1
|
Subaiea GM, Syed RU, Afsar S, Alhaidan TMS, Alzammay SA, Alrashidi AA, Alrowaili SF, Alshelaly DA, Alenezi AMSRA. Non-coding RNAs (ncRNAs) and multidrug resistance in glioblastoma: Therapeutic challenges and opportunities. Pathol Res Pract 2024; 253:155022. [PMID: 38086292 DOI: 10.1016/j.prp.2023.155022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 01/24/2024]
Abstract
Non-coding RNAs (ncRNAs) have been recognized as pivotal regulators of transcriptional and post-transcriptional gene modulation, exerting a profound influence on a diverse array of biological and pathological cascades, including the intricate mechanisms underlying tumorigenesis and the acquisition of drug resistance in neoplastic cells. Glioblastoma (GBM), recognized as the foremost and most aggressive neoplasm originating in the brain, is distinguished by its formidable resistance to the cytotoxic effects of chemotherapeutic agents and ionizing radiation. Recent years have witnessed an escalating interest in comprehending the involvement of ncRNAs, particularly lncRNAs, in GBM chemoresistance. LncRNAs, a subclass of ncRNAs, have been demonstrated as dynamic modulators of gene expression at the epigenetic, transcriptional, and post-transcriptional levels. Disruption in the regulation of lncRNAs has been observed across various human malignancies, including GBM, and has been linked with developing multidrug resistance (MDR) against standard chemotherapeutic agents. The potential of targeting specific ncRNAs or their downstream effectors to surmount chemoresistance is also critically evaluated, specifically focusing on ongoing preclinical and clinical investigations exploring ncRNA-based therapeutic strategies for glioblastoma. Nonetheless, targeting lncRNAs for therapeutic objectives presents hurdles, including overcoming the blood-brain barrier and the brief lifespan of oligonucleotide RNA molecules. Understanding the complex relationship between ncRNAs and the chemoresistance characteristic in glioblastoma provides valuable insights into the fundamental molecular mechanisms. It opens the path for the progression of innovative and effective therapeutic approaches to counter the therapeutic challenges posed by this aggressive brain tumor. This comprehensive review highlights the complex functions of diverse ncRNAs, including miRNAs, circRNAs, and lncRNAs, in mediating glioblastoma's chemoresistance.
Collapse
Affiliation(s)
- Gehad Mohammed Subaiea
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia
| | - Rahamat Unissa Syed
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia.
| | - S Afsar
- Department of Virology, Sri Venkateswara University, Tirupathi, Andhra Pradesh 517502, India.
| | | | - Seham Ahmed Alzammay
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | | | | | | | | |
Collapse
|
2
|
Zhang L, Chen L, Qi M, Yu F, Ni X, Hong H, Xu H, Xu S. Glyphosate induces autophagy in hepatic L8824 cell line through NO-mediated activation of RAS/RAF/MEK/ERK signaling pathway and energy metabolism disorders. FISH & SHELLFISH IMMUNOLOGY 2023; 137:108772. [PMID: 37100311 DOI: 10.1016/j.fsi.2023.108772] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/19/2023] [Accepted: 04/24/2023] [Indexed: 05/22/2023]
Abstract
Glyphosate is an herbicide commonly used worldwide, and its substantial use causes widespread pollution with runoff. However, research on glyphosate toxicity has mostly remained at the embryonic level and existing studies are limited. In the present study, we investigated whether glyphosate can induce autophagy in hepatic L8824 cells by regulating energy metabolism and rat sarcoma (RAS)/rapidly accelerated fibrosarcoma (RAF)/mitogen-activated extracellular signal-regulated kinase (MEK)/extracellular regulated protein kinases (ERK) signaling by activating nitric oxide (NO). First, we selected 0, 50, 200, and 500 μg/mL as the challenge doses, according to the inhibitory concentration of 50% (IC50) of glyphosate. The results showed that glyphosate exposure increased the enzyme activity of inducible nitric oxide synthase (iNOS), which in turn increased the NO content. The activity and expression of enzymes related to energy metabolism, such as hexokinase (HK)1, HK2, phosphofructokinase (PFK), phosphokinase (PK), succinate dehydrogenase (SDH), and nicotinamide adenine dinucleotide with hydrogen (NADH), were inhibited, and the RAS/RAF/MEK/ERK signaling pathway was activated. This led to the negative expression of mammalian target of rapamycin (mTOR) and P62 in hepatic L8824 cells and the activation of the autophagy marker genes microtubule-associated proteins light chain 3 (LC3) and Beclin1 to induce autophagy. The above results were dependent on glyphosate concentration. To verify whether autophagy can be excited by the RAS/RAF/MEK/ERK signaling pathway, we treated L8824 cells with the ERK inhibitor U0126 and found that the autophagy gene LC3 was reduced due to the inhibition of ERK, thus demonstrating the reliability of the results. In conclusion, our results demonstrate that glyphosate can induce autophagy in hepatic L8824 cells by activating NO, thus regulating energy metabolism and the RAS/RAF/MEK/ERK signaling pathway.
Collapse
Affiliation(s)
- Linlin Zhang
- College of Animal Science and Technology, Tarim University, Alar, Xinjiang Uygur Autonomous Region, 843300, PR China
| | - Lu Chen
- College of Animal Science and Technology, Tarim University, Alar, Xinjiang Uygur Autonomous Region, 843300, PR China
| | - Meng Qi
- College of Animal Science and Technology, Tarim University, Alar, Xinjiang Uygur Autonomous Region, 843300, PR China
| | - Fuchang Yu
- College of Animal Science and Technology, Tarim University, Alar, Xinjiang Uygur Autonomous Region, 843300, PR China
| | - Xiaotong Ni
- College of Animal Science and Technology, Tarim University, Alar, Xinjiang Uygur Autonomous Region, 843300, PR China
| | - Haozheng Hong
- College of Animal Science and Technology, Tarim University, Alar, Xinjiang Uygur Autonomous Region, 843300, PR China
| | - Haotian Xu
- College of Animal Science and Technology, Tarim University, Alar, Xinjiang Uygur Autonomous Region, 843300, PR China.
| | - Shiwen Xu
- College of Animal Science and Technology, Tarim University, Alar, Xinjiang Uygur Autonomous Region, 843300, PR China; Key Laboratory of Tarim Animal Husbandry Technology Corps, Tarim University, Alar, Xinjiang Uygur Autonomous Region, 843300, PR China.
| |
Collapse
|
3
|
Wang S, Zhang K, Yao Y, Li J, Deng S. Bacterial Infections Affect Male Fertility: A Focus on the Oxidative Stress-Autophagy Axis. Front Cell Dev Biol 2021; 9:727812. [PMID: 34746124 PMCID: PMC8566953 DOI: 10.3389/fcell.2021.727812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 10/04/2021] [Indexed: 12/21/2022] Open
Abstract
Numerous factors trigger male infertility, including lifestyle, the environment, health, medical resources and pathogenic microorganism infections. Bacterial infections of the male reproductive system can cause various reproductive diseases. Several male reproductive organs, such as the testicles, have unique immune functions that protect the germ cells from damage. In the reproductive system, immune cells can recognize the pathogen-associated molecular patterns carried by pathogenic microorganisms and activate the host's innate immune response. Furthermore, bacterial infections can lead to oxidative stress through multiple signaling pathways. Many studies have revealed that oxidative stress serves dual functions: moderate oxidative stress can help clear the invaders and maintain sperm motility, but excessive oxidative stress will induce host damage. Additionally, oxidative stress is always accompanied by autophagy which can also help maintain host homeostasis. Male reproductive system homeostasis disequilibrium can cause inflammation of the genitourinary system, influence spermatogenesis, and even lead to infertility. Here, we focus on the effect of oxidative stress and autophagy on bacterial infection in the male reproductive system, and we also explore the crosslink between oxidative stress and autophagy during this process.
Collapse
Affiliation(s)
- Sutian Wang
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Kunli Zhang
- Institute of Animal Health, Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Yuchang Yao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Jianhao Li
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
| | - Shoulong Deng
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| |
Collapse
|
4
|
ERK: A Double-Edged Sword in Cancer. ERK-Dependent Apoptosis as a Potential Therapeutic Strategy for Cancer. Cells 2021; 10:cells10102509. [PMID: 34685488 PMCID: PMC8533760 DOI: 10.3390/cells10102509] [Citation(s) in RCA: 121] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 12/12/2022] Open
Abstract
The RAF/MEK/ERK signaling pathway regulates diverse cellular processes as exemplified by cell proliferation, differentiation, motility, and survival. Activation of ERK1/2 generally promotes cell proliferation, and its deregulated activity is a hallmark of many cancers. Therefore, components and regulators of the ERK pathway are considered potential therapeutic targets for cancer, and inhibitors of this pathway, including some MEK and BRAF inhibitors, are already being used in the clinic. Notably, ERK1/2 kinases also have pro-apoptotic functions under certain conditions and enhanced ERK1/2 signaling can cause tumor cell death. Although the repertoire of the compounds which mediate ERK activation and apoptosis is expanding, and various anti-cancer compounds induce ERK activation while exerting their anti-proliferative effects, the mechanisms underlying ERK1/2-mediated cell death are still vague. Recent studies highlight the importance of dual-specificity phosphatases (DUSPs) in determining the pro- versus anti-apoptotic function of ERK in cancer. In this review, we will summarize the recent major findings in understanding the role of ERK in apoptosis, focusing on the major compounds mediating ERK-dependent apoptosis. Studies that further define the molecular targets of these compounds relevant to cell death will be essential to harnessing these compounds for developing effective cancer treatments.
Collapse
|
5
|
Role of Hypoxia-Mediated Autophagy in Tumor Cell Death and Survival. Cancers (Basel) 2021; 13:cancers13030533. [PMID: 33573362 PMCID: PMC7866864 DOI: 10.3390/cancers13030533] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 12/14/2022] Open
Abstract
Programmed cell death or type I apoptosis has been extensively studied and its contribution to the pathogenesis of disease is well established. However, autophagy functions together with apoptosis to determine the overall fate of the cell. The cross talk between this active self-destruction process and apoptosis is quite complex and contradictory as well, but it is unquestionably decisive for cell survival or cell death. Autophagy can promote tumor suppression but also tumor growth by inducing cancer-cell development and proliferation. In this review, we will discuss how autophagy reprograms tumor cells in the context of tumor hypoxic stress. We will illustrate how autophagy acts as both a suppressor and a driver of tumorigenesis through tuning survival in a context dependent manner. We also shed light on the relationship between autophagy and immune response in this complex regulation. A better understanding of the autophagy mechanisms and pathways will undoubtedly ameliorate the design of therapeutics aimed at targeting autophagy for future cancer immunotherapies.
