1
|
Im SB, Song HN, Jeong TK, Kim N, Kim K, Park SJ, Oh BH. Cryo-EM Structure of Human Hyaluronidase PH-20. Proteins 2024. [PMID: 39722545 DOI: 10.1002/prot.26788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/08/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024]
Abstract
PH-20 is a specific type of hyaluronidase that plays a critical role in the fertilization process by facilitating the initial binding of sperm to the glycoprotein layer surrounding the oocyte and subsequently breaking down hyaluronic acid polymers in the cumulus cell layer. PH-20 contains an epidermal growth factor (EGF)-like domain, which may be involved in the recognition of the glycoprotein layer in addition to the catalytic domain. Herein, we report the structure of human PH-20 determined by cryogenic electron microscopy. Comparative analyses of the PH-20 structure with two other available hyaluronidase structures reveal a general similarity in the central catalytic domains, including the conservation of catalytically essential residues at the equivalent spatial positions. However, unique difference is found in the EGF-like domain, characterized by a longer sequence that is likely to form a flexibly anchored β-hairpin containing a disulfide bond.
Collapse
Affiliation(s)
- Seong-Bin Im
- Department of Biological Sciences, KAIST Institute for the Biocentury, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | | | - Tae-Kyeong Jeong
- Department of Biological Sciences, KAIST Institute for the Biocentury, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Nayun Kim
- Department of Biological Sciences, KAIST Institute for the Biocentury, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | | | | | - Byung-Ha Oh
- Department of Biological Sciences, KAIST Institute for the Biocentury, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
- Graduate Program of Engineering Biology, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|
2
|
Tchaparian E, Lin HY, Chen Y, Hunter JN, Yin S, Ng H, Wu A. Mass balance, metabolic disposition, and pharmacokinetics of a single IV dose of [14C]CA102N in HT-29 xenograft athymic nude mice. Front Pharmacol 2024; 15:1440679. [PMID: 39703390 PMCID: PMC11655901 DOI: 10.3389/fphar.2024.1440679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 11/05/2024] [Indexed: 12/21/2024] Open
Abstract
Introduction CA102N is a novel anticancer drug developed by covalently linking H-Nim (N-(4-Amino-2-phenoxyphenyl methanesulfonamide) to Hyaluronic Acid to target CD44 receptor-rich tumors. The proposed approach seeks to enhance the efficacy and overcome limitations associated with H-Nim, including poor solubility and short half-life. Methods The study aimed to evaluate the pharmacokinetics, biodistribution, metabolism, and tumor permeability of [14C] CA102N in xenograft mice following a single intravenous dose of 200 mg/kg. Liquid scintillation counting analysis was used for the pharmacokinetics and mass balance analysis. Metabolite profiling was assessed by HPLC-MS coupled with a radio flow-through detector. Quantitative Whole-Body Autoradiography was used to determine tissue distribution. Concentrations of CA102N and its metabolites were measured using total radioactivity data from urine, feces, and tissue samples. Results About 94.9% of the administered dose was recovered at 240 h post-dose. The primary route of radioactivity elimination was through urine, accounting for an average of 77% of the dose with around 13.2% excreted in the feces. Tissue distribution showed rapid accumulation within 0.5 h post-administration, followed by a fast decline in most tissues except for the tumor, where slow elimination was observed. CA102N/metabolites exhibited a two-phase pharmacokinetic profile, characterized by an initial rapid distribution phase and a slower terminal elimination, with a half-life (t1/2) of 22 h. The mean maximum concentration (Cmax) of 1798.586 µg equivalents per ml was reached at 0.5 h (Tmax). Most of the radioactivity in plasma was attributed to CA102N, while small-molecule hydrolysis products dominated the excreta and tissue samples. Metabolite profiling revealed two major hydrolysis products: H-Nim-disaccharide and H-Nim-tetrasaccharide. No unchanged [14C] CA102N was detected in urine or feces, suggesting that CA102N undergoes extensive metabolism before excretion. Conclusion The current data provided valuable insights into the pharmacokinetics, metabolism, and tissue/tumor distribution of CA102N in mice. These findings demonstrated that metabolic clearance is the primary elimination pathway for CA102N and that the drug exhibits tumor retention, supporting its development as an anticancer therapy. Our results provided a strong pharmacological basis for the advancement of CA102N into the clinic.
Collapse
Affiliation(s)
- Eskouhie Tchaparian
- Holy Stone Healthcare, Preclinical and Development Div Hsinchu, Taipei, Taiwan
| | - Hua-Yang Lin
- Holy Stone Healthcare, Preclinical and Development Div Hsinchu, Taipei, Taiwan
| | - Yuchih Chen
- Holy Stone Healthcare, Preclinical and Development Div Hsinchu, Taipei, Taiwan
| | - J. Neil Hunter
- Holy Stone Healthcare, Preclinical and Development Div Hsinchu, Taipei, Taiwan
| | - Sindy Yin
- Holy Stone Healthcare, Preclinical and Development Div Hsinchu, Taipei, Taiwan
| | - Huey Ng
- MDT Int’l SA, Geneva, Switzerland
| | - Albert Wu
- Holy Stone Healthcare, Preclinical and Development Div Hsinchu, Taipei, Taiwan
- MDT Int’l SA, Geneva, Switzerland
| |
Collapse
|
3
|
Ouyang Q, Zhao Y, Xu K, He Y, Qin M. Hyaluronic Acid Receptor-Mediated Nanomedicines and Targeted Therapy. SMALL METHODS 2024; 8:e2400513. [PMID: 39039982 DOI: 10.1002/smtd.202400513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/25/2024] [Indexed: 07/24/2024]
Abstract
Hyaluronic acid (HA) is a naturally occurring polysaccharide found in the extracellular matrix with broad applications in disease treatment. HA possesses good biocompatibility, biodegradability, and the ability to interact with various cell surface receptors. Its wide range of molecular weights and modifiable chemical groups make it an effective drug carrier for drug delivery. Additionally, the overexpression of specific receptors for HA on cell surfaces in many disease states enhances the accumulation of drugs at pathological sites through receptor binding. In this review, the modification of HA with drugs, major receptor proteins, and the latest advances in receptor-targeted nano drug delivery systems (DDS) for the treatment of tumors and inflammatory diseases are summarized. Furthermore, the functions of HA with varying molecular weights of HA in vivo and the selection of drug delivery methods for different diseases are discussed.
Collapse
Affiliation(s)
- Qiuhong Ouyang
- Department of Lung Cancer Center and Center for Preclinical Safety Evaluation of Drugs, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ying Zhao
- Department of Lung Cancer Center and Center for Preclinical Safety Evaluation of Drugs, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Kunyao Xu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yuechen He
- Department of Lung Cancer Center and Center for Preclinical Safety Evaluation of Drugs, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Meng Qin
- Department of Lung Cancer Center and Center for Preclinical Safety Evaluation of Drugs, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
4
|
López-Estévez AM, Sanjurjo L, Turrero Á, Arriaga I, Abrescia NGA, Poveda A, Jiménez-Barbero J, Vidal A, Torres D, Alonso MJ. Nanotechnology-assisted intracellular delivery of antibody as a precision therapy approach for KRAS-driven tumors. J Control Release 2024; 373:277-292. [PMID: 39019086 DOI: 10.1016/j.jconrel.2024.07.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/03/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024]
Abstract
The Kirsten Rat Sarcoma Virus (KRAS) oncoprotein, one of the most prevalent mutations in cancer, has been deemed undruggable for decades. The hypothesis of this work was that delivering anti-KRAS monoclonal antibody (mAb) at the intracellular level could effectively target the KRAS oncoprotein. To reach this goal, we designed and developed tLyP1-targeted palmitoyl hyaluronate (HAC16)-based nanoassemblies (HANAs) adapted for the association of bevacizumab as a model mAb. Selected candidates with adequate physicochemical properties (below 150 nm, neutral surface charge), and high drug loading capacity (>10%, w/w) were adapted to entrap the antiKRASG12V mAb. The resulting antiKRASG12V-loaded HANAs exhibited a bilayer composed of HAC16 polymer and phosphatidylcholine (PC) enclosing a hydrophilic core, as evidenced by cryogenic-transmission electron microscopy (cryo-TEM) and X-ray photoelectron spectroscopy (XPS). Selected prototypes were found to efficiently engage the target KRASG12V and, inhibit proliferation and colony formation in KRASG12V-mutated lung cancer cell lines. In vivo, a selected formulation exhibited a tumor growth reduction in a pancreatic tumor-bearing mouse model. In brief, this study offers evidence of the potential to use nanotechnology for developing anti-KRAS precision therapy and provides a rational framework for advancing mAb intracellular delivery against intracellular targets.
Collapse
Affiliation(s)
- Ana M López-Estévez
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; Health Research Institute of Santiago de Compostela, 15782 Santiago de Compostela, Spain; Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Lucía Sanjurjo
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; Health Research Institute of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Ángela Turrero
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Iker Arriaga
- Structure and Cell Biology of Viruses Lab, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain
| | - Nicola G A Abrescia
- Structure and Cell Biology of Viruses Lab, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain; Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| | - Ana Poveda
- Chemical Glycobiology Laboratory, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain
| | - Jesús Jiménez-Barbero
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain; Chemical Glycobiology Laboratory, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain
| | - Anxo Vidal
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Dolores Torres
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - María José Alonso
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; Health Research Institute of Santiago de Compostela, 15782 Santiago de Compostela, Spain; Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| |
Collapse
|
5
|
Huffer A, Mao M, Ballard K, Ozdemir T. Biomimetic Hyaluronan Binding Biomaterials to Capture the Complex Regulation of Hyaluronan in Tissue Development and Function. Biomimetics (Basel) 2024; 9:499. [PMID: 39194478 DOI: 10.3390/biomimetics9080499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/06/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024] Open
Abstract
Within native ECM, Hyaluronan (HA) undergoes remarkable structural remodeling through its binding receptors and proteins called hyaladherins. Hyaladherins contain a group of tandem repeat sequences, such as LINK domains, BxB7 homologous sequences, or 20-50 amino acid long short peptide sequences that have high affinity towards side chains of HA. The HA binding sequences are critical players in HA distribution and regulation within tissues and potentially attractive therapeutic targets to regulate HA synthesis and organization. While HA is a versatile and successful biopolymer, most HA-based therapeutics have major differences from a native HA molecule, such as molecular weight discrepancies, crosslinking state, and remodeling with other HA binding proteins. Recent studies showed the promise of HA binding domains being used as therapeutic biomaterials for osteoarthritic, ocular, or cardiovascular therapeutic products. However, we propose that there is a significant potential for HA binding materials to reveal the physiological functions of HA in a more realistic setting. This review is focused on giving a comprehensive overview of the connections between HA's role in the body and the potential of HA binding material applications in therapeutics and regenerative medicine. We begin with an introduction to HA then discuss HA binding molecules and the process of HA binding. Finally, we discuss HA binding materials anf the future prospects of potential HA binding biomaterials systems in the field of biomaterials and tissue engineering.
