1
|
Döring Y, van der Vorst EP, Yan Y, Neideck C, Blanchet X, Jansen Y, Kemmerich M, Bayasgalan S, Peters LJ, Hristov M, Bidzhekov K, Yin C, Zhang X, Leberzammer J, Li Y, Park I, Kral M, Nitz K, Parma L, Gencer S, Habenicht A, Faussner A, Teupser D, Monaco C, Holdt L, Megens RT, Atzler D, Santovito D, von Hundelshausen P, Weber C. Identification of a non-canonical chemokine-receptor pathway suppressing regulatory T cells to drive atherosclerosis. NATURE CARDIOVASCULAR RESEARCH 2024; 3:221-242. [PMID: 39044999 PMCID: PMC7616283 DOI: 10.1038/s44161-023-00413-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 12/14/2023] [Indexed: 07/25/2024]
Abstract
CCL17 is produced by conventional dendritic cells (cDCs), signals through CCR4 on regulatory T cells (Tregs), and drives atherosclerosis by suppressing Treg functions through yet undefined mechanisms. Here we show that cDCs from CCL17-deficient mice display a pro-tolerogenic phenotype and transcriptome that is not phenocopied in mice lacking its cognate receptor CCR4. In the plasma of CCL17-deficient mice, CCL3 was the only decreased cytokine/chemokine. We found that CCL17 signaled through CCR8 as an alternate high-affinity receptor, which induced CCL3 expression and suppressed Treg functions in the absence of CCR4. Genetic ablation of CCL3 and CCR8 in CD4+ T cells reduced CCL3 secretion, boosted FoxP3+ Treg numbers, and limited atherosclerosis. Conversely, CCL3 administration exacerbated atherosclerosis and restrained Treg differentiation. In symptomatic versus asymptomatic human carotid atheroma, CCL3 expression was increased, while FoxP3 expression was reduced. Together, we identified a non-canonical chemokine pathway whereby CCL17 interacts with CCR8 to yield a CCL3-dependent suppression of atheroprotective Tregs.
Collapse
Affiliation(s)
- Yvonne Döring
- Division of Angiology, Swiss Cardiovascular Center, Inselspital, Bern University Hospital, University of Bern, Switzerland
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Emiel P.C. van der Vorst
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
- Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University, Aachen, Germany
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Aachen, Germany
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Yi Yan
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
- Pediatric Translational Medicine Institute and Shanghai Institute of Pediatric Congenital Heart Disease, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Carlos Neideck
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany
| | - Xavier Blanchet
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany
| | - Yvonne Jansen
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany
| | - Manuela Kemmerich
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany
| | | | - Linsey J.F. Peters
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany
- Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University, Aachen, Germany
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Aachen, Germany
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Michael Hristov
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany
| | - Kiril Bidzhekov
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany
| | - Changjun Yin
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Xi Zhang
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany
| | - Julian Leberzammer
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Ya Li
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany
| | - Inhye Park
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, United Kingdom
| | - Maria Kral
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Katrin Nitz
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany
| | - Laura Parma
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Selin Gencer
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany
| | - Andreas Habenicht
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Alexander Faussner
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany
| | - Daniel Teupser
- Institute of Laboratory Medicine, University Hospital, LMU Munich, Germany
| | - Claudia Monaco
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Lesca Holdt
- Institute of Laboratory Medicine, University Hospital, LMU Munich, Germany
| | - Remco T.A. Megens
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, the Netherlands
| | - Dorothee Atzler
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
- Walther Straub Institute of Pharmacology and Toxicology, LMU Munich
| | - Donato Santovito
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
- Institute for Genetic and Biomedical Research (IRGB), Unit of Milan, National Research Council, Milan, Italy
| | | | - Christian Weber
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, the Netherlands
| |
Collapse
|
2
|
Kim N, Kim MH, Pyo J, Lee SM, Jang JS, Lee DW, Kim KW. CCR8 as a Therapeutic Novel Target: Omics-Integrated Comprehensive Analysis for Systematically Prioritizing Indications. Biomedicines 2023; 11:2910. [PMID: 38001911 PMCID: PMC10669377 DOI: 10.3390/biomedicines11112910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/10/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023] Open
Abstract
Target identification is a crucial process in drug development, aiming to identify key proteins, genes, and signal pathways involved in disease progression and their relevance in potential therapeutic interventions. While C-C chemokine receptor 8 (CCR8) has been investigated as a candidate anti-cancer target, comprehensive multi-omics analyzes across various indications are limited. In this study, we conducted an extensive bioinformatics analysis integrating genomics, proteomics, and transcriptomics data to establish CCR8 as a promising anti-cancer drug target. Our approach encompassed data collection from diverse knowledge resources, gene function analysis, differential gene expression profiling, immune cell infiltration assessment, and strategic prioritization of target indications. Our findings revealed strong correlations between CCR8 and specific cancers, notably Breast Invasive Carcinoma (BRCA), Colon Adenocarcinoma (COAD), Head and Neck Squamous Cell Carcinoma (HNSC), Rectum adenocarcinoma (READ), Stomach adenocarcinoma (STAD), and Thyroid carcinoma (THCA). This research advances our understanding of CCR8 as a potential target for anti-cancer drug development, bridging the gap between molecular insights and creating opportunities for personalized treatment of solid tumors.