Collapse
|
6
|
Du J, Dong Z, Tan L, Tan M, Zhang F, Zhang K, Pan G, Li C, Shi S, Zhang Y, Liu Y, Cui H. Tubeimoside I Inhibits Cell Proliferation and Induces a Partly Disrupted and Cytoprotective Autophagy Through Rapidly Hyperactivation of MEK1/2-ERK1/2 Cascade via Promoting PTP1B in Melanoma. Front Cell Dev Biol 2020; 8:607757. [PMID: 33392197 PMCID: PMC7773826 DOI: 10.3389/fcell.2020.607757] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/26/2020] [Indexed: 12/20/2022] Open
Abstract
Tubeimoside I (TBMS1), also referred to as tubeimoside A, is a natural compound extracted from the plant Tu Bei Mu (Bolbostemma paniculatum), which is a traditional Chinese herb used to treat multiple diseases for more than 1,000 years. Studies in recent years reported its anti-tumor activity in several cancers. However, whether it is effective in melanoma remains unknown. In the current study, we discovered that TBMS1 treatment inhibited melanoma cell proliferation in vitro and tumorigenecity in vivo. Besides, we also observed that TBMS1 treatment induced a partly disrupted autophagy, which still remained a protective role, disruption of which by chloroquine (CQ) or 3-methyladenine (3-MA) enhanced TBMS1-induced cell proliferation inhibition. CQ combined with TBMS1 even induced cellular apoptosis. BRAF(V600E) mutation and its continuously activated downstream MEK1/2-ERK1/2 cascade are found in 50% of melanomas and are important for malanomagenesis. However, hyperactivating MEK1/2-ERK1/2 cascade can also inhibit tumor growth. Intriguingly, we observed that TBMS1 rapidly hyperactivated MEK1/2-ERK1/2, inhibition of which by its inhibitor SL-327 rescued the anti-cancerous effects of TBMS1. Besides, the targets of TBMS1 were predicted by the ZINC Database based on its structure. It is revealed that protein-tyrosine phosphatase 1B (PTP1B) might be one of the targets of TBMS1. Inhibition of PTP1B by its selective inhibitor TCS401 or shRNA rescued the anti-cancerous effects of TBMS1 in melanoma cells. These results indicated that TBMS1 might activate PTP1B, which further hyperactivates MEK1/2-ERK1/2 cascade, thereby inhibiting cell proliferation in melanoma. Our results provided the potentiality of TBMS1 as a drug candidate for melanoma therapy and confirmed that rapidly hyperactivating an oncogenic signaling pathway may also be a promising strategy for cancer treatment.
Collapse
Affiliation(s)
- Juan Du
- Department of Dermatology, The Third Hospital of Hebei Medical University, Shijiazhuang, China
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, College of Sericulture and Textile and Biomass, Chongqing, China
| | - Zhen Dong
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, College of Sericulture and Textile and Biomass, Chongqing, China
- Cancer Center, Reproductive Medicine Center, Medical Research Institute, Southwest University, Chongqing, China
- NHC Key Laboratory of Birth Defects and Reproductive Health (Chongqing Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning Science and Technology Research Institute), Chongqing, China
| | - Li Tan
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, College of Sericulture and Textile and Biomass, Chongqing, China
- Cancer Center, Reproductive Medicine Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Mengqin Tan
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, College of Sericulture and Textile and Biomass, Chongqing, China
- Cancer Center, Reproductive Medicine Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Fang Zhang
- Department of Nuclear Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Kui Zhang
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, College of Sericulture and Textile and Biomass, Chongqing, China
- Cancer Center, Reproductive Medicine Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Guangzhao Pan
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, College of Sericulture and Textile and Biomass, Chongqing, China
- Cancer Center, Reproductive Medicine Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Chongyang Li
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, College of Sericulture and Textile and Biomass, Chongqing, China
- Cancer Center, Reproductive Medicine Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Shaomin Shi
- Department of Dermatology, The Third Hospital of Hebei Medical University, Shijiazhuang, China
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, College of Sericulture and Textile and Biomass, Chongqing, China
| | - Yanli Zhang
- Department of Dermatology, The Third Hospital of Hebei Medical University, Shijiazhuang, China
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, College of Sericulture and Textile and Biomass, Chongqing, China
| | - Yaling Liu
- Department of Dermatology, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, College of Sericulture and Textile and Biomass, Chongqing, China
- Cancer Center, Reproductive Medicine Center, Medical Research Institute, Southwest University, Chongqing, China
- NHC Key Laboratory of Birth Defects and Reproductive Health (Chongqing Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning Science and Technology Research Institute), Chongqing, China
| |
Collapse
|
7
|
Acute and chronic hypoxia differentially predispose lungs for metastases. Sci Rep 2019; 9:10246. [PMID: 31308473 PMCID: PMC6629695 DOI: 10.1038/s41598-019-46763-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 07/02/2019] [Indexed: 12/17/2022] Open
Abstract
Oscillations in oxygen levels affect malignant cell growth, survival, and metastasis, but also somatic cell behaviour. In this work, we studied the effect of the differential expression of the two primary hypoxia inducible transcription factor isoforms, HIF-1α and HIF-2α, and pulmonary hypoxia to investigate how the hypoxia response of the vascular endothelium remodels the lung pre-metastatic niche. Molecular responses to acute versus chronic tissue hypoxia have been proposed to involve dynamic HIF stabilization, but the downstream consequences and the extent to which differential lengths of exposure to hypoxia can affect HIF-isoform activation and secondary organ pre-disposition for metastasis is unknown. We used primary pulmonary endothelial cells and mouse models with pulmonary endothelium-specific deletion of HIF-1α or HIF-2α, to characterise their roles in vascular integrity, inflammation and metastatic take after acute and chronic hypoxia. We found that acute hypoxic response results in increased lung metastatic tumours, caused by HIF-1α-dependent endothelial cell death and increased microvascular permeability, in turn facilitating extravasation. This is potentiated by the recruitment and retention of specific myeloid cells that further support a pro-metastatic environment. We also found that chronic hypoxia delays tumour growth to levels similar to those seen in normoxia, and in a HIF-2α-specific fashion, correlating with increased endothelial cell viability and vascular integrity. Deletion of endothelial HIF-2α rendered the lung environment more vulnerable to tumour cell seeding and growth. These results demonstrate that the nature of the hypoxic challenge strongly influences the nature of the endothelial cell response, and affects critical parameters of the pulmonary microenvironment, significantly impacting metastatic burden. Additionally, this work establishes endothelial cells as important players in lung remodelling and metastatic progression.
Collapse
|
8
|
Deng S, Shanmugam MK, Kumar AP, Yap CT, Sethi G, Bishayee A. Targeting autophagy using natural compounds for cancer prevention and therapy. Cancer 2019; 125:1228-1246. [DOI: 10.1002/cncr.31978] [Citation(s) in RCA: 181] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 11/24/2018] [Accepted: 12/10/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Shuo Deng
- Department of Physiology Yong Loo Lin School of Medicine, National University of Singapore Singapore
| | - Muthu K. Shanmugam
- Department of Pharmacology Yong Loo Lin School of Medicine, National University of Singapore Singapore
| | - Alan Prem Kumar
- Department of Pharmacology Yong Loo Lin School of Medicine, National University of Singapore Singapore
- Cancer Science Institute of Singapore National University of Singapore Singapore
- Cancer Program, Medical Science Cluster Yong Loo Lin School of Medicine, National University of Singapore Singapore
- National University Cancer Institute National University Health System Singapore
- Curtin Medical School, Faculty of Health Sciences Curtin University Perth West Australia Australia
| | - Celestial T. Yap
- Department of Physiology Yong Loo Lin School of Medicine, National University of Singapore Singapore
- National University Cancer Institute National University Health System Singapore
| | - Gautam Sethi
- Department of Pharmacology Yong Loo Lin School of Medicine, National University of Singapore Singapore
| | | |
Collapse
|
9
|
Daskalaki I, Gkikas I, Tavernarakis N. Hypoxia and Selective Autophagy in Cancer Development and Therapy. Front Cell Dev Biol 2018; 6:104. [PMID: 30250843 PMCID: PMC6139351 DOI: 10.3389/fcell.2018.00104] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 08/13/2018] [Indexed: 01/07/2023] Open
Abstract
Low oxygen availability, a condition known as hypoxia, is a common feature of various pathologies including stroke, ischemic heart disease, and cancer. Hypoxia adaptation requires coordination of intricate pathways and mechanisms such as hypoxia-inducible factors (HIFs), the unfolded protein response (UPR), mTOR, and autophagy. Recently, great effort has been invested toward elucidating the interplay between hypoxia-induced autophagy and cancer cell metabolism. Although novel types of selective autophagy have been identified, including mitophagy, pexophagy, lipophagy, ERphagy and nucleophagy among others, their potential interface with hypoxia response mechanisms remains poorly understood. Autophagy activation facilitates the removal of damaged cellular compartments and recycles components, thus promoting cell survival. Importantly, tumor cells rely on autophagy to support self-proliferation and metastasis; characteristics related to poor disease prognosis. Therefore, a deeper understanding of the molecular crosstalk between hypoxia response mechanisms and autophagy could provide important insights with relevance to cancer and hypoxia-related pathologies. Here, we survey recent findings implicating selective autophagy in hypoxic responses, and discuss emerging links between these pathways and cancer pathophysiology.
Collapse
Affiliation(s)
- Ioanna Daskalaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
- Department of Biology, University of Crete, Heraklion, Greece
| | - Ilias Gkikas
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
- Department of Biology, University of Crete, Heraklion, Greece
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
- Department of Basic Sciences, Medical School, University of Crete, Heraklion, Greece
| |
Collapse
|
10
|
Lebovitz CB, Robertson AG, Goya R, Jones SJ, Morin RD, Marra MA, Gorski SM. Cross-cancer profiling of molecular alterations within the human autophagy interaction network. Autophagy 2016. [PMID: 26208877 PMCID: PMC4590660 DOI: 10.1080/15548627.2015.1067362] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Aberrant activation or disruption of autophagy promotes tumorigenesis in various preclinical models of cancer, but whether the autophagy pathway is a target for recurrent molecular alteration in human cancer patient samples is unknown. To address this outstanding question, we surveyed 211 human autophagy-associated genes for tumor-related alterations to DNA sequence and RNA expression levels and examined their association with patient survival outcomes in multiple cancer types with sequence data from The Cancer Genome Atlas consortium. We found 3 (RB1CC1/FIP200, ULK4, WDR45/WIPI4) and one (ATG7) core autophagy genes to be under positive selection for somatic mutations in endometrial carcinoma and clear cell renal carcinoma, respectively, while 29 autophagy regulators and pathway interactors, including previously identified KEAP1, NFE2L2, and MTOR, were significantly mutated in 6 of the 11 cancer types examined. Gene expression analyses revealed that GABARAPL1 and MAP1LC3C/LC3C transcripts were less abundant in breast cancer and non-small cell lung cancers than in matched normal tissue controls; ATG4D transcripts were increased in lung squamous cell carcinoma, as were ATG16L2 transcripts in kidney cancer. Unsupervised clustering of autophagy-associated mRNA levels in tumors stratified patient overall survival in 3 of 9 cancer types (acute myeloid leukemia, clear cell renal carcinoma, and head and neck cancer). These analyses provide the first comprehensive resource of recurrently altered autophagy-associated genes in human tumors, and highlight cancer types and subtypes where perturbed autophagy may be relevant to patient overall survival.