Collapse
Affiliation(s)
- Amelia Huffer
- Nanoscience and Biomedical Engineering Department, South Dakota School of Mines, Rapid City, SD 57701, USA
| | - Mingyang Mao
- Nanoscience and Biomedical Engineering Department, South Dakota School of Mines, Rapid City, SD 57701, USA
| | - Katherine Ballard
- Nanoscience and Biomedical Engineering Department, South Dakota School of Mines, Rapid City, SD 57701, USA
| | - Tugba Ozdemir
- Nanoscience and Biomedical Engineering Department, South Dakota School of Mines, Rapid City, SD 57701, USA
| |
Collapse
|
6
|
Nguyen TA, Hoang T, Nguyen TT, Jeong C, Tran TV, Choi MG, Lee C. Substitution of acidic residues near the catalytic Glu131 leads to human HYAL1 activity at neutral pH via charge-charge interactions. PLoS One 2024; 19:e0308370. [PMID: 39121049 PMCID: PMC11315327 DOI: 10.1371/journal.pone.0308370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/23/2024] [Indexed: 08/11/2024] Open
Abstract
Human hyaluronidase 1 (HYAL1) and PH20 play vital roles in degrading hyaluronic acids through the substrate-assisted double displacement mechanism. While HYAL1, a lysosomal enzyme, functions optimally under acidic conditions, PH20, a sperm surface hyaluronidase, displays a broader pH range, from acidic to neutral. Our objective was to extend HYAL1's pH range towards neutral pH by introducing repulsive charge-charge interactions involving the catalytic Glu131, increasing its pKa as the proton donor. Substituting individual acidic residues in the β3-loop (S77D), β3'-β3″ hairpin (T86D and P87E), and at Ala132 (A132D and A132E) enabled HYAL1 to demonstrate enzyme activity at pH 7, with the mutants S77D, P87E, and A132E showing the highest activity in the substrate gel assay. However, double and triple substitutions, including S77D/T86D/A132E as found in the PH20 configuration, did not result in enhanced activity compared to single substitutions. Conversely, PH20 mutants with non-acidic substitutions, such as D94S in the β3-loop and D103T in the β3'-β3″ hairpin, significantly reduced activity within the pH range of 4 to 7. However, the PH20 mutant E149A, reciprocally substituted compared to A132E in HYAL1, exhibited activity similar to PH20 wild-type (WT) at pH 7. In a turbidimetric assay, HYAL1 mutants with single acidic substitutions exhibited activity similar to that of PH20 WT at pH 7. These results suggest that substituting acidic residues near Glu131 results in HYAL1 activity at neutral pH through electrostatic repulsion. This study highlights the significance of charge-charge interactions in both HYAL1 and PH20 in regulating the pH-dependent activity of hyaluronidases.
Collapse
Affiliation(s)
- Tu Anh Nguyen
- Department of Biomedical Science and Center for Bio-Nanomaterials, Daegu University, Gyeongsan, South Korea
| | - Trang Hoang
- Department of Biomedical Science and Center for Bio-Nanomaterials, Daegu University, Gyeongsan, South Korea
| | - Thu-Thuy Nguyen
- Department of Biomedical Science and Center for Bio-Nanomaterials, Daegu University, Gyeongsan, South Korea
| | - ChanSu Jeong
- Department of Biomedical Science and Center for Bio-Nanomaterials, Daegu University, Gyeongsan, South Korea
| | - Trang Van Tran
- Department of Biomedical Science and Center for Bio-Nanomaterials, Daegu University, Gyeongsan, South Korea
| | | | - ChangWoo Lee
- Department of Biomedical Science and Center for Bio-Nanomaterials, Daegu University, Gyeongsan, South Korea
| |
Collapse
|
7
|
Li G, Fang X, Liu Y, Lu X, Liu Y, Li Y, Zhao Z, Liu B, Yang R. Lipid Regulatory Element Interact with CD44 on Mitochondrial Bioenergetics in Bovine Adipocyte Differentiation and Lipometabolism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17481-17498. [PMID: 39072486 DOI: 10.1021/acs.jafc.4c02434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
The CD44 gene is a critical factor in animal physiological processes and has been shown to affect insulin resistance and fat accumulation in mammals. Nevertheless, little research has been conducted on its precise functions in lipid metabolism and adipogenic differentiation in beef cattle. This study analyzed the expression of CD44 and miR-199a-3p during bovine preadipocyte differentiation. The luciferase reporter assay demonstrated that CD44 was a direct target of miR-199a-3p. Increased accumulation of lipid droplets and triglyceride levels, altered fatty acid metabolism, and accelerated preadipocyte differentiation were all caused by the upregulation of miR-199a-3p or a reduction in CD44 expression. CD44 knockdown upregulated the expression of adipocyte-specific genes (LPL and FABP4) and altered the levels of lipid metabolites (SOPC, l-arginine, and heptadecanoic acid). Multiomics highlights enriched pathways involved in energy metabolism (MAPK, cAMP, and calcium signaling) and shifts in mitochondrial respiration and glycolysis, indicating that CD44 plays a regulatory role in lipid metabolism. The findings show that intracellular lipolysis, glycolysis, mitochondrial respiration, fat deposition, and lipid droplet composition are all impacted by miR-199a-3p, which modulates CD44 in bovine adipocytes.
Collapse
Affiliation(s)
- Guanghui Li
- College of Animal Science, Jilin University, 5333 Xi An Road, Changchun, Jilin 130062, People's Republic of China
| | - Xibi Fang
- College of Animal Science, Jilin University, 5333 Xi An Road, Changchun, Jilin 130062, People's Republic of China
| | - Yinuo Liu
- College of Animal Science, Jilin University, 5333 Xi An Road, Changchun, Jilin 130062, People's Republic of China
- Key Laboratory of Genetics and Breeding, Zhejiang Institute of Freshwater Fisheries, 999 Hangchangqiao South Road, Huzhou, Zhejiang 313000, People's Republic of China
| | - Xin Lu
- College of Animal Science, Jilin University, 5333 Xi An Road, Changchun, Jilin 130062, People's Republic of China
| | - Yue Liu
- College of Animal Science, Jilin University, 5333 Xi An Road, Changchun, Jilin 130062, People's Republic of China
| | - Yue Li
- College of Animal Science, Jilin University, 5333 Xi An Road, Changchun, Jilin 130062, People's Republic of China
| | - Zhihui Zhao
- College of Animal Science, Jilin University, 5333 Xi An Road, Changchun, Jilin 130062, People's Republic of China
- College of Coastal Agricultural Sciences, Guangdong Ocean University, 1 Haida Road, Zhanjiang, Guangdoong 524000, People's Republic of China
| | - Boqun Liu
- College of Food Science and Engineering, Jilin University, 5333 Xian Road, Changchun, Jilin 130062, People's Republic of China
| | - Runjun Yang
- College of Animal Science, Jilin University, 5333 Xi An Road, Changchun, Jilin 130062, People's Republic of China
| |
Collapse
|
8
|
Su J, Wu C, Zou J, Wang X, Yang K, Liu J, Wu Z, Zhang W. Fine-tuning of liposome integrity for differentiated transcytosis and enhanced antitumor efficacy. J Control Release 2024; 372:69-84. [PMID: 38866244 DOI: 10.1016/j.jconrel.2024.06.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 06/06/2024] [Accepted: 06/09/2024] [Indexed: 06/14/2024]
Abstract
Transcytosis-inducing nanomedicines have been developed to improve tumor extravasation. However, the fate during transcytosis across multicell layers and the structural integrity of the nanomedicines before reaching tumor cells could impact antitumor therapy. Here, a BAY 87-2243 (a hypoxia-inducible factor-1 inhibitor)-loaded liposomal system (HA-P-LBAY) modified by low molecular weight protamine (LMWP) and crosslinked by hyaluronic acid (HA) was constructed. This system could accomplish differentiate cellular transport in endothelial and tumor cells by fine-tuning its structural integrity, i.e. transcytosis across the endothelial cells while preserving structural integrity, facilitating subsequent retention and drug release within tumor cells via degradation-induced aggregation. In vitro cellular uptake and transwell studies demonstrated that HA-P-LBAY were internalized by endothelial cells (bEnd.3) via an active, caveolin and heparin sulfate proteoglycan (HSPG)-mediated endocytosis, and subsequently achieved transcytosis mainly through the ER/Golgi pathway. Moreover, the fluorescence resonance energy transfer (FRET) study showed that HA-crosslinking maintained higher integrity of HA-P-LBAY after transcytosis, more efficiently than electrostatic coating of HA (HA/P-LBAY). In addition, more HA-P-LBAY was retained in tumor cells (4T1) compared to HA/P-LBAY corresponding to its enhanced in vitro cytotoxicity. This may be attributed to better integrity of HA-P-LBAY post endothelial transcytosis and more degradation of HA in tumor cells, leading to more liposome aggregation and inhibition of their transcytosis, which was inferred by both TEM images and the HAase responsiveness assay proved by FRET. In vivo, HA-P-LBAY exhibited more potency in tumor suppression than the other formulations in both low and high permeability tumor models. This highlighted that fine-tuning of structural integrity of nanocarriers played a key role no matter whether the transcytosis of nanocarriers contributed to cellular transport. Collectively, this study provides a promising strategy for antitumor therapies by fine-tuning liposome integrity to achieve active trans-endothelial transport with structural integrity and selective aggregation for prolonged tumor retention.
Collapse
Affiliation(s)
- Jiajia Su
- Department of Pharmaceutics, China Pharmaceutical University, Jiangsu 210009, PR China
| | - Chenchen Wu
- Department of Pharmaceutics, China Pharmaceutical University, Jiangsu 210009, PR China
| | - Jiahui Zou
- Department of Pharmaceutics, China Pharmaceutical University, Jiangsu 210009, PR China
| | - Xinqiuyue Wang
- Department of Pharmaceutics, China Pharmaceutical University, Jiangsu 210009, PR China
| | - Kaiyun Yang
- School of Pharmacy, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Jianping Liu
- Department of Pharmaceutics, China Pharmaceutical University, Jiangsu 210009, PR China
| | - Zimei Wu
- School of Pharmacy, University of Auckland, Private Bag 92019, Auckland, New Zealand.
| | - Wenli Zhang
- Department of Pharmaceutics, China Pharmaceutical University, Jiangsu 210009, PR China.
| |
Collapse
|
9
|
Abe M, Masuda M, Mizukami Y, Inoue S, Mizutani Y. Epidermal keratinocytes regulate hyaluronan metabolism via extracellularly secreted hyaluronidase 1 and hyaluronan synthase 3. J Biol Chem 2024; 300:107449. [PMID: 38844132 PMCID: PMC11292368 DOI: 10.1016/j.jbc.2024.107449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 05/09/2024] [Accepted: 05/29/2024] [Indexed: 07/11/2024] Open
Abstract
Hyaluronan (HA) is a high-molecular-weight (HMW) glycosaminoglycan, which is a fundamental component of the extracellular matrix that is involved in a variety of biological processes. We previously showed that the HYBID/KIAA1199/CEMIP axis plays a key role in the depolymerization of HMW-HA in normal human dermal fibroblasts (NHDFs). However, its roles in normal human epidermal keratinocytes (NHEKs) remained unclear. HYBID mRNA expression in NHEKs was lower than that in NHDFs, and NHEKs showed no depolymerization of extracellular HMW-HA in culture, indicating that HYBID does not contribute to extracellular HA degradation. In this study, we found that the cell-free conditioned medium of NHEKs degraded HMW-HA under weakly acidic conditions (pH 4.8). This degrading activity was abolished by hyaluronidase 1 (HYAL1) knockdown but not by HYAL2 knockdown. Newly synthesized HYAL1 was mainly secreted extracellularly, and the secretion of HYAL1 was increased during differentiation, suggesting that epidermal interspace HA is physiologically degraded by HYAL1 according to pH decrease during stratum corneum formation. In HA synthesis, hyaluronan synthase 3 (HAS3) knockdown reduced HA production by NHEKs, and interferon-γ-dependent HA synthesis was correlated with increased HAS3 expression. Furthermore, HA production was increased by TMEM2 knockdown through enhanced HAS3 expression. These results indicate that NHEKs regulate HA metabolism via HYAL1 and HAS3, and TMEM2 is a regulator of HAS3-dependent HA production.