Collapse
Affiliation(s)
- Nari Kim
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea;
| | - Mi-Hyun Kim
- Research Institute, Trial Informatics Inc., Seoul 05544, Republic of Korea;
| | - Junhee Pyo
- College of Pharmacy, Chungbuk National University, Cheongju 28644, Republic of Korea;
| | - Soo-Min Lee
- Samjin Pharmaceutical Co., Ltd., Seoul 04054, Republic of Korea;
| | - Ji-Sung Jang
- Biomedical Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Republic of Korea;
| | - Do-Wan Lee
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea;
| | - Kyung Won Kim
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea;
- Research Institute, Trial Informatics Inc., Seoul 05544, Republic of Korea;
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea;
| |
Collapse
|
3
|
Grudzien P, Neufeld H, Ebe Eyenga M, Gaponenko V. Development of tolerance to chemokine receptor antagonists: current paradigms and the need for further investigation. Front Immunol 2023; 14:1184014. [PMID: 37575219 PMCID: PMC10420067 DOI: 10.3389/fimmu.2023.1184014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 06/27/2023] [Indexed: 08/15/2023] Open
Abstract
Chemokine G-protein coupled receptors are validated drug targets for many diseases, including cancer, neurological, and inflammatory disorders. Despite much time and effort spent on therapeutic development, very few chemokine receptor antagonists are approved for clinical use. Among potential reasons for the slow progress in developing chemokine receptor inhibitors, antagonist tolerance, a progressive reduction in drug efficacy after repeated administration, is likely to play a key role. The mechanisms leading to antagonist tolerance remain poorly understood. In many cases, antagonist tolerance is accompanied by increased receptor concentration on the cell surface after prolonged exposure to chemokine receptor antagonists. This points to a possible role of altered receptor internalization and presentation on the cell surface, as has been shown for agonist (primarily opioid) tolerance. In addition, examples of antagonist tolerance in the context of other G-protein coupled receptors suggest the involvement of noncanonical signal transduction in opposing the effects of the antagonists. In this review, we summarize the available progress and challenges in therapeutic development of chemokine receptor antagonists, describe the available knowledge about antagonist tolerance, and propose new avenues for future investigation of this important phenomenon. Furthermore, we highlight the modern methodologies that have the potential to reveal novel mechanisms leading to antagonist tolerance and to propel the field forward by advancing the development of potent "tolerance-free" antagonists of chemokine receptors.
Collapse
Affiliation(s)
| | | | | | - Vadim Gaponenko
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
4
|
Giblin SP, Pease JE. What defines a chemokine? - The curious case of CXCL17. Cytokine 2023; 168:156224. [PMID: 37210967 DOI: 10.1016/j.cyto.2023.156224] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/28/2023] [Accepted: 05/01/2023] [Indexed: 05/23/2023]
Abstract
Chemotactic cytokines (chemokines) are a group of around 40 small proteins which share a similar protein fold and are well known for their ability to direct the migration of leukocytes to a variety of tissue locations. CXCL17 was the last member of the chemokine family to be assigned and was admitted to the family based on theoretical modelling of the CXCL17 structure and chemotactic activity for monocytes and dendritic cells. Of Interest, CXCL17 expression appears to be restricted to mucosal tissues such as the tongue, stomach and lung, suggestive of specific roles at these locations. A putative CXCL17 receptor, GPR35 was reportedly identified and mice deficient in CXCL17 were generated and characterised. More recently, however, some apparent contradictions regarding aspects of CXCL17 biology have been raised by ourselves and others. Notably, GPR35 appears to be a receptor for the serotonin metabolite 5-hydroxyindoleacetic acid rather than for CXCL17 and modelling of CXCL17 using a variety of platforms fails to identify a chemokine-like fold. In this article, we summarize the discovery of CXCL17 and discuss key papers describing the subsequent characterisation of this protein. Ultimately, we pose the question, 'What defines a chemokine?' (185 words).
Collapse
Affiliation(s)
- Sean Patrick Giblin
- National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK
| | - James Edward Pease
- National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK.
| |
Collapse
|
5
|
Zangouei AS, Hamidi AA, Rahimi HR, Saburi E, Mojarrad M, Moghbeli M. Chemokines as the critical factors during bladder cancer progression: an overview. Int Rev Immunol 2021; 40:344-358. [PMID: 33591855 DOI: 10.1080/08830185.2021.1877287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Bladder cancer (BCa) is one of the most frequent urogenital malignancies which is mainly observed among men. There are various genetic and environmental risk factors associated with BCa progression. Transurethral endoscopic resection and open ablative surgery are the main treatment options for muscle invasive BCa. BCG therapy is also employed following the endoscopic resection to prevent tumor relapse. The tumor microenvironment is the main interaction site of tumor cells and immune system in which the immune cells are recruited via chemokines and chemokine receptors. In present review we summarized the main chemokines and chemokine receptors which have been associated with histopathological features of BCa patients in the world. This review highlights the chemokines and chemokine receptors as critical markers in early detection and therapeutic purposes among BCa patients and clarifies their molecular functions during BCa progression and metastasis.
Collapse
Affiliation(s)
- Amir Sadra Zangouei
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Abbas Hamidi
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Reza Rahimi
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ehsan Saburi
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Mojarrad
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
6
|
Binti Mohd Amir NAS, Mackenzie AE, Jenkins L, Boustani K, Hillier MC, Tsuchiya T, Milligan G, Pease JE. Evidence for the Existence of a CXCL17 Receptor Distinct from GPR35. THE JOURNAL OF IMMUNOLOGY 2018; 201:714-724. [PMID: 29875152 PMCID: PMC6036231 DOI: 10.4049/jimmunol.1700884] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 04/29/2018] [Indexed: 11/19/2022]
Abstract
The chemokine CXCL17 is associated with the innate response in mucosal tissues but is poorly characterized. Similarly, the G protein–coupled receptor GPR35, expressed by monocytes and mast cells, has been implicated in the immune response, although its precise role is ill-defined. A recent manuscript reported that GPR35 was able to signal in response to CXCL17, which we set out to confirm in this study. GPR35 was readily expressed using transfection systems but failed to signal in response to CXCL17 in assays of β-arrestin recruitment, inositol phosphate production, calcium flux, and receptor endocytosis. Similarly, in chemotaxis assays, GPR35 did not confirm sensitivity to a range of CXCL17 concentrations above that observed in the parental cell line. We subsequently employed a real time chemotaxis assay (TAXIScan) to investigate the migratory responses of human monocytes and the monocytic cell line THP-1 to a gradient of CXCL17. Freshly isolated human monocytes displayed no obvious migration to CXCL17. Resting THP-1 cells showed a trend toward directional migration along a CXCL17 gradient, which was significantly enhanced by overnight incubation with PGE2. However, pretreatment of PGE2-treated THP-1 cells with the well-characterized GPR35 antagonist ML145 did not significantly impair their migratory responses to CXCL17 gradient. CXCL17 was susceptible to cleavage with chymase, although this had little effect its ability to recruit THP-1 cells. We therefore conclude that GPR35 is unlikely to be a bona fide receptor for CXCL17 and that THP-1 cells express an as yet unidentified receptor for CXCL17.