Collapse
Affiliation(s)
- Chandra B Lebovitz
- a The Genome Sciences Centre; BC Cancer Agency ; Vancouver, BC Canada.,b Department of Molecular Biology and Biochemistry ; Simon Fraser University ; Burnaby , BC Canada
| | | | - Rodrigo Goya
- a The Genome Sciences Centre; BC Cancer Agency ; Vancouver, BC Canada.,c Centre for High-Throughput Biology; University of British Columbia ; Vancouver , BC Canada
| | - Steven J Jones
- a The Genome Sciences Centre; BC Cancer Agency ; Vancouver, BC Canada.,b Department of Molecular Biology and Biochemistry ; Simon Fraser University ; Burnaby , BC Canada.,d Department of Medical Genetics ; University of British Columbia ; Vancouver , BC Canada
| | - Ryan D Morin
- a The Genome Sciences Centre; BC Cancer Agency ; Vancouver, BC Canada.,b Department of Molecular Biology and Biochemistry ; Simon Fraser University ; Burnaby , BC Canada
| | - Marco A Marra
- a The Genome Sciences Centre; BC Cancer Agency ; Vancouver, BC Canada.,d Department of Medical Genetics ; University of British Columbia ; Vancouver , BC Canada
| | - Sharon M Gorski
- a The Genome Sciences Centre; BC Cancer Agency ; Vancouver, BC Canada.,b Department of Molecular Biology and Biochemistry ; Simon Fraser University ; Burnaby , BC Canada
| |
Collapse
|
11
|
Hamacher-Brady A, Brady NR. Mitophagy programs: mechanisms and physiological implications of mitochondrial targeting by autophagy. Cell Mol Life Sci 2016; 73:775-95. [PMID: 26611876 PMCID: PMC4735260 DOI: 10.1007/s00018-015-2087-8] [Citation(s) in RCA: 301] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 10/30/2015] [Accepted: 11/02/2015] [Indexed: 02/07/2023]
Abstract
Mitochondria are an essential source of ATP for cellular function, but when damaged, mitochondria generate a plethora of stress signals, which lead to cellular dysfunction and eventually programmed cell death. Thus, a major component of maintaining cellular homeostasis is the recognition and removal of dysfunctional mitochondria through autophagy-mediated degradation, i.e., mitophagy. Mitophagy further constitutes a developmental program, and undergoes a high degree of crosstalk with apoptosis. Reduced mitochondrial quality control is linked to disease pathogenesis, suggesting the importance of process elucidation as a clinical target. Recent work has revealed multiple mitophagy programs that operate independently or undergo crosstalk, and require modulated autophagy receptor activities at outer membranes of mitochondria. Here, we review these mitophagy programs, focusing on pathway mechanisms which recognize and target mitochondria for sequestration by autophagosomes, as well as mechanisms controlling pathway activities. Furthermore, we provide an introduction to the currently available methods for detecting mitophagy.
Collapse
Affiliation(s)
- Anne Hamacher-Brady
- Lysosomal Systems Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Bioquant, University of Heidelberg, INF 267, BQ0045, 69120, Heidelberg, Germany.
| | - Nathan Ryan Brady
- Systems Biology of Cell Death Mechanisms, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Department of Surgery, Heidelberg University Hospital, Heidelberg, Germany.
- Bioquant, University of Heidelberg, INF 267, BQ0045, 69120, Heidelberg, Germany.
| |
Collapse
|
12
|
Stewart ML, Tamayo P, Wilson AJ, Wang S, Chang YM, Kim JW, Khabele D, Shamji AF, Schreiber SL. KRAS Genomic Status Predicts the Sensitivity of Ovarian Cancer Cells to Decitabine. Cancer Res 2015; 75:2897-906. [PMID: 25968887 PMCID: PMC4506246 DOI: 10.1158/0008-5472.can-14-2860] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 04/28/2015] [Indexed: 01/05/2023]
Abstract
Decitabine, a cancer therapeutic that inhibits DNA methylation, produces variable antitumor response rates in patients with solid tumors that might be leveraged clinically with identification of a predictive biomarker. In this study, we profiled the response of human ovarian, melanoma, and breast cancer cells treated with decitabine, finding that RAS/MEK/ERK pathway activation and DNMT1 expression correlated with cytotoxic activity. Further, we showed that KRAS genomic status predicted decitabine sensitivity in low-grade and high-grade serous ovarian cancer cells. Pretreatment with decitabine decreased the cytotoxic activity of MEK inhibitors in KRAS-mutant ovarian cancer cells, with reciprocal downregulation of DNMT1 and MEK/ERK phosphorylation. In parallel with these responses, decitabine also upregulated the proapoptotic BCL-2 family member BNIP3, which is known to be regulated by MEK and ERK, and heightened the activity of proapoptotic small-molecule navitoclax, a BCL-2 family inhibitor. In a xenograft model of KRAS-mutant ovarian cancer, combining decitabine and navitoclax heightened antitumor activity beyond administration of either compound alone. Our results define the RAS/MEK/DNMT1 pathway as a determinant of sensitivity to DNA methyltransferase inhibition, specifically implicating KRAS status as a biomarker of drug response in ovarian cancer.
Collapse
Affiliation(s)
| | - Pablo Tamayo
- The Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Andrew J Wilson
- Department of Obstetrics and Gynecology, Vanderbilt University, Nashville, Tennessee
| | - Stephanie Wang
- The Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Yun Min Chang
- The Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Jong W Kim
- The Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Dineo Khabele
- Department of Obstetrics and Gynecology, Vanderbilt University, Nashville, Tennessee
| | - Alykhan F Shamji
- The Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | | |
Collapse
|
13
|
Zada S, Noh HS, Baek SM, Ha JH, Hahm JR, Kim DR. Depletion of p18/LAMTOR1 promotes cell survival via activation of p27(kip1) -dependent autophagy under starvation. Cell Biol Int 2015; 39:1242-50. [PMID: 26032166 DOI: 10.1002/cbin.10497] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 05/24/2015] [Indexed: 11/09/2022]
Abstract
The MAPK and mTOR signal pathways in endosomes or lysosomes play a crucial role in cell survival and death. They are also closely associated with autophagy, a catabolic process highly regulated under various cellular stress or nutrient deprivation. Recently we have isolated a protein, named p18/LAMTOR1, that specifically regulates the ERK or mTOR pathway in lysosomes. p18/LAMTOR1 also interacts with p27(kip1) . Here we examined how p18/LAMTOR1 plays a role in autophagy under nutrient deprivation. The p18(+/+) MEF cells were more susceptible to cell death under starvation or in the presence of AICAR in comparison with p18(-/-) MEF cells. Cleavage of caspase-3 was increased in p18(+/+) MEF cells under starvation, and phosphorylation at the threonine 198 of p27(kip1) was highly elevated in starved p18(-/-) MEF cells. Furthermore, LC3-II formation and other autophagy-associated proteins were largely increased in p18-deficient cells, and suppression of p27(kip1) expression in p18(-/-) MEF cells mitigated starvation-induced cell death. These data suggest that ablation of p18/LAMTOR1 suppresses starvation-induced cell death by stimulating autophagy through modulation of p27(kip1) activity.
Collapse
Affiliation(s)
- Sahib Zada
- Department of Biochemistry and Convergence Medical Sciences, Gyeongsang National University School of Medicine, JinJu, Republic of Korea
| | - Hae Sook Noh
- Department of Biochemistry and Convergence Medical Sciences, Gyeongsang National University School of Medicine, JinJu, Republic of Korea.,Institute of Health Sciences, Gyeongsang National University School of Medicine, JinJu, Republic of Korea
| | - Seon Mi Baek
- Department of Biochemistry and Convergence Medical Sciences, Gyeongsang National University School of Medicine, JinJu, Republic of Korea
| | - Ji Hye Ha
- Department of Biochemistry and Convergence Medical Sciences, Gyeongsang National University School of Medicine, JinJu, Republic of Korea
| | - Jong Ryeal Hahm
- Institute of Health Sciences, Gyeongsang National University School of Medicine, JinJu, Republic of Korea.,Internal Medicine, Gyeongsang National University School of Medicine, JinJu, Republic of Korea
| | - Deok Ryong Kim
- Department of Biochemistry and Convergence Medical Sciences, Gyeongsang National University School of Medicine, JinJu, Republic of Korea.,Institute of Health Sciences, Gyeongsang National University School of Medicine, JinJu, Republic of Korea
| |
Collapse
|
14
|
Reduced HRAS G12V-Driven Tumorigenesis of Cell Lines Expressing KRAS C118S. PLoS One 2015; 10:e0123918. [PMID: 25902334 PMCID: PMC4406447 DOI: 10.1371/journal.pone.0123918] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 03/09/2015] [Indexed: 11/19/2022] Open
Abstract
In many different human cancers, one of the HRAS, NRAS, or KRAS genes in the RAS family of small GTPases acquires an oncogenic mutation that renders the encoded protein constitutively GTP-bound and thereby active, which is well established to promote tumorigenesis. In addition to oncogenic mutations, accumulating evidence suggests that the wild-type isoforms may also be activated and contribute to oncogenic RAS-driven tumorigenesis. In this regard, redox-dependent reactions with cysteine 118 (C118) have been found to promote activation of wild-type HRAS and NRAS. We sought to determine if this residue is also important for the activation of wild-type KRAS and promotion of tumorigenesis. Thus, we mutated C118 to serine (C118S) in wild-type KRAS to block redox-dependent reactions at this site. We now report that this mutation reduced the level of GTP-bound KRAS and impaired RAS signaling stimulated by the growth factor EGF. With regards to tumorigenesis, we also report that oncogenic HRAS-transformed human cells in which endogenous KRAS was knocked down and replaced with KRASC118S exhibited reduced xenograft tumor growth, as did oncogenic HRAS-transformed KrasC118S/C118S murine cells in which the C118S mutation was knocked into the endogenous Kras gene. Taken together, these data suggest a role for redox-dependent activation of wild-type KRAS through C118 in oncogenic HRAS-driven tumorigenesis.
Collapse
|
15
|
Lam W, Jiang Z, Guan F, Huang X, Hu R, Wang J, Bussom S, Liu SH, Zhao H, Yen Y, Cheng YC. PHY906(KD018), an adjuvant based on a 1800-year-old Chinese medicine, enhanced the anti-tumor activity of Sorafenib by changing the tumor microenvironment. Sci Rep 2015; 5:9384. [PMID: 25819872 PMCID: PMC4377583 DOI: 10.1038/srep09384] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 02/24/2015] [Indexed: 12/24/2022] Open
Abstract
PHY906 (KD018) is a four-herb Chinese Medicine Formula. It has been shown to potentially enhance the therapeutic indices of different class anticancer agents in vivo. Here, PHY906 is reported to enhance the anti-tumor activity of Sorafenib in nude mice bearing HepG2 xenografts. Among the four herbal ingredients of PHY906, Scutellaria baicalensis Georgi (S) and Paeonia lactiflora Pall (P) are required; however, S plays a more important role than P in increasing tumor apoptosis induced by Sorafenib with an increase of mouse(m)FasL and human(h)FasR expression. PHY906 may potentiate Sorafenib action by increasing hMCP1 expression and enhancing infiltration of macrophages into tumors with a higher M1/M2 (tumor rejection) signature expression pattern, as well as affect autophagy by increasing AMPKα-P and ULK1-S555-P of tumors. Depletion of macrophage could counteract PHY906 to potentiate the anti-tumor activity of Sorafenib. It was reported that tumor cells with higher levels of ERK1/2-P are more susceptible to Sorafenib, and the S component of PHY906 may increase ERK1/2-P via inhibition of ERK1/2 phosphatase in HepG2 tumors. PHY906 may potentiate the anti-hepatoma activity of Sorafenib by multiple mechanisms targeting on the inflammatory state of microenvironment of tumor tissue through two major ingredients (P and S) of PHY906.
