1
|
Frelinger AL. Flow Cytometry and Platelets. Clin Lab Med 2024; 44:511-526. [PMID: 39089755 DOI: 10.1016/j.cll.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Clinical assessment of platelet activation by flow cytometry is useful in the characterization and diagnosis of platelet-specific disorders and as a measure of risk for thrombosis or bleeding. Platelets circulate in a resting, "unactivated" state, but when activated they undergo alterations in surface glycoprotein function and/or expression level, exposure of granule membrane proteins, and exposure of procoagulant phospholipids. Flow cytometry provides the means to detect these changes and, unlike other platelet tests, is appropriate for measuring platelet function in samples from patients with low platelet counts. The present review will focus on flow cytometric tests for platelet activation markers.
Collapse
Affiliation(s)
- Andrew L Frelinger
- Center for Platelet Research Studies, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115-5737, USA.
| |
Collapse
|
2
|
Pan H, Liu Y, Fuller AM, Williams EF, Fraietta JA, Eisinger TSK. Collagen modification remodels the sarcoma tumor microenvironment and promotes resistance to immune checkpoint inhibition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.28.601055. [PMID: 39005330 PMCID: PMC11244930 DOI: 10.1101/2024.06.28.601055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Molecular mechanisms underlying immune checkpoint inhibitor (ICI) response heterogeneity in solid tumors, including soft tissue sarcomas (STS), remain poorly understood. Herein, we demonstrate that the collagen-modifying enzyme, procollagen-lysine,2-oxoglutarate 5-dioxygenase 2 (Plod2), which is over-expressed in many tumors relative to normal tissues, promotes immune evasion in undifferentiated pleomorphic sarcoma (UPS), a relatively common and aggressive STS subtype. This finding is consistent with our earlier observation that Plod2 promotes tumor metastasis in UPS, and its enzymatic target, collagen type VI (ColVI), enhances CD8+ T cell dysfunction. We determined that genetic and pharmacologic inhibition of Plod2 with the pan-Plod transcriptional inhibitor minoxidil, reduces UPS growth in an immune competent syngeneic transplant system and enhances the efficacy of anti-Pd1 therapy. These findings suggest that PLOD2 is an actionable cancer target and its modulation could augment immunotherapy responses in patients with UPS, and potentially other sarcomas and carcinomas.
Collapse
|
3
|
Shi H, Li Y, Xu K, Yin J. Advantages of photo-curable collagen-based cell-laden bioinks compared to methacrylated gelatin (GelMA) in digital light processing (DLP) and extrusion bioprinting. Mater Today Bio 2023; 23:100799. [PMID: 37766893 PMCID: PMC10519825 DOI: 10.1016/j.mtbio.2023.100799] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/05/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
The development of cell-laden bioinks that possess high biocompatibility and printability is crucial in the field of bioprinting for the creation of cell-embedded tissue engineering scaffolds. As widely known, methacrylated gelatin (GelMA) is one of the most commonly used photo-crosslinkable bioink for cell-laden bioprinting with different printing methods, but GelMA is the derivative of gelatin, so it loses the unique triple-helix molecular structure of collagen and may not be able to successfully activate the cellular pathways or facilitate cell-matrix interaction as effectively as collagen. Recently, methacrylated collagen (CMA) was developed to be an alternative photocrosslinkable bioink with a good bioactivity, but its low printability and biocompatibility limited that application in tissue engineering. In this study, the synthetic process for CMA was improved by synthesizing under 4 °C and using acidic aqueous solution as solvent. Our CMA bioinks were demonstrated a similar printability as GelMA in extrusion bioprinting, while a better formability in digital light processing (DLP). To further analyze the bioactive properties, CMA bioinks were encapsulated with Schwann cells (SCs) and bone mesenchymal stem cells (BMSCs) for printing. SCs-laden CMA bioinks had a significantly higher proliferation rate and expression of neural stem cell-associated genes than GelMA in DLP bioprinting. While, BMSCs-laden CMA bioinks demonstrated >95% cellular viability, better cell spreading and higher expression of osteogenesis-related genes than that of GelMA. Overall, we speculate that the CMA-based bioink developed in this study could be potential bioinks for 3D cell-laden bioprinting in the future.
Collapse
Affiliation(s)
- Huimin Shi
- The State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yang Li
- The State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
- Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
| | - Kailei Xu
- Department of Plastic and Reconstructive Surgery, The First Affiliated Hospital, Ningbo University School of Medicine, Ningbo, 315010, China
- Center for Medical and Engineering Innovation, Central Laboratory, The First Affiliated Hospital, Ningbo University School of Medicine, Ningbo, 315010, China
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, 315010, China
| | - Jun Yin
- The State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
4
|
Han C, Ren P, Mamtimin M, Kruk L, Sarukhanyan E, Li C, Anders HJ, Dandekar T, Krueger I, Elvers M, Goebel S, Adler K, Münch G, Gudermann T, Braun A, Mammadova-Bach E. Minimal Collagen-Binding Epitope of Glycoprotein VI in Human and Mouse Platelets. Biomedicines 2023; 11:biomedicines11020423. [PMID: 36830959 PMCID: PMC9952969 DOI: 10.3390/biomedicines11020423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/22/2023] [Accepted: 01/25/2023] [Indexed: 02/04/2023] Open
Abstract
Glycoprotein VI (GPVI) is a platelet-specific receptor for collagen and fibrin, regulating important platelet functions such as platelet adhesion and thrombus growth. Although the blockade of GPVI function is widely recognized as a potent anti-thrombotic approach, there are limited studies focused on site-specific targeting of GPVI. Using computational modeling and bioinformatics, we analyzed collagen- and CRP-binding surfaces of GPVI monomers and dimers, and compared the interacting surfaces with other mammalian GPVI isoforms. We could predict a minimal collagen-binding epitope of GPVI dimer and designed an EA-20 antibody that recognizes a linear epitope of this surface. Using platelets and whole blood samples donated from wild-type and humanized GPVI transgenic mice and also humans, our experimental results show that the EA-20 antibody inhibits platelet adhesion and aggregation in response to collagen and CRP, but not to fibrin. The EA-20 antibody also prevents thrombus formation in whole blood, on the collagen-coated surface, in arterial flow conditions. We also show that EA-20 does not influence GPVI clustering or receptor shedding. Therefore, we propose that blockade of this minimal collagen-binding epitope of GPVI with the EA-20 antibody could represent a new anti-thrombotic approach by inhibiting specific interactions between GPVI and the collagen matrix.
Collapse
Affiliation(s)
- Chao Han
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilian-University, 80336 Munich, Germany
- Division of Nephrology, Department of Medicine IV, Hospital of the Ludwig-Maximilian-University, 80336 Munich, Germany
| | - Pengxuan Ren
- School of Life Science and Technology, Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Medina Mamtimin
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilian-University, 80336 Munich, Germany
- Division of Nephrology, Department of Medicine IV, Hospital of the Ludwig-Maximilian-University, 80336 Munich, Germany
| | - Linus Kruk
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilian-University, 80336 Munich, Germany
- Division of Nephrology, Department of Medicine IV, Hospital of the Ludwig-Maximilian-University, 80336 Munich, Germany
| | - Edita Sarukhanyan
- Department of Bioinformatics, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Chenyu Li
- Division of Nephrology, Department of Medicine IV, Hospital of the Ludwig-Maximilian-University, 80336 Munich, Germany
| | - Hans-Joachim Anders
- Division of Nephrology, Department of Medicine IV, Hospital of the Ludwig-Maximilian-University, 80336 Munich, Germany
| | - Thomas Dandekar
- Department of Bioinformatics, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Irena Krueger
- Department of Vascular and Endovascular Surgery, Heinrich-Heine University Medical Center, 40225 Düsseldorf, Germany
| | - Margitta Elvers
- Department of Vascular and Endovascular Surgery, Heinrich-Heine University Medical Center, 40225 Düsseldorf, Germany
| | | | | | - Götz Münch
- AdvanceCOR GmbH, 82152 Martinsried, Germany
| | - Thomas Gudermann
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilian-University, 80336 Munich, Germany
- German Center for Lung Research (DZL), 80336 Munich, Germany
| | - Attila Braun
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilian-University, 80336 Munich, Germany
- Correspondence: (A.B.); (E.M.-B.)
| | - Elmina Mammadova-Bach
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilian-University, 80336 Munich, Germany
- Division of Nephrology, Department of Medicine IV, Hospital of the Ludwig-Maximilian-University, 80336 Munich, Germany
- Correspondence: (A.B.); (E.M.-B.)
| |
Collapse
|
5
|
Composite silk fibroin hydrogel scaffolds for cartilage tissue regeneration. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
6
|
Structural insights into collagen binding by platelet receptor glycoprotein VI. Blood 2022; 139:3087-3098. [PMID: 35245360 DOI: 10.1182/blood.2021013614] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 02/08/2022] [Indexed: 02/02/2023] Open
Abstract
Glycoprotein VI (GPVI) mediates collagen-induced platelet activation after vascular damage and is an important contributor to the onset of thrombosis, heart attack, and stroke. Animal models of thrombosis have identified GPVI as a promising target for antithrombotic therapy. Although for many years the crystal structure of GPVI has been known, the essential details of its interaction with collagen have remained elusive. Here, we present crystal structures of the GPVI ectodomain bound to triple-helical collagen peptides, which reveal a collagen-binding site across the β-sheet of the D1 domain. Mutagenesis and binding studies confirm the observed binding site and identify Trp76, Arg38, and Glu40 as essential residues for binding to fibrillar collagens and collagen-related peptides (CRPs). GPVI binds a site on collagen comprising two collagen chains with the core formed by the sequence motif OGPOGP. Potent GPVI-binding peptides from Toolkit-III all contain OGPOGP; weaker binding peptides frequently contain a partial motif varying at either terminus. Alanine-scanning of peptide III-30 also identified two AGPOGP motifs that contribute to GPVI binding, but steric hindrance between GPVI molecules restricts the maximum binding capacity. We further show that no cooperative interactions could occur between two GPVI monomers binding to a stretch of (GPO)5 and that binding of ≥2 GPVI molecules to a fibril-embedded helix requires non-overlapping OGPOGP motifs. Our structure confirms the previously suggested similarity in collagen binding between GPVI and leukocyte-associated immunoglobulin-like receptor 1 (LAIR-1) but also indicates significant differences that may be exploited for the development of receptor-specific therapeutics.
Collapse
|
7
|
Li L, Roest M, Meijers JCM, de Laat B, Urbanus RT, de Groot PG, Huskens D. Platelet Activation via Glycoprotein VI Initiates Thrombin Generation: A Potential Role for Platelet-Derived Factor IX? Thromb Haemost 2022; 122:1502-1512. [PMID: 35512832 DOI: 10.1055/s-0042-1744379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Collagen triggers coagulation via activation of factor (F) XII. In a platelet-rich environment, collagen can also trigger coagulation independently of FXII. We studied a novel mechanism of coagulation initiation via collagen-dependent platelet activation using thrombin generation (TG) in platelet-rich plasma. Collagen-induced coagulation is minimally affected by active-site inactivated FVIIa, anti-FVII antibodies, or FXIIa inhibition (corn trypsin inhibitor). Activation of platelets via specific glycoprotein (GP) VI agonists initiates TG, FX activation, and fibrin formation. To determine the platelet-derived trigger of coagulation, we systematically reconstituted factor-deficient plasmas with washed platelets. TG triggered by GPVI-activated platelets was significantly affected in FIX- and FVIII-deficient plasma but not in FVII- and FXII-deficient plasma. In a purified system composed of FX and FVIII, we observed that absence of FIX was compensated by GPVI-activated platelets, which could be inhibited by an anti-FIX antibody, suggesting FIXa activity from activated platelets. Furthermore, with the addition of FVIII in FIX-deficient plasma, TG induced by GPVI-activated platelets was restored, and was inhibited by the anti-FIX antibody. In conclusion, GPVI-activated platelets initiate TG, probably via platelet-derived FIXa activity.