Collapse
Affiliation(s)
- Nurul A S Binti Mohd Amir
- Inflammation, Repair and Development Section, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London SW7 2AZ, United Kingdom.,Medical Research Council and Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom
| | - Amanda E Mackenzie
- Centre for Translational Pharmacology, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom; and
| | - Laura Jenkins
- Centre for Translational Pharmacology, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom; and
| | - Karim Boustani
- Inflammation, Repair and Development Section, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London SW7 2AZ, United Kingdom
| | - Marston C Hillier
- Inflammation, Repair and Development Section, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London SW7 2AZ, United Kingdom
| | - Tomoko Tsuchiya
- Research Institute, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo 162-8655, Japan
| | - Graeme Milligan
- Centre for Translational Pharmacology, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom; and
| | - James E Pease
- Inflammation, Repair and Development Section, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London SW7 2AZ, United Kingdom; .,Medical Research Council and Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom
| |
Collapse
|
7
|
Okamoto R, Mandal K, Sawaya MR, Kajihara Y, Yeates TO, Kent SBH. (Quasi‐)Racemic X‐ray Structures of Glycosylated and Non‐Glycosylated Forms of the Chemokine Ser‐CCL1 Prepared by Total Chemical Synthesis. Angew Chem Int Ed Engl 2014; 53:5194-8. [DOI: 10.1002/anie.201400679] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Indexed: 01/24/2023]
Affiliation(s)
- Ryo Okamoto
- Departments of Chemistry: Biochemistry & Molecular Biology, Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637 (USA)
- Current address: Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka, 560‐0043, JAPAN
| | - Kalyaneswar Mandal
- Departments of Chemistry: Biochemistry & Molecular Biology, Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637 (USA)
| | - Michael R. Sawaya
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095 (USA)
| | - Yasuhiro Kajihara
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 5600043 (Japan)
| | - Todd O. Yeates
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095 (USA)
| | - Stephen B. H. Kent
- Departments of Chemistry: Biochemistry & Molecular Biology, Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637 (USA)
| |
Collapse
|
8
|
Okamoto R, Mandal K, Sawaya MR, Kajihara Y, Yeates TO, Kent SBH. (Quasi-)Racemic X-ray Structures of Glycosylated and Non-Glycosylated Forms of the Chemokine Ser-CCL1 Prepared by Total Chemical Synthesis. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201400679] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
9
|
Okamoto R, Mandal K, Ling M, Luster AD, Kajihara Y, Kent SBH. Total chemical synthesis and biological activities of glycosylated and non-glycosylated forms of the chemokines CCL1 and Ser-CCL1. Angew Chem Int Ed Engl 2014; 53:5188-93. [PMID: 24644239 DOI: 10.1002/anie.201310574] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Indexed: 12/13/2022]
Abstract
CCL1 is a naturally glycosylated chemokine protein that is secreted by activated T-cells and acts as a chemoattractant for monocytes. Originally, CCL1 was identified as a 73 amino acid protein having one N-glycosylation site, and a variant 74 residue non-glycosylated form, Ser-CCL1, has also been described. There are no systematic studies of the effect of glycosylation on the biological activities of either CCL1 or Ser-CCL1. Here we report the total chemical syntheses of both N-glycosylated and non-glycosylated forms of (Ser-)CCL1, by convergent native chemical ligation. We used an N-glycan isolated from hen egg yolk together with the Nbz linker for Fmoc chemistry solid phase synthesis of the glycopeptide-(α) thioester building block. Chemotaxis assays of these glycoproteins and the corresponding non-glycosylated proteins were carried out. The results were correlated with the chemical structures of the (glyco)protein molecules. To the best of our knowledge, these are the first investigations of the effect of glycosylation on the chemotactic activity of the chemokine (Ser-)CCL1 using homogeneous N-glycosylated protein molecules of defined covalent structure.
Collapse
Affiliation(s)
- Ryo Okamoto
- Department of Biochemistry and Molecular Biology, Department of Chemistry, Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637 (USA); Present address: Department of Chemistry, Graduate School of Science, Osaka University, 1-1, Toyonaka, Osaka 5600043 (Japan). ,
| | | | | | | | | | | |
Collapse
|
10
|
Okamoto R, Mandal K, Ling M, Luster AD, Kajihara Y, Kent SBH. Total Chemical Synthesis and Biological Activities of Glycosylated and Non-Glycosylated Forms of the Chemokines CCL1 and Ser-CCL1. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201310574] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
11
|
Santulli-Marotto S, Boakye K, Lacy E, Wu SJ, Luongo J, Kavalkovich K, Coelho A, Hogaboam CM, Ryan M. Engagement of two distinct binding domains on CCL17 is required for signaling through CCR4 and establishment of localized inflammatory conditions in the lung. PLoS One 2013; 8:e81465. [PMID: 24339934 PMCID: PMC3855316 DOI: 10.1371/journal.pone.0081465] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Accepted: 10/14/2013] [Indexed: 12/20/2022] Open
Abstract
CCL17 (TARC) function can be completely abolished by mAbs that block either one of two distinct sites required for CCR4 signaling. This chemokine is elevated in sera of asthma patients and is responsible for establishing inflammatory sites through CCR4-mediated recruitment of immune cells. CCL17 shares the GPCR CCR4, with CCL22 (MDC) but these two chemokines differentially affect the immune response. To better understand chemokine mediated effects through CCR4, we have generated chimeric anti-mouse CCL17 surrogate antibodies that inhibit function of this ligand in vitro and in vivo. The affinities of the surrogate antibodies for CCL17 range from 685 pM for B225 to 4.9 nM for B202. One antibody, B202, also exhibits weak binding to CCL22 (KD∼2 µM) and no binding to CCL22 is detectable with the second antibody, B225. In vitro, both antibodies inhibit CCL17-mediated calcium mobilization, β-arrestin recruitment and chemotaxis; B202 can also partially inhibit CCL22-mediated β-arrestin recruitment. Both B202 and B225 antibodies neutralize CCL17 in vivo as demonstrated by reduction of methacholine-induced airway hyperreactivity in the A. fumigatus model of asthma. That both antibodies block CCL17 function but only B202 shows any inhibition of CCL22 function suggests that they bind CCL17 at different sites. Competition binding studies confirm that these two antibodies recognize unique epitopes that are non-overlapping despite the small size of CCL17. Taking into consideration the data from both the functional and binding studies, we propose that effective engagement of CCR4 by CCL17 involves two distinct binding domains and interaction with both is required for signaling.