Collapse
Affiliation(s)
- Minori Abe
- Department of Cosmetic Health Science, Gifu Pharmaceutical University, Gifu, Japan
| | - Manami Masuda
- Department of Cosmetic Health Science, Gifu Pharmaceutical University, Gifu, Japan
| | - Yoichi Mizukami
- Institute of Gene Research, Yamaguchi University Science Research Center, Ube, Yamaguchi, Japan
| | - Shintaro Inoue
- Department of Cosmetic Health Science, Gifu Pharmaceutical University, Gifu, Japan.
| | - Yukiko Mizutani
- Department of Cosmetic Health Science, Gifu Pharmaceutical University, Gifu, Japan.
| |
Collapse
|
10
|
McGuire J, Taguchi T, Tombline G, Paige V, Janelsins M, Gilmore N, Seluanov A, Gorbunova V. Hyaluronidase inhibitor delphinidin inhibits cancer metastasis. Sci Rep 2024; 14:14958. [PMID: 38942920 PMCID: PMC11213947 DOI: 10.1038/s41598-024-64924-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 06/14/2024] [Indexed: 06/30/2024] Open
Abstract
Cancer remains a formidable global health challenge, with metastasis being a key contributor to its lethality. Abundant high molecular mass hyaluronic acid, a major non-protein component of extracellular matrix, protects naked mole rats from cancer and reduces cancer incidence in mice. Hyaluronidase plays a critical role in degrading hyaluronic acid and is frequently overexpressed in metastatic cancer. Here we investigated the potential of targeting hyaluronidases to reduce metastasis. A high throughput screen identified delphinidin, a natural plant compound found in fruits and vegetables, as a potent hyaluronidase inhibitor. Delphinidin-mediated inhibition of hyaluronidase activity led to an increase in high molecular weight hyaluronic acid in cell culture and in mouse tissues, and reduced migration and invasion behavior of breast, prostate, and melanoma cancer cells. Moreover, delphinidin treatment suppressed melanoma metastasis in mice. Our study provides a proof of principle that inhibition of hyaluronidase activity suppresses cancer cell migration, invasion and metastasis. Furthermore, we identified a natural compound delphinidin as a potential anticancer therapeutic. Thus, we have identified a path for clinical translation of the cancer resistance mechanism identified in the naked mole rat.
Collapse
Affiliation(s)
- Jeremy McGuire
- Supportive Care in Cancer, Department of Surgery, University of Rochester Medical Center, 265 Crittenden Blvd., Box CU 420658, Rochester, NY, 14642, USA
| | - Taketo Taguchi
- Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Gregory Tombline
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Victoria Paige
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Michelle Janelsins
- Supportive Care in Cancer, Department of Surgery, University of Rochester Medical Center, 265 Crittenden Blvd., Box CU 420658, Rochester, NY, 14642, USA
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Nikesha Gilmore
- Supportive Care in Cancer, Department of Surgery, University of Rochester Medical Center, 265 Crittenden Blvd., Box CU 420658, Rochester, NY, 14642, USA
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Andrei Seluanov
- Department of Biology, University of Rochester, Rochester, NY, USA.
- Department of Medicine, University of Rochester, Rochester, NY, USA.
| | - Vera Gorbunova
- Department of Biology, University of Rochester, Rochester, NY, USA.
- Department of Medicine, University of Rochester, Rochester, NY, USA.
| |
Collapse
|
11
|
Elfstrum AK, Rumahorbo AH, Reese LE, Nelson EV, McCluskey BM, Schwertfeger KL. LYVE-1-expressing Macrophages Modulate the Hyaluronan-containing Extracellular Matrix in the Mammary Stroma and Contribute to Mammary Tumor Growth. CANCER RESEARCH COMMUNICATIONS 2024; 4:1380-1397. [PMID: 38717149 PMCID: PMC11141485 DOI: 10.1158/2767-9764.crc-24-0205] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/01/2024] [Accepted: 05/03/2024] [Indexed: 06/01/2024]
Abstract
Macrophages represent a heterogeneous myeloid population with diverse functions in normal tissues and tumors. While macrophages expressing the cell surface marker lymphatic vessel endothelial hyaluronan receptor 1 (LYVE-1) have been identified in stromal regions of the normal mammary gland and in the peritumoral stroma, their functions within these regions are not well understood. Using a genetic mouse model of LYVE-1+ macrophage depletion, we demonstrate that loss of LYVE-1+ macrophages is associated with altered extracellular matrix remodeling in the normal mammary gland and reduced mammary tumor growth in vivo. In further studies focused on investigating the functions of LYVE-1+ macrophages in the tumor microenvironment, we demonstrate that LYVE-1 expression correlates with an increased ability of macrophages to bind, internalize, and degrade hyaluronan. Consistent with this, we show that depletion of LYVE-1+ macrophages correlates with increased hyaluronan accumulation in both the normal mammary gland and in mammary tumors. Analysis of single-cell RNA sequencing of macrophages isolated from these tumors reveals that depletion of LYVE-1+ macrophages in tumors drives a shift in the majority of the remaining macrophages toward a proinflammatory phenotype, as well as an increase in CD8+ T-cell infiltration. Together, these findings indicate that LYVE-1+ macrophages represent a tumor-promoting anti-inflammatory subset of macrophages that contributes to hyaluronan remodeling in the tumor microenvironment. SIGNIFICANCE We have identified a macrophage subset in mouse mammary tumors associated with tumor structural components. When this macrophage subset is absent in tumors, we report a delay in tumor growth and an increase in antitumor immune cells. Understanding the functions of distinct macrophage subsets may allow for improved therapeutic strategies for patients with breast cancer.
Collapse
Affiliation(s)
- Alexis K. Elfstrum
- Microbiology, Immunology, and Cancer Biology Graduate Program, University of Minnesota, Minneapolis, Minnesota
| | - Annisa H. Rumahorbo
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota
| | - Lyndsay E. Reese
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota
| | - Emma V. Nelson
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota
| | - Braedan M. McCluskey
- University of Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota
| | - Kathryn L. Schwertfeger
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
- Center for Immunology, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
12
|
Elvitigala KCML, Mubarok W, Sakai S. Hydrogels with Ultrasound-Treated Hyaluronic Acid Regulate CD44-Mediated Angiogenic Potential of Human Vascular Endothelial Cells In Vitro. Biomolecules 2024; 14:604. [PMID: 38786011 PMCID: PMC11118219 DOI: 10.3390/biom14050604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/17/2024] [Accepted: 05/18/2024] [Indexed: 05/25/2024] Open
Abstract
The development of hydrogels that allow vascular endothelial cells to form capillary-like networks is critical for advancing tissue engineering and drug discovery. In this study, we developed hydrogels composed of phenolated hyaluronic acid (HA-Ph) with an average molecular weight of 490-159 kDa via sonication in an aqueous solution. These hydrogels were synthesized by the horseradish peroxidase-catalyzed crosslinking of phenol moieties in the presence of hydrogen peroxide and phenolated gelatin. The sonication-degraded HA-Ph (198 kDa) significantly enhanced the migration ability of human umbilical vein endothelial cells (HUVECs) on cell culture plates when added to the medium compared to the original HA-Ph (490 kDa) and less-degraded HA-Ph (312-399 kDa). In addition, HUVECs cultured on these hydrogels formed networks that did not occur on hydrogels made from the original HA-Ph. CD44 expression and PI3K gene expression, both markers related to angiogenesis, were 3.5- and 1.8-fold higher, respectively, in cells cultured on sonication-degraded HA-Ph hydrogels than in those cultured on hydrogels comprising the original HA-Ph. These results highlight the potential of hydrogels containing sonication-degraded HA-Ph for tissue engineering and drug-screening applications involving human vascular endothelial cells.
Collapse
Affiliation(s)
| | | | - Shinji Sakai
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka 560-8531, Osaka, Japan; (K.C.M.L.E.); (W.M.)
| |
Collapse
|
13
|
Zhang Y, Zhao H, Zhang J. Hyaluronidase inhibitor sHA2.75 alleviates ischemia-reperfusion-induced acute kidney injury. Cell Cycle 2024; 23:248-261. [PMID: 38526145 PMCID: PMC11057651 DOI: 10.1080/15384101.2024.2309019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 11/26/2023] [Indexed: 03/26/2024] Open
Abstract
Hyaluronidases (HAases) are enzymes that degrade hyaluronic acid (HA) in the animal kingdom. The HAases-HA system is crucial for HA homeostasis and plays a significant role in biological processes and extracellular matrix (ECM)-related pathophysiological conditions. This study aims to explore the role of inhibiting the HAases-HA system in acute kidney injury (AKI). We selected the potent inhibitor "sHA2.75" to inhibit HAase activity through mixed inhibitory mechanisms. The ischemia-reperfusion mouse model was established using male BALB/c mice (7-9 weeks old), and animals were subjected to subcapsular injection with 50 mg/kg sHA2.75 twice a week to evaluate the effects of sHA2.75 on AKI on day 1, 5 and 14 after ischemia-reperfusion or sham procedure. Blood and tissue samples were collected for immunohistochemistry, biochemical, and quantitative analyses. sHA2.75 significantly reduced blood urea nitrogen (BUN) and serum creatinine levels in AKI mouse models. Expression of kidney injury-related genes such as Kidney injury molecule-1 (KIM-1), Neutrophil Gelatinase-Associated Lipocalin (NGAL), endothelial nitric oxide synthase (eNOS), type I collagen (Col1), type III collagen (Col3), alpha-smooth muscle actin (α-SMA) showed significant downregulation in mouse kidney tissues after sHA2.75 treatment. Moreover, sHA2.75 treatment led to decreased plasma levels of Interleukin-6 (IL-6) proteins and reduced mRNA levels in renal tissues of AKI mice. Inhibitor sHA2.75 administration in the AKI mouse model downregulated kidney injury-related biomarkers and immune-specific genes, thereby alleviating AKI in vivo. These findings suggest the potential use of HAase inhibitors for treating ischemic reperfusion-induced kidney injury.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Laboratory, Nanjing Jiangning Hospital of Traditional Chinese Medicine, Nanjing, Jiangsu, China
| | - Huajiang Zhao
- Department of Laboratory, Nanjing Jiangning Hospital of Traditional Chinese Medicine, Nanjing, Jiangsu, China
| | - Jing Zhang
- Department of Laboratory, Nanjing Jiangning Hospital of Traditional Chinese Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
14
|
Donelan W, Brisbane W, O'Malley P, Crispen P, Kusmartsev S. Hyaluronan Metabolism in Urologic Cancers. Adv Biol (Weinh) 2023; 7:e2300168. [PMID: 37615259 DOI: 10.1002/adbi.202300168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/06/2023] [Indexed: 08/25/2023]
Abstract
Hyaluronan (HA) is one of the major components of the extracellular matrix in tumor tissue. Recent reports have made it clear that the balance of HA synthesis and degradation is critical for tumor progression. HA is synthesized on the cytoplasmic surface of the plasma membrane by hyaluronan synthases (HAS) and extruded into the extracellular space. Excessive HA production in cancer is associated with enhanced HA degradation in the tumor microenvironment, leading to the accumulation of HA fragments with small molecular weight. These perturbations in both HA synthesis and degradation may play important roles in tumor progression. Recently, it has become increasingly clear that small HA fragments can induce a variety of biological events, such as angiogenesis, cancer-promoting inflammation, and tumor-associated immune suppression. Progression of urologic malignancies, particularly of prostate and bladder cancers, as well as of certain types of kidney cancer show markedly perturbed metabolism of tumor-associated HA. This review highlights the recent research findings regarding HA metabolism in tumor microenvironments with a special focus on urologic cancers. It also will discuss the potential implications of these findings for the development of novel therapeutic interventions for the treatment of prostate, bladder, and kidney cancers.