Collapse
Affiliation(s)
- Wing Lam
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | - Zaoli Jiang
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | - Fulan Guan
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | - Xiu Huang
- Department of Computational Biology and Bioinformatics, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | - Rong Hu
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | - Jing Wang
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | - Scott Bussom
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | | - Hongyu Zhao
- Department of Computational Biology and Bioinformatics, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | - Yun Yen
- Department of Molecular Pharmacology. City of Hope, Duarte, California, USA
| | - Yung-Chi Cheng
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| |
Collapse
|
16
|
Silencing the wild-type and mutant K-ras increases the resistance to 5-flurouracil in HCT-116 as a colorectal cancer cell line. Anticancer Drugs 2015; 26:187-96. [DOI: 10.1097/cad.0000000000000175] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
17
|
Abstract
SIGNIFICANCE Oxidative (reactive oxygen species [ROS]) and nitrosative (reactive nitrogen species [RNS]) stress affects many physiological processes, including survival and death. Although high levels of ROS/RNS mainly causes cell death, low levels of free radicals directly modulate the activities of transcriptional factors, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), p53, and nuclear factor (erythroid-derived) 2-like (Nrf2), and regulate numerous protein kinase cascades that participate in the regulation of the cross talk between autophagy and apoptosis. RECENT ADVANCES Low levels of ROS modify Atg4 and high mobility group box 1 (HMGB1) proteins, activate AMP-activated protein kinase (AMPK) and apoptosis signal-regulating kinase/c-Jun N-terminal kinase (JNK) pathways, or transactivate various proteins that could upregulate autophagy, leading to reductions in apoptosis. Transactivation of antioxidant genes blocks apoptosis and serves as a feedback loop to reduce autophagy. Free radicals could also activate protein kinase B (PKB, or Akt), preventing both autophagy and apoptosis. Stimulation of nitric oxide formation causes S-nitrosylation of several kinases, including JNK1 and IκB kinase β, which blocks autophagy and could promote apoptosis. However, S-nitrosylation of some proapoptotic proteins could block apoptosis. CRITICAL ISSUES Endoplasmic reticulum and mitochondria are the main sources of free radicals, which play an essential role in the regulation of apoptosis and autophagy. Oxidation of cardiolipin promotes cytochrome c release and apoptosis that potentially could be inhibited by autophagic clearance of damaged mitochondria. Elimination of damaged mitochondria reduces ROS accumulation, creating a feedback loop that causes inhibition of autophagy. Low levels of RNS could inhibit fission of mitochondria, which would block their degradation by autophagy and spare cells from apoptosis. FUTURE DIRECTIONS Understanding of mechanisms that regulate the cross talk between cell fates is essential for discovery of therapeutic tools in the strenuous fight against various disorders, including neurodegeneration and cancer.
Collapse
Affiliation(s)
- Vitaliy O Kaminskyy
- 1 Division of Toxicology, Institute of Environmental Medicine , Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
18
|
Wang B, Xiao JL, Ling YH, Meng XJ, Wu B, Yang XY, Zou F. BNIP3 upregulation by ERK and JNK mediates cadmium-induced necrosis in neuronal cells. Toxicol Sci 2014; 140:393-402. [PMID: 24824807 DOI: 10.1093/toxsci/kfu091] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cadmium (Cd) is a toxic heavy metal that may cause neurological disorders. We studied the mechanism underlying Cd-mediated cell death in neuronal cells. In Cd-induced neurotoxicity, caspase-3 was only modestly activated, and accordingly, zVAD-fmk, a pan-caspase inhibitor, partially attenuated cell death. However, pretreatment with Necrox-2 or Necrox-5, two novel necrosis inhibitors, suppressed cell death more markedly compared with pretreatment with zVAD-fmk. Moreover, the necrosis inhibitors did not prevent cleavage of caspase-3. These results indicate that caspase-independent necrosis is more prevalent in Cd-induced neurotoxicity. Bcl-2 and adenovirus E1B-19 kDa-interacting protein 3 (BNIP3) has been reported to be related to caspase-independent cell death. Cd treatment caused a dramatic upregulation of BNIP3 mRNA and protein levels in vitro and in vivo. Furthermore, knockdown of BNIP3 greatly inhibited Cd-induced cell death. Importantly, BNIP3 RNAi decreased lactate dehydrogenase release and the percentage of propidium iodide-positive cells, two markers of necrotic cell death due to rupture of the cell membrane, whereas it had no effect on activation of caspase-3 in Cd-treated cells. These data suggest that BNIP3 mediates caspase-independent necrosis, but not apoptosis. Moreover, our results indicate that induction of BNIP3 by Cd may not be related to HIF-1 which is generally regarded as a mediator responsible for BNIP3 expression. Finally, we show that mitogen-activated protein kinases (MAPKs) are activated by Cd in vitro and in vivo; ERK and JNK promote BNIP3 upregulation and subsequent necrosis. Taken together, our results suggest BNIP3, upregulated by activation of ERK and JNK, mediates Cd-induced necrosis in neuronal cells.
Collapse
Affiliation(s)
- Bin Wang
- Department of Occupational Heath and Occupational Medicine, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jia-Li Xiao
- Department of Occupational Heath and Occupational Medicine, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yi-Hui Ling
- Department of Occupational Heath and Occupational Medicine, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xiao-Jing Meng
- Department of Occupational Heath and Occupational Medicine, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Bing Wu
- Department of Occupational Heath and Occupational Medicine, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xin-Yi Yang
- Department of Occupational Heath and Occupational Medicine, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Fei Zou
- Department of Occupational Heath and Occupational Medicine, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| |
Collapse
|
19
|
Ávalos Y, Canales J, Bravo-Sagua R, Criollo A, Lavandero S, Quest AFG. Tumor suppression and promotion by autophagy. BIOMED RESEARCH INTERNATIONAL 2014; 2014:603980. [PMID: 25328887 PMCID: PMC4189854 DOI: 10.1155/2014/603980] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 09/03/2014] [Indexed: 12/12/2022]
Abstract
Autophagy is a highly regulated catabolic process that involves lysosomal degradation of proteins and organelles, mostly mitochondria, for the maintenance of cellular homeostasis and reduction of metabolic stress. Problems in the execution of this process are linked to different pathological conditions, such as neurodegeneration, aging, and cancer. Many of the proteins that regulate autophagy are either oncogenes or tumor suppressor proteins. Specifically, tumor suppressor genes that negatively regulate mTOR, such as PTEN, AMPK, LKB1, and TSC1/2 stimulate autophagy while, conversely, oncogenes that activate mTOR, such as class I PI3K, Ras, Rheb, and AKT, inhibit autophagy, suggesting that autophagy is a tumor suppressor mechanism. Consistent with this hypothesis, the inhibition of autophagy promotes oxidative stress, genomic instability, and tumorigenesis. Nevertheless, autophagy also functions as a cytoprotective mechanism under stress conditions, including hypoxia and nutrient starvation, that promotes tumor growth and resistance to chemotherapy in established tumors. Here, in this brief review, we will focus the discussion on this ambiguous role of autophagy in the development and progression of cancer.
Collapse
Affiliation(s)
- Yenniffer Ávalos
- 1Laboratory of Cellular Communication, Advanced Center for Chronic Diseases (ACCDiS) and Center for Molecular Studies of the Cell, Program in Cell and Molecular Biology, Biomedical Sciences Institute (ICBM), Faculty of Medicine, University of Chile, 8380492 Santiago, Chile
- 2Laboratory of Molecular Signal Transduction, Advanced Center for Chronic Diseases (ACCDiS) and Center for Molecular Studies of the Cell, Faculty of Chemical and Pharmaceutical Sciences & Faculty of Medicine, University of Chile, 8380492 Santiago, Chile
| | - Jimena Canales
- 1Laboratory of Cellular Communication, Advanced Center for Chronic Diseases (ACCDiS) and Center for Molecular Studies of the Cell, Program in Cell and Molecular Biology, Biomedical Sciences Institute (ICBM), Faculty of Medicine, University of Chile, 8380492 Santiago, Chile
| | - Roberto Bravo-Sagua
- 1Laboratory of Cellular Communication, Advanced Center for Chronic Diseases (ACCDiS) and Center for Molecular Studies of the Cell, Program in Cell and Molecular Biology, Biomedical Sciences Institute (ICBM), Faculty of Medicine, University of Chile, 8380492 Santiago, Chile
- 2Laboratory of Molecular Signal Transduction, Advanced Center for Chronic Diseases (ACCDiS) and Center for Molecular Studies of the Cell, Faculty of Chemical and Pharmaceutical Sciences & Faculty of Medicine, University of Chile, 8380492 Santiago, Chile
| | - Alfredo Criollo
- 3Research Institute of Dental Science, Faculty of Dentistry, University of Chile, 8380492 Santiago, Chile
| | - Sergio Lavandero
- 2Laboratory of Molecular Signal Transduction, Advanced Center for Chronic Diseases (ACCDiS) and Center for Molecular Studies of the Cell, Faculty of Chemical and Pharmaceutical Sciences & Faculty of Medicine, University of Chile, 8380492 Santiago, Chile
- 4Department of Internal Medicine, Cardiology Division, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
- *Sergio Lavandero: and
| | - Andrew F. G. Quest
- 1Laboratory of Cellular Communication, Advanced Center for Chronic Diseases (ACCDiS) and Center for Molecular Studies of the Cell, Program in Cell and Molecular Biology, Biomedical Sciences Institute (ICBM), Faculty of Medicine, University of Chile, 8380492 Santiago, Chile
- *Andrew F. G. Quest:
| |
Collapse
|
20
|
The interplay between epigenetic silencing, oncogenic KRas and HIF-1 regulatory pathways in control of BNIP3 expression in human colorectal cancer cells. Biochem Biophys Res Commun 2013; 441:707-12. [PMID: 24211581 DOI: 10.1016/j.bbrc.2013.10.098] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 10/18/2013] [Indexed: 01/22/2023]
Abstract
Bcl-2/adenovirus E1B-19kDa-interacting protein 3 (BNIP3) is an important mediator of cell survival and a member of the Bcl-2 family of proteins that regulate programmed cell death and autophagy. We have previously established a link between the expression of oncogenic HRas and up-regulation of BNIP3 and the control of autophagy in cancer cells. However, in view of varied expression of BNIP3 in different tumor types and emerging uncertainties as to the role of epigenetic silencing, oncogenic regulation and the role of BNIP3 in cancer are still poorly understood. In the present study we describe profound effect of KRas on the expression of methylated BNIP3 in colorectal cancer cells and explore the interplay between HIF-1, hypoxia pathway and oncogenic KRas in this context. We observed that BNIP3 mRNA remains undetectable in aggressive DLD-1 cells harboring G13D mutant KRAS and HT-29 colorectal cancer cells unless the cells are exposed to demethylating agents such as 5-aza-2'-deoxycytidine. Following this treatment BNIP3 expression remains uniquely dependent on the Ras activity. We found that hypoxia or pharmacological activation of HIF-1 alone contributes to, but is not sufficient for efficient induction of BNIP3 mRNA transcription in cells lacking mutant KRas activity. The up-regulation of BNIP3 by KRas in this setting is mediated by the MAPK pathway, and is attenuated by the respective inhibitors (PD98059, U0126). Thus, we demonstrate the novel mechanism where activity of Ras is essential for 5-aza-2'-deoxycytidine-mediated BNIP3 expression. Moreover, we found that 5-aza-2'-deoxycytidine-mediated or enforced up-regulation of BNIP3 in DLD-1 cells results in KRas-dependent resistance to 5-Fluorouracil.