Collapse
Affiliation(s)
- Sandra Santulli-Marotto
- Janssen Research & Development, Spring House, Pennsylvania, United States of America
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Ken Boakye
- Janssen Research & Development, Spring House, Pennsylvania, United States of America
| | - Eilyn Lacy
- Janssen Research & Development, Spring House, Pennsylvania, United States of America
| | - Sheng-Jiun Wu
- Janssen Research & Development, Spring House, Pennsylvania, United States of America
| | - Jennifer Luongo
- Janssen Research & Development, Spring House, Pennsylvania, United States of America
| | - Karl Kavalkovich
- Janssen Research & Development, Spring House, Pennsylvania, United States of America
| | - Ana Coelho
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Cory M. Hogaboam
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Mary Ryan
- Janssen Research & Development, Spring House, Pennsylvania, United States of America
| |
Collapse
|
12
|
Bachelerie F, Ben-Baruch A, Burkhardt AM, Combadiere C, Farber JM, Graham GJ, Horuk R, Sparre-Ulrich AH, Locati M, Luster AD, Mantovani A, Matsushima K, Murphy PM, Nibbs R, Nomiyama H, Power CA, Proudfoot AEI, Rosenkilde MM, Rot A, Sozzani S, Thelen M, Yoshie O, Zlotnik A. International Union of Basic and Clinical Pharmacology. [corrected]. LXXXIX. Update on the extended family of chemokine receptors and introducing a new nomenclature for atypical chemokine receptors. Pharmacol Rev 2013; 66:1-79. [PMID: 24218476 DOI: 10.1124/pr.113.007724] [Citation(s) in RCA: 668] [Impact Index Per Article: 55.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Sixteen years ago, the Nomenclature Committee of the International Union of Pharmacology approved a system for naming human seven-transmembrane (7TM) G protein-coupled chemokine receptors, the large family of leukocyte chemoattractant receptors that regulates immune system development and function, in large part by mediating leukocyte trafficking. This was announced in Pharmacological Reviews in a major overview of the first decade of research in this field [Murphy PM, Baggiolini M, Charo IF, Hébert CA, Horuk R, Matsushima K, Miller LH, Oppenheim JJ, and Power CA (2000) Pharmacol Rev 52:145-176]. Since then, several new receptors have been discovered, and major advances have been made for the others in many areas, including structural biology, signal transduction mechanisms, biology, and pharmacology. New and diverse roles have been identified in infection, immunity, inflammation, development, cancer, and other areas. The first two drugs acting at chemokine receptors have been approved by the U.S. Food and Drug Administration (FDA), maraviroc targeting CCR5 in human immunodeficiency virus (HIV)/AIDS, and plerixafor targeting CXCR4 for stem cell mobilization for transplantation in cancer, and other candidates are now undergoing pivotal clinical trials for diverse disease indications. In addition, a subfamily of atypical chemokine receptors has emerged that may signal through arrestins instead of G proteins to act as chemokine scavengers, and many microbial and invertebrate G protein-coupled chemokine receptors and soluble chemokine-binding proteins have been described. Here, we review this extended family of chemokine receptors and chemokine-binding proteins at the basic, translational, and clinical levels, including an update on drug development. We also introduce a new nomenclature for atypical chemokine receptors with the stem ACKR (atypical chemokine receptor) approved by the Nomenclature Committee of the International Union of Pharmacology and the Human Genome Nomenclature Committee.
Collapse
Affiliation(s)
- Francoise Bachelerie
- Chair, Subcommittee on Chemokine Receptors, Nomenclature Committee-International Union of Pharmacology, Bldg. 10, Room 11N113, NIH, Bethesda, MD 20892.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Rummel PC, Arfelt KN, Baumann L, Jenkins TJ, Thiele S, Lüttichau HR, Johnsen A, Pease J, Ghosh S, Kolbeck R, Rosenkilde MM. Molecular requirements for inhibition of the chemokine receptor CCR8--probe-dependent allosteric interactions. Br J Pharmacol 2013; 167:1206-17. [PMID: 22708643 DOI: 10.1111/j.1476-5381.2012.02076.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND AND PURPOSE Here we present a novel series of CCR8 antagonists based on a naphthalene-sulfonamide structure. This structure differs from the predominant pharmacophore for most small-molecule CC-chemokine receptor antagonists, which in fact activate CCR8, suggesting that CCR8 inhibition requires alternative structural probes. EXPERIMENTAL APPROACH The compounds were tested as inverse agonists and as antagonists against CCL1-induced activity in Gα(i) signalling and chemotaxis. Furthermore, they were assessed by heterologous competition binding against two radiolabelled receptor ligands: the endogenous agonist CCL1 and the virus-encoded antagonist MC148. KEY RESULTS All compounds were highly potent inverse agonists with EC(50) values from 1.7 to 23 nM. Their potencies as antagonists were more widely spread (EC(50) values from 5.9 to 1572 nM). Some compounds were balanced antagonists/inverse agonists whereas others were predominantly inverse agonists with >100-fold lower potency as antagonists. A correspondingly broad range of affinities, which followed the antagonist potencies, was disclosed by competition with [(125)I]-CCL1 (K(i) 3.4-842 nM), whereas the affinities measured against [(125)I]-MC148 were less widely spread (K(i) 0.37-27 nM), and matched the inverse agonist potencies. CONCLUSION AND IMPLICATIONS Despite highly potent and direct effects as inverse agonists, competition-binding experiments against radiolabelled agonist and tests for antagonism revealed a probe-dependent allosteric effect of these compounds. Thus, minor chemical changes affected the ability to modify chemokine binding and action, and divided the compounds into two groups: predominantly inverse agonists and balanced antagonists/inverse agonists. These studies have important implications for the design of new inverse agonists with or without antagonist properties.