Collapse
Affiliation(s)
- Li Li
- Department of Platelet Pathophysiology, Synapse Research Institute, Maastricht, the Netherlands.,Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Mark Roest
- Department of Platelet Pathophysiology, Synapse Research Institute, Maastricht, the Netherlands.,Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Joost C M Meijers
- Department of Molecular Hematology, Sanquin Research, Amsterdam, The Netherlands.,Department of Experimental Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Bas de Laat
- Department of Platelet Pathophysiology, Synapse Research Institute, Maastricht, the Netherlands.,Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Rolf T Urbanus
- Van Creveldkliniek, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Philip G de Groot
- Department of Platelet Pathophysiology, Synapse Research Institute, Maastricht, the Netherlands
| | - Dana Huskens
- Department of Platelet Pathophysiology, Synapse Research Institute, Maastricht, the Netherlands.,Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
8
|
Bandzerewicz A, Gadomska-Gajadhur A. Into the Tissues: Extracellular Matrix and Its Artificial Substitutes: Cell Signalling Mechanisms. Cells 2022; 11:914. [PMID: 35269536 PMCID: PMC8909573 DOI: 10.3390/cells11050914] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 02/06/2023] Open
Abstract
The existence of orderly structures, such as tissues and organs is made possible by cell adhesion, i.e., the process by which cells attach to neighbouring cells and a supporting substance in the form of the extracellular matrix. The extracellular matrix is a three-dimensional structure composed of collagens, elastin, and various proteoglycans and glycoproteins. It is a storehouse for multiple signalling factors. Cells are informed of their correct connection to the matrix via receptors. Tissue disruption often prevents the natural reconstitution of the matrix. The use of appropriate implants is then required. This review is a compilation of crucial information on the structural and functional features of the extracellular matrix and the complex mechanisms of cell-cell connectivity. The possibilities of regenerating damaged tissues using an artificial matrix substitute are described, detailing the host response to the implant. An important issue is the surface properties of such an implant and the possibilities of their modification.
Collapse
|
9
|
Onwuha‐Ekpete L, Fields GB. Application of a triple‐helical peptide inhibitor of
MMP
‐2/
MMP
‐9 to examine T‐cell activation in experimental autoimmune encephalomyelitis. Pept Sci (Hoboken) 2022. [DOI: 10.1002/pep2.24262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Lillian Onwuha‐Ekpete
- The Institute for Human Health & Disease Intervention (I‐HEALTH) Florida Atlantic University Jupiter Florida USA
| | - Gregg B. Fields
- The Institute for Human Health & Disease Intervention (I‐HEALTH) Florida Atlantic University Jupiter Florida USA
- Department of Chemistry The Scripps Research Institute/Scripps Florida Jupiter Florida USA
| |
Collapse
|
10
|
Fernández DI, Provenzale I, Cheung HY, van Groningen J, Tullemans BM, Veninga A, Dunster JL, Honarnejad S, van den Hurk H, Kuijpers MJ, Heemskerk JW. Ultra-high-throughput Ca 2+ assay in platelets to distinguish ITAM-linked and G-protein-coupled receptor activation. iScience 2022; 25:103718. [PMID: 35072010 PMCID: PMC8762394 DOI: 10.1016/j.isci.2021.103718] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/12/2021] [Accepted: 12/29/2021] [Indexed: 12/30/2022] Open
Abstract
Antiplatelet drugs targeting G-protein-coupled receptors (GPCRs), used for the secondary prevention of arterial thrombosis, coincide with an increased bleeding risk. Targeting ITAM-linked receptors, such as the collagen receptor glycoprotein VI (GPVI), is expected to provide a better antithrombotic-hemostatic profile. Here, we developed and characterized an ultra-high-throughput (UHT) method based on intracellular [Ca2+]i increases to differentiate GPVI and GPCR effects on platelets. In 96-, 384-, or 1,536-well formats, Calcium-6-loaded human platelets displayed a slow-prolonged or fast-transient [Ca2+]i increase when stimulated with the GPVI agonist collagen-related peptide or with thrombin and other GPCR agonists, respectively. Semi-automated curve fitting revealed five parameters describing the Ca2+ responses. Verification of the UHT assay was done with a robustness compound library and clinically relevant platelet inhibitors. Taken together, these results present proof of principle of distinct receptor-type-dependent Ca2+ signaling curves in platelets, which allow identification of new inhibitors in a UHT way.
Collapse
Affiliation(s)
- Delia I. Fernández
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER Maastricht, The Netherlands
- Platelet Proteomics Group, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Isabella Provenzale
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER Maastricht, The Netherlands
- Institute for Cardiovascular and Metabolic Research, University of Reading, RG6 6AX Reading, UK
| | - Hilaire Y.F. Cheung
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER Maastricht, The Netherlands
- ISASLeibniz-Institut fur Analytische Wissenschaften-ISAS-e.V., 44227 Dortmund, Germany
- Institute of Cardiovascular Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | | | - Bibian M.E. Tullemans
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Alicia Veninga
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Joanne L. Dunster
- Institute for Cardiovascular and Metabolic Research, University of Reading, RG6 6AX Reading, UK
| | | | | | - Marijke J.E. Kuijpers
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER Maastricht, The Netherlands
- Thrombosis Expertise Centre, Heart and Vascular Centre, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Johan W.M. Heemskerk
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER Maastricht, The Netherlands
- Synapse Research Institute, Kon. Emmaplein 7, 6214 AC, Maastricht, the Netherlands
| |
Collapse
|
11
|
van Dievoet MA, Brusa D, Octave M, Horman S, Stephenne X. Anti-GPVI (HY101) activates platelets in a multicolor flow cytometry panel. Platelets 2022; 33:1096-1099. [PMID: 35037555 DOI: 10.1080/09537104.2022.2027359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The platelet transmembrane receptor GPVI can be assessed together with other platelet membrane markers in a whole blood multicolor flow cytometry panel. The advantage of combining multiple antibodies in a single tube is the possibility of distinguishing multiple platelet subgroups. In this short communication, we describe an activation problem encountered with anti-GPVI, clone HY101. Activation of platelets was seen after the addition of anti-GPVI in a flow cytometry panel, highlighted by the expression of the activation markers CD62P, PAC-1, CD63, and CD107a. This was also confirmed by platelet aggregation studies.
Collapse
Affiliation(s)
- Marie-Astrid van Dievoet
- Laboratoire d'Hépatologie Pédiatrique et Thérapie Cellulaire, Unité Pedi, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (Uclouvain), Brussels, Belgium
| | - Davide Brusa
- Flow Cytometry Platform, IREC, UCLouvain, Brussels, Belgium
| | - Marie Octave
- Pôle de Recherche Cardiovasculaire (CARD), IREC, UCLouvain, Brussels, Belgium
| | - Sandrine Horman
- Pôle de Recherche Cardiovasculaire (CARD), IREC, UCLouvain, Brussels, Belgium
| | - Xavier Stephenne
- Laboratoire d'Hépatologie Pédiatrique et Thérapie Cellulaire, Unité Pedi, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (Uclouvain), Brussels, Belgium
| |
Collapse
|
12
|
Qin D, Wang N, You XG, Zhang AD, Chen XG, Liu Y. Collagen-based biocomposites inspired by bone hierarchical structures for advanced bone regeneration: ongoing research and perspectives. Biomater Sci 2021; 10:318-353. [PMID: 34783809 DOI: 10.1039/d1bm01294k] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Bone is a hard-connective tissue composed of matrix, cells and bioactive factors with a hierarchical structure, where the matrix is mainly composed of type I collagen and hydroxyapatite. Collagen fibers assembled by collagen are the template for mineralization and make an important contribution to bone formation and the bone remodeling process. Therefore, collagen has been widely clinically used for bone/cartilage defect regeneration. However, pure collagen implants, such as collagen scaffolds or sponges, have limitations in the bone/cartilage regeneration process due to their poor mechanical properties and osteoinductivity. Different forms of collagen-based composites prepared by incorporating natural/artificial polymers or bioactive inorganic substances are characterized by their interconnected porous structure and promoting cell adhesion, while they improve the mechanical strength, structural stability and osteogenic activities of the collagen matrix. In this review, various forms of collagen-based biocomposites, such as scaffolds, sponges, microspheres/nanoparticles, films and microfibers/nanofibers prepared by natural/synthetic polymers, bioactive ceramics and carbon-based materials compounded with collagen are reviewed. In addition, the application of collagen-based biocomposites as cytokine, cell or drug (genes, proteins, peptides and chemosynthetic) delivery platforms for proangiogenesis and bone/cartilage tissue regeneration is also discussed. Finally, the potential application, research and development direction of collagen-based biocomposites in future bone/cartilage tissue regeneration are discussed.
Collapse
Affiliation(s)
- Di Qin
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, P.R. China.
| | - Na Wang
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, P.R. China.
| | - Xin-Guo You
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, P.R. China.
| | - An-Di Zhang
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, P.R. China.
| | - Xi-Guang Chen
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, P.R. China.
| | - Ya Liu
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, P.R. China.
| |
Collapse
|
13
|
Jo JI, Emi T, Tabata Y. Design of a Platelet-Mediated Delivery System for Drug-Incorporated Nanospheres to Enhance Anti-Tumor Therapeutic Effect. Pharmaceutics 2021; 13:pharmaceutics13101724. [PMID: 34684017 PMCID: PMC8540062 DOI: 10.3390/pharmaceutics13101724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/11/2021] [Accepted: 10/14/2021] [Indexed: 01/25/2023] Open
Abstract
The objective of this study is to construct a platelet-mediated delivery system for drug-incorporated nanospheres. Nanospheres of poly(lactic-co-glycolic acid) (PLGA-NS) with different sizes and surface properties were prepared by changing the preparation parameters, such as the type of polymer surfactant, the concentration of polymer surfactant and PLGA, and the stirring rate. When incubated with platelets, PLGA-NS prepared with poly(vinyl alcohol) suppressed the platelet activation. Scanning electron microscopic and flow cytometry examinations revealed that platelets associated with PLGA-NS (platelet hybrids, PH) had a similar appearance and biological properties to those of the original platelets. In addition, the PH with PLGA-NS specifically adhered onto the substrate pre-coated with fibrin to a significantly great extent compared with PLGA-NS alone. When applied in an in vitro model of tumor tissue which was composed of an upper chamber pre-coated with fibrin and a lower chamber culturing tumor cells, the PH with PLGA-NS incorporating an anti-tumor drug were delivered to the tumor cells through the specific adhesion onto the upper chamber and, consequently, drug release from the upper chamber took place, resulting in the growth suppression of tumor cells. It is concluded that the drug delivery system based on PH is promising for tumor treatment.