Collapse
|
21
|
Wang Y, Han C, Lu L, Magliato S, Wu T. Hedgehog signaling pathway regulates autophagy in human hepatocellular carcinoma cells. Hepatology 2013; 58:995-1010. [PMID: 23504944 PMCID: PMC3706478 DOI: 10.1002/hep.26394] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 02/25/2013] [Accepted: 03/07/2013] [Indexed: 12/11/2022]
Abstract
UNLABELLED Hedgehog (Hh) signaling plays an important role in embryonic development and in the regulation of a variety of cellular functions. Aberrant activation of Hh signaling has been implicated in several human cancers including hepatocellular carcinoma (HCC). In this study we examined the pathobiological functions and molecular mechanisms of the Hh signaling pathway in HCC cells. Treatment of cultured human HCC cells (Huh7, Hep3B, and HepG2) with the Hh signaling ligand (recombinant Shh) or agonist, SAG and purmorphamine, prevented the induction of autophagy. In contrast, GANT61 (a small molecule inhibitor of Gli1 and Gli2) induced autophagy, as determined by immunoblotting for microtubule-associated protein light chain 3 (LC3) and p62, GFP-LC3 puncta, monodansylcadaverine (MDC) staining, and transmission electron microscopy. Hh inhibition-induced autophagy was associated with up-regulation of Bnip3, as determined by immunoblotting and real-time polymerase chain reaction (PCR) assay. Knockdown of Bnip3 by RNAi impaired GANT61-induced autophagy. Additionally, Hh inhibition-induced autophagy was associated with Bnip3-mediated displacement of Bcl-2 from Beclin-1, as determined by immunoblotting and immunoprecipitation assays. Furthermore, inhibition of Hh signaling increased HCC cell apoptosis and decreased cell viability, as determined by caspase and WST-1 assays. Pharmacological or genetic inhibition of autophagy by 3-methyladenine (3-MA) or Beclin-1 small interfering RNA (siRNA) partially suppressed GANT61-induced cell apoptosis and cytotoxicity. In a tumor xenograft model using SCID mice inoculated with Huh7 cells, administration of GANT61 inhibited tumor formation and decreased tumor volume; this effect was partially blocked by the autophagy inhibitor, 3-MA. CONCLUSION These findings provide novel evidence that Hh inhibition induces autophagy through up-regulation of Bnip3 and that this mechanism contributes to apoptosis. Therefore, the status of autophagy is a key factor that determines the therapeutic response to Hh-targeted therapies.
Collapse
Affiliation(s)
- Ying Wang
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Avenue SL-79, New Orleans, Louisiana 70112,Department of Gastroenterology and Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chang Han
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Avenue SL-79, New Orleans, Louisiana 70112
| | - Lu Lu
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Avenue SL-79, New Orleans, Louisiana 70112
| | - Susan Magliato
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Avenue SL-79, New Orleans, Louisiana 70112
| | - Tong Wu
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Avenue SL-79, New Orleans, Louisiana 70112
| |
Collapse
|
22
|
Kang J, Pervaiz S. Crosstalk between Bcl-2 family and Ras family small GTPases: potential cell fate regulation? Front Oncol 2013; 2:206. [PMID: 23316476 PMCID: PMC3539672 DOI: 10.3389/fonc.2012.00206] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 12/12/2012] [Indexed: 12/12/2022] Open
Abstract
Cell fate regulation is a function of diverse cell signaling pathways that promote cell survival and or inhibit cell death execution. In this regard, the role of the Bcl-2 family in maintaining a tight balance between cell death and cell proliferation has been extensively studied. The conventional dogma links cell fate regulation by the Bcl-2 family to its effect on mitochondrial permeabilization and apoptosis amplification. However, recent evidence provide a novel mechanism for death regulation by the Bcl-2 family via modulating cellular redox metabolism. For example overexpression of Bcl-2 has been shown to contribute to a pro-oxidant intracellular milieu and down-regulation of cellular superoxide levels enhanced death sensitivity of Bcl-2 overexpressing cells. Interestingly, gene knockdown of the small GTPase Rac1 or pharmacological inhibition of its activity also reverted death phenotype in Bcl-2 expressing cells. This appears to be a function of an interaction between Bcl-2 and Rac1. Similar functional associations have been described between the Bcl-2 family and other members of the Ras superfamily. These interactions at the mitochondria provide novel opportunities for strategic therapeutic targeting of drug-resistant cancers.
Collapse
Affiliation(s)
- Jia Kang
- ROS, Apoptosis and Cancer Biology Laboratory, Department of Physiology, Yong Loo Lin School of Medicine Singapore, Singapore ; NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore Singapore, Singapore
| | | |
Collapse
|
23
|
Lavallard VJ, Meijer AJ, Codogno P, Gual P. Autophagy, signaling and obesity. Pharmacol Res 2012; 66:513-25. [PMID: 22982482 DOI: 10.1016/j.phrs.2012.09.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 09/04/2012] [Indexed: 12/28/2022]
Abstract
Autophagy is a cellular pathway crucial for development, differentiation, survival and homeostasis. Autophagy can provide protection against aging and a number of pathologies such as cancer, neurodegeneration, cardiac disease and infection. Recent studies have reported new functions of autophagy in the regulation of cellular processes such as lipid metabolism and insulin sensitivity. Important links between the regulation of autophagy and obesity including food intake, adipose tissue development, β cell function, insulin sensitivity and hepatic steatosis exist. This review will provide insight into the current understanding of autophagy, its regulation, and its role in the complications associated with obesity.
Collapse
Affiliation(s)
- Vanessa J Lavallard
- INSERM, U1065, Equipe 8 «Complications hépatiques de l'obésité», Nice, France
| | | | | | | |
Collapse
|
24
|
Li Y, Luo Q, Yuan L, Miao C, Mu X, Xiao W, Li J, Sun T, Ma E. JNK-dependent Atg4 upregulation mediates asperphenamate derivative BBP-induced autophagy in MCF-7 cells. Toxicol Appl Pharmacol 2012; 263:21-31. [DOI: 10.1016/j.taap.2012.05.018] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2012] [Revised: 05/10/2012] [Accepted: 05/25/2012] [Indexed: 02/08/2023]
|
25
|
Programmed Necrosis: A Prominent Mechanism of Cell Death following Neonatal Brain Injury. Neurol Res Int 2012; 2012:257563. [PMID: 22666585 PMCID: PMC3362209 DOI: 10.1155/2012/257563] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 02/02/2012] [Indexed: 12/16/2022] Open
Abstract
Despite the introduction of therapeutic hypothermia, neonatal hypoxic ischemic (HI) brain injury remains a common cause of developmental disability. Development of rational adjuvant therapies to hypothermia requires understanding of the pathways of cell death and survival modulated by HI. The conceptualization of the apoptosis-necrosis “continuum” in neonatal brain injury predicts mechanistic interactions between cell death and hydrid forms of cell death such as programmed or regulated necrosis. Many of the components of the signaling pathway regulating programmed necrosis have been studied previously in models of neonatal HI. In some of these investigations, they participate as part of the apoptotic pathways demonstrating clear overlap of programmed death pathways. Receptor interacting protein (RIP)-1 is at the crossroads between types of cellular death and survival and RIP-1 kinase activity triggers formation of the necrosome (in complex with RIP-3) leading to programmed necrosis. Neuroprotection afforded by the blockade of RIP-1 kinase following neonatal HI suggests a role for programmed necrosis in the HI injury to the developing brain. Here, we briefly review the state of the knowledge about the mechanisms behind programmed necrosis in neonatal brain injury recognizing that a significant proportion of these data derive from experiments in cultured cell and some from in vivo adult animal models. There are still more questions than answers, yet the fascinating new perspectives provided by the understanding of programmed necrosis in the developing brain may lay the foundation for new therapies for neonatal HI.
Collapse
|
26
|
Chavez-Valdez R, Martin LJ, Flock DL, Northington FJ. Necrostatin-1 attenuates mitochondrial dysfunction in neurons and astrocytes following neonatal hypoxia-ischemia. Neuroscience 2012; 219:192-203. [PMID: 22579794 DOI: 10.1016/j.neuroscience.2012.05.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 04/23/2012] [Accepted: 05/01/2012] [Indexed: 01/28/2023]
Abstract
Receptor interacting protein (RIP)-1 kinase activity mediates a novel pathway that signals for regulated necrosis, a form of cell death prominent in traumatic and ischemic brain injury. Recently, we showed that an allosteric inhibitor of RIP-1 kinase activity, necrostatin-1 (Nec-1), provides neuroprotection in the forebrain following neonatal hypoxia-ischemia (HI). Because Nec-1 also prevents early oxidative injury, we hypothesized that mechanisms involved in this neuroprotection may involve preservation of mitochondrial function and prevention of secondary energy failure. Therefore, our objective was to determine if Nec-1 treatment following neonatal HI attenuates oxidative stress and mitochondrial injury. Postnatal day (p) 7 mice exposed to HI were injected intracerebroventricularly with 0.1 μL (80 μmol) of Nec-1 or vehicle. Nec-1 treatment prevented nitric oxide (NO•), inducible nitric oxide synthase (iNOS) and 3-nitrotyrosine increase, and attenuated glutathione oxidation that was found in vehicle-treated mice at 3h following HI. Similarly, Nec-1 following HI prevented: (i) up-regulation of hypoxia inducible factor-1 alpha (HIF-1α) and BCL2/adenovirus E1B 19 kDa protein-interacting protein 3 (BNIP3) expression, (ii) decline in mitochondrial complex-I activity, (iii) decrease in ATP levels, and (iv) mitochondrial structural pathology in astrocytes and in neurons. Up-regulation of glial fibrillary acidic protein (GFAP) following HI was also prevented by Nec-1 treatment. No differences by gender were observed. We conclude that Nec-1 immediately after HI, is strongly mitoprotective and prevents secondary energy failure by blocking early NO• accumulation, glutathione oxidation and attenuating mitochondrial dysfunction.