Collapse
Affiliation(s)
- P C Rummel
- Department of Neuroscience and Pharmacology, Faculty of Health Sciences, Copenhagen University, Copenhagen, Denmark
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Qin S, Klamar CR, Fallert Junecko BA, Craigo J, Fuller DH, Reinhart TA. Functional characterization of ferret CCL20 and CCR6 and identification of chemotactic inhibitors. Cytokine 2013; 61:924-32. [PMID: 23360828 DOI: 10.1016/j.cyto.2012.12.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 12/19/2012] [Indexed: 01/07/2023]
Abstract
CCL20 is currently the only known chemokine ligand for the receptor CCR6, and is a mucosal chemokine involved in normal and pathological immune responses. Although nucleotide sequence data are available for ccl20 and ccr6 sequences from multiple species, the ferret ccl20 and ccr6 sequences have not been determined. To increase our understanding of immune function in ferret models of infection and vaccination, we have used RT-PCR to obtain the ferret ccl20 and ccr6 cDNA sequences and functionally characterize the encoded proteins. The open reading frames of both genes were highly conserved across species and mostly closely related to canine sequences. For functional analyses, single cell clones expressing ferret CCR6 were generated, a ferret CCL20/mouse IgG(2a) fusion protein (fCCL20-mIgG(2a)) was produced, and fCCL20 was chemically synthesized. Cell clones expressing ferret CCR6 responded chemotactically to fCCL20-mIgG2a fusion protein and synthetic ferret CCL20. Chemotaxis inhibition studies identified the polyphenol epigallocatechin-3-gallate and the murine γ-herpesvirus 68 M3 protein as inhibitors of fCCL20. Surface plasmon resonance studies revealed that EGCG bound directly to fCCL20. These results provide molecular characterization of previously unreported ferret immune gene sequences and for the first time identify a broad-spectrum small molecule inhibitor of CCL20 and reveal CCL20 as a target for the herpesviral M3 protein.
Collapse
Affiliation(s)
- Shulin Qin
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, 130 DeSoto Street, Pittsburgh, PA 15261, United States
| | | | | | | | | | | |
Collapse
|
15
|
White GE, Iqbal AJ, Greaves DR. CC chemokine receptors and chronic inflammation--therapeutic opportunities and pharmacological challenges. Pharmacol Rev 2013; 65:47-89. [PMID: 23300131 DOI: 10.1124/pr.111.005074] [Citation(s) in RCA: 213] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Chemokines are a family of low molecular weight proteins with an essential role in leukocyte trafficking during both homeostasis and inflammation. The CC class of chemokines consists of at least 28 members (CCL1-28) that signal through 10 known chemokine receptors (CCR1-10). CC chemokine receptors are expressed predominantly by T cells and monocyte-macrophages, cell types associated predominantly with chronic inflammation occurring over weeks or years. Chronic inflammatory diseases including rheumatoid arthritis, atherosclerosis, and metabolic syndrome are characterized by continued leukocyte infiltration into the inflammatory site, driven in large part by excessive chemokine production. Over years or decades, persistent inflammation may lead to loss of tissue architecture and function, causing severe disability or, in the case of atherosclerosis, fatal outcomes such as myocardial infarction or stroke. Despite the existence of several clinical strategies for targeting chronic inflammation, these diseases remain significant causes of morbidity and mortality globally, with a concomitant economic impact. Thus, the development of novel therapeutic agents for the treatment of chronic inflammatory disease continues to be a priority. In this review we introduce CC chemokine receptors as critical mediators of chronic inflammatory responses and explore their potential role as pharmacological targets. We discuss functions of individual CC chemokine receptors based on in vitro pharmacological data as well as transgenic animal studies. Focusing on three key forms of chronic inflammation--rheumatoid arthritis, atherosclerosis, and metabolic syndrome--we describe the pathologic function of CC chemokine receptors and their possible relevance as therapeutic targets.
