reveals the production of early autophagic vesicles during infection. Consistent with phosphoinositide 3 (PI3) kinase playing a role in autophagy, treatment of infected cells with a PI3 kinase inhibitor attenuates autophagy in infected cells. Because many effectors are injected during a V. parahaemolyticus infection, it is not surprising that the presence of a sole PI3 kinase inhibitor does not prevent inevitable host-cell death. Our studies reveal an infection paradigm whereby an extracellular pathogen uses its type III secretion system to cause at least three parallel events that eventually result in the proinflammatory death of an infected host cell.
Collapse
|
50
|
Molecular analysis of the emergence of pandemic Vibrio parahaemolyticus. BMC Microbiol 2008; 8:110. [PMID: 18590559 PMCID: PMC2491623 DOI: 10.1186/1471-2180-8-110] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Accepted: 06/30/2008] [Indexed: 11/24/2022] Open
Abstract
Background Vibrio parahaemolyticus is abundant in the aquatic environment particularly in warmer waters and is the leading cause of seafood borne gastroenteritis worldwide. Prior to 1995, numerous V. parahaemolyticus serogroups were associated with disease, however, in that year an O3:K6 serogroup emerged in Southeast Asia causing large outbreaks and rapid hospitalizations. This new highly virulent strain is now globally disseminated. Results We performed a four-way BLAST analysis on the genome sequence of V. parahaemolyticus RIMD2210633, an O3:K6 isolate from Japan recovered in 1996, versus the genomes of four published Vibrio species and constructed genome BLAST atlases. We identified 24 regions, gaps in the genome atlas, of greater than 10 kb that were unique to RIMD2210633. These 24 regions included an integron, f237 phage, 2 type III secretion systems (T3SS), a type VI secretion system (T6SS) and 7 Vibrio parahaemolyticus genomic islands (VPaI-1 to VPaI-7). Comparative genomic analysis of our fifth genome, V. parahaemolyticus AQ3810, an O3:K6 isolate recovered in 1983, identified four regions unique to each V. parahaemolyticus strain. Interestingly, AQ3810 did not encode 8 of the 24 regions unique to RMID, including a T6SS, which suggests an additional virulence mechanism in RIMD2210633. The distribution of only the VPaI regions was highly variable among a collection of 42 isolates and phylogenetic analysis of these isolates show that these regions are confined to a pathogenic clade. Conclusion Our data show that there is considerable genomic flux in this species and that the new highly virulent clone arose from an O3:K6 isolate that acquired at least seven novel regions, which included both a T3SS and a T6SS.
Collapse
|