Collapse
Affiliation(s)
- R Chavez-Valdez
- Department of Pediatrics, Division of Neonatology, Johns Hopkins Medical Institutions, Johns Hopkins Hospital, 600 N. Wolfe Street, CMSC 6-104, Baltimore, MD 21287, USA.
| | | | | | | |
Collapse
|
27
|
Shi GX, Andres DA, Cai W. Ras family small GTPase-mediated neuroprotective signaling in stroke. Cent Nerv Syst Agents Med Chem 2012; 11:114-37. [PMID: 21521171 DOI: 10.2174/187152411796011349] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 01/18/2011] [Accepted: 03/22/2011] [Indexed: 12/31/2022]
Abstract
Selective neuronal cell death is one of the major causes of neuronal damage following stroke, and cerebral cells naturally mobilize diverse survival signaling pathways to protect against ischemia. Importantly, therapeutic strategies designed to improve endogenous anti-apoptotic signaling appear to hold great promise in stroke treatment. While a variety of complex mechanisms have been implicated in the pathogenesis of stroke, the overall mechanisms governing the balance between cell survival and death are not well-defined. Ras family small GTPases are activated following ischemic insults, and in turn, serve as intrinsic switches to regulate neuronal survival and regeneration. Their ability to integrate diverse intracellular signal transduction pathways makes them critical regulators and potential therapeutic targets for neuronal recovery after stroke. This article highlights the contribution of Ras family GTPases to neuroprotective signaling cascades, including mitogen-activated protein kinase (MAPK) family protein kinase- and AKT/PKB-dependent signaling pathways as well as the regulation of cAMP response element binding (CREB), Forkhead box O (FoxO) and hypoxiainducible factor 1(HIF1) transcription factors, in stroke.
Collapse
Affiliation(s)
- Geng-Xian Shi
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, 741 S. Limestone St., Lexington, KY 40536-0509, USA.
| | | | | |
Collapse
|
28
|
An HJ, Shin H, Jo SG, Kim YJ, Lee JO, Paik SG, Lee H. The survival effect of mitochondrial Higd-1a is associated with suppression of cytochrome C release and prevention of caspase activation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1813:2088-98. [PMID: 21856340 DOI: 10.1016/j.bbamcr.2011.07.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 06/27/2011] [Accepted: 07/27/2011] [Indexed: 12/20/2022]
Abstract
Higd-1a (hypoxia induced gene domain family-1a) is a mitochondrial inner membrane protein with a conformation of N-terminal outside-C-terminal outside and loop inside. There are four Higd genes, Higd-1a, -1b, -1c and -2a, in the mouse. Higd-1a and -2a are expressed primarily in the brain, heart, kidney and leukocytes. HIF (hypoxia-inducible factor) overexpression induced the endogenous expression and promoter activity of Higd-1a. Mutation of the HRE (hypoxia-response element) site at -32bp in the Higd-1a promoter reduced the promoter activity, suggesting that transcription of Higd-1a is regulated by binding of the transcription factor HIF to the HRE. Higd-1a promoted cell survival under hypoxia. RAW264.7 cells stably transfected with Higd-1a underwent less apoptosis than control cells in a hypoxic condition, and hypoxia-induced apoptosis was strongly enhanced when endogenous Higd-1a was silenced by siRNA. The survival effect of Higd-1a was completely abolished by deletion of the 26 N-terminal amino acids, and we showed that Higd-1a increased survival by inhibiting cytochrome C release and reducing the activities of caspases. However, expression of Bcl-2, Bax, Bad, and BNIP3 and translocation of AIF were unaffected under the same conditions. Higd-2a also enhanced cell survival under hypoxia. Cells transfected with Higd-2a underwent less apoptosis than control cells in hypoxic conditions, and hypoxia-induced apoptosis increased when endogenous Higd-2a was depleted. Together these observations indicate that Higd-1a is induced by hypoxia in a HIF-dependent manner and its anti-apoptotic effect results from inhibiting cytochrome C release and reducing caspase activities.
Collapse
Affiliation(s)
- Hyun-Jung An
- Department of Biology, BK21 Daedeok R&D Innopolis Bio Brain Center, Chungnam National University, Daejeon, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
29
|
An HJ, Lee H, Paik SG. Silencing of BNIP3 results from promoter methylation by DNA methyltransferase 1 induced by the mitogen-activated protein kinase pathway. Mol Cells 2011; 31:579-83. [PMID: 21573703 PMCID: PMC3887614 DOI: 10.1007/s10059-011-0065-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Accepted: 04/18/2011] [Indexed: 11/29/2022] Open
Abstract
We have previously shown that Ras mediates NO-induced BNIP3 expression via the MEK-E RK-HIF-1 pathway i n mouse macrophages, and that NO-induced death results at least in part from the induction of BNIP3. In the present study, we describe another aspect of Ras regulation of BNIP3 expression in pancreatic cancer cells. Human BNIP3 promoter-driven luciferase activity was efficiently induced by activated Ras in AsPC-1, Miapaca-2, PK-1 and PANC-1 cells. However, expression of endogenous BNIP3 was not induced, and BNIP3 up-regulation by hypoxia was also inhibited. Treatment of the cells with the DNMT inhibitor, 5-aza-2-deoxycytidine, restored BNIP3 induction, indicating that DNA methylation of the BNIP3 promoter was responsible for the inhibition of BNIP3 induction. Furthermore, inhibition of the MEK pathway with U0126 reduced DNMT1 expression, but not that of DNMT3a and 3b, and restored the hypoxia-inducibility of BNIP3, suggesting that the DNA methylation of the BNIP3 promoter was mediated by DNMT1 via the MEK pathway.
Collapse
Affiliation(s)
- Hyun-Jung An
- Department of Biology, College of Biological Sciences and Biotechnology, Chungnam National University, Daejeon 305-764, Korea
- Brain Korea 21 Daedeok R&D Innopolis Bio Brain Center, College of Biological Sciences and Biotechnology, Chungnam National University, Daejeon 305-764, Korea
| | - Hayyoung Lee
- Institute of Biotechnology, College of Biological Sciences and Biotechnology, Chungnam National University, Daejeon 305-764, Korea
| | - Sang-Gi Paik
- Department of Biology, College of Biological Sciences and Biotechnology, Chungnam National University, Daejeon 305-764, Korea
- Brain Korea 21 Daedeok R&D Innopolis Bio Brain Center, College of Biological Sciences and Biotechnology, Chungnam National University, Daejeon 305-764, Korea
| |
Collapse
|
30
|
Sha Y, Marshall HE. S-nitrosylation in the regulation of gene transcription. Biochim Biophys Acta Gen Subj 2011; 1820:701-11. [PMID: 21640163 DOI: 10.1016/j.bbagen.2011.05.008] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Accepted: 05/14/2011] [Indexed: 12/30/2022]
Abstract
BACKGROUND Post-translational modification of proteins by S-nitrosylation serves as a major mode of signaling in mammalian cells and a growing body of evidence has shown that transcription factors and their activating pathways are primary targets. S-nitrosylation directly modifies a number of transcription factors, including NF-κB, HIF-1, and AP-1. In addition, S-nitrosylation can indirectly regulate gene transcription by modulating other cell signaling pathways, in particular JNK kinase and ras. SCOPE OF REVIEW The evolution of S-nitrosylation as a signaling mechanism in the regulation of gene transcription, physiological advantages of protein S-nitrosylation in the control of gene transcription, and discussion of the many transcriptional proteins modulated by S-nitrosylation is summarized. MAJOR CONCLUSIONS S-nitrosylation plays a crucial role in the control of mammalian gene transcription with numerous transcription factors regulated by this modification. Many of these proteins serve as immunomodulators, and inducible nitric oxide synthase (iNOS) is regarded as a principal mediatiator of NO-dependent S-nitrosylation. However, additional targets within the nucleus (e.g. histone deacetylases) and alternative mechanisms of S-nitrosylation (e.g. GAPDH-mediated trans-nitrosylation) are thought to play a role in NOS-dependent transcriptional regulation. GENERAL SIGNIFICANCE Derangement of SNO-regulated gene transcription is an important factor in a variety of pathological conditions including neoplasia and sepsis. A better understanding of protein S-nitrosylation as it relates to gene transcription and the physiological mechanisms behind this process is likely to lead to novel therapies for these disorders. This article is part of a Special Issue entitled Regulation of Cellular Processes by S-nitrosylation.
Collapse
Affiliation(s)
- Yonggang Sha
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | | |
Collapse
|
31
|
Okudela K, Woo T, Kitamura H. KRAS gene mutations in lung cancer: particulars established and issues unresolved. Pathol Int 2011; 60:651-60. [PMID: 20846262 DOI: 10.1111/j.1440-1827.2010.02580.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Lung cancer, like other cancers, is considered to develop through the accumulation of genetic alterations. Mutation of the KRAS gene is one of the most important events in carcinogenesis of the lung. The KRAS gene, belonging to the RAS gene family, encodes a membrane-bound 21-kd guanosine triphosphate (GTP)-binding protein. Single point mutations in this protein result in continuous activation to transmit excessive signals, promoting a variety of biological events. In lung cancers, the mutations concentrate at codon 12 and mostly affect adenocarcinomas (ADCs). They also affect atypical adenomatous hyperplasia, the precursor of ADCs. Therefore, mutation of the KRAS gene is suggested to confer a growth advantage to airway epithelial cells enabling them to expand clonally early in the development of ADCs. The mutation is also a reliable marker of an unfavorable response to certain molecular-targeting therapies. Furthermore, patients with ADCs affected by mutations have been reported to exhibit a significantly higher risk of postoperative disease recurrence. Thus, the significance of KRAS gene mutations has been investigated extensively. However, not all the details emerged. In this review, particulars that have been established are introduced, and important issues remaining to be resolved are discussed, with special reference to carcinogenesis of the lung.
Collapse
Affiliation(s)
- Koji Okudela
- Department of Pathology, Yokohama City University Graduate School of Medicine, Kanazawa-ku, Yokohama, Japan.
| | | | | |
Collapse
|
32
|
Overmeyer JH, Maltese WA. Death pathways triggered by activated Ras in cancer cells. Front Biosci (Landmark Ed) 2011; 16:1693-713. [PMID: 21196257 DOI: 10.2741/3814] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Ras GTPases are best known for their ability to serve as molecular switches regulating cell growth, differentiation and survival. Gene mutations that result in expression of constitutively active forms of Ras have been linked to oncogenesis in animal models and humans. However, over the past two decades, evidence has gradually accumulated to support a paradoxical role for Ras proteins in the initiation of cell death pathways. In this review we survey the literature pointing to the ability of activated Ras to promote cell death under conditions where cancer cells encounter apoptotic stimuli or Ras is ectopically expressed. In some of these cases Ras acts through known effectors and well defined apoptotic death pathways. However, in other cases it appears that Ras operates by triggering novel non-apoptotic death mechanisms that are just beginning to be characterized. Understanding these mechanisms and the factors that go into changing the nature of Ras signaling from pro-survival to pro-death could set the stage for development of novel therapeutic approaches aimed at manipulating pro-death Ras signaling pathways in cancer.