Collapse
Affiliation(s)
- Gemma E White
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | | | | |
Collapse
|
16
|
Denis C, Deiteren K, Mortier A, Tounsi A, Fransen E, Proost P, Renauld JC, Lambeir AM. C-terminal clipping of chemokine CCL1/I-309 enhances CCR8-mediated intracellular calcium release and anti-apoptotic activity. PLoS One 2012; 7:e34199. [PMID: 22479563 PMCID: PMC3313992 DOI: 10.1371/journal.pone.0034199] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Accepted: 02/23/2012] [Indexed: 11/19/2022] Open
Abstract
Carboxypeptidase M (CPM) targets the basic amino acids arginine and lysine present at the C-terminus of peptides or proteins. CPM is thought to be involved in inflammatory processes. This is corroborated by CPM-mediated trimming and modulation of inflammatory factors, and expression of the protease in inflammatory environments. Since the function of CPM in and beyond inflammation remains mainly undefined, the identification of natural substrates can aid in discovering the (patho)physiological role of CPM. CCL1/I-309, with its three C-terminal basic amino acids, forms a potential natural substrate for CPM. CCL1 plays a role not only in inflammation but also in apoptosis, angiogenesis and tumor biology. Enzymatic processing differently impacts the biological activity of chemokines thereby contributing to the complex regulation of the chemokine system. The aim of the present study was to investigate whether (i) CCL1/I-309 is prone to trimming by CPM, and (ii) the biological activity of CCL1 is altered after C-terminal proteolytic processing. CCL1 was identified as a novel substrate for CPM in vitro using mass spectrometry. C-terminal clipping of CCL1 augmented intracellular calcium release mediated by CCR8 but reduced the binding of CCL1 to CCR8. In line with the higher intracellular calcium release, a pronounced increase of the anti-apoptotic activity of CCL1 was observed in the BW5147 cellular model. CCR8 signaling, CCR8 binding and anti-apoptotic activity were unaffected when CPM was exposed to the carboxypeptidase inhibitor DL-2-mercaptomethyl-3-guanidino-ethylthiopropanoic acid. The results of this study suggest that CPM is a likely candidate for the regulation of biological processes relying on the CCL1-CCR8 system.
Collapse
Affiliation(s)
- Catherine Denis
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | - Kathleen Deiteren
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | - Anneleen Mortier
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute, K.U. Leuven, Leuven, Belgium
| | - Amel Tounsi
- Ludwig Institute for Cancer Research, Brussels Branch, Université catholique de Louvain, Brussels, Belgium
- Experimental Medicine Unit, de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Erik Fransen
- StatUa Center for Statistics, University of Antwerp, Edegem, Belgium
| | - Paul Proost
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute, K.U. Leuven, Leuven, Belgium
| | - Jean-Christophe Renauld
- Ludwig Institute for Cancer Research, Brussels Branch, Université catholique de Louvain, Brussels, Belgium
- Experimental Medicine Unit, de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Anne-Marie Lambeir
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
- * E-mail:
| |
Collapse
|
17
|
Bosnjak B, Stelzmueller B, Erb KJ, Epstein MM. Treatment of allergic asthma: modulation of Th2 cells and their responses. Respir Res 2011; 12:114. [PMID: 21867534 PMCID: PMC3179723 DOI: 10.1186/1465-9921-12-114] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Accepted: 08/25/2011] [Indexed: 02/08/2023] Open
Abstract
Atopic asthma is a chronic inflammatory pulmonary disease characterised by recurrent episodes of wheezy, laboured breathing with an underlying Th2 cell-mediated inflammatory response in the airways. It is currently treated and, more or less, controlled depending on severity, with bronchodilators e.g. long-acting beta agonists and long-acting muscarinic antagonists or anti-inflammatory drugs such as corticosteroids (inhaled or oral), leukotriene modifiers, theophyline and anti-IgE therapy. Unfortunately, none of these treatments are curative and some asthmatic patients do not respond to intense anti-inflammatory therapies. Additionally, the use of long-term oral steroids has many undesired side effects. For this reason, novel and more effective drugs are needed. In this review, we focus on the CD4+ Th2 cells and their products as targets for the development of new drugs to add to the current armamentarium as adjuncts or as potential stand-alone treatments for allergic asthma. We argue that in early disease, the reduction or elimination of allergen-specific Th2 cells will reduce the consequences of repeated allergic inflammatory responses such as lung remodelling without causing generalised immunosuppression.
Collapse
Affiliation(s)
- Berislav Bosnjak
- Department of Dermatology, DIAID, Experimental Allergy Laboratory, Medical University of Vienna, Vienna, Austria
| | | | | | | |
Collapse
|
18
|
Abstract
The directed migration of cells in response to chemical cues is known as chemoattraction, and plays a key role in the temporal and spatial positioning of cells in lower- and higher-order life forms. Key molecules in this process are the chemotactic cytokines, or chemokines, which, in humans, constitute a family of approx. 40 molecules. Chemokines exert their effects by binding to specific GPCRs (G-protein-coupled receptors) which are present on a wide variety of mature cells and their progenitors, notably leucocytes. The inappropriate or excessive generation of chemokines is a key component of the inflammatory response observed in several clinically important diseases, notably allergic diseases such as asthma. Consequently, much time and effort has been directed towards understanding which chemokine receptors and ligands are important in the allergic response with a view to therapeutic intervention. Such strategies can take several forms, although, as the superfamily of GPCRs has historically proved amenable to blockade by small molecules, the development of specific antagonists has been has been a major focus of several groups. In the present review, I detail the roles of chemokines and their receptors in allergic disease and also highlight current progress in the development of relevant chemokine receptor antagonists.
Collapse
|
19
|
Islam SA, Chang DS, Colvin RA, Byrne MH, McCully ML, Moser B, Lira SA, Charo IF, Luster AD. Mouse CCL8, a CCR8 agonist, promotes atopic dermatitis by recruiting IL-5+ T(H)2 cells. Nat Immunol 2011; 12:167-77. [PMID: 21217759 DOI: 10.1038/ni.1984] [Citation(s) in RCA: 236] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Accepted: 12/09/2010] [Indexed: 12/29/2022]
Abstract
Mouse CCL8 is a CC chemokine of the monocyte chemoattractant protein (MCP) family whose biological activity and receptor usage have remained elusive. Here we show that CCL8 is highly expressed in the skin, where it serves as an agonist for the chemokine receptor CCR8 but not for CCR2. This distinguishes CCL8 from all other MCP chemokines. CCL8 responsiveness defined a population of highly differentiated, CCR8-expressing inflammatory T helper type 2 (T(H)2) cells enriched for interleukin (IL)-5. Ccr8- and Ccl8-deficient mice had markedly less eosinophilic inflammation than wild-type or Ccr4-deficient mice in a model of chronic atopic dermatitis. Adoptive transfer studies established CCR8 as a key regulator of T(H)2 cell recruitment into allergen-inflamed skin. In humans, CCR8 expression also defined an IL-5-enriched T(H)2 cell subset. The CCL8-CCR8 chemokine axis is therefore a crucial regulator of T(H)2 cell homing that drives IL-5-mediated chronic allergic inflammation.