Collapse
Affiliation(s)
| | - Wayne Brisbane
- UCLA Medical Center, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | | | - Paul Crispen
- University of Florida, Gainesville, FL, 32611, USA
| | | |
Collapse
|
15
|
Stecco A, Bonaldi L, Fontanella CG, Stecco C, Pirri C. The Effect of Mechanical Stress on Hyaluronan Fragments' Inflammatory Cascade: Clinical Implications. Life (Basel) 2023; 13:2277. [PMID: 38137878 PMCID: PMC10744800 DOI: 10.3390/life13122277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
It is a common experience, reported by patients who have undergone manual therapy that uses deep friction, to perceive soreness in treatment areas; however, it is still not clear what causes it and if it is therapeutically useful or a simple side effect. The purpose of this narrative review is to determine whether manual and physical therapies can catalyze an inflammatory process driven by HA fragments. The literature supports the hypothesis that mechanical stress can depolymerize into small pieces at low molecular weight and have a high inflammatory capacity. Many of these pieces are then further degraded into small oligosaccharides. Recently, it has been demonstrated that oligosaccharides are able to stop this inflammatory process. These data support the hypothesis that manual therapy that uses deep friction could metabolize self-aggregated HA chains responsible for increasing loose connective tissue viscosity, catalyzing a local HA fragment cascade that will generate soreness but, at the same time, facilitate the reconstitution of the physiological loose connective tissue properties. This information can help to explain the meaning of the inflammatory process as well as the requirement for it for the long-lasting resolution of these alterations.
Collapse
Affiliation(s)
- Antonio Stecco
- Department of Physical Medicine and Rehabilitation, New York University School of Medicine, New York, NY 10016, USA;
| | - Lorenza Bonaldi
- Department of Civil, Environmental and Architectural Engineering, University of Padova, 35131 Padova, Italy;
| | | | - Carla Stecco
- Department of Neurosciences, Institute of Human Anatomy, University of Padua, 35121 Padova, Italy;
| | - Carmelo Pirri
- Department of Neurosciences, Institute of Human Anatomy, University of Padua, 35121 Padova, Italy;
| |
Collapse
|
16
|
Dong J, Ren B, Tian Y, Peng G, Zhai H, Meng Z, Gu R, Gan H, Wu Z, Sun Y, Dou G, Liu S. Effects of Radiation-Induced Skin Injury on Hyaluronan Degradation and Its Underlying Mechanisms. Molecules 2023; 28:7449. [PMID: 37959868 PMCID: PMC10647323 DOI: 10.3390/molecules28217449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/28/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023] Open
Abstract
Radiation-induced skin injury (RISI) is a frequent and severe complication with a complex pathogenesis that often occurs during radiation therapy, nuclear incidents, and nuclear war, for which there is no effective treatment. Hyaluronan (HA) plays an overwhelming role in the skin, and it has been shown that UVB irradiation induces increased HA expression. Nevertheless, to the best of our knowledge, there has been no study regarding the biological correlation between RISI and HA degradation and its underlying mechanisms. Therefore, in our study, we investigated low-molecular-weight HA content using an enzyme-linked immunosorbent assay and changes in the expression of HA-related metabolic enzymes using real-time quantitative polymerase chain reaction and a Western blotting assay. The oxidative stress level of the RISI model was assessed using sodium dismutase, malondialdehyde, and reactive oxygen species assays. We demonstrated that low-molecular-weight HA content was significantly upregulated in skin tissues during the late phase of irradiation exposure in the RISI model and that HA-related metabolic enzymes, oxidative stress levels, the MEK5/ERK5 pathway, and inflammatory factors were consistent with changes in low-molecular-weight HA content. These findings prove that HA degradation is biologically relevant to RISI development and that the HA degradation mechanisms are related to HA-related metabolic enzymes, oxidative stress, and inflammatory factors. The MEK5/ERK5 pathway represents a potential mechanism of HA degradation. In conclusion, we aimed to investigate changes in HA content and preliminarily investigate the HA degradation mechanism in a RISI model under γ-ray irradiation, to consider HA as a new target for RISI and provide ideas for novel drug development.
Collapse
Affiliation(s)
- Jiahui Dong
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (J.D.); (B.R.); (Z.M.); (R.G.); (H.G.); (Z.W.); (Y.S.)
| | - Boyuan Ren
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (J.D.); (B.R.); (Z.M.); (R.G.); (H.G.); (Z.W.); (Y.S.)
| | - Yunfei Tian
- School of Pharmacy, Henan University, Kaifeng 475004, China; (Y.T.); (H.Z.)
| | - Guanqun Peng
- College of Life Science, Hebei University, Baoding 071002, China;
| | - Huiting Zhai
- School of Pharmacy, Henan University, Kaifeng 475004, China; (Y.T.); (H.Z.)
| | - Zhiyun Meng
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (J.D.); (B.R.); (Z.M.); (R.G.); (H.G.); (Z.W.); (Y.S.)
| | - Ruolan Gu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (J.D.); (B.R.); (Z.M.); (R.G.); (H.G.); (Z.W.); (Y.S.)
| | - Hui Gan
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (J.D.); (B.R.); (Z.M.); (R.G.); (H.G.); (Z.W.); (Y.S.)
| | - Zhuona Wu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (J.D.); (B.R.); (Z.M.); (R.G.); (H.G.); (Z.W.); (Y.S.)
| | - Yunbo Sun
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (J.D.); (B.R.); (Z.M.); (R.G.); (H.G.); (Z.W.); (Y.S.)
| | - Guifang Dou
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (J.D.); (B.R.); (Z.M.); (R.G.); (H.G.); (Z.W.); (Y.S.)
| | - Shuchen Liu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (J.D.); (B.R.); (Z.M.); (R.G.); (H.G.); (Z.W.); (Y.S.)
| |
Collapse
|
17
|
Karam J, Singer BJ, Miwa H, Chen LH, Maran K, Hasani M, Garza S, Onyekwere B, Yeh HC, Li S, Carlo DD, Seidlits SK. Molecular weight of hyaluronic acid crosslinked into biomaterial scaffolds affects angiogenic potential. Acta Biomater 2023; 169:228-242. [PMID: 37572983 DOI: 10.1016/j.actbio.2023.08.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/29/2023] [Accepted: 08/01/2023] [Indexed: 08/14/2023]
Abstract
While hyaluronic acid (HA)-based hydrogels have been used clinically for decades, the mechanisms by which HA exerts molecular weight-dependent bioactivity and how chemical modification and crosslinking may affect molecular weight-dependent bioactivity remain poorly understood. This knowledge gap presents a significant barrier to designing HA hydrogels with predictable bioactivities. As HA has been widely reported to have molecular weight-dependent effects on endothelial cells (ECs), we investigated how the molecular weight of HA in either soluble or crosslinked forms affects angiogenesis and interrogated CD44 clustering on the surface of endothelial cells as a candidate mechanism for these affects. Using soluble HA, our results show high molecular weight (HMW) HA, but not low molecular weight (LMW) HA, increased viability and tube formation in cultured human cerebral microvascular ECs (HCMVECs). No size of HA affected proliferation. When HCMVECs were cultured with crosslinked HA of varying molecular weights in the form of HA-based microporous annealed particle scaffold (HMAPS), the cell response was comparable to when cultured with soluble HA. Similarly, when implanted subcutaneously, HMAPS with HMW HA were more vascularized than those with LMW HA. We also show that antibody-mediated CD44 clustering resulted in HCMVECs with increased viability and tube-like structure formation in a manner comparable to exposure to HMW HA, suggesting that HMW acts through CD44 clustering. STATEMENT OF SIGNIFICANCE: Biomaterials based on hyaluronic acid (HA), a bioactive extracellular matrix polysaccharide, have been used in clinical products for several years. Despite the knowledge that HA molecular weight heavily influences its bioactivity, molecular weight has been largely ignored in the development of HA-based biomaterials. Given the high viscosity of high molecular weight HA typically found in native tissues, lower molecular weight polysaccharides have been used most commonly for biomaterial fabrication. By comparing the ability of injectable, microporous annealed particle scaffolds (MAPS) fabricated from variably sized HA to promote angiogenesis, this study demonstrates that MAPS with high molecular weight HA better support vascularization, likely through an unique ability to induce clustering of CD44 receptors on endothelial cells.
Collapse
Affiliation(s)
- Josh Karam
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
| | - Breahna J Singer
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA; Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Hiromi Miwa
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
| | - Limin H Chen
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Kajal Maran
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
| | - Mahdi Hasani
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
| | - Sarahi Garza
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
| | - Bianca Onyekwere
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
| | - Hsin-Chih Yeh
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA; Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712, USA
| | - Song Li
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
| | - Dino Di Carlo
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
| | - Stephanie K Seidlits
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA; Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
18
|
Piao Y, Yun SY, Fu Z, Jang JM, Back MJ, Kim HH, Kim DK. Recombinant Human HAPLN1 Mitigates Pulmonary Emphysema by Increasing TGF-β Receptor I and Sirtuins Levels in Human Alveolar Epithelial Cells. Mol Cells 2023; 46:558-572. [PMID: 37587649 PMCID: PMC10495690 DOI: 10.14348/molcells.2023.0097] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/22/2023] [Accepted: 06/24/2023] [Indexed: 08/18/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) will be the third leading cause of death worldwide by 2030. One of its components, emphysema, has been defined as a lung disease that irreversibly damages the lungs' alveoli. Treatment is currently unavailable for emphysema symptoms and complete cure of the disease. Hyaluronan (HA) and proteoglycan link protein 1 (HAPLN1), an HA-binding protein linking HA in the extracellular matrix to stabilize the proteoglycan structure, forms a bulky hydrogel-like aggregate. Studies on the biological role of the full-length HAPLN1, a simple structure-stabilizing protein, are limited. Here, we demonstrated for the first time that treating human alveolar epithelial type 2 cells with recombinant human HAPLN1 (rhHAPLN1) increased TGF-β receptor 1 (TGF-β RI) protein levels, but not TGF-β RII, in a CD44-dependent manner with concurrent enhancement of the phosphorylated Smad3 (p-Smad3), but not p-Smad2, upon TGF-β1 stimulation. Furthermore, rhHAPLN1 significantly increased sirtuins levels (i.e., SIRT1/2/6) without TGF-β1 and inhibited acetylated p300 levels that were increased by TGF-β1. rhHAPLN1 is crucial in regulating cellular senescence, including p53, p21, and p16, and inflammation markers such as p-NF-κB and Nrf2. Both senile emphysema mouse model induced via intraperitoneal rhHAPLN1 injections and porcine pancreatic elastase (PPE)-induced COPD mouse model generated via rhHAPLN1-containing aerosols inhalations showed a significantly potent efficacy in reducing alveolar spaces enlargement. Preclinical trials are underway to investigate the effects of inhaled rhHAPLN1-containing aerosols on several COPD animal models.