Collapse
Affiliation(s)
- Jean H Overmeyer
- Department of Biochemistry and Cancer Biology, University of Toledo College of Medicine, Toledo, Ohio 43614, USA
| | | |
Collapse
|
33
|
Truncated forms of BNIP3 act as dominant negatives inhibiting hypoxia-induced cell death. Biochim Biophys Acta Mol Basis Dis 2010; 1812:302-11. [PMID: 21138765 DOI: 10.1016/j.bbadis.2010.11.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Revised: 11/08/2010] [Accepted: 11/29/2010] [Indexed: 11/23/2022]
Abstract
BNIP3 (Bcl-2/adenovirus E1B Nineteen Kilodalton Interacting Protein) is a pro-cell death member of the Bcl-2 family of proteins. Its expression is induced by the transcription factor Hypoxia Inducible Factor-1 (HIF-1) under conditions of low oxygen (hypoxia) and is found over expressed in hypoxic regions of many tumors. When over expressed, BNIP3 induces cell death through induction of mitochondrial dysfunction that is dependent on the presence of BNIP3's TM domain. Herein, we have determined that the SkOv3 ovarian cancer cell line expresses a truncated BNIP3 protein, which results in the elimination of the transmembrane domain. Truncation that eliminates all four domains of BNIP3 protein also inhibits hypoxia-induced cell death in SkOv3, HEK293, U251 and MCF-7 cells. Three different mutations in a BNIP3 expression vector that lead to a truncated BNIP3 protein, lacking TM domain only, or lacking CD, BH3, and TM domains resulted in inhibition of hypoxia-induced cell death when transfected into HEK293 cells. We found that truncated BNIP3 failed to associate with the mitochondria and the truncated BNIP3 lacking all four domains can bind to wild type BNIP3. Taken together, truncation of BNIP3 could be a novel mechanism for cancer cells to avoid hypoxia-induced cell death mediated by BNIP3 over expression.
Collapse
|
34
|
|
35
|
Bulcao CF, D'Souza KM, Malhotra R, Staron M, Duffy JY, Pandalai PK, Jeevanandam V, Akhter SA. Activation of JAK-STAT and nitric oxide signaling as a mechanism for donor heart dysfunction. J Heart Lung Transplant 2010; 29:346-51. [PMID: 20022263 DOI: 10.1016/j.healun.2009.09.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Revised: 08/31/2009] [Accepted: 09/01/2009] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Donor heart dysfunction (DHD) precluding procurement for transplantation occurs in up to 25% of brain-dead (BD) donors. The molecular mechanisms of DHD remain unclear. We investigated the potential role of myocardial interleukin (IL)-6 signaling through the JAK2-STAT3 pathway, which can lead to the generation of nitric oxide (NO) and decreased cardiac myocyte contractility. METHODS Hearts were procured using standard technique with University of Wisconsin (UW) solution from 14 donors with a left ventricular (LV) ejection fraction of <35% (DHD). Ten hearts with normal function (NF) after BD served as controls. LV IL-6 was quantitated by enzyme-linked immunoassay (ELISA) and JAK2-STAT3 signaling was assessed by expression of phosphorylated STAT3. Inducible NO synthase (iNOS) and caspase-3 were measured by activity assays. RESULTS Myocardial IL-6 expression was 8-fold greater in the DHD group vs NF controls. Phosphorylated STAT3 expression was 5-fold higher in DHD than in NF, indicating increased JAK2-STAT3 signaling. LV activity of iNOS was 2.5-fold greater in DHD than in NF. LV expression of the pro-apoptotic gene Bnip3 and caspase-3 activity were 3-fold greater in the DHD group than in the NF group. CONCLUSIONS Myocardial IL-6 expression is significantly higher in the setting of DHD compared with hearts procured with normal function. This may lead to increased JAK2-STAT3 signaling and upregulation of iNOS, which has been shown to decrease cardiac myocyte contractility. Increased NO production may also lead to increased apoptosis through upregulation of Bnip3 gene expression. Increased iNOS signaling may be an important mechanism of DHD and represents a novel therapeutic target to improve cardiac function after BD.
Collapse
Affiliation(s)
- Christian F Bulcao
- Department of Surgery, Section of Cardiothoracic Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Burgoyne JR, Eaton P. A rapid approach for the detection, quantification, and discovery of novel sulfenic acid or S-nitrosothiol modified proteins using a biotin-switch method. Methods Enzymol 2010; 473:281-303. [PMID: 20513484 DOI: 10.1016/s0076-6879(10)73015-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The recent development of robust methods for the detection of proteins susceptible to S-nitrosylation (RSNO) and sulfenation (RSOH) has provided greater insight into the role of these oxidative modifications in cell signaling. These techniques, which have been termed "biotin-switch" methods, essentially use selective chemical reduction to swap an oxidative modification for a stable easily detectable biotin-tag. This allows for the rapid purification and subsequent detection of modified proteins using mass spectrometry. This chapter provides an overview of these biotin-switch methods, and explores its impact on the field of redox biology, including recent advances as well as limitations associated with this technique.
Collapse
Affiliation(s)
- Joseph R Burgoyne
- Cardiovascular Division, Department of Cardiology, King's College London, The Rayne Institute, St Thomas' Hospital, London, United Kingdom
| | | |
Collapse
|
37
|
Cagnol S, Chambard JC. ERK and cell death: mechanisms of ERK-induced cell death--apoptosis, autophagy and senescence. FEBS J 2009; 277:2-21. [PMID: 19843174 DOI: 10.1111/j.1742-4658.2009.07366.x] [Citation(s) in RCA: 999] [Impact Index Per Article: 66.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The Ras/Raf/extracellular signal-regulated kinase (ERK) signaling pathway plays a crucial role in almost all cell functions and therefore requires exquisite control of its spatiotemporal activity. Depending on the cell type and stimulus, ERK activity will mediate different antiproliferative events, such as apoptosis, autophagy and senescence in vitro and in vivo. ERK activity can promote either intrinsic or extrinsic apoptotic pathways by induction of mitochondrial cytochrome c release or caspase-8 activation, permanent cell cycle arrest or autophagic vacuolization. These unusual effects require sustained ERK activity in specific subcellular compartments and could depend on the presence of reactive oxygen species. We will summarize the mechanisms involved in Ras/Raf/ERK antiproliferative functions.
Collapse
Affiliation(s)
- Sebastien Cagnol
- Department of Anatomy and Cellular Biology, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Quebec, Canada.
| | | |
Collapse
|
38
|
Metukuri MR, Beer-Stolz D, Namas RA, Dhupar R, Torres A, Loughran PA, Jefferson BS, Tsung A, Billiar TR, Vodovotz Y, Zamora R. Expression and subcellular localization of BNIP3 in hypoxic hepatocytes and liver stress. Am J Physiol Gastrointest Liver Physiol 2009; 296:G499-509. [PMID: 19147804 PMCID: PMC2660177 DOI: 10.1152/ajpgi.90526.2008] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We have previously demonstrated that the Bcl-2/adenovirus EIB 19-kDa interacting protein 3 (BNIP3), a cell death-related member of the Bcl-2 family, is upregulated in vitro and in vivo in both experimental and clinical settings of redox stress and that nitric oxide (NO) downregulates its expression. In this study we sought to examine the expression and localization of BNIP3 in murine hepatocytes and in a murine model of hemorrhagic shock (HS) and ischemia-reperfusion (I/R). Freshly isolated mouse hepatocytes were exposed to 1% hypoxia for 6 h followed by reoxygenation for 18 h, and protein was isolated for Western blot analysis. Hepatocytes grown on coverslips were fixed for localization studies. Similarly, livers from surgically cannulated C57Bl/6 mice and from mice cannulated and subjected to 1-4 h of HS were processed for protein isolation and Western blot analysis. In hepatocytes, BNIP3 was expressed constitutively but was upregulated under hypoxic conditions, and this upregulation was countered by treatment with a NO donor. Surprisingly, BNIP3 was localized in the nucleus of normoxic hepatocytes, in the cytoplasm following hypoxia, and again in the nucleus following reoxygenation. Upregulation of BNIP3 partially required p38 MAPK activation. BNIP3 contributed to hypoxic injury in hepatocytes, since this injury was diminished by knockdown of BNIP3 mRNA. Hepatic BNIP3 was also upregulated in two different models of liver stress in vivo, suggesting that a multitude of inflammatory stresses can lead to the modulation of BNIP3. In turn, the upregulation of BNIP3 appears to be one mechanism of hepatocyte cell death and liver damage in these settings.
Collapse
Affiliation(s)
- Mallikarjuna R. Metukuri
- Departments of Surgery and Medicine and Center for Biologic Imaging, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Donna Beer-Stolz
- Departments of Surgery and Medicine and Center for Biologic Imaging, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Rajaie A. Namas
- Departments of Surgery and Medicine and Center for Biologic Imaging, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Rajeev Dhupar
- Departments of Surgery and Medicine and Center for Biologic Imaging, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Andres Torres
- Departments of Surgery and Medicine and Center for Biologic Imaging, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Patricia A. Loughran
- Departments of Surgery and Medicine and Center for Biologic Imaging, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Bahiyyah S. Jefferson
- Departments of Surgery and Medicine and Center for Biologic Imaging, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Allan Tsung
- Departments of Surgery and Medicine and Center for Biologic Imaging, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Timothy R. Billiar
- Departments of Surgery and Medicine and Center for Biologic Imaging, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Yoram Vodovotz
- Departments of Surgery and Medicine and Center for Biologic Imaging, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Ruben Zamora
- Departments of Surgery and Medicine and Center for Biologic Imaging, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
39
|
Prabhakaran K, Chapman GD, Gunasekar PG. BNIP3 up-regulation and mitochondrial dysfunction in manganese-induced neurotoxicity. Neurotoxicology 2009; 30:414-22. [PMID: 19442826 DOI: 10.1016/j.neuro.2009.02.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Revised: 02/11/2009] [Accepted: 02/13/2009] [Indexed: 12/18/2022]
Abstract
The central nervous system (CNS) appears to be the critical target of manganese (Mn), and neurotoxicity has been the focus of most of the health effects of manganese. In brain, the mechanism underlying the Mn-induced cell death is not clear. We have previously demonstrated that NFkappabeta induction and the activation of nitric oxide synthase through reactive oxygen species (ROS) represent a proximate mechanism for Mn-induced neurotoxicity. In this study, an immortalized dopaminergic cells were used to characterize the cell death signaling cascade activated by manganese. Exposure to Mn resulted in a time and concentration-related loss of cell viability as observed by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) and live/dead cell assay. Mn increased BNIP3 expression within 3h and continued to increase up to 24h exposure followed by a concentration-related apoptotic death as determined by TUNEL. Further, Mn treatment resulted in accumulation of reactive oxygen species and mitochondrial dysfunction with loss of mitochondrial membrane potential and release of cytochrome c. Antioxidants significantly reduced Mn-induced BNIP3 expression and attenuated cell death, demonstrating the role of oxidative stress in BNIP3 induction. Blocking BNIP3 up-regulation with a transcription or a translational inhibitor reduced the response to manganese. Cell death by manganese was reduced in the presence of CsA (PT pore inhibitor). In addition, knockdown of BNIP3 by small interfering RNA (siRNA) improved mitochondrial recovery and reduced neuronal cell loss suggesting that constitutive expression of BNIP3 plays a role in Mn-induced neurotoxicity by regulating mitochondrial functions. These findings indicate a potential detrimental role of BNIP3 in manganese-induced neuronal cell death.