Collapse
Affiliation(s)
- Sabina A Islam
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
|
21
|
Requirement of CCL17 for CCR7- and CXCR4-dependent migration of cutaneous dendritic cells. Proc Natl Acad Sci U S A 2010; 107:8736-41. [PMID: 20421491 DOI: 10.1073/pnas.0906126107] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Chemokines are known to regulate the steady-state and inflammatory migration of cutaneous dendritic cells (DCs). The beta-chemokine CCL17, a ligand of CCR4, is inducibly expressed in a subset of DCs and is strongly up-regulated in atopic diseases. Using an atopic dermatitis model, we show that CCL17-deficient mice develop acanthosis as WT mice, whereas dermal inflammation, T helper 2-type cytokine production, and the allergen-specific humoral immune response are significantly decreased. Notably, CCL17-deficient mice retained Langerhans cells (LCs) in the lesional skin after chronic allergen exposure, whereas most LCs emigrated from the epidermis of allergen-treated WT controls into draining lymph nodes (LNs). Moreover, CCL17-deficient LCs showed impaired emigration from the skin after exposure to a contact sensitizer. In contrast, the absence of CCR4 had no effect on cutaneous DC migration and development of atopic dermatitis symptoms. As an explanation for the major migratory defect of CCL17-deficient DCs in vivo, we demonstrate impaired mobility of CCL17-deficient DCs to CCL19/21 in 3D in vitro migration assays and a blockade of intracellular calcium release in response to CCR7 ligands. In addition, responsiveness of CCL17-deficient DCs to CXCL12 was impaired as well. We demonstrate that the inducible chemokine CCL17 sensitizes DCs for CCR7- and CXCR4-dependent migration to LN-associated homeostatic chemokines under inflammatory conditions and thus plays an important role in cutaneous DC migration.
Collapse
|
22
|
Abstract
Chemokines function in cell migration by binding and activating seven transmembrane G protein-coupled receptors (GPCRs) on leukocytes and many other diverse cell types. The extracellular binding event stabilizes specific conformations of the receptor that trigger cascades of intracellular signaling pathways involved in cell movement and activation (Baggiolini, 1998; Baggiolini et al., 1997; Charo and Ransohoff, 2006; Hartley et al., 2003; Kunkel and Butcher, 2002; Loetscher and Clark-Lewis, 2001). Although the current consensus is that monomeric forms of chemokines are necessary for receptor binding to induce cell migration, oligomeric states of chemokines may be associated with other complex functional roles such as regulation, haptotactic gradient formation, protection from proteolysis, and signaling related to processes distinct from migration. Accordingly, diverse biophysical methods have been used to identify and characterize the details of these quaternary interactions. This chapter aims to summarize these methods and to provide guidelines for their application in future studies.
Collapse
|
23
|
Wegmann M. Th2 cells as targets for therapeutic intervention in allergic bronchial asthma. Expert Rev Mol Diagn 2009; 9:85-100. [PMID: 19099351 DOI: 10.1586/14737159.9.1.85] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Th2 cells play a central role in the pathogenesis of allergic bronchial asthma, since each of their characteristic cytokines such as IL-4, IL-5, IL-9 and IL-13 contributes to hallmarks of this disease, including airway eosinophilia, increased mucus production, production of allergen-specific IgE and development of airway hyper-responsiveness. Therefore, these cells are predisposed as target cells for therapeutic intervention. Experimental approaches targeted Th2-type effector cytokines, Th2-cell recruitment and Th2-cell development. Another strategy uses the immunomodulatory potential of tolerance-inducing cytokines such as IL-10 or of cytokines such as IL-12, IL-18 and IFN-gamma that are able to induce a counterbalancing Th1 immune response.
Collapse
Affiliation(s)
- Michael Wegmann
- Bereich Experimentelle Pneumologie, Forschungszentrum Borstel, Leibniz-Zentrum für Medizin und Biowissenschaften, Parkallee 1, D-23845 Borstel, Germany.
| |
Collapse
|
24
|
Abstract
Chemokines are small chemoattractant cytokines involved in homeostatic and inflammatory immune cell migration. These small proteins have multiple functional properties that extend beyond their most recognized role in controlling cellular migration. The complex immunobiology of chemokines, coupled with the use of subsets of chemokine receptors as HIV-1 and SIV entry co-receptors, suggests that these immunomodulators could play important roles in the pathogenesis associated with infection by HIV-1 or SIV. This review provides an overview of the effects of pathogenic infection on chemokine expression in the SIV/macaque model system, and outlines potential mechanisms by which changes in these expression profiles could contribute to development of disease. Key challenges faced in studying chemokine function in vivo and new opportunities for further study and development of therapeutic interventions are discussed. Continued growth in our understanding of the effects of pathogenic SIV infection on chemokine expression and function and the continuing development of chemokine receptor targeted therapeutics will provide the tools and the systems necessary for future studies of the roles of chemokines in HIV-1 pathogenesis.