Collapse
Affiliation(s)
- Yongwei Piao
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
- HaplnScience Inc., Seongnam 13494, Korea
| | - So Yoon Yun
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
- HaplnScience Inc., Seongnam 13494, Korea
| | - Zhicheng Fu
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| | - Ji Min Jang
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| | - Moon Jung Back
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| | - Ha Hyung Kim
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| | - Dae Kyong Kim
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
- HaplnScience Inc., Seongnam 13494, Korea
| |
Collapse
|
19
|
Zheng S, An S, Luo Y, Vithran DTA, Yang S, Lu B, Deng Z, Li Y. HYBID in osteoarthritis: Potential target for disease progression. Biomed Pharmacother 2023; 165:115043. [PMID: 37364478 DOI: 10.1016/j.biopha.2023.115043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/07/2023] [Accepted: 06/20/2023] [Indexed: 06/28/2023] Open
Abstract
HYBID is a new hyaluronan-degrading enzyme and exists in various cells of the human body. Recently, HYBID was found to over-express in the osteoarthritic chondrocytes and fibroblast-like synoviocytes. According to these researches, high level of HYBID is significantly correlated with cartilage degeneration in joints and hyaluronic acid degradation in synovial fluid. In addition, HYBID can affect inflammatory cytokine secretion, cartilage and synovium fibrosis, synovial hyperplasia via multiple signaling pathways, thereby exacerbating osteoarthritis. Based on the existing research of HYBID in osteoarthritis, HYBID can break the metabolic balance of HA in joints through the degradation ability independent of HYALs/CD44 system and furthermore affect cartilage structure and mechanotransduction of chondrocytes. In particular, in addition to HYBID itself being able to trigger some signaling pathways, we believe that low-molecular-weight hyaluronan produced by excess degradation can also stimulate some disease-promoting signaling pathways by replacing high-molecular-weight hyaluronan in joints. The specific role of HYBID in osteoarthritis is gradually revealed, and the discovery of HYBID raises the new way to treat osteoarthritis. In this review, the expression and basic functions of HYBID in joints were summarized, and reveal potential role of HYBID as a key target in treatment for osteoarthritis.
Collapse
Affiliation(s)
- Shengyuan Zheng
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Clinical Medicine, Xiangya Medicine School, Central South University, Changsha, Hunan, China
| | - Senbo An
- Department of Orthopaedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yan Luo
- Department of Clinical Medicine, Xiangya Medicine School, Central South University, Changsha, Hunan, China
| | - Djandan Tadum Arthur Vithran
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shaoqu Yang
- Department of Clinical Medicine, Xiangya Medicine School, Central South University, Changsha, Hunan, China
| | - Bangbao Lu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Zhenhan Deng
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China.
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
20
|
Ha HC, Zhou D, Fu Z, Back MJ, Jang JM, Shin IC, Kim DK. Novel Effect of Hyaluronan and Proteoglycan Link Protein 1 (HAPLN1) on Hair Follicle Cells Proliferation and Hair Growth. Biomol Ther (Seoul) 2023; 31:550-558. [PMID: 37551604 PMCID: PMC10468424 DOI: 10.4062/biomolther.2023.080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/05/2023] [Accepted: 06/23/2023] [Indexed: 08/09/2023] Open
Abstract
Hair loss is a common condition that can have a negative impact on an individual's quality of life. The severe side effects and the low efficacy of current hair loss medications create unmet needs in the field of hair loss treatment. Hyaluronan and Proteoglycan Link Protein 1 (HAPLN1), one of the components of the extracellular matrix, has been shown to play a role in maintaining its integrity. HAPLN1 was examined for its ability to impact hair growth with less side effects than existing hair loss treatments. HAPLN1 was predominantly expressed in the anagen phase in three stages of the hair growth cycle in mice and promotes the proliferation of human hair matrix cells. Also, recombinant human HAPLN1 (rhHAPLN1) was shown to selectively increase the levels of transforming growth factor-β receptor II in human hair matrix cells. Furthermore, we observed concomitant activation of the ERK1/2 signaling pathway following treatment with rhHAPLN1. Our results indicate that rhHAPLN1 elicits its cell proliferation effect via the TGF-β2-induced ERK1/2 pathway. The prompt entering of the hair follicles into the anagen phase was observed in the rhHAPLN1-treated group, compared to the vehicle-treated group. Insights into the mechanism underlying such hair growth effects of HAPLN1 will provide a novel potential strategy for treating hair loss with much lower side effects than the current treatments.
Collapse
Affiliation(s)
- Hae Chan Ha
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Dan Zhou
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
- HaplnScience Research Institute, HaplnScience Inc., Seongnam 13494, Republic of Korea
| | - Zhicheng Fu
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
- HaplnScience Research Institute, HaplnScience Inc., Seongnam 13494, Republic of Korea
| | - Moon Jung Back
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Ji Min Jang
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
- HaplnScience Research Institute, HaplnScience Inc., Seongnam 13494, Republic of Korea
| | - In Chul Shin
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
- HaplnScience Research Institute, HaplnScience Inc., Seongnam 13494, Republic of Korea
| | - Dae Kyong Kim
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
- HaplnScience Research Institute, HaplnScience Inc., Seongnam 13494, Republic of Korea
| |
Collapse
|
21
|
Zhao P, Sun T, Lyu C, Liang K, Du Y. Cell mediated ECM-degradation as an emerging tool for anti-fibrotic strategy. CELL REGENERATION (LONDON, ENGLAND) 2023; 12:29. [PMID: 37653282 PMCID: PMC10471565 DOI: 10.1186/s13619-023-00172-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 07/10/2023] [Indexed: 09/02/2023]
Abstract
Investigation into the role of cells with respect to extracellular matrix (ECM) remodeling is still in its infancy. Particularly, ECM degradation is an indispensable process during the recovery from fibrosis. Cells with ECM degradation ability due to the secretion of various matrix metalloproteinases (MMPs) have emerged as novel contributors to the treatment of fibrotic diseases. In this review, we focus on the ECM degradation ability of cells associated with the repertoire of MMPs that facilitate the attenuation of fibrosis through the inhibition of ECM deposition. Besides, innovative approaches to engineering and characterizing cells with degradation ability, as well as elucidating the mechanism of the ECM degradation, are also illustrated. Studies conducted to date on the use of cell-based degradation for therapeutic purposes to combat fibrosis are summarized. Finally, we discuss the therapeutic potential of cells with high degradation ability, hoping to bridge the gap between benchside research and bedside applications in treating fibrotic diseases.
Collapse
Affiliation(s)
- Peng Zhao
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Tian Sun
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Cheng Lyu
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Kaini Liang
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yanan Du
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
22
|
Zhang J, Nishida Y, Koike H, Zhuo L, Ito K, Ikuta K, Sakai T, Imagama S. Development of Therapeutic Agent for Osteoarthritis via Inhibition of KIAA1199 Activity: Effect of Ipriflavone In Vivo. Int J Mol Sci 2023; 24:12422. [PMID: 37569797 PMCID: PMC10419624 DOI: 10.3390/ijms241512422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 07/28/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
This study aimed to clarify the effects of ipriflavone, which effectively reduces KIAA1199 activity, on osteoarthritis (OA) development and progression in an in vivo OA mouse model. The OA model mice were divided into the ipriflavone (200 mg/kg/day) group and the control group. OA onset and progression were evaluated with the Mankin score, and KIAA1199 expression and hyaluronan (HA) accumulation were analyzed by immunostaining. The molecular weight of HA in the cartilage tissue and serum HA concentration were analyzed by chromatography and competitive HA enzyme-linked immunoassay. The effects of ipriflavone on the bovine cartilage explant culture under the influence of IL-1β were also investigated. In the ipriflavone group, Safranin-O stainability was well-preserved, resulting in significant reduction of the Mankin score (p = 0.027). KIAA1199 staining positivity decreased and HA stainability was preserved in the ipriflavone group. The serum HA concentration decreased, and the molecular weight of HA in the cartilage tissue increased in the ipriflavone group. The results of the cartilage explant culture indicated that ipriflavone could reduce GAG losses and increase the molecular weight of HA. Thus, ipriflavone may have an inhibitory effect on OA development/progression. Ipriflavone could be a therapeutic drug for OA by targeting KIAA1199 activity.
Collapse
Affiliation(s)
- Jiarui Zhang
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan; (J.Z.); (H.K.); (K.I.); (K.I.); (T.S.); (S.I.)
| | - Yoshihiro Nishida
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan; (J.Z.); (H.K.); (K.I.); (K.I.); (T.S.); (S.I.)
- Department of Rehabilitation Medicine, Nagoya University Hospital, Nagoya 466-8560, Japan
| | - Hiroshi Koike
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan; (J.Z.); (H.K.); (K.I.); (K.I.); (T.S.); (S.I.)
| | - Lisheng Zhuo
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan; (J.Z.); (H.K.); (K.I.); (K.I.); (T.S.); (S.I.)
| | - Kan Ito
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan; (J.Z.); (H.K.); (K.I.); (K.I.); (T.S.); (S.I.)
| | - Kunihiro Ikuta
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan; (J.Z.); (H.K.); (K.I.); (K.I.); (T.S.); (S.I.)
| | - Tomohisa Sakai
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan; (J.Z.); (H.K.); (K.I.); (K.I.); (T.S.); (S.I.)
- Rare Cancer Center, Nagoya University Hospital, Nagoya 466-8560, Japan
| | - Shiro Imagama
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan; (J.Z.); (H.K.); (K.I.); (K.I.); (T.S.); (S.I.)
| |
Collapse
|
23
|
Nakagawa K, Horikawa T, Orita Y, Yamashiro E, Watanabe H, Shirai A, Ogata S, Kataoka H, Kuroda K, Takamizawa S, Sugiyama R. Hyaluronan-enriched transfer medium (HETM) can improve the implantation rate in morphologically poor euploid blastocyst transfer. Arch Gynecol Obstet 2023; 308:611-619. [PMID: 37256356 PMCID: PMC10293447 DOI: 10.1007/s00404-023-07083-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 05/04/2023] [Indexed: 06/01/2023]
Abstract
PURPOSE Hyaluronan-enriched transfer medium (HETM) could improve the clinical pregnancy rate (CPR) for patients with repeated implantation failures (RIF). In contrast, there have been seldom reports addressing the potentially beneficial effects of HETM for morphologically poor blastocysts (MPBLs). Our study aimed to evaluate whether the use of HETM would improve the CPR for the patients who were transferred with euploid MPBLs. METHODS Patients who underwent single euploid blastocyst transfer between July 2020 and June 2022 were enrolled. We included only those blastocysts confirmed as euploid by PGT-A, and those blastocysts were transferred after thawing. The natural ovulatory cycle or hormone replacement cycle (HRC) protocol were used for endometrial preparation for frozen embryo transfer (FET). A total of 1,168 FET cycles were performed in the study period, including 954 cycles of morphologically good blastocysts (≥ 4BB in Gardner's classification), and 85 cycles of MPBLs, of which 47 were transferred using HETM in FET (the HETM group), and the remaining 38 were transferred with the medium without hyaluronan (the control group). We compared the CPR between these two groups. RESULTS The characteristics of patients were similar between the HETM and control groups. The CPR in the HETM group was significantly higher than the control group (47.4% and 21.5%, respectively, p = 0.019). The multiple logistic regression analysis found that the use of HETM was a predictive factor of positive pregnancy outcomes (OR = 5.08, 95% CI = 1.62-16.0, p = 0.019). CONCLUSION Our data suggests that HETM used in the euploid blastocyst transfer can improve the clinical pregnancy rates of morphologically poor blastocysts.