Collapse
|
14
|
Troy E, Tilbury MA, Power AM, Wall JG. Nature-Based Biomaterials and Their Application in Biomedicine. Polymers (Basel) 2021; 13:3321. [PMID: 34641137 PMCID: PMC8513057 DOI: 10.3390/polym13193321] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/09/2021] [Accepted: 09/17/2021] [Indexed: 02/07/2023] Open
Abstract
Natural polymers, based on proteins or polysaccharides, have attracted increasing interest in recent years due to their broad potential uses in biomedicine. The chemical stability, structural versatility, biocompatibility and high availability of these materials lend them to diverse applications in areas such as tissue engineering, drug delivery and wound healing. Biomaterials purified from animal or plant sources have also been engineered to improve their structural properties or promote interactions with surrounding cells and tissues for improved in vivo performance, leading to novel applications as implantable devices, in controlled drug release and as surface coatings. This review describes biomaterials derived from and inspired by natural proteins and polysaccharides and highlights their promise across diverse biomedical fields. We outline current therapeutic applications of these nature-based materials and consider expected future developments in identifying and utilising innovative biomaterials in new biomedical applications.
Collapse
Affiliation(s)
- Eoin Troy
- Microbiology, College of Science and Engineering, National University of Ireland, NUI Galway, H91 TK33 Galway, Ireland; (E.T.); (M.A.T.)
| | - Maura A. Tilbury
- Microbiology, College of Science and Engineering, National University of Ireland, NUI Galway, H91 TK33 Galway, Ireland; (E.T.); (M.A.T.)
- SFI Centre for Medical Devices (CÚRAM), NUI Galway, H91 TK33 Galway, Ireland
| | - Anne Marie Power
- Zoology, School of Natural Sciences, NUI Galway, H91 TK33 Galway, Ireland;
| | - J. Gerard Wall
- Microbiology, College of Science and Engineering, National University of Ireland, NUI Galway, H91 TK33 Galway, Ireland; (E.T.); (M.A.T.)
- SFI Centre for Medical Devices (CÚRAM), NUI Galway, H91 TK33 Galway, Ireland
| |
Collapse
|
15
|
Gębczak K, Wiatrak B, Fortuna W. Evaluation of PC12 Cells' Proliferation, Adhesion and Migration with the Use of an Extracellular Matrix (CorMatrix) for Application in Neural Tissue Engineering. MATERIALS (BASEL, SWITZERLAND) 2021; 14:3858. [PMID: 34300779 PMCID: PMC8307728 DOI: 10.3390/ma14143858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/02/2021] [Accepted: 07/06/2021] [Indexed: 01/19/2023]
Abstract
The use of extracellular matrix (ECM) biomaterials for soft tissue repair has proved extremely successful in animal models and in some clinical settings. The aim of the study was to investigate the effect of the commercially obtained CorMatrix bioscaffold on the viability, proliferation and migration of rat pheochromocytoma cell line PC12. PC12 cells were plated directly onto a CorMatrix flake or the well surface of a 12-well plate and cultured in RPMI-1640 medium and a medium supplemented with the nerve growth factor (NGF). The surface of the culture plates was modified with collagen type I (Col I). The number of PC12 cells was counted at four time points and then analysed for apoptosis using a staining kit containing annexin V conjugate with fluorescein and propidium iodide (PI). The effect of CorMatrix bioscaffold on the proliferation and migration of PC12 cells was tested by staining the cells with Hoechst 33258 solution for analysis using fluorescence microscopy. The research showed that the percentage of apoptotic and necrotic cells was low (less than 7%). CorMatrix stimulates the proliferation and possibly migration of PC12 cells that populate all levels of the three-dimensional architecture of the biomaterial. Further research on the mechanical and biochemical capabilities of CorMatrix offers prospects for the use of this material in neuro-regenerative applications.
Collapse
Affiliation(s)
- Katarzyna Gębczak
- Department of Basic Medical Sciences, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland;
| | - Benita Wiatrak
- Department of Basic Medical Sciences, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland;
- Department of Pharmacology, Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland
| | - Wojciech Fortuna
- Department of Neurosurgery, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland;
| |
Collapse
|
16
|
Acquired platelet GPVI receptor dysfunction in critically ill patients with sepsis. Blood 2021; 137:3105-3115. [PMID: 33827131 DOI: 10.1182/blood.2020009774] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 03/23/2021] [Indexed: 11/20/2022] Open
Abstract
Glycoprotein VI (GPVI), the platelet immunoreceptor tyrosine activating motif (ITAM) receptor for collagen, plays a striking role on vascular integrity in animal models of inflammation and sepsis. Understanding ITAM-receptor signaling defects in humans suffering from sepsis may improve our understanding of the pathophysiology, especially during disease onset. In a pilot study, platelets from 15 patients with sepsis were assessed consecutively at day of admission, day 5 to 7, and the day of intensive care unit (ICU) discharge and subjected to comprehensive analyses by flow cytometry, aggregometry, and immunoblotting. Platelet function was markedly reduced in all patients. The defect was most prominent after GPVI stimulation with collagen-related peptide. In 14 of 15 patients, GPVI dysfunction was already present at time of ICU admission, considerably before the critical drop in platelet counts. Sepsis platelets failed to transduce the GPVI-mediated signal to trigger tyrosine phosphorylation of Syk kinase or LAT. GPVI deficiency was partially inducible in platelets of healthy donors through coincubation in whole blood, but not in plasma from patients with sepsis. Platelet aggregation upon GPVI stimulation increased only in those patients whose condition ameliorated. As blunted GPVI signaling occurred early at sepsis onset, this defect could be exploited as an indicator for early sepsis diagnosis, which needs to be confirmed in prospective studies.
Collapse
|
17
|
Current Understanding of the Relationship between Blood Donor Variability and Blood Component Quality. Int J Mol Sci 2021; 22:ijms22083943. [PMID: 33920459 PMCID: PMC8069744 DOI: 10.3390/ijms22083943] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 12/19/2022] Open
Abstract
While differences among donors has long challenged meeting quality standards for the production of blood components for transfusion, only recently has the molecular basis for many of these differences become understood. This review article will examine our current understanding of the molecular differences that impact the quality of red blood cells (RBC), platelets, and plasma components. Factors affecting RBC quality include cytoskeletal elements and membrane proteins associated with the oxidative response as well as known enzyme polymorphisms and hemoglobin variants. Donor age and health status may also be important. Platelet quality is impacted by variables that are less well understood, but that include platelet storage sensitive metabolic parameters, responsiveness to agonists accumulating in storage containers and factors affecting the maintenance of pH. An increased understanding of these variables can be used to improve the quality of blood components for transfusion by using donor management algorithms based on a donors individual molecular and genetic profile.
Collapse
|
18
|
Vara D, Mailer RK, Tarafdar A, Wolska N, Heestermans M, Konrath S, Spaeth M, Renné T, Schröder K, Pula G. NADPH Oxidases Are Required for Full Platelet Activation In Vitro and Thrombosis In Vivo but Dispensable for Plasma Coagulation and Hemostasis. Arterioscler Thromb Vasc Biol 2021; 41:683-697. [PMID: 33267663 PMCID: PMC7837688 DOI: 10.1161/atvbaha.120.315565] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 11/17/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Using 3KO (triple NOX [NADPH oxidase] knockout) mice (ie, NOX1-/-/NOX2-/-/NOX4-/-), we aimed to clarify the role of this family of enzymes in the regulation of platelets in vitro and hemostasis in vivo. Approach and Results: 3KO mice displayed significantly reduced platelet superoxide radical generation, which was associated with impaired platelet aggregation, adhesion, and thrombus formation in response to the key agonists collagen and thrombin. A comparison with single-gene knockouts suggested that the phenotype of 3KO platelets is the combination of the effects of the genetic deletion of NOX1 and NOX2, while NOX4 does not show any significant function in platelet regulation. 3KO platelets displayed significantly higher levels of cGMP-a negative platelet regulator that activates PKG (protein kinase G). The inhibition of PKG substantially but only partially rescued the defective phenotype of 3KO platelets, which are responsive to both collagen and thrombin in the presence of the PKG inhibitors KT5823 or Rp-8-pCPT-cGMPs, but not in the presence of the NOS (NO synthase) inhibitor L-NG-monomethyl arginine. In vivo, triple NOX deficiency protected against ferric chloride-driven carotid artery thrombosis and experimental pulmonary embolism, while hemostasis tested in a tail-tip transection assay was not affected. Procoagulatory activity of platelets (ie, phosphatidylserine surface exposure) and the coagulation cascade in platelet-free plasma were normal. CONCLUSIONS This study indicates that inhibiting NOXs has strong antithrombotic effects partially caused by increased intracellular cGMP but spares hemostasis. NOXs are, therefore, pharmacotherapeutic targets to develop new antithrombotic drugs without bleeding side effects.
Collapse
Affiliation(s)
- Dina Vara
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, United Kingdom (D.V.)
| | - Reiner K. Mailer
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Germany (R.K.M., N.W., M.H., S.K., T.R., G.P.)
| | - Anuradha Tarafdar
- Cancer Research UK Manchester Institute, University of Manchester (A.T.)
| | - Nina Wolska
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Germany (R.K.M., N.W., M.H., S.K., T.R., G.P.)
| | - Marco Heestermans
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Germany (R.K.M., N.W., M.H., S.K., T.R., G.P.)
| | - Sandra Konrath
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Germany (R.K.M., N.W., M.H., S.K., T.R., G.P.)
| | - Manuela Spaeth
- Institute of Cardiovascular Physiology, Goethe-University, Frankfurt, Germany (M.S., K.S.)
| | - Thomas Renné
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Germany (R.K.M., N.W., M.H., S.K., T.R., G.P.)
| | - Katrin Schröder
- Institute of Cardiovascular Physiology, Goethe-University, Frankfurt, Germany (M.S., K.S.)
| | - Giordano Pula
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Germany (R.K.M., N.W., M.H., S.K., T.R., G.P.)
| |
Collapse
|
19
|
Damaskinaki FN, Moran LA, Garcia A, Kellam B, Watson SP. Overcoming challenges in developing small molecule inhibitors for GPVI and CLEC-2. Platelets 2021; 32:744-752. [PMID: 33406951 DOI: 10.1080/09537104.2020.1863939] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
GPVI and CLEC-2 have emerged as promising targets for long-term prevention of both arterial thrombosis and thrombo-inflammation with a decreased bleeding risk relative to current drugs. However, while there are potent blocking antibodies of both receptors, their protein nature comes with decreased bioavailability, making formulation for oral medication challenging. Small molecules are able to overcome these limitations, but there are many challenges in developing antagonists of nanomolar potency, which is necessary when considering the structural features that underlie the interaction of CLEC-2 and GPVI with their protein ligands. In this review, we describe current small-molecule inhibitors for both receptors and strategies to overcome such limitations, including considerations when it comes to in silico drug design and the importance of complex compound library selection.