Collapse
Affiliation(s)
- Todd A Reinhart
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, USA.
| | | | | |
Collapse
|
25
|
Petit S, Chayen N, Pease J. Site-directed mutagenesis of the chemokine receptor CXCR6 suggests a novel paradigm for interactions with the ligand CXCL16. Eur J Immunol 2008; 38:2337-50. [DOI: 10.1002/eji.200838269] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
26
|
Qin S, Sui Y, Soloff AC, Junecko BAF, Kirschner DE, Murphey-Corb MA, Watkins SC, Tarwater PM, Pease JE, Barratt-Boyes SM, Reinhart TA. Chemokine and cytokine mediated loss of regulatory T cells in lymph nodes during pathogenic simian immunodeficiency virus infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 180:5530-6. [PMID: 18390737 PMCID: PMC2567810 DOI: 10.4049/jimmunol.180.8.5530] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Regulatory T cells (T(reg)) play key roles in immune regulation through multiple modes of suppression. The effects of HIV-1 infection on T(reg) levels in lymphoid tissues remain incompletely understood. To explore this issue, we have measured the levels of forkhead box protein 3 (FOXP3)-positive cells and associated immunomodulatory genes in a pathogenic simian immunodeficiency virus/macaque model and found that a loss of T(reg) in lymph nodes occurred following simian immunodeficiency virus infection. Changes in expression of the ligands for CXCR3, CCR4, and CCR7 and the cytokines TGF-beta and IL-2 were all linked to this loss of T(reg), which in turn was linked with increased levels of cellular activation. Our findings identify three mechanisms that likely contribute to SIV-driven loss of T(reg), including reduced levels of cytokines associated with T(reg) differentiation and altered expression of agonist and antagonist chemokines. The loss of T(reg) and the associated cellular activation in lymphoid tissues is consistent with the events in HIV-1-infected individuals and suggest that components of the T(reg) differentiation and trafficking network could be targets for therapeutic intervention.
Collapse
Affiliation(s)
- Shulin Qin
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Caramori G, Groneberg D, Ito K, Casolari P, Adcock IM, Papi A. New drugs targeting Th2 lymphocytes in asthma. J Occup Med Toxicol 2008; 3 Suppl 1:S6. [PMID: 18315837 PMCID: PMC2259400 DOI: 10.1186/1745-6673-3-s1-s6] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Asthma represents a profound worldwide public health problem. The most effective anti-asthmatic drugs currently available include inhaled beta2-agonists and glucocorticoids and control asthma in about 90-95% of patients. The current asthma therapies are not cures and symptoms return soon after treatment is stopped even after long term therapy. Although glucocorticoids are highly effective in controlling the inflammatory process in asthma, they appear to have little effect on the lower airway remodelling processes that appear to play a role in the pathophysiology of asthma at currently prescribed doses. The development of novel drugs may allow resolution of these changes. In addition, severe glucocorticoid-dependent and resistant asthma presents a great clinical burden and reducing the side-effects of glucocorticoids using novel steroid-sparing agents is needed. Furthermore, the mechanisms involved in the persistence of inflammation are poorly understood and the reasons why some patients have severe life threatening asthma and others have very mild disease are still unknown. Drug development for asthma has been directed at improving currently available drugs and findings new compounds that usually target the Th2-driven airway inflammatory response. Considering the apparently central role of T lymphocytes in the pathogenesis of asthma, drugs targeting disease-inducing Th2 cells are promising therapeutic strategies. However, although animal models of asthma suggest that this is feasible, the translation of these types of studies for the treatment of human asthma remains poor due to the limitations of the models currently used. The myriad of new compounds that are in development directed to modulate Th2 cells recruitment and/or activation will clarify in the near future the relative importance of these cells and their mediators in the complex interactions with the other pro-inflammatory/anti-inflammatory cells and mediators responsible of the different asthmatic phenotypes. Some of these new Th2-oriented strategies may in the future not only control symptoms and modify the natural course of asthma, but also potentially prevent or cure the disease.
Collapse
Affiliation(s)
- Gaetano Caramori
- Dipartimento di Medicina Clinica e Sperimentale, Centro di Ricerca su Asma e BPCO, Università di Ferrara, Ferrara, Italy
| | - David Groneberg
- Institute of Occupational Medicine, Charité- Universitätsmedizin Berlin, Free University and Humboldt University, Berlin, Germany
| | - Kazuhiro Ito
- Airway Disease Section, National Heart and Lung Institute, Imperial College of London, London, UK
| | - Paolo Casolari
- Dipartimento di Medicina Clinica e Sperimentale, Centro di Ricerca su Asma e BPCO, Università di Ferrara, Ferrara, Italy
| | - Ian M Adcock
- Airway Disease Section, National Heart and Lung Institute, Imperial College of London, London, UK
| | - Alberto Papi
- Dipartimento di Medicina Clinica e Sperimentale, Centro di Ricerca su Asma e BPCO, Università di Ferrara, Ferrara, Italy
| |
Collapse
|
28
|
Pegu A, Qin S, Fallert Junecko BA, Nisato RE, Pepper MS, Reinhart TA. Human Lymphatic Endothelial Cells Express Multiple Functional TLRs. THE JOURNAL OF IMMUNOLOGY 2008; 180:3399-405. [DOI: 10.4049/jimmunol.180.5.3399] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
29
|
Mueller A. Internalization: what does it tell us about pharmacokinetic and pharmacodynamic properties of an antagonist? Br J Pharmacol 2007; 152:1145-6. [PMID: 17982479 DOI: 10.1038/sj.bjp.0707521] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Chemokine receptors play an important role in trafficking leukocytes within the body, a process that depends on expression of the receptors on the cell surface. Expression levels are regulated by the rate of internalizing receptor compared to the rate of recycling/recovering receptor. Internalization is commonly induced by binding of agonists to their receptors that in turn use clathrin-coated pits or caveolae to internalize. Joplin and colleagues describe a novel usage of internalization assays to determine pharmacokinetic/pharmacodynamic relationships of an antagonist on CXCR3 in a murine system. Intriguingly their results show that internalization assays give robust data about the pharmacokinetics/pharmacodynamics of different agonists and antagonists in an in vivo model. This kind of assay will allow investigations of the pharmacological properties of agonists and antagonists in a completely different setting and also give new insight into the regulation of cell surface expression of chemokine receptors and other G protein-coupled receptors, which can lead to potential novel therapeutic targets.
Collapse
Affiliation(s)
- A Mueller
- School of Chemical Sciences and Pharmacy, University of East Anglia, University Plain, Norwich, UK.
| |
Collapse
|