Collapse
Affiliation(s)
- Koji Nakagawa
- Center for Reproductive Medicine and Implantation Research, Sugiyama Clinic Shinjuku, 1-19-6, Nishi-Shinjuku, Shinjuku-Ku, Tokyo, 160-0023, Japan.
| | - Takashi Horikawa
- Center for Reproductive Medicine and Implantation Research, Sugiyama Clinic Shinjuku, 1-19-6, Nishi-Shinjuku, Shinjuku-Ku, Tokyo, 160-0023, Japan
| | - Yuji Orita
- Center for Reproductive Medicine and Implantation Research, Sugiyama Clinic Shinjuku, 1-19-6, Nishi-Shinjuku, Shinjuku-Ku, Tokyo, 160-0023, Japan
- Takeuchi Ladies Clinic, Aira City, Kagoshima, Japan
| | - Emi Yamashiro
- Center for Reproductive Medicine and Implantation Research, Sugiyama Clinic Shinjuku, 1-19-6, Nishi-Shinjuku, Shinjuku-Ku, Tokyo, 160-0023, Japan
| | - Hideaki Watanabe
- Center for Reproductive Medicine and Implantation Research, Sugiyama Clinic Shinjuku, 1-19-6, Nishi-Shinjuku, Shinjuku-Ku, Tokyo, 160-0023, Japan
| | - Asako Shirai
- Center for Reproductive Medicine and Implantation Research, Sugiyama Clinic Shinjuku, 1-19-6, Nishi-Shinjuku, Shinjuku-Ku, Tokyo, 160-0023, Japan
| | | | - Hisayo Kataoka
- Center for Reproductive Medicine and Implantation Research, Sugiyama Clinic Shinjuku, 1-19-6, Nishi-Shinjuku, Shinjuku-Ku, Tokyo, 160-0023, Japan
| | - Keiji Kuroda
- Center for Reproductive Medicine and Implantation Research, Sugiyama Clinic Shinjuku, 1-19-6, Nishi-Shinjuku, Shinjuku-Ku, Tokyo, 160-0023, Japan
| | - Satoru Takamizawa
- Center for Reproductive Medicine and Implantation Research, Sugiyama Clinic Shinjuku, 1-19-6, Nishi-Shinjuku, Shinjuku-Ku, Tokyo, 160-0023, Japan
| | - Rikikazu Sugiyama
- Center for Reproductive Medicine and Implantation Research, Sugiyama Clinic Shinjuku, 1-19-6, Nishi-Shinjuku, Shinjuku-Ku, Tokyo, 160-0023, Japan
| |
Collapse
|
24
|
Sembajwe LF, Ssekandi AM, Namaganda A, Muwonge H, Kasolo JN, Kalyesubula R, Nakimuli A, Naome M, Patel KP, Masenga SK, Kirabo A. Glycocalyx-Sodium Interaction in Vascular Endothelium. Nutrients 2023; 15:2873. [PMID: 37447199 PMCID: PMC10343370 DOI: 10.3390/nu15132873] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/19/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
The glycocalyx generally covers almost all cellular surfaces, where it participates in mediating cell-surface interactions with the extracellular matrix as well as with intracellular signaling molecules. The endothelial glycocalyx that covers the luminal surface mediates the interactions of endothelial cells with materials flowing in the circulating blood, including blood cells. Cardiovascular diseases (CVD) remain a major cause of morbidity and mortality around the world. The cardiovascular risk factors start by causing endothelial cell dysfunction associated with destruction or irregular maintenance of the glycocalyx, which may culminate into a full-blown cardiovascular disease. The endothelial glycocalyx plays a crucial role in shielding the cell from excessive exposure and absorption of excessive salt, which can potentially cause damage to the endothelial cells and underlying tissues of the blood vessels. So, in this mini review/commentary, we delineate and provide a concise summary of the various components of the glycocalyx, their interaction with salt, and subsequent involvement in the cardiovascular disease process. We also highlight the major components of the glycocalyx that could be used as disease biomarkers or as drug targets in the management of cardiovascular diseases.
Collapse
Affiliation(s)
- Lawrence Fred Sembajwe
- Department of Medical Physiology, Makerere University College of Health Sciences, Kampala P.O. Box 7072, Uganda; (A.M.S.); (A.N.); (H.M.); (J.N.K.); (R.K.)
| | - Abdul M. Ssekandi
- Department of Medical Physiology, Makerere University College of Health Sciences, Kampala P.O. Box 7072, Uganda; (A.M.S.); (A.N.); (H.M.); (J.N.K.); (R.K.)
| | - Agnes Namaganda
- Department of Medical Physiology, Makerere University College of Health Sciences, Kampala P.O. Box 7072, Uganda; (A.M.S.); (A.N.); (H.M.); (J.N.K.); (R.K.)
| | - Haruna Muwonge
- Department of Medical Physiology, Makerere University College of Health Sciences, Kampala P.O. Box 7072, Uganda; (A.M.S.); (A.N.); (H.M.); (J.N.K.); (R.K.)
| | - Josephine N. Kasolo
- Department of Medical Physiology, Makerere University College of Health Sciences, Kampala P.O. Box 7072, Uganda; (A.M.S.); (A.N.); (H.M.); (J.N.K.); (R.K.)
| | - Robert Kalyesubula
- Department of Medical Physiology, Makerere University College of Health Sciences, Kampala P.O. Box 7072, Uganda; (A.M.S.); (A.N.); (H.M.); (J.N.K.); (R.K.)
| | - Annettee Nakimuli
- Department of Obstetrics and Gynecology, School of Medicine, Makerere University College of Health Sciences, Kampala P.O. Box 7072, Uganda;
| | - Mwesigwa Naome
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
| | - Kaushik P. Patel
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Sepiso K. Masenga
- Department of Physiological Sciences, School of Medicine and Health Sciences, Mulungushi University, Kabwe P.O. Box 80415, Zambia;
| | - Annet Kirabo
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
| |
Collapse
|
25
|
Balduit A, Vidergar R, Zacchi P, Mangogna A, Agostinis C, Grandolfo M, Bottin C, Salton F, Confalonieri P, Rocca A, Zanconati F, Confalonieri M, Kishore U, Ghebrehiwet B, Bulla R. Complement protein C1q stimulates hyaluronic acid degradation via gC1qR/HABP1/p32 in malignant pleural mesothelioma. Front Immunol 2023; 14:1151194. [PMID: 37334363 PMCID: PMC10275365 DOI: 10.3389/fimmu.2023.1151194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 05/19/2023] [Indexed: 06/20/2023] Open
Abstract
Complement component C1q can act as a pro-tumorigenic factor in the tumor microenvironment (TME). The TME in malignant pleural mesothelioma (MPM) is rich in C1q and hyaluronic acid (HA), whose interaction enhances adhesion, migration and proliferation of malignant cells. HA-bound C1q is also capable of modulating HA synthesis. Thus, we investigated whether HA-C1q interaction would affect HA degradation, analyzing the main degradation enzymes, hyaluronidase (HYAL)1 and HYAL2, and a C1q receptor candidate. We first proceeded with the characterization of HYALs in MPM cells, especially HYAL2, since bioinformatics survival analysis revealed that higher HYAL2 mRNA levels have an unfavorable prognostic index in MPM patients. Interestingly, Real-Time quantitative PCR, flow cytometry and Western blot highlighted an upregulation of HYAL2 after seeding of primary MPM cells onto HA-bound C1q. In an attempt to unveil the receptors potentially involved in HA-C1q signaling, a striking co-localization between HYAL2 and globular C1q receptor/HABP1/p32 (gC1qR) was found by immunofluorescence, surface biotinylation and proximity ligation assays. RNA interference experiments revealed a potentially regulatory function exerted by gC1qR on HYAL2 expression, since C1QBP (gene for gC1qR) silencing unexpectedly caused HYAL2 downregulation. In addition, the functional blockage of gC1qR by a specific antibody hindered HA-C1q signaling and prevented HYAL2 upregulation. Thus, C1q-HA interplay is responsible for enhanced HYAL2 expression, suggesting an increased rate of HA catabolism and the release of pro-inflammatory and pro-tumorigenic HA fragments in the MPM TME. Our data support the notion of an overall tumor-promoting property of C1q. Moreover, the overlapping localization and physical interaction between HYAL2 and gC1qR suggests a potential regulatory effect of gC1qR within a putative HA-C1q macromolecular complex.
Collapse
Affiliation(s)
- Andrea Balduit
- Institute for Maternal and Child Health, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Burlo Garofolo, Trieste, Italy
| | - Romana Vidergar
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Paola Zacchi
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Alessandro Mangogna
- Institute for Maternal and Child Health, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Burlo Garofolo, Trieste, Italy
| | - Chiara Agostinis
- Institute for Maternal and Child Health, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Burlo Garofolo, Trieste, Italy
| | - Micaela Grandolfo
- Neuroscience Area, International School for Advanced Studies (SISSA), Trieste, Italy
| | - Cristina Bottin
- Department of Medical, Surgical and Health Science, University of Trieste, Trieste, Italy
| | - Francesco Salton
- Department of Medical, Surgical and Health Science, University of Trieste, Trieste, Italy
| | - Paola Confalonieri
- Department of Medical, Surgical and Health Science, University of Trieste, Trieste, Italy
| | - Andrea Rocca
- Department of Medical, Surgical and Health Science, University of Trieste, Trieste, Italy
| | - Fabrizio Zanconati
- Department of Medical, Surgical and Health Science, University of Trieste, Trieste, Italy
- Struttura Complessa di Anatomia ed Istologia Patologica, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI), Trieste, Italy
| | - Marco Confalonieri
- Department of Medical, Surgical and Health Science, University of Trieste, Trieste, Italy
| | - Uday Kishore
- Department of Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Berhane Ghebrehiwet
- Department of Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Roberta Bulla
- Department of Life Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
26
|
Kumar K, Kanojia D, Bentrem DJ, Hwang RF, Butchar JP, Tridandapani S, Munshi HG. Targeting BET Proteins Decreases Hyaluronidase-1 in Pancreatic Cancer. Cells 2023; 12:1490. [PMID: 37296612 PMCID: PMC10253193 DOI: 10.3390/cells12111490] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is characterized by the presence of dense stroma that is enriched in hyaluronan (HA), with increased HA levels associated with more aggressive disease. Increased levels of the HA-degrading enzymes hyaluronidases (HYALs) are also associated with tumor progression. In this study, we evaluate the regulation of HYALs in PDAC. METHODS Using siRNA and small molecule inhibitors, we evaluated the regulation of HYALs using quantitative real-time PCR (qRT-PCR), Western blot analysis, and ELISA. The binding of BRD2 protein on the HYAL1 promoter was evaluated by chromatin immunoprecipitation (ChIP) assay. Proliferation was evaluated by WST-1 assay. Mice with xenograft tumors were treated with BET inhibitors. The expression of HYALs in tumors was analyzed by immunohistochemistry and by qRT-PCR. RESULTS We show that HYAL1, HYAL2, and HYAL3 are expressed in PDAC tumors and in PDAC and pancreatic stellate cell lines. We demonstrate that inhibitors targeting bromodomain and extra-terminal domain (BET) proteins, which are readers of histone acetylation marks, primarily decrease HYAL1 expression. We show that the BET family protein BRD2 regulates HYAL1 expression by binding to its promoter region and that HYAL1 downregulation decreases proliferation and enhances apoptosis of PDAC and stellate cell lines. Notably, BET inhibitors decrease the levels of HYAL1 expression in vivo without affecting the levels of HYAL2 or HYAL3. CONCLUSIONS Our results demonstrate the pro-tumorigenic role of HYAL1 and identify the role of BRD2 in the regulation of HYAL1 in PDAC. Overall, these data enhance our understanding of the role and regulation of HYAL1 and provide the rationale for targeting HYAL1 in PDAC.