Collapse
Affiliation(s)
- Foteini-Nafsika Damaskinaki
- Institute of Cardiovascular Sciences, Level 1 IBR, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.,Centre of Membrane Proteins and Receptors (COMPARE), The Universities of Birmingham and Nottingham, The Midlands, UK.,Biodiscovery Institute, University Park, University of Nottingham, Nottingham, UK
| | - Luis A Moran
- Institute of Cardiovascular Sciences, Level 1 IBR, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.,Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidad de Santiago de Compostela, and Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, Spain
| | - Angel Garcia
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidad de Santiago de Compostela, and Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, Spain
| | - Barrie Kellam
- Centre of Membrane Proteins and Receptors (COMPARE), The Universities of Birmingham and Nottingham, The Midlands, UK.,Biodiscovery Institute, University Park, University of Nottingham, Nottingham, UK
| | - Steve P Watson
- Institute of Cardiovascular Sciences, Level 1 IBR, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.,Centre of Membrane Proteins and Receptors (COMPARE), The Universities of Birmingham and Nottingham, The Midlands, UK
| |
Collapse
|
20
|
Collagen Structure-Function Mapping Informs Applications for Regenerative Medicine. Bioengineering (Basel) 2020; 8:bioengineering8010003. [PMID: 33383610 PMCID: PMC7824244 DOI: 10.3390/bioengineering8010003] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/21/2022] Open
Abstract
Type I collagen, the predominant protein of vertebrates, assembles into fibrils that orchestrate the form and function of bone, tendon, skin, and other tissues. Collagen plays roles in hemostasis, wound healing, angiogenesis, and biomineralization, and its dysfunction contributes to fibrosis, atherosclerosis, cancer metastasis, and brittle bone disease. To elucidate the type I collagen structure-function relationship, we constructed a type I collagen fibril interactome, including its functional sites and disease-associated mutations. When projected onto an X-ray diffraction model of the native collagen microfibril, data revealed a matrix interaction domain that assumes structural roles including collagen assembly, crosslinking, proteoglycan (PG) binding, and mineralization, and the cell interaction domain supporting dynamic aspects of collagen biology such as hemostasis, tissue remodeling, and cell adhesion. Our type III collagen interactome corroborates this model. We propose that in quiescent tissues, the fibril projects a structural face; however, tissue injury releases blood into the collagenous stroma, triggering exposure of the fibrils' cell and ligand binding sites crucial for tissue remodeling and regeneration. Applications of our research include discovery of anti-fibrotic antibodies and elucidating their interactions with collagen, and using insights from our angiogenesis studies and collagen structure-function model to inform the design of super-angiogenic collagens and collagen mimetics.
Collapse
|
21
|
Lee JM, Suen SKQ, Ng WL, Ma WC, Yeong WY. Bioprinting of Collagen: Considerations, Potentials, and Applications. Macromol Biosci 2020; 21:e2000280. [PMID: 33073537 DOI: 10.1002/mabi.202000280] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/21/2020] [Indexed: 12/15/2022]
Abstract
Collagen is the most abundant extracellular matrix protein that is widely used in tissue engineering (TE). There is little research done on printing pure collagen. To understand the bottlenecks in printing pure collagen, it is imperative to understand collagen from a bottom-up approach. Here it is aimed to provide a comprehensive overview of collagen printing, where collagen assembly in vivo and the various sources of collagen available for TE application are first understood. Next, the current printing technologies and strategy for printing collagen-based materials are highlighted. Considerations and key challenges faced in collagen printing are identified. Finally, the key research areas that would enhance the functionality of printed collagen are presented.
Collapse
Affiliation(s)
- Jia Min Lee
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Sean Kang Qiang Suen
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Wei Long Ng
- HP-NTU Digital Manufacturing Corporate Lab, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Wai Cheung Ma
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Wai Yee Yeong
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore.,HP-NTU Digital Manufacturing Corporate Lab, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
22
|
Xing H, Lee H, Luo L, Kyriakides TR. Extracellular matrix-derived biomaterials in engineering cell function. Biotechnol Adv 2020; 42:107421. [PMID: 31381963 PMCID: PMC6995418 DOI: 10.1016/j.biotechadv.2019.107421] [Citation(s) in RCA: 149] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 07/12/2019] [Accepted: 07/31/2019] [Indexed: 12/11/2022]
Abstract
Extracellular matrix (ECM) derived components are emerging sources for the engineering of biomaterials that are capable of inducing desirable cell-specific responses. This review explores the use of biomaterials derived from naturally occurring ECM proteins and their derivatives in approaches that aim to regulate cell function. Biomaterials addressed are grouped into six categories: purified single ECM proteins, combinations of purified ECM proteins, cell-derived ECM, tissue-derived ECM, diseased and modified ECM, and ECM-polymer coupled biomaterials. Purified ECM proteins serve as a material coating for enhanced cell adhesion and biocompatibility. Cell-derived and tissue-derived ECM, generated by cell isolation and decellularization technologies, can capture the native state of the ECM environment and guide cell migration and alignment patterns as well as stem cell differentiation. We focus primarily on recent advances in the fields of soft tissue, cardiac, and dermal repair, and explore the utilization of ECM proteins as biomaterials to engineer cell responses.
Collapse
Affiliation(s)
- Hao Xing
- Department of Biomedical Engineering, Yale University, United States of America
| | - Hudson Lee
- Department of Molecular Biophysics and Biochemistry, Yale University, United States of America
| | - Lijing Luo
- Department of Pathology, Yale University, United States of America
| | - Themis R Kyriakides
- Department of Biomedical Engineering, Yale University, United States of America; Department of Pathology, Yale University, United States of America.
| |
Collapse
|
23
|
Suzuki H, Mahapatra D, Board AJ, Steel PJ, Dyer JM, Gerrard JA, Dobson RCJ, Valéry C. Sub-Ångstrom structure of collagen model peptide (GPO) 10 shows a hydrated triple helix with pitch variation and two proline ring conformations. Food Chem 2020; 319:126598. [PMID: 32182540 DOI: 10.1016/j.foodchem.2020.126598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 02/18/2020] [Accepted: 03/10/2020] [Indexed: 11/17/2022]
Abstract
Collagens are large structural proteins that are prevalent in mammalian connective tissue. Peptides designed to include a glycine-proline-hydroxyproline (GPO) amino acid triad are biomimetic analogs of the collagen triple helix, a fold that is a hallmark of collagen-like sequences. To inform the rational engineering of collagen-like peptides and proteins for food systems, we report the crystal structure of the (GPO)10 peptide at 0.89-Å resolution, solved using direct methods. We determined that a single chain in the asymmetric unit forms a pseudo-hexagonal network of triple helices that have a pitch variation consistent with the model 7/2 helix (3.5 residues per turn). The proline rings occupied one of two states, while the helix was found to have a well-defined hydration shell involved in the stabilization of the inter-helix crystal network. This structure offers a new high-resolution basis for understanding the hierarchical assembly of native collagens, which will aid the food industry in engineering new sustainable food systems.
Collapse
Affiliation(s)
- Hironori Suzuki
- Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand
| | - Deepti Mahapatra
- Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand; AgResearch Ltd, Lincoln, New Zealand
| | - Amanda J Board
- Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand; Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Peter J Steel
- Chemistry Department, University of Canterbury, Christchurch, New Zealand
| | - Jolon M Dyer
- Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand; AgResearch Ltd, Lincoln, New Zealand; Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Juliet A Gerrard
- Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand; School of Biological Sciences and School of Chemical Sciences, University of Auckland, Auckland, New Zealand; Riddet Institute, Massey University, Palmerston North, New Zealand; Callaghan Innovation Research Limited, Lower Hutt, New Zealand
| | - Renwick C J Dobson
- Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand; Riddet Institute, Massey University, Palmerston North, New Zealand; Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Victoria, Australia.
| | - Céline Valéry
- Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand; School of Medical Sciences, RMIT University, Bundoora, Victoria, Australia.
| |
Collapse
|
24
|
Howes J, Knäuper V, Malcor J, Farndale RW. Cleavage by MMP-13 renders VWF unable to bind to collagen but increases its platelet reactivity. J Thromb Haemost 2020; 18:942-954. [PMID: 31894636 PMCID: PMC8614119 DOI: 10.1111/jth.14729] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 12/11/2019] [Accepted: 12/30/2019] [Indexed: 12/28/2022]
Abstract
BACKGROUND Atherosclerotic plaque rupture and subsequent thrombosis underpin thrombotic syndromes. Under inflammatory conditions in the unstable plaque, perturbed endothelial cells secrete von Willebrand Factor (VWF) which, via its interaction with GpIbα, enables platelet rolling across and adherence to the damaged endothelium. Following plaque rupture, VWF and platelets are exposed to subendothelial collagen, which supports stable platelet adhesion, activation, and aggregation. Plaque-derived matrix metalloproteinase (MMP)-13 is also released into the surrounding lumen where it may interact with VWF, collagen, and platelets. OBJECTIVES We sought to discover whether MMP-13 can cleave VWF and whether this might regulate its interaction with both collagen and platelets. METHODS We have used platelet adhesion assays and whole blood flow experiments to assess the effects of VWF cleavage by MMP-13 on platelet adhesion and thrombus formation. RESULTS Unlike the shear-dependent cleavage of VWF by a disintegrin and metalloprotease with thrombospondin motif member 13 (ADAMTS13), MMP-13 is able to cleave VWF under static conditions. Following cleavage by MMP-13, immobilized VWF cannot bind to collagen but interacts more strongly with platelets, supporting slower platelet rolling in whole blood under shear. Compared with intact VWF, the interaction of cleaved VWF with platelets results in greater GpIbα upregulation and P-selectin expression, and the thrombi formed on cleaved VWF-collagen co-coatings are larger and more contractile than platelet aggregates on intact VWF-collagen co-coatings or on collagen alone. CONCLUSIONS Our data suggest a VWF-mediated role for MMP-13 in the recruitment of platelets to the site of vascular injury and may provide new insights into the association of MMP-13 in atherothrombotic and stroke pathologies.
Collapse
|
25
|
Noguchi Y, Iwasaki Y, Ueda M, Kakinoki S. Surfaces immobilized with oligo-prolines prevent protein adsorption and cell adhesion. J Mater Chem B 2020; 8:2233-2237. [PMID: 32133474 DOI: 10.1039/d0tb00051e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In this study, oligo-prolines, (Pro)n (n = 6 and 9) inspired by the backbone structure of collagen, were evaluated as a novel non-ionic anti-fouling peptide. Two oligo-prolines with a cysteine residue were synthesized and immobilized on gold substrates via Au-thiol binding. The surfaces immobilized with oligo-prolines, and forming a polyproline-II conformation, indicated hydrophilic properties (water contact angle ≈ 25 degrees). The degree of adsorption of human serum albumin, human fibrinogen, and bovine serum components on these surfaces was quantified using a quartz crystal. The immobilization of oligo-prolines prevented the adsorption of proteins and serum components including small molecules, such as fatty acids. Pro9 specifically indicated good resistance to the adsorption of all components due to the highly-packed Pro9 chains on the surface. The adhesion of fibroblasts was drastically suppressed on the surfaces immobilized with oligo-prolines. Our findings suggest that oligo-proline-immobilized surfaces, specifically Pro9-s, are useful for the development of novel vascular devices that have ultra-low fouling properties.
Collapse
Affiliation(s)
- Yuri Noguchi
- Graduate School of Science and Engineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-0836, Japan
| | - Yasuhiko Iwasaki
- Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-0836, Japan. and Organization for Research and Development of Innovative Science and Technology, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-0836, Japan
| | - Masato Ueda
- Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-0836, Japan. and Organization for Research and Development of Innovative Science and Technology, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-0836, Japan
| | - Sachiro Kakinoki
- Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-0836, Japan. and Organization for Research and Development of Innovative Science and Technology, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-0836, Japan
| |
Collapse
|
26
|
Vallance TM, Ravishankar D, Albadawi DAI, Layfield H, Sheard J, Vaiyapuri R, Dash P, Patel K, Widera D, Vaiyapuri S. Effect of ultrapure lipopolysaccharides derived from diverse bacterial species on the modulation of platelet activation. Sci Rep 2019; 9:18258. [PMID: 31796818 PMCID: PMC6890654 DOI: 10.1038/s41598-019-54617-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 11/18/2019] [Indexed: 11/09/2022] Open
Abstract
Platelets are small circulating blood cells that play essential roles in the maintenance of haemostasis via blood clotting. However, they also play critical roles in the regulation of innate immune responses. Inflammatory receptors, specifically Toll-like receptor (TLR)-4, have been reported to modify platelet reactivity. A plethora of studies have reported controversial functions of TLR4 in the modulation of platelet function using various chemotypes and preparations of its ligand, lipopolysaccharide (LPS). The method of preparation of LPS may explain these discrepancies however this is not fully understood. Hence, to determine the impact of LPS on platelet activation, we used ultrapure preparations of LPS from Escherichia coli (LPSEC), Salmonella minnesota (LPSSM), and Rhodobacter sphaeroides (LPSRS) and examined their actions under diverse experimental conditions in human platelets. LPSEC did not affect platelet activation markers such as inside-out signalling to integrin αIIbβ3 or P-selectin exposure upon agonist-induced activation in platelet-rich plasma or whole blood whereas LPSSM and LPSRS inhibited platelet activation under specific conditions at supraphysiological concentrations. Overall, our data demonstrate that platelet activation is not largely influenced by any of the ultrapure LPS chemotypes used in this study on their own except under certain conditions.