Collapse
Affiliation(s)
- Krishnan Prabhakaran
- Naval Health Research Center Detachment, Environmental Health Effects Laboratory, Wright-Patterson Air Force Base, 2729 R Street, Area B, Building 837, Dayton, OH 45433, USA
| | | | | |
Collapse
|
40
|
Kim JY, Kim YJ, Lee S, Park JH. The critical role of ERK in death resistance and invasiveness of hypoxia-selected glioblastoma cells. BMC Cancer 2009; 9:27. [PMID: 19161638 PMCID: PMC2645423 DOI: 10.1186/1471-2407-9-27] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Accepted: 01/23/2009] [Indexed: 11/22/2022] Open
Abstract
Background The rapid growth of tumor parenchyma leads to chronic hypoxia that can result in the selection of cancer cells with a more aggressive behavior and death-resistant potential to survive and proliferate. Thus, identifying the key molecules and molecular mechanisms responsible for the phenotypic changes associated with chronic hypoxia has valuable implications for the development of a therapeutic modality. The aim of this study was to identify the molecular basis of the phenotypic changes triggered by chronic repeated hypoxia. Methods Hypoxia-resistant T98G (HRT98G) cells were selected by repeated exposure to hypoxia and reoxygenation. Cell death rate was determined by the trypan blue exclusion method and protein expression levels were examined by western blot analysis. The invasive phenotype of the tumor cells was determined by the Matrigel invasion assay. Immunohistochemistry was performed to analyze the expression of proteins in the brain tumor samples. The Student T-test and Pearson Chi-Square test was used for statistical analyses. Results We demonstrate that chronic repeated hypoxic exposures cause T98G cells to survive low oxygen tension. As compared with parent cells, hypoxia-selected T98G cells not only express higher levels of anti-apoptotic proteins such as Bcl-2, Bcl-XL, and phosphorylated ERK, but they also have a more invasive potential in Matrigel invasion chambers. Activation or suppression of ERK pathways with a specific activator or inhibitor, respectively, indicates that ERK is a key molecule responsible for death resistance under hypoxic conditions and a more invasive phenotype. Finally, we show that the activation of ERK is more prominent in malignant glioblastomas exposed to hypoxia than in low grade astrocytic glial tumors. Conclusion Our study suggests that activation of ERK plays a pivotal role in death resistance under chronic hypoxia and phenotypic changes related to the invasive phenotype of HRT98G cells compared to parent cells.
Collapse
Affiliation(s)
- Jee-Youn Kim
- Brain Korea 21 Project Center, College of Medicine, Kyung Hee University, Seoul, Korea.
| | | | | | | |
Collapse
|
41
|
Interruption of the Ras/MEK/ERK signaling cascade enhances Chk1 inhibitor-induced DNA damage in vitro and in vivo in human multiple myeloma cells. Blood 2008; 112:2439-49. [PMID: 18614762 DOI: 10.1182/blood-2008-05-159392] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The role of the Ras/MEK/ERK pathway was examined in relation to DNA damage in human multiple myeloma (MM) cells exposed to Chk1 inhibitors in vitro and in vivo. Exposure of various MM cells to marginally toxic concentrations of the Chk1 inhibitors UCN-01 or Chk1i modestly induced DNA damage, accompanied by Ras and ERK1/2 activation. Interruption of these events by pharmacologic (eg, the farnesyltransferase inhibitor R115777 or the MEK1/2 inhibitor PD184352) or genetic (eg, transfection with dominant-negative Ras or MEK1 shRNA) means induced pronounced DNA damage, reflected by increased gammaH2A.X expression/foci formation and by comet assay. Increased DNA damage preceded extensive apoptosis. Notably, similar phenomena were observed in primary CD138(+) MM cells. Enforced MEK1/2 activation by B-Raf transfection prevented R115777 but not PD184352 from inactivating ERK1/2 and promoting Chk1 inhibitor-induced gammaH2A.X expression. Finally, coadministration of R115777 diminished UCN-01-mediated ERK1/2 activation and markedly potentiated gammaH2A.X expression in a MM xenograft model, associated with a striking increase in tumor cell apoptosis and growth suppression. Such findings suggest that Ras/MEK/ERK activation opposes whereas its inhibition dramatically promotes Chk1 antagonist-mediated DNA damage. Together, these findings identify a novel mechanism by which agents targeting the Ras/MEK/ERK pathway potentiate Chk1 inhibitor lethality in MM.
Collapse
|
42
|
Nan X, Maeng O, Shin H, An H, Yeom Y, Lee H, Paik S. Microarray study of genes differentially modulated in response to nitric oxide in macrophages. Anim Cells Syst (Seoul) 2008. [DOI: 10.1080/19768354.2008.9647149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
43
|
Ha SD, Ng D, Lamothe J, Valvano MA, Han J, Kim SO. Mitochondrial Proteins Bnip3 and Bnip3L Are Involved in Anthrax Lethal Toxin-induced Macrophage Cell Death. J Biol Chem 2007; 282:26275-83. [PMID: 17623653 DOI: 10.1074/jbc.m703668200] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Anthrax lethal toxin (LeTx) induces rapid cell death of RAW246.7 macrophages. We recently found that a small population of these macrophages is spontaneously and temporally refractory to LeTx-induced cytotoxicity. Analysis of genome-wide transcripts of a resistant clone before and after regaining LeTx sensitivity revealed that a reduction of two closely related mitochondrial proteins, Bcl-2/adenovirus E1B 19-kDa interacting protein 3 (Bnip3) and Bnip3-like (Bnip3L), correlates with LeTx resistance. Down-regulation of Bnip3 and Bnip3L was also found in "toxin-induced resistance" whereby sublethal doses of LeTx induce resistance to subsequent exposure to cytolytic toxin doses. The role of Bnip3 and Bnip3L in LeTx-induced cell death was confirmed by showing that overexpression of either Bnip3 or Bnip3L rendered the resistant cells susceptible to LeTx, whereas down-regulation of Bnip3 and Bnip3L in wild-type macrophages conferred resistance. The down-regulation of Bnip3 and Bnip3L mRNAs by LeTx occurred at both transcriptional and mRNA stability levels. Inhibition of the p38 pathway by lethal factor was responsible for the destabilization of Bnip3/Bnip3L mRNAs as confirmed by showing that p38 inhibitors stabilized Bnip3 and Bnip3L mRNAs and conferred resistance to LeTx cytotoxicity. Therefore, Bnip3/Bnip3L play a crucial role in LeTx-induced cytotoxicity, and down-regulation of Bnip3/Bnip3L is a mechanism of spontaneous or toxin-induced resistance of macrophages.
Collapse
Affiliation(s)
- Soon-Duck Ha
- Department of Microbiology and Immunology, Infectious Diseases Research Group, Siebens-Drake Research Institute, University of Western Ontario, London, Ontario N6G 2V4, Canada
| | | | | | | | | | | |
Collapse
|
44
|
Prabhakaran K, Li L, Zhang L, Borowitz JL, Isom GE. Upregulation of BNIP3 and translocation to mitochondria mediates cyanide-induced apoptosis in cortical cells. Neuroscience 2007; 150:159-67. [PMID: 17980495 DOI: 10.1016/j.neuroscience.2007.07.033] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Revised: 06/22/2007] [Accepted: 07/24/2007] [Indexed: 02/04/2023]
Abstract
Bcl-2/adenovirus E1B 19-kDa-interacting protein 3 (BNIP3), a Bcl-2 homology domain 3 (BH3) domain only protein, has been identified as a mitochondrial mediator of hypoxia-induced cell death. Since cyanide produces histotoxic anoxia (chemical hypoxia), the present study was undertaken in primary rat cortical cells to determine involvement of the BNIP3 signaling pathway in cyanide-induced death. Over a 20 h exposure KCN increased BNIP3 expression, followed by a concentration-related apoptotic death. To determine if BNIP3 plays a role in the cell death, expression was either increased with BNIP3 cDNA (BNIP3+) or knocked down with small interfering RNA (RNAi). In BNIP3+ cells, cyanide-induced apoptotic death was markedly enhanced and preceded by reduction of mitochondrial membrane potential (delta psim), release of cytochrome c from mitochondria and elevated caspase 3 and 7 activity. Pretreatment with the pan-caspase inhibitor N-benzyloxycarbonyl-Ala-Asp-fluoromethyl ketone (zVAD-fmk) suppressed BNIP3+-mediated cell death, thus confirming a caspase-dependent apoptosis. On the other hand, BNIP3 knockdown by RNAi or antagonism of BNIP3 by a transmembrane-deleted dominant-negative mutant (BNIP3 delta TM) markedly reduced cell death. Immunohistochemical imaging showed that cyanide stimulated translocation of BNIP3 from cytosol to mitochondria and displacement studies with BNIP3 delta TM showed that integration of BNIP3 into the mitochondrial outer membrane was necessary for the cell death. In BNIP3+ cells, cyclosporin-A, an inhibitor of mitochondrial pore transition, blocked the cyanide-induced reduction of delta psim and decreased the apoptotic death. These results demonstrate in cortical cells that cyanide induces a rapid upregulation of BNIP3 expression, followed by translocation to the mitochondrial outer membrane to reduce delta psim. This was followed by mitochondrial release of cytochrome c to execute a caspase-dependent cell death.
Collapse
Affiliation(s)
- K Prabhakaran
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907-1333, USA
| | | | | | | | | |
Collapse
|
45
|
Dai Y, Khanna P, Chen S, Pei XY, Dent P, Grant S. Statins synergistically potentiate 7-hydroxystaurosporine (UCN-01) lethality in human leukemia and myeloma cells by disrupting Ras farnesylation and activation. Blood 2007; 109:4415-23. [PMID: 17264303 PMCID: PMC1885487 DOI: 10.1182/blood-2006-09-047076] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Interactions between UCN-01 and HMG-CoA reductase inhibitors (ie, statins) have been examined in human leukemia and myeloma cells. Exposure of U937 and U266 cells to minimally toxic concentrations of UCN-01 and various statins (eg, lovastatin, simvastatin, or fluvastatin) dramatically increased mitochondrial dysfunction, caspase activation, and apoptosis. Comparable effects were observed in other leukemia and myeloma cell lines as well as in primary acute myeloid leukemia (AML) blasts but not in normal hematopoietic cells. Potentiation of UCN-01 lethality by lovastatin was associated with disruption of Ras prenylation and activation. These events were significantly attenuated by farnesyl pyrophosphate (FPP) but not by geranylgeranyl pyrophosphate (GGPP), implicating perturbations in farnesylation rather than geranylgeranylation in synergistic interactions. Coexposure to statins and UCN-01 resulted in inactivation of ERK1/2 and Akt, accompanied by JNK activation. U266 cells ectopically expressing JNK1-APF, a dominant negative JNK1 mutant, displayed significantly reduced susceptibility to lovastatin/UCN-01-mediated lethality. Moreover, transfection of U266 cells with constitutively activated H-Ras (Q61L) attenuated ERK1/2 inactivation and dramatically diminished the lethality of this regimen. Collectively, these findings indicate that HMG-CoA reductase inhibitors act through a Ras farnesylation-associated mechanism to induce signaling perturbations, particularly prevention of Ras and ERK1/2 activation, in UCN-01-treated cells, resulting in the synergistic induction of cell death.
Collapse
Affiliation(s)
- Yun Dai
- Department of Medicine, Virginia Commonwealth University/Massey Cancer Center, Richmond, VA 23298, USA
| | | | | | | | | | | |
Collapse
|