Collapse
Affiliation(s)
- Krishan Kumar
- Department of Internal Medicine, Division of Hematology, and Arthur G. James Comprehensive Cancer Center, The Ohio State University College of Medicine, Columbus, OH 43210, USA
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA
| | - Deepak Kanojia
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - David J. Bentrem
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| | - Rosa F. Hwang
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jonathan P. Butchar
- Department of Internal Medicine, Division of Hematology, and Arthur G. James Comprehensive Cancer Center, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Susheela Tridandapani
- Department of Internal Medicine, Division of Hematology, and Arthur G. James Comprehensive Cancer Center, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Hidayatullah G. Munshi
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
27
|
Sedighi M, Mahmoudi Z, Ghasempour A, Shakibaie M, Ghasemi F, Akbari M, Abbaszadeh S, Mostafavi E, Santos HA, Shahbazi MA. Nanostructured multifunctional stimuli-responsive glycopolypeptide-based copolymers for biomedical applications. J Control Release 2023; 354:128-145. [PMID: 36599396 DOI: 10.1016/j.jconrel.2022.12.058] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 12/22/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023]
Abstract
Inspired by natural resources, such as peptides and carbohydrates, glycopolypeptide biopolymer has recently emerged as a new form of biopolymer being recruited in various biomedical applications. Glycopolypeptides with well-defined secondary structures and pendant glycosides on the polypeptide backbone have sparked lots of research interest and they have an innate ability to self-assemble in diverse structures. The nanostructures of glycopolypeptides have also opened up new perspectives in biomedical applications due to their stable three-dimensional structures, high drug loading efficiency, excellent biocompatibility, and biodegradability. Although the development of glycopolypeptide-based nanocarriers is well-studied, their clinical translation is still limited. The present review highlights the preparation and characterization strategies related to glycopolypeptides-based copolymers, followed by a comprehensive discussion on their biomedical applications with a specific focus on drug delivery by various stimuli-responsive (e.g., pH, redox, conduction, and sugar) nanostructures, as well as their beneficial usage in diagnosis and regenerative medicine.
Collapse
Affiliation(s)
- Mahsa Sedighi
- Department of Pharmaceutics and Nanotechnology, School of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran; Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Zahra Mahmoudi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Ghasempour
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Mehdi Shakibaie
- Department of Pharmaceutics and Nanotechnology, School of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran; Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Fahimeh Ghasemi
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran; Department of Medical Biotechnology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mahsa Akbari
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, 45139-56184 Zanjan, Iran
| | - Samin Abbaszadeh
- Department of Pharmacology, School of Medicine, Zanjan University of Medical Sciences, 45139-56111 Zanjan, Iran
| | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Hélder A Santos
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, Netherlands; W.J. Kolff Institute for Biomedical Engineering and Materials Science, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands; Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland.
| | - Mohammad-Ali Shahbazi
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, Netherlands; W.J. Kolff Institute for Biomedical Engineering and Materials Science, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands.
| |
Collapse
|
28
|
Witschen PM, Elfstrum AK, Nelson AC, Schwertfeger KL. Characterization of Hyaluronan Localization in the Developing Mammary Gland and Mammary Tumors. J Mammary Gland Biol Neoplasia 2023; 28:1. [PMID: 36723776 PMCID: PMC9892096 DOI: 10.1007/s10911-023-09528-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/03/2023] [Accepted: 01/18/2023] [Indexed: 02/02/2023] Open
Abstract
The extracellular matrix (ECM) is biochemically and biomechanically important for the structure and function of the mammary gland, which undergoes vast structural changes throughout pubertal and reproductive development. Although hyaluronan (HA) is a ubiquitous glycosaminoglycan (GAG) of the mammary gland ECM, extensive characterization of HA deposition in the mammary gland is lacking. Understanding physiologic HA metabolism is critical as this tightly controlled system is often hijacked in cancer. In the current studies, we characterize HA regulation throughout mammary gland development to better understand subsequent dysregulation of HA in mammary tumors. Using immunofluorescence (IF) imaging, we demonstrate that organized HA-rich septa exist in the mammary gland stroma throughout puberty, pregnancy, and involution. Furthermore, we find heterogeneous HA deposition within two murine models of breast cancer. Using cell specific isolation techniques, we characterize expression of genes associated with HA binding, synthesis, and degradation within EpCAM + epithelial cells, CD90.2 + fibroblasts, and F4/80 + macrophages isolated from mammary glands and tumors. Most notably, we identify elevated levels of the hyaluronidases Hyal1 and Hyal2 in tumor-association macrophages (TAMs), suggesting a role for TAM-mediated turnover of HA in the tumor microenvironment (TME). Gene expression is supported functionally by in vitro experiments in which macrophages treated with tumor-cell conditioned media exhibit increased hyaluronidase activity. These findings link TAMs to the direct degradation of HA within the TME of mammary tumors, which has negative implications for patient survival.
Collapse
Affiliation(s)
- Patrice M Witschen
- Comparative and Molecular Biosciences Graduate Program, University of Minnesota, Minneapolis, MN, USA
| | - Alexis K Elfstrum
- Microbiology, Immunology and Cancer Biology Graduate Program, University of Minnesota, Minneapolis, MN, USA
| | - Andrew C Nelson
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Kathryn L Schwertfeger
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA.
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA.
- Center for Immunology, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
29
|
Plaas AHK, Moran MM, Sandy JD, Hascall VC. Aggrecan and Hyaluronan: The Infamous Cartilage Polyelectrolytes - Then and Now. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1402:3-29. [PMID: 37052843 DOI: 10.1007/978-3-031-25588-5_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Cartilages are unique in the family of connective tissues in that they contain a high concentration of the glycosaminoglycans, chondroitin sulfate and keratan sulfate attached to the core protein of the proteoglycan, aggrecan. Multiple aggrecan molecules are organized in the extracellular matrix via a domain-specific molecular interaction with hyaluronan and a link protein, and these high molecular weight aggregates are immobilized within the collagen and glycoprotein network. The high negative charge density of glycosaminoglycans provides hydrophilicity, high osmotic swelling pressure and conformational flexibility, which together function to absorb fluctuations in biomechanical stresses on cartilage during movement of an articular joint. We have summarized information on the history and current knowledge obtained by biochemical and genetic approaches, on cell-mediated regulation of aggrecan metabolism and its role in skeletal development, growth as well as during the development of joint disease. In addition, we describe the pathways for hyaluronan metabolism, with particular focus on the role as a "metabolic rheostat" during chondrocyte responses in cartilage remodeling in growth and disease.Future advances in effective therapeutic targeting of cartilage loss during osteoarthritic diseases of the joint as an organ as well as in cartilage tissue engineering would benefit from 'big data' approaches and bioinformatics, to uncover novel feed-forward and feed-back mechanisms for regulating transcription and translation of genes and their integration into cell-specific pathways.
Collapse
Affiliation(s)
- Anna H K Plaas
- Department of Internal Medicine (Rheumatology), Rush University Medical Center, Chicago, IL, USA
| | - Meghan M Moran
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL, USA
| | - John D Sandy
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Vincent C Hascall
- Department of Biomedical Engineering, The Cleveland Clinic Foundation, Cleveland, OH, USA
| |
Collapse
|
30
|
Zheng X, Wang B, Tang X, Mao B, Zhang Q, Zhang T, Zhao J, Cui S, Chen W. Absorption, metabolism, and functions of hyaluronic acid and its therapeutic prospects in combination with microorganisms: A review. Carbohydr Polym 2023; 299:120153. [PMID: 36876779 DOI: 10.1016/j.carbpol.2022.120153] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 09/21/2022] [Accepted: 09/21/2022] [Indexed: 11/25/2022]
Abstract
Hyaluronic acid (HA) is key to the stability of the internal environment of tissues. HA content in tissues gradually decreases with age, causing age-related health problems. Exogenous HA supplements are used to prevent or treat these problems including skin dryness and wrinkles, intestinal imbalance, xerophthalmia, and arthritis after absorption. Moreover, some probiotics are able to promote endogenous HA synthesis and alleviate symptoms caused by HA loss, thus introducing potential preventative or therapeutic applications of HA and probiotics. Here, we review the oral absorption, metabolism, and biological function of HA as well as the potential role of probiotics and HA in increasing the efficacy of HA supplements.
Collapse
Affiliation(s)
- Xueli Zheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Botao Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Bloomage Biotechnology Co., Ltd, Jinan 250000, China
| | - Xin Tang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Bingyong Mao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Qiuxiang Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Tianmeng Zhang
- Bloomage Biotechnology Co., Ltd, Jinan 250000, China; School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Shumao Cui
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
31
|
Donelan W, Crispen PL, Kusmartsev S. Tissue Slice Culture and Analysis of Tumor-Associated Hyaluronan in Urothelial Carcinoma. Methods Mol Biol 2023; 2684:167-175. [PMID: 37410234 DOI: 10.1007/978-1-0716-3291-8_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
Hyaluronan is a major component of the extracellular matrix in both normal and tumor tissue. Many solid cancers, including bladder cancer, are characterized by deregulated hyaluronan metabolism. It is postulated that the deregulated metabolism in cancer tissue is characterized by elevated hyaluronan synthesis and degradation. This results in the accumulation of small hyaluronan fragments in the tumor microenvironment which promotes cancer-related inflammation, stimulates tumor cell proliferation and angiogenesis, and contributes to immune-associated immune suppression. For a better understanding of the complex mechanisms of hyaluronan metabolism in cancer, it has been proposed to use precision-cut tissue slice cultures prepared using freshly excised cancer tissue. Here we describe the protocol for establishing tissue slice cultures and analysis of tumor-associated hyaluronan in human urothelial carcinoma.