Collapse
Affiliation(s)
- Thomas M Vallance
- School of Pharmacy, University of Reading, Reading, RG6 6UB, United Kingdom
| | | | - Dina A I Albadawi
- School of Pharmacy, University of Reading, Reading, RG6 6UB, United Kingdom
| | - Harry Layfield
- School of Pharmacy, University of Reading, Reading, RG6 6UB, United Kingdom
| | - Jonathan Sheard
- Stem Cell Biology and Regenerative Medicine Group, School of Pharmacy, University of Reading, Reading, RG6 6UB, United Kingdom.,Sheard BioTech Ltd, 20-22, Wenlock Road, London, N1 7GU, United Kingdom
| | | | - Philip Dash
- School of Biological Sciences, University of Reading, Reading, RG6 6UB, United Kingdom
| | - Ketan Patel
- School of Biological Sciences, University of Reading, Reading, RG6 6UB, United Kingdom
| | - Darius Widera
- Stem Cell Biology and Regenerative Medicine Group, School of Pharmacy, University of Reading, Reading, RG6 6UB, United Kingdom
| | - Sakthivel Vaiyapuri
- School of Pharmacy, University of Reading, Reading, RG6 6UB, United Kingdom.
| |
Collapse
|
27
|
|
28
|
Role of prolyl hydroxylation in the molecular interactions of collagens. Essays Biochem 2019; 63:325-335. [PMID: 31350381 PMCID: PMC6744578 DOI: 10.1042/ebc20180053] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/25/2019] [Accepted: 07/01/2019] [Indexed: 12/12/2022]
Abstract
Co- and post-translational hydroxylation of proline residues is critical for the stability of the triple helical collagen structure. In this review, we summarise the biology of collagen prolyl 4-hydroxylases and collagen prolyl 3-hydroxylases, the enzymes responsible for proline hydroxylation. Furthermore, we describe the potential roles of hydroxyproline residues in the complex interplay between collagens and other proteins, especially integrin and discoidin domain receptor type cell adhesion receptors. Qualitative and quantitative regulation of collagen hydroxylation may have remarkable effects on the properties of the extracellular matrix and consequently on the cell behaviour.
Collapse
|
29
|
Copes F, Pien N, Van Vlierberghe S, Boccafoschi F, Mantovani D. Collagen-Based Tissue Engineering Strategies for Vascular Medicine. Front Bioeng Biotechnol 2019; 7:166. [PMID: 31355194 PMCID: PMC6639767 DOI: 10.3389/fbioe.2019.00166] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 06/24/2019] [Indexed: 12/21/2022] Open
Abstract
Cardiovascular diseases (CVDs) account for the 31% of total death per year, making them the first cause of death in the world. Atherosclerosis is at the root of the most life-threatening CVDs. Vascular bypass/replacement surgery is the primary therapy for patients with atherosclerosis. The use of polymeric grafts for this application is still burdened by high-rate failure, mostly caused by thrombosis and neointima hyperplasia at the implantation site. As a solution for these problems, the fast re-establishment of a functional endothelial cell (EC) layer has been proposed, representing a strategy of crucial importance to reduce these adverse outcomes. Implant modifications using molecules and growth factors with the aim of speeding up the re-endothelialization process has been proposed over the last years. Collagen, by virtue of several favorable properties, has been widely studied for its application in vascular graft enrichment, mainly as a coating for vascular graft luminal surface and as a drug delivery system for the release of pro-endothelialization factors. Collagen coatings provide receptor-ligand binding sites for ECs on the graft surface and, at the same time, act as biological sealants, effectively reducing graft porosity. The development of collagen-based drug delivery systems, in which small-molecule and protein-based drugs are immobilized within a collagen scaffold in order to control their release for biomedical applications, has been widely explored. These systems help in protecting the biological activity of the loaded molecules while slowing their diffusion from collagen scaffolds, providing optimal effects on the targeted vascular cells. Moreover, collagen-based vascular tissue engineering substitutes, despite not showing yet optimal mechanical properties for their use in the therapy, have shown a high potential as physiologically relevant models for the study of cardiovascular therapeutic drugs and diseases. In this review, the current state of the art about the use of collagen-based strategies, mainly as a coating material for the functionalization of vascular graft luminal surface, as a drug delivery system for the release of pro-endothelialization factors, and as physiologically relevant in vitro vascular models, and the future trend in this field of research will be presented and discussed.
Collapse
Affiliation(s)
- Francesco Copes
- Laboratory for Biomaterials and Bioengineering, Canada Research Chair Tier I for the Innovation in Surgery, Department of Min-Met-Materials Engineering & Regenerative Medicine, CHU de Quebec Research Center, Laval University, Quebec City, QC, Canada
- Laboratory of Human Anatomy, Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Nele Pien
- Laboratory for Biomaterials and Bioengineering, Canada Research Chair Tier I for the Innovation in Surgery, Department of Min-Met-Materials Engineering & Regenerative Medicine, CHU de Quebec Research Center, Laval University, Quebec City, QC, Canada
- Polymer Chemistry & Biomaterials Group, Department of Organic and Macromolecular Chemistry, Centre of Macromolecular Chemistry, Ghent University, Ghent, Belgium
| | - Sandra Van Vlierberghe
- Polymer Chemistry & Biomaterials Group, Department of Organic and Macromolecular Chemistry, Centre of Macromolecular Chemistry, Ghent University, Ghent, Belgium
| | - Francesca Boccafoschi
- Laboratory for Biomaterials and Bioengineering, Canada Research Chair Tier I for the Innovation in Surgery, Department of Min-Met-Materials Engineering & Regenerative Medicine, CHU de Quebec Research Center, Laval University, Quebec City, QC, Canada
- Laboratory of Human Anatomy, Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Diego Mantovani
- Laboratory for Biomaterials and Bioengineering, Canada Research Chair Tier I for the Innovation in Surgery, Department of Min-Met-Materials Engineering & Regenerative Medicine, CHU de Quebec Research Center, Laval University, Quebec City, QC, Canada
| |
Collapse
|
30
|
Synthetic Flavonoids as Novel Modulators of Platelet Function and Thrombosis. Int J Mol Sci 2019; 20:ijms20123106. [PMID: 31242657 PMCID: PMC6627635 DOI: 10.3390/ijms20123106] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 06/21/2019] [Accepted: 06/23/2019] [Indexed: 01/27/2023] Open
Abstract
Cardiovascular diseases represent a major cause of mortality and morbidity in the world, and specifically, thrombotic conditions such as heart attacks and strokes are caused by unwarranted activation of platelets and subsequent formation of blood clots (thrombi) within the blood vessels during pathological circumstances. Therefore, platelets act as a primary therapeutic target to treat and prevent thrombotic conditions. Current treatments are limited due to intolerance, and they are associated with severe side effects such as bleeding complications. Hence, the development of novel therapeutic strategies for thrombotic diseases is an urgent priority. Flavonoids are naturally occurring plant-derived molecules that exert numerous beneficial effects in humans through modulating the functions of distinct cell types. However, naturally occurring flavonoids suffer from several issues such as poor solubility, lipophilicity, and bioavailability, which hinder their efficacy and potency. Despite these, flavonoids act as versatile templates for the design and synthesis of novel molecules for various therapeutic targets. Indeed, several synthetic flavonoids have recently been developed to improve their stability, bioavailability, and efficacy, including for the modulation of platelet function. Here, we provide insight into the actions of certain natural flavonoids along with the advantages of synthetic flavonoids in the modulation of platelet function, haemostasis, and thrombosis.
Collapse
|
31
|
Role of Platelet Glycoprotein VI and Tyrosine Kinase Syk in Thrombus Formation on Collagen-Like Surfaces. Int J Mol Sci 2019; 20:ijms20112788. [PMID: 31181592 PMCID: PMC6600290 DOI: 10.3390/ijms20112788] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/29/2019] [Accepted: 06/04/2019] [Indexed: 01/20/2023] Open
Abstract
Platelet interaction with collagens, via von Willebrand factor, is a potent trigger of shear-dependent thrombus formation mediated by subsequent engagement of the signaling collagen receptor glycoprotein (GP)VI, enforced by integrin α2β1. Protein tyrosine kinase Syk is central in the GPVI-induced signaling pathway, leading to elevated cytosolic Ca2+. We aimed to determine the Syk-mediated thrombogenic activity of several collagen peptides and (fibrillar) type I and III collagens. High-shear perfusion of blood over microspots of these substances resulted in thrombus formation, which was assessed by eight parameters and was indicative of platelet adhesion, activation, aggregation, and contraction, which were affected by the Syk inhibitor PRT-060318. In platelet suspensions, only collagen peptides containing the consensus GPVI-activating sequence (GPO)n and Horm-type collagen evoked Syk-dependent Ca2+ rises. In whole blood under flow, Syk inhibition suppressed platelet activation and aggregation parameters for the collagen peptides with or without a (GPO)n sequence and for all of the collagens. Prediction models based on a regression analysis indicated a mixed role of GPVI in thrombus formation on fibrillar collagens, which was abolished by Syk inhibition. Together, these findings indicate that GPVI-dependent signaling through Syk supports platelet activation in thrombus formation on collagen-like structures regardless of the presence of a (GPO)n sequence.
Collapse
|
32
|
Orgel JPRO, Madhurapantula RS. A structural prospective for collagen receptors such as DDR and their binding of the collagen fibril. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:118478. [PMID: 31004686 DOI: 10.1016/j.bbamcr.2019.04.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 04/11/2019] [Accepted: 04/12/2019] [Indexed: 12/13/2022]
Abstract
The structure of the collagen fibril surface directly effects and possibly assists the management of collagen receptor interactions. An important class of collagen receptors, the receptor tyrosine kinases of the Discoidin Domain Receptor family (DDR1 and DDR2), are differentially activated by specific collagen types and play important roles in cell adhesion, migration, proliferation, and matrix remodeling. This review discusses their structure and function as it pertains directly to the fibrillar collagen structure with which they interact far more readily than they do with isolated molecular collagen. This prospective provides further insight into the mechanisms of activation and rational cellular control of this important class of receptors while also providing a comparison of DDR-collagen interactions with other receptors such as integrin and GPVI. When improperly regulated, DDR activation can lead to abnormal cellular proliferation activities such as in cancer. Hence how and when the DDRs associate with the major basis of mammalian tissue infrastructure, fibrillar collagen, should be of keen interest.
Collapse
Affiliation(s)
- Joseph P R O Orgel
- Departments of Biology and Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA.
| | - Rama S Madhurapantula
- Departments of Biology and Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA
| |
Collapse
|
33
|
Amyloid Peptide β1-42 Induces Integrin αIIb β3 Activation, Platelet Adhesion, and Thrombus Formation in a NADPH Oxidase-Dependent Manner. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:1050476. [PMID: 31007831 PMCID: PMC6441506 DOI: 10.1155/2019/1050476] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 11/05/2018] [Accepted: 12/13/2018] [Indexed: 01/02/2023]
Abstract
The progression of Alzheimer's dementia is associated with neurovasculature impairment, which includes inflammation, microthromboses, and reduced cerebral blood flow. Here, we investigate the effects of β amyloid peptides on the function of platelets, the cells driving haemostasis. Amyloid peptide β1-42 (Aβ1-42), Aβ1-40, and Aβ25-35 were tested in static adhesion experiments, and it was found that platelets preferentially adhere to Aβ1-42 compared to other Aβ peptides. In addition, significant platelet spreading was observed over Aβ1-42, while Aβ1-40, Aβ25-35, and the scAβ1-42 control did not seem to induce any platelet spreading, which suggested that only Aβ1-42 activates platelet signalling in our experimental conditions. Aβ1-42 also induced significant platelet adhesion and thrombus formation in whole blood under venous flow condition, while other Aβ peptides did not. The molecular mechanism of Aβ1-42 was investigated by flow cytometry, which revealed that this peptide induces a significant activation of integrin αIIbβ3, but does not induce platelet degranulation (as measured by P-selectin membrane translocation). Finally, Aβ1-42 treatment of human platelets led to detectable levels of protein kinase C (PKC) activation and tyrosine phosphorylation, which are hallmarks of platelet signalling. Interestingly, the NADPH oxidase (NOX) inhibitor VAS2870 completely abolished Aβ1-42-dependent platelet adhesion in static conditions, thrombus formation in physiological flow conditions, integrin αIIbβ3 activation, and tyrosine- and PKC-dependent platelet signalling. In summary, this study highlights the importance of NOXs in the activation of platelets in response to amyloid peptide β1-42. The molecular mechanisms described in this manuscript may play an important role in the neurovascular impairment observed in Alzheimer's patients.
Collapse
|
34
|
Howes J, Pugh N, Hamaia SW, Jung SM, Knäuper V, Malcor J, Farndale RW. MMP-13 binds to platelet receptors αIIbβ3 and GPVI and impairs aggregation and thrombus formation. Res Pract Thromb Haemost 2018; 2:370-379. [PMID: 30046741 PMCID: PMC5974921 DOI: 10.1002/rth2.12088] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 01/28/2018] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Acute thrombotic syndromes lead to atherosclerotic plaque rupture with subsequent thrombus formation, myocardial infarction and stroke. Following rupture, flowing blood is exposed to plaque components, including collagen, which triggers platelet activation and aggregation. However, plaque rupture releases other components into the surrounding vessel which have the potential to influence platelet function and thrombus formation. OBJECTIVES Here we sought to elucidate whether matrix metalloproteinase-13 (MMP-13), a collagenolytic metalloproteinase up-regulated in atherothrombotic and inflammatory conditions, affects platelet aggregation and thrombus formation. RESULTS We demonstrate that MMP-13 is able to bind to platelet receptors alphaIIbbeta3 (αIIbβ3) and platelet glycoprotein (GP)VI. The interactions between MMP-13, GPVI and αIIbβ3 are sufficient to significantly inhibit washed platelet aggregation and decrease thrombus formation on fibrillar collagen. CONCLUSIONS Our data demonstrate a role for MMP-13 in the inhibition of both platelet aggregation and thrombus formation in whole flowing blood, and may provide new avenues of research into the mechanisms underlying the subtle role of MMP-13 in atherothrombotic pathologies.
Collapse
Affiliation(s)
| | - Nicholas Pugh
- Department of Biomedical and Forensic SciencesAnglia Ruskin UniversityCambridgeUK
| | - Samir W. Hamaia
- Department of BiochemistryUniversity of CambridgeCambridgeUK
| | | | | | | | | |
Collapse
|
35
|
Lima AM, Wegner SV, Martins Cavaco AC, Estevão-Costa MI, Sanz-Soler R, Niland S, Nosov G, Klingauf J, Spatz JP, Eble JA. The spatial molecular pattern of integrin recognition sites and their immobilization to colloidal nanobeads determine α2β1 integrin-dependent platelet activation. Biomaterials 2018; 167:107-120. [PMID: 29567387 DOI: 10.1016/j.biomaterials.2018.03.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 03/02/2018] [Accepted: 03/14/2018] [Indexed: 11/15/2022]
Abstract
Collagen, a strong platelet activator, is recognized by integrin α2β1 and GPVI. It induces aggregation, if added to suspended platelets, or platelet adhesion if immobilized to a surface. The recombinant non-prolylhydroxylated mini-collagen FC3 triple helix containing one α2β1 integrin binding site is a tool to specifically study how α2β1 integrin activates platelet. Whereas soluble FC3 monomers antagonistically block collagen-induced platelet activation, immobilization of several FC3 molecules to an interface or to colloidal nanobeads determines the agonistic action of FC3. Nanopatterning of FC3 reveals that intermolecular distances below 64 nm between α2β1 integrin binding sites trigger signaling through dot-like clusters of α2β1 integrin, which are visible in high resolution microscopy with dSTORM. Upon signaling, these integrin clusters increase in numbers per platelet, but retain their individual size. Immobilization of several FC3 to 100 nm-sized nanobeads identifies α2β1 integrin-triggered signaling in platelets to occur at a twentyfold slower rate than collagen, which activates platelet in a fast integrative signaling via different platelet receptors. As compared to collagen stimulation, FC3-nanobead-triggered signaling cause a significant stronger activation of the protein kinase BTK, a weak and dispensable activation of PDK1, as well as a distinct phosphorylation pattern of PDB/Akt.
Collapse
Affiliation(s)
- Augusto Martins Lima
- Institute of Physiological Chemistry and Pathobiochemistry, University of Muenster, Waldeyerstr. 15, 48149 Muenster, Germany
| | - Seraphine V Wegner
- Department of Biophysical Chemistry, University of Heidelberg, Heidelberg, Germany, and Max Plank-Institute for Polymer Research, Mainz, Germany
| | - Ana C Martins Cavaco
- Institute of Physiological Chemistry and Pathobiochemistry, University of Muenster, Waldeyerstr. 15, 48149 Muenster, Germany
| | - Maria Inacia Estevão-Costa
- Institute of Physiological Chemistry and Pathobiochemistry, University of Muenster, Waldeyerstr. 15, 48149 Muenster, Germany
| | - Raquel Sanz-Soler
- Institute of Physiological Chemistry and Pathobiochemistry, University of Muenster, Waldeyerstr. 15, 48149 Muenster, Germany
| | - Stephan Niland
- Institute of Physiological Chemistry and Pathobiochemistry, University of Muenster, Waldeyerstr. 15, 48149 Muenster, Germany
| | - Georgii Nosov
- Institute for Physical Medicine and Biophysics, University of Muenster, Muenster, Germany
| | - Jürgen Klingauf
- Institute for Physical Medicine and Biophysics, University of Muenster, Muenster, Germany
| | - Joachim P Spatz
- Department of Biophysical Chemistry, University of Heidelberg, Heidelberg, Germany, and Max Planck-Institute for Medical Research, Department of Cellular Biophysics, Heidelberg, Germany
| | - Johannes A Eble
- Institute of Physiological Chemistry and Pathobiochemistry, University of Muenster, Waldeyerstr. 15, 48149 Muenster, Germany.
| |
Collapse
|
36
|
Montgomery NT, Zientek KD, Pokidysheva EN, Bächinger HP. Post-translational modification of type IV collagen with 3-hydroxyproline affects its interactions with glycoprotein VI and nidogens 1 and 2. J Biol Chem 2018; 293:5987-5999. [PMID: 29491144 DOI: 10.1074/jbc.ra117.000406] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 02/15/2018] [Indexed: 01/18/2023] Open
Abstract
Type IV collagen is a major component of the basement membrane and interacts with numerous other basement membrane proteins. Many of these interactions are poorly characterized. Type IV collagen is abundantly post-translationally modified with 3-hydroxyproline (3-Hyp), but 3-Hyp's biochemical role in type IV collagen's interactions with other proteins is not well established. In this work, we present binding data consistent with a major role of 3-Hyp in interactions of collagen IV with glycoprotein VI and nidogens 1 and 2. The increased binding interaction between type IV collagen without 3-Hyp and glycoprotein VI has been the subject of some controversy, which we sought to explore, whereas the lack of binding of nidogens to type IV collagen without 3-Hyp is novel. Using tandem MS, we show that the putative glycoprotein VI-binding site is 3-Hyp-modified in WT PFHR-9 type IV collagen, but not in PFHR-9 cells in which prolyl-3-hydroxylase 2 (P3H2) has been knocked out (KO). Moreover, we observed altered 3-Hyp occupancy across many other sites. Using amino acid analysis of type IV collagen from the WT and P3H2 KO cell lines, we confirm that P3H2 is the major, but not the only 3-Hyp-modifying enzyme of type IV collagen. These findings underscore the importance of post-translational modifications of type IV collagen for interactions with other proteins.
Collapse
Affiliation(s)
- Nathan T Montgomery
- From the Research Department, Shriners Hospital for Children, Portland, Oregon 97239.,the Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, Oregon 97239, and
| | - Keith D Zientek
- From the Research Department, Shriners Hospital for Children, Portland, Oregon 97239
| | - Elena N Pokidysheva
- the Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University, Nashville, Tennessee 37232
| | - Hans Peter Bächinger
- From the Research Department, Shriners Hospital for Children, Portland, Oregon 97239, .,the Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, Oregon 97239, and
| |
Collapse
|
37
|
Induruwa I, Moroi M, Bonna A, Malcor J, Howes J, Warburton EA, Farndale RW, Jung SM. Platelet collagen receptor Glycoprotein VI-dimer recognizes fibrinogen and fibrin through their D-domains, contributing to platelet adhesion and activation during thrombus formation. J Thromb Haemost 2018; 16:389-404. [PMID: 29210180 PMCID: PMC5838801 DOI: 10.1111/jth.13919] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Indexed: 01/01/2023]
Abstract
Essentials Glycoprotein VI (GPVI) binds collagen, starting thrombogenesis, and fibrin, stabilizing thrombi. GPVI-dimers, not monomers, recognize immobilized fibrinogen and fibrin through their D-domains. Collagen, D-fragment and D-dimer may share a common or proximate binding site(s) on GPVI-dimer. GPVI-dimer-fibrin interaction supports spreading, activation and adhesion involving αIIbβ3. SUMMARY Background Platelet collagen receptor Glycoprotein VI (GPVI) binds collagen, initiating thrombogenesis, and stabilizes thrombi by binding fibrin. Objectives To determine if GPVI-dimer, GPVI-monomer, or both bind to fibrinogen substrates, and which region common to these substrates contains the interaction site. Methods Recombinant GPVI monomeric extracellular domain (GPVIex ) or dimeric Fc-fusion protein (GPVI-Fc2 ) binding to immobilized fibrinogen derivatives was measured by ELISA, including competition assays involving collagenous substrates and fibrinogen derivatives. Flow adhesion was performed with normal or Glanzmann thrombasthenic (GT) platelets over immobilized fibrinogen, with or without anti-GPVI-dimer or anti-αIIbβ3. Results Under static conditions, GPVIex did not bind to any fibrinogen substrate. GPVI-Fc2 exhibited specific, saturable binding to both D-fragment and D-dimer, which was inhibited by mFab-F (anti-GPVI-dimer), but showed low binding to fibrinogen and fibrin under our conditions. GPVI-Fc2 binding to D-fragment or D-dimer was abrogated by collagen type III, Horm collagen or CRP-XL (crosslinked collagen-related peptide), suggesting proximity between the D-domain and collagen binding sites on GPVI-dimer. Under low shear, adhesion of normal platelets to D-fragment, D-dimer, fibrinogen and fibrin was inhibited by mFab-F (inhibitor of GPVI-dimer) and abolished by Eptifibatide (inhibitor of αIIbβ3), suggesting that both receptors contribute to thrombus formation on these substrates, but αIIbβ3 makes a greater contribution. Notably, thrombasthenic platelets showed limited adhesion to fibrinogen substrates under flow, which was further reduced by mFab-F, supporting some independent GPVI-dimer involvement in this interaction. Conclusion Only dimeric GPVI interacts with fibrinogen D-domain, at a site proximate to its collagen binding site, to support platelet adhesion/activation/aggregate formation on immobilized fibrinogen and polymerized fibrin.
Collapse
Affiliation(s)
- I. Induruwa
- Department of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
| | - M. Moroi
- Department of BiochemistryUniversity of CambridgeCambridgeUK
| | - A. Bonna
- Department of BiochemistryUniversity of CambridgeCambridgeUK
| | - J.‐D. Malcor
- Department of BiochemistryUniversity of CambridgeCambridgeUK
| | - J.‐M. Howes
- Department of BiochemistryUniversity of CambridgeCambridgeUK
| | - E. A. Warburton
- Department of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
| | - R. W. Farndale
- Department of BiochemistryUniversity of CambridgeCambridgeUK
| | - S. M. Jung
- Department of BiochemistryUniversity of CambridgeCambridgeUK
| |
Collapse
|
38
|
Poulter NS, Pollitt AY, Owen DM, Gardiner EE, Andrews RK, Shimizu H, Ishikawa D, Bihan D, Farndale RW, Moroi M, Watson SP, Jung SM. Clustering of glycoprotein VI (GPVI) dimers upon adhesion to collagen as a mechanism to regulate GPVI signaling in platelets. J Thromb Haemost 2017; 15:549-564. [PMID: 28058806 PMCID: PMC5347898 DOI: 10.1111/jth.13613] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Indexed: 01/01/2023]
Abstract
Essentials Dimeric high-affinity collagen receptor glycoprotein VI (GPVI) is present on resting platelets. Spatio-temporal organization of platelet GPVI-dimers was evaluated using advanced microscopy. Upon platelet adhesion to collagenous substrates, GPVI-dimers coalesce to form clusters. Clustering of GPVI-dimers may increase avidity and facilitate platelet activation SUMMARY: Background Platelet glycoprotein VI (GPVI) binding to subendothelial collagen exposed upon blood vessel injury initiates thrombus formation. Dimeric GPVI has high affinity for collagen, and occurs constitutively on resting platelets. Objective To identify higher-order oligomerization (clustering) of pre-existing GPVI dimers upon interaction with collagen as a mechanism to initiate GPVI-mediated signaling. Methods GPVI was located by use of fluorophore-conjugated GPVI dimer-specific Fab (antigen-binding fragment). The tested substrates include Horm collagen I fibers, soluble collagen III, GPVI-specific collagen peptides, and fibrinogen. GPVI dimer clusters on the platelet surface interacting with these substrates were visualized with complementary imaging techniques: total internal reflection fluorescence microscopy to monitor real-time interactions, and direct stochastic optical reconstruction microscopy (dSTORM), providing relative quantification of GPVI cluster size and density. Confocal microscopy was used to locate GPVI dimer clusters, glycoprotein Ib, integrin α2 β1 , and phosphotyrosine. Results Upon platelet adhesion to all collagenous substrates, GPVI dimers coalesced to form clusters; notably clusters formed along the fibers of Horm collagen. dSTORM revealed that GPVI density within clusters depended on the substrate, collagen III being the most effective. Clusters on fibrinogen-adhered platelets were much smaller and more numerous; whether these are pre-existing oligomers of GPVI dimers or fibrinogen-induced is not clear. Some GPVI dimer clusters colocalized with areas of phosphotyrosine, indicative of signaling activity. Integrin α2 β1 was localized to collagen fibers close to GPVI dimer clusters. GPVI clustering depends on a dynamic actin cytoskeleton. Conclusions Platelet adhesion to collagen induces GPVI dimer clustering. GPVI clustering increases both avidity for collagen and the proximity of GPVI-associated signaling molecules, which may be crucial for the initiation and persistence of signaling.
Collapse
Affiliation(s)
- N. S. Poulter
- Institute of Cardiovascular SciencesCollege of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
- Centre for Membrane Proteins and Receptors (COMPARE)College of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
| | - A. Y. Pollitt
- Institute of Cardiovascular SciencesCollege of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
- Present address: Institute for Cardiovascular and Metabolic ResearchSchool of Biological SciencesUniversity of ReadingReadingRG6 6ASUK
| | - D. M. Owen
- Department of Physics and Randall Division of Cell and Molecular BiophysicsKing's College LondonLondonUK
| | - E. E. Gardiner
- Department of Cancer Biology and TherapeuticsJohn Curtin School of Medical ResearchAustralian National UniversityCanberraACTAustralia
| | - R. K. Andrews
- Australian Centre for Blood DiseasesMonash UniversityMelbourneVictoriaAustralia
| | - H. Shimizu
- Research DepartmentChemo‐Sero‐Therapeutic Research InstituteKaketsukenKumamotoJapan
| | - D. Ishikawa
- Research DepartmentChemo‐Sero‐Therapeutic Research InstituteKaketsukenKumamotoJapan
| | - D. Bihan
- Department of BiochemistryUniversity of CambridgeCambridgeUK
| | - R. W. Farndale
- Department of BiochemistryUniversity of CambridgeCambridgeUK
| | - M. Moroi
- Department of BiochemistryUniversity of CambridgeCambridgeUK
| | - S. P. Watson
- Institute of Cardiovascular SciencesCollege of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
- Centre for Membrane Proteins and Receptors (COMPARE)College of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
| | - S. M. Jung
- Department of BiochemistryUniversity of CambridgeCambridgeUK
| |
Collapse
|
39
|
Abstract
There is a great deal of interest in obtaining recombinant collagen as an alternative source of material for biomedical applications and as an approach for obtaining basic structural and biological information. However, application of recombinant technology to collagen presents challenges, most notably the need for post-translational hydroxylation of prolines for triple-helix stability. Full length recombinant human collagens have been successfully expressed in cell lines, yeast, and several plant systems, while collagen fragments have been expressed in E. coli. In addition, bacterial collagen-like proteins can be expressed in high yields in E. coli and easily manipulated to incorporate biologically active sequences from human collagens. These expression systems allow manipulation of biologically active sequences within collagen, which has furthered our understanding of the relationships between collagen sequences, structure and function. Here, recombinant studies on collagen interactions with cell receptors, extracellular matrix proteins, and matrix metalloproteinases are reviewed, and discussed in terms of their potential biomaterial and biomedical applications.
Collapse
Affiliation(s)
- Barbara Brodsky
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA.
| | - John A M Ramshaw
- CSIRO Manufacturing, Bayview Avenue, Clayton, VIC, 3169, Australia
| |
Collapse
|
40
|
Contribution of collagen adhesion receptors to tissue fibrosis. Cell Tissue Res 2016; 365:521-38. [DOI: 10.1007/s00441-016-2440-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 06/01/2016] [Indexed: 02/07/2023]
|
41
|
Induruwa I, Jung SM, Warburton EA. Beyond antiplatelets: The role of glycoprotein VI in ischemic stroke. Int J Stroke 2016; 11:618-25. [PMID: 27312676 PMCID: PMC5390959 DOI: 10.1177/1747493016654532] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 05/03/2016] [Indexed: 11/17/2022]
Abstract
Background Platelets are essential to physiological hemostasis or pathological thrombus formation. Current antiplatelet agents inhibit platelet aggregation but leave patients at risk of systemic side-effects such as hemorrhage. Newer therapeutic strategies could involve targeting this cascade earlier during platelet adhesion or activation via inhibitory effects on specific glycoproteins, the thrombogenic collagen receptors found on the platelet surface. Aims Glycoprotein VI (GPVI) is increasingly being recognized as the main platelet-collagen receptor involved in arterial thrombosis. This review summarizes the crucial role GPVI plays in ischemic stroke as well as the current strategies used to attempt to inhibit its activity. Summary of review In this review, we discuss the normal hemostatic process, and the role GPVI plays at sites of atherosclerotic plaque rupture. We discuss how the unique structure of GPVI allows for its interaction with collagen and creates downstream signaling that leads to thrombus formation. We summarize the current strategies used to inhibit GPVI activity and how this could translate to a clinically viable entity that may compete with current antiplatelet therapy. Conclusion From animal models, it is clear that GPVI inhibition leads to an abolished platelet response to collagen and reduced platelet aggregation, culminating in smaller arterial thrombi. There is now an increasing body of evidence that these findings can be translated into the development of a bleeding free pharmacological entity specific to sites of plaque rupture in humans.
Collapse
Affiliation(s)
- Isuru Induruwa
- Department of Clinical Neurosciences, Box 83, Cambridge University Biomedical Campus, Cambridge, UK
| | - Stephanie M Jung
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Elizabeth A Warburton
- Department of Clinical Neurosciences, Box 83, Cambridge University Biomedical Campus, Cambridge, UK
| |
Collapse
|
42
|
Jamasbi J, Megens RTA, Bianchini M, Münch G, Ungerer M, Faussner A, Sherman S, Walker A, Goyal P, Jung S, Brandl R, Weber C, Lorenz R, Farndale R, Elia N, Siess W. Differential Inhibition of Human Atherosclerotic Plaque-Induced Platelet Activation by Dimeric GPVI-Fc and Anti-GPVI Antibodies: Functional and Imaging Studies. J Am Coll Cardiol 2015; 65:2404-15. [PMID: 26046734 PMCID: PMC4452546 DOI: 10.1016/j.jacc.2015.03.573] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 03/25/2015] [Accepted: 03/31/2015] [Indexed: 12/20/2022]
Abstract
Background Glycoprotein VI (GPVI) is the essential platelet collagen receptor in atherothrombosis, but its inhibition causes only a mild bleeding tendency. Thus, targeting this receptor has selective antithrombotic potential. Objectives This study sought to compare compounds interfering with platelet GPVI–atherosclerotic plaque interaction to improve current antiatherothrombotic therapy. Methods Human atherosclerotic plaque–induced platelet aggregation was measured in anticoagulated blood under static and arterial flow conditions (550/s, 1,100/s, and 1,500/s). Inhibition by dimeric GPVI fragment crystallizable region of IgG (Fc) masking GPVI binding sites on collagen was compared with that of 3 anti-GPVI antibodies: BLO8-1, a human domain antibody; 5C4, a fragment antigen-binding (Fab fragment) of monoclonal rat immunoglobulin G; and m-Fab-F, a human recombinant sFab against GPVI dimers. Results GPVI-Fc reduced plaque-triggered platelet aggregation in static blood by 51%, BLO8-1 by 88%, and 5C4 by 93%. Under arterial flow conditions, BLO8-1 and 5C4 almost completely inhibited platelet aggregation while preserving platelet adhesion on plaque. Inhibition by GPVI-Fc, even at high concentrations, was less marked but increased with shear rate. Advanced optical imaging revealed rapid persistent GPVI-Fc binding to collagen under low and high shear flow, upstream and downstream of plaque fragments. At low shear particularly, platelets adhered in plaque flow niches to GPVI-Fc–free segments of collagen fibers and recruited other platelets onto aggregates via ADP and TxA2 release. Conclusions Anti-GPVI antibodies inhibit atherosclerotic plaque-induced platelet aggregation under static and flow conditions more effectively than GPVI-Fc. However, potent platelet inhibition by GPVI-Fc at a higher shear rate (1,500/s) suggests localized antithrombotic efficacy at denuded or fissured stenotic high-risk lesions without systemic bleeding. The compound-specific differences have relevance for clinical trials targeting GPVI-collagen interaction combined with established antiplatelet therapies in patients with spontaneous plaque rupture or intervention-associated plaque injury.
Collapse
Affiliation(s)
- Janina Jamasbi
- Institute for the Prevention of Cardiovascular Diseases, University of Munich, Munich, Germany
| | - Remco T A Megens
- Institute for the Prevention of Cardiovascular Diseases, University of Munich, Munich, Germany; Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands
| | - Mariaelvy Bianchini
- Institute for the Prevention of Cardiovascular Diseases, University of Munich, Munich, Germany
| | | | | | - Alexander Faussner
- Institute for the Prevention of Cardiovascular Diseases, University of Munich, Munich, Germany
| | - Shachar Sherman
- Department of Life Sciences, Ben Gurion University, Beer-Sheva, Israel
| | - Adam Walker
- GlaxoSmithKline Research & Development, Brentford, Middlesex, United Kingdom
| | - Pankaj Goyal
- Department of Biotechnology, The Central University of Rajasthan, Rajasthan, India
| | - Stephanie Jung
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Richard Brandl
- St. Mary's Square Institute for Vascular Surgery and Phlebology, Munich, Germany
| | - Christian Weber
- Institute for the Prevention of Cardiovascular Diseases, University of Munich, Munich, Germany; Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands; DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Reinhard Lorenz
- Institute for the Prevention of Cardiovascular Diseases, University of Munich, Munich, Germany
| | - Richard Farndale
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Natalie Elia
- Department of Life Sciences, Ben Gurion University, Beer-Sheva, Israel
| | - Wolfgang Siess
- Institute for the Prevention of Cardiovascular Diseases, University of Munich, Munich, Germany; DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany.
| |
Collapse
|
43
|
Hines PC, Gao X, White JC, D'Agostino A, Jin JP. A novel role of h2-calponin in regulating whole blood thrombosis and platelet adhesion during physiologic flow. Physiol Rep 2014; 2:2/12/e12228. [PMID: 25472609 PMCID: PMC4332209 DOI: 10.14814/phy2.12228] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Calponin is an actin filament-associated protein reported in platelets, although the specific isoform expressed and functional role were not identified. The h2-calponin isoform is expressed in myeloid-derived peripheral blood monocytes, where it regulates adhesion. Our objective was to characterize the presence and function of the h2 isoform of calponin in platelets. H2-calponin was detected in human and mouse platelets via Western blotting. Immunofluorescent staining demonstrated h2-calponin and actin colocalized in both human and wild-type mouse platelets at rest and following collagen activation. The kinetics of platelet adhesion and whole blood thrombosis during physiologic flow was evaluated in a microfluidic flow-based thrombosis assay. The time to initiation of rapid platelet/thrombus accumulation (lag time) was significantly longer in h2-calponin knockout versus wild-type mouse blood (130.02 ± 3.74 sec and 72.95 ± 16.23 sec, respectively, P < 0.05). There was no significant difference in the rate of platelet/thrombus accumulation during the rapid phase or the maximum platelet/thrombus accumulation. H2-calponin knockout mice also had prolonged bleeding time and blood loss. H2-calponin in platelets facilitates early interactions between platelets and collagen during physiologic flow, but does not significantly affect the rate or magnitude of platelet/thrombus accumulation. H2-calponin knockout mice take 2.3 times longer to achieve hemostasis compared to wild-type controls in a tail bleeding model. The ability to delay platelet accumulation without inhibiting downstream thrombotic potential would be of significant therapeutic value, thus h2-calponin may be a novel target for therapeutic platelet inhibition.
Collapse
Affiliation(s)
- Patrick C Hines
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, Wayne State University School of Medicine, Detroit, Michigan Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan Children Hospital of Michigan, Detroit Medical Center, Detroit, Michigan
| | - Xiufeng Gao
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, Wayne State University School of Medicine, Detroit, Michigan
| | - Jennell C White
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, Wayne State University School of Medicine, Detroit, Michigan
| | - Ashley D'Agostino
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, Wayne State University School of Medicine, Detroit, Michigan
| | - Jian-Ping Jin
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan
| |
Collapse
|
44
|
Chattopadhyay S, Raines RT. Review collagen-based biomaterials for wound healing. Biopolymers 2014; 101:821-33. [PMID: 24633807 PMCID: PMC4203321 DOI: 10.1002/bip.22486] [Citation(s) in RCA: 577] [Impact Index Per Article: 57.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 03/07/2014] [Indexed: 01/13/2023]
Abstract
With its wide distribution in soft and hard connective tissues, collagen is the most abundant of animal proteins. In vitro, natural collagen can be formed into highly organized, three-dimensional scaffolds that are intrinsically biocompatible, biodegradable, nontoxic upon exogenous application, and endowed with high tensile strength. These attributes make collagen the material of choice for wound healing and tissue engineering applications. In this article, we review the structure and molecular interactions of collagen in vivo; the recent use of natural collagen in sponges, injectables, films and membranes, dressings, and skin grafts; and the on-going development of synthetic collagen mimetic peptides as pylons to anchor cytoactive agents in wound beds.
Collapse
Affiliation(s)
| | - Ronald T. Raines
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI 53706
- Department of Biochemistry, University of Wisconsin–Madison, Madison, WI 53706
| |
Collapse
|
45
|
Schesny MK, Monaghan M, Bindermann AH, Freund D, Seifert M, Eble JA, Vogel S, Gawaz MP, Hinderer S, Schenke-Layland K. Preserved bioactivity and tunable release of a SDF1-GPVI bi-specific protein using photo-crosslinked PEGda hydrogels. Biomaterials 2014; 35:7180-7. [DOI: 10.1016/j.biomaterials.2014.04.116] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 04/29/2014] [Indexed: 11/29/2022]
|
46
|
|
47
|
Zeltz C, Orgel J, Gullberg D. Molecular composition and function of integrin-based collagen glues-introducing COLINBRIs. Biochim Biophys Acta Gen Subj 2013; 1840:2533-48. [PMID: 24361615 DOI: 10.1016/j.bbagen.2013.12.022] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 12/13/2013] [Accepted: 12/14/2013] [Indexed: 01/06/2023]
Abstract
BACKGROUND Despite detailed knowledge about the structure and signaling properties of individual collagen receptors, much remains to be learned about how these receptors participate in linking cells to fibrillar collagen matrices in tissues. In addition to collagen-binding integrins, a group of proteins with affinity both for fibrillar collagens and integrins link these two protein families together. We have introduced the name COLINBRI (COLlagen INtegrin BRIdging) for this set of molecules. Whereas collagens are the major building blocks in tissues and defects in these structural proteins have severe consequences for tissue integrity, the mild phenotypes of the integrin type of collagen receptors have raised questions about their importance in tissue biology and pathology. SCOPE OF REVIEW We will discuss the two types of cell linkages to fibrillar collagen (direct- versus indirect COLINBRI-mediated) and discuss how the parallel existence of direct and indirect linkages to collagens may ensure tissue integrity. MAJOR CONCLUSIONS The observed mild phenotypes of mice deficient in collagen-binding integrins and the relatively restricted availability of integrin-binding sequences in mature fibrillar collagen matrices support the existence of indirect collagen-binding mechanisms in parallel with direct collagen binding in vivo. GENERAL SIGNIFICANCE A continued focus on understanding the molecular details of cell adhesion mechanisms to collagens will be important and will benefit our understanding of diseases like tissue- and tumor fibrosis where collagen dynamics are disturbed. This article is part of a Special Issue entitled Matrix-mediated cell behaviour and properties.
Collapse
Affiliation(s)
- Cédric Zeltz
- Department of Biomedicine and Centre for Cancer Biomarkers, Norwegian Centre of Excellence, University of Bergen, Jonas Lies vei 91, N-5009 Bergen, Norway
| | - Joseph Orgel
- Departments of Biology, Physics and Biomedical Engineering, Pritzker Institute of Biomedical Science and Engineering, Illinois Institute of Technology, 3440 S. Dearborn Ave, Chicago, IL 60616, USA
| | - Donald Gullberg
- Department of Biomedicine and Centre for Cancer Biomarkers, Norwegian Centre of Excellence, University of Bergen, Jonas Lies vei 91, N-5009 Bergen, Norway.
| |
Collapse
|
48
|
|
49
|
Hughes CE, Radhakrishnan UP, Lordkipanidzé M, Egginton S, Dijkstra JM, Jagadeeswaran P, Watson SP. G6f-like is an ITAM-containing collagen receptor in thrombocytes. PLoS One 2012; 7:e52622. [PMID: 23285115 PMCID: PMC3528668 DOI: 10.1371/journal.pone.0052622] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 11/20/2012] [Indexed: 01/22/2023] Open
Abstract
Collagen activates mammalian platelets through a complex of the immunoglobulin (Ig) receptor GPVI and the Fc receptor γ-chain, which has an immunoreceptor tyrosine-based activation motif (ITAM). Cross-linking of GPVI mediates activation through the sequential activation of Src and Syk family kinases and activation of PLCγ2. Nucleated thrombocytes in fish are activated by collagen but lack an ortholog of GPVI. In this study we show that collagen activates trout thrombocytes in whole blood and under flow conditions through a Src kinase driven pathway. We identify the Ig receptor G6f-like as a collagen receptor and demonstrate in a cell line assay that it signals through its cytoplasmic ITAM. Using a morpholino for in vivo knock-down of G6f-like levels in zebrafish, we observed a marked delay or absence of occlusion of the venous and arterial systems in response to laser injury. Thus, G6f-like is a physiologically relevant collagen receptor in fish thrombocytes which signals through the same ITAM-based signalling pathway as mammalian GPVI, providing a novel example of convergent evolution.
Collapse
Affiliation(s)
- Craig E Hughes
- Centre for Cardiovascular Sciences, Institute for Biomedical Research, The College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
50
|
Zahid M, Mangin P, Loyau S, Hechler B, Billiald P, Gachet C, Jandrot-Perrus M. The future of glycoprotein VI as an antithrombotic target. J Thromb Haemost 2012; 10:2418-27. [PMID: 23020554 DOI: 10.1111/jth.12009] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The treatment of acute coronary syndromes has been considerably improved in recent years with the introduction of highly efficient antiplatelet drugs. However, there are still significant limitations: the recurrence of adverse vascular events remains a problem, and the improvement in efficacy is counterbalanced by an increased risk of bleeding, which is of particular importance in patients at risk of stroke. One of the most attractive targets for the development of new molecules with potential antithrombotic activity is platelet glycoprotein (GP)VI, because its blockade appears to ideally combine efficacy and safety. This review summarizes current knowledge on GPVI regarding its structure, its function, and its role in physiologic hemostasis and thrombosis. Strategies for inhibiting GPVI are presented, and evidence of the antithrombotic efficacy and safety of GPVI antagonists is provided.
Collapse
Affiliation(s)
- M Zahid
- Inserm, UMRS_698, Paris, France
| | | | | | | | | | | | | |
Collapse
|