Collapse
Affiliation(s)
- William Donelan
- Department of Urology, University of Florida, College of Medicine, Gainesville, FL, USA
| | - Paul L Crispen
- Department of Urology, University of Florida, College of Medicine, Gainesville, FL, USA
| | - Sergei Kusmartsev
- Department of Urology, University of Florida, College of Medicine, Gainesville, FL, USA.
| |
Collapse
|
32
|
Gromova OA, Torshin IY, Lila AM. On the use of chondroitin sulfate, glucosamine sulfate and undenatured type II collagen for back and limb pain and osteoarthritis. NEUROLOGY, NEUROPSYCHIATRY, PSYCHOSOMATICS 2022. [DOI: 10.14412/2074-2711-2022-6-122-130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- O. A. Gromova
- Institute of Pharmacoinformatics of the Federal Research Center “Computer Science and Management”, Russian Academy of Sciences
| | - I. Y. Torshin
- Institute of Pharmacoinformatics of the Federal Research Center “Computer Science and Management”, Russian Academy of Sciences
| | - A. M. Lila
- V.A. Nasonova Research Institute of Rheumatology; Department of Rheumatology, Russian Medical Academy of Continuing Professional Education
| |
Collapse
|
33
|
Beltran AS, King KE, La J, Reipolska A, Young KA. Short communication: Photoperiod impacts ovarian extracellular matrix and metabolic gene expression in Siberian hamsters. Comp Biochem Physiol A Mol Integr Physiol 2022; 274:111302. [PMID: 36041709 PMCID: PMC11285357 DOI: 10.1016/j.cbpa.2022.111302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 08/13/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022]
Abstract
Ovarian cyclicity is variable in adult Siberian hamsters (Phodopus sungorus), who respond to long breeding season photoperiods with follicle development and ovulation, while short photoperiods typical of the non-breeding season induce gonadal atrophy. Recent RNAseq results identified ovarian matrix components and regulators of metabolism as differentially regulated by photoperiod; however, the impact of photoperiod across a full cycle of ovarian regression and recrudescence had not been explored for additional regulators of ovarian metabolism and extracellular matrix components. We hypothesized that matrix and metabolism-related genes would be expressed differentially across photoperiods that mimic breeding and non-breeding season daylengths. Hamsters were housed in one of four photoperiod groups: long day (16 h of light per day: 8 h of dark; LD, controls), short day regressed (8 L:16D; SD, regressed), and females exposed to SD then transferred to LD to stimulate return of ovarian function for 2 (early recrudescence), or 8 (late recrudescence) weeks. Plasma leptin concentrations along with expression of ovarian versican and liver-receptor homolog-1/Nr582 mRNA decreased in SD compared to LD and late recrudescence, while vimentin mRNA expression peaked in early and late recrudescence. Ovarian expression of fibronectin and extracellular matrix protein-1 was low in LD ovaries and increased in regressed and recrudescing groups. Expression of hyaluronidase-2, nectin-2, liver-X receptors-α and-β, and adiponectin mRNA peaked in late recrudescence, with no changes noted for adiponectin receptor-1 and -2. The results offer a first look at the parallels between expression of these genes and the dynamic remodeling that occurs during ovarian regression and recrudescence.
Collapse
Affiliation(s)
- Arianna S Beltran
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA 90840, United States of America
| | - Kristen E King
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA 90840, United States of America
| | - Josephine La
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA 90840, United States of America
| | - Anastasiia Reipolska
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA 90840, United States of America
| | - Kelly A Young
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA 90840, United States of America.
| |
Collapse
|
34
|
Pang B, Wang H, Huang H, Liao L, Wang Y, Wang M, Du G, Kang Z. Enzymatic Production of Low-Molecular-Weight Hyaluronan and Its Oligosaccharides: A Review and Prospects. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14129-14139. [PMID: 36300844 DOI: 10.1021/acs.jafc.2c05709] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Hyaluronic acid (HA) is a nonsulfated linear glycosaminoglycan with a negative charge. Different from the high-molecular-weight HAs, the low-molecular-weight HAs (LMW-HAs, 4-120 kDa) and hyaluronan oligosaccharides (O-HAs, <4 kDa) exhibit certain unique biological properties, owing to which these have a wide range of applications in the field of medicine. However, the chemical synthesis of high-purity LMW-HAs and O-HAs requires complex procedures, which renders this process difficult to achieve. The degradation of HA is achieved under the catalysis of hyaluronidases. In recent years, various hyaluronidase genes have been identified, and their enzymatic properties have been analyzed. In this context, the present review summarizes the hyaluronidases from different sources, which have been characterized. The review focuses on the crystal structure and the catalytic mechanism underlying the biological properties of hyaluronidases. In addition, the molecular weight distributions and the preparation approaches of the enzymatic products LMW-HAs and O-HAs are described. The general orientation of the research on hyaluronidases was speculated based on the existing literature. Accordingly, the efficient large-scale production of LMW-HAs and O-HAs using the green enzymatic approach was anticipated.
Collapse
Affiliation(s)
- Bo Pang
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- The Science Center for Future Foods, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Hao Wang
- Bloomage Biotechnology Corp., Ltd., 678 Tianchen Avenue, Jinan 250010, China
| | - Hao Huang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- The Science Center for Future Foods, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Lizhi Liao
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- The Science Center for Future Foods, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Yang Wang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- The Science Center for Future Foods, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Miao Wang
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Guocheng Du
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- The Science Center for Future Foods, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Zhen Kang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- The Science Center for Future Foods, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| |
Collapse
|
35
|
Donelan W, Dominguez-Gutierrez PR, Kusmartsev S. Deregulated hyaluronan metabolism in the tumor microenvironment drives cancer inflammation and tumor-associated immune suppression. Front Immunol 2022; 13:971278. [PMID: 36238286 PMCID: PMC9550864 DOI: 10.3389/fimmu.2022.971278] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/07/2022] [Indexed: 11/13/2022] Open
Abstract
Hyaluronan (HA) is known to be a prominent component of the extracellular matrix in tumors, and many solid cancers are characterized by aberrant HA metabolism resulting in increased production in tumor tissue. HA has been implicated in regulating a variety of cellular functions in tumor cells and tumor-associated stromal cells, suggesting that altered HA metabolism can influence tumor growth and malignancy at multiple levels. Importantly, increased HA production in cancer is associated with enhanced HA degradation due to high levels of expression and activity of hyaluronidases (Hyal). Understanding the complex molecular and cellular mechanisms involved in abnormal HA metabolism and catabolism in solid cancers could have important implications for the design of future cancer therapeutic approaches. It appears that extensive crosstalk between immune cells and HA-enriched stroma contributes to tumor growth and progression in several ways. Specifically, the interaction of tumor-recruited Hyal2-expressing myeloid-derived suppressor cells (MDSCs) of bone marrow origin with HA-producing cancer-associated fibroblasts and epithelial tumor cells results in enhanced HA degradation and accumulation of small pro-inflammatory HA fragments, which further drives cancer-related inflammation. In addition, hyaluronan-enriched stroma supports the transition of tumor-recruited Hyal2+MDSCs to the PD-L1+ tumor-associated macrophages leading to the formation of an immunosuppressive and tolerogenic tumor microenvironment. In this review, we aim to discuss the contribution of tumor-associated HA to cancer inflammation, angiogenesis, and tumor-associated immune suppression. We also highlight the recent findings related to the enhanced HA degradation in the tumor microenvironment.
Collapse
|
36
|
Patterson EK, Cepinskas G, Fraser DD. Endothelial Glycocalyx Degradation in Critical Illness and Injury. Front Med (Lausanne) 2022; 9:898592. [PMID: 35872762 PMCID: PMC9304628 DOI: 10.3389/fmed.2022.898592] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/14/2022] [Indexed: 12/23/2022] Open
Abstract
The endothelial glycocalyx is a gel-like layer on the luminal side of blood vessels that is composed of glycosaminoglycans and the proteins that tether them to the plasma membrane. Interest in its properties and function has grown, particularly in the last decade, as its importance to endothelial barrier function has come to light. Endothelial glycocalyx studies have revealed that many critical illnesses result in its degradation or removal, contributing to endothelial dysfunction and barrier break-down. Loss of the endothelial glycocalyx facilitates the direct access of immune cells and deleterious agents (e.g., proteases and reactive oxygen species) to the endothelium, that can then further endothelial cell injury and dysfunction leading to complications such as edema, and thrombosis. Here, we briefly describe the endothelial glycocalyx and the primary components thought to be directly responsible for its degradation. We review recent literature relevant to glycocalyx damage in several critical illnesses (sepsis, COVID-19, trauma and diabetes) that share inflammation as a common denominator with actions by several common agents (hyaluronidases, proteases, reactive oxygen species, etc.). Finally, we briefly cover strategies and therapies that show promise in protecting or helping to rebuild the endothelial glycocalyx such as steroids, protease inhibitors, anticoagulants and resuscitation strategies.
Collapse
Affiliation(s)
- Eric K Patterson
- Centre for Critical Illness Research, Lawson Health Research Institute, London, ON, Canada
| | - Gediminas Cepinskas
- Centre for Critical Illness Research, Lawson Health Research Institute, London, ON, Canada.,Department of Medical Biophysics, Western University, London, ON, Canada
| | - Douglas D Fraser
- Centre for Critical Illness Research, Lawson Health Research Institute, London, ON, Canada.,Department of Pediatrics, Western University, London, ON, Canada.,Department of Physiology and Pharmacology, Western University, London, ON, Canada.,Department of Clinical Neurological Sciences, Western University, London, ON, Canada.,Children's Health Research Institute, Lawson Health Research Institute, London, ON, Canada
| |
Collapse
|
37
|
Inubushi T, Nakanishi Y, Abe M, Takahata Y, Nishimura R, Kurosaka H, Irie F, Yamashiro T, Yamaguchi Y. The cell surface hyaluronidase TMEM2 plays an essential role in mouse neural crest cell development and survival. PLoS Genet 2022; 18:e1009765. [PMID: 35839257 PMCID: PMC9328550 DOI: 10.1371/journal.pgen.1009765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 07/27/2022] [Accepted: 06/29/2022] [Indexed: 11/30/2022] Open
Abstract
Hyaluronan (HA) is a major extracellular matrix component whose tissue levels are dynamically regulated during embryonic development. Although the synthesis of HA has been shown to exert a substantial influence on embryonic morphogenesis, the functional importance of the catabolic aspect of HA turnover is poorly understood. Here, we demonstrate that the transmembrane hyaluronidase TMEM2 plays an essential role in neural crest development and the morphogenesis of neural crest derivatives, as evidenced by the presence of severe craniofacial abnormalities in Wnt1-Cre–mediated Tmem2 knockout (Tmem2CKO) mice. Neural crest cells (NCCs) are a migratory population of cells that gives rise to diverse cell lineages, including the craniofacial complex, the peripheral nervous system, and part of the heart. Analysis of Tmem2 expression during NCC formation and migration reveals that Tmem2 is expressed at the site of NCC delamination and in emigrating Sox9-positive NCCs. In Tmem2CKO embryos, the number of NCCs emigrating from the neural tube is greatly reduced. Furthermore, linage tracing reveals that the number of NCCs traversing the ventral migration pathway and the number of post-migratory neural crest derivatives are both significantly reduced in a Tmem2CKO background. In vitro studies using Tmem2-depleted mouse O9-1 neural crest cells demonstrate that Tmem2 expression is essential for the ability of these cells to form focal adhesions on and to migrate into HA-containing substrates. Additionally, we show that Tmem2-deficient NCCs exhibit increased apoptotic cell death in NCC-derived tissues, an observation that is corroborated by in vitro experiments using O9-1 cells. Collectively, our data demonstrate that TMEM2-mediated HA degradation plays an essential role in normal neural crest development. This study reveals the hitherto unrecognized functional importance of HA degradation in embryonic development and highlights the pivotal role of Tmem2 in the developmental process. As a major component of the extracellular matrix, hyaluronan is particularly abundant in the extracellular matrix of embryonic tissues, where its expression is dynamically regulated during tissue morphogenetic processes. Tissue levels of hyaluronan are regulated not only by its synthesis but also by its degradation. Curiously, however, mice lacking known hyaluronidase molecules, including HYAL1 and HYAL2, exhibit minimal embryonic phenotypes. As a result, our understanding of the role of the catabolic aspect of hyaluronan metabolism in embryonic development is quite limited. Here, we show that TMEM2, a recently identified hyaluronidase that degrades hyaluronan on the cell surface, plays a critical role in the development of neural crest cells and their derivatives. Our analyses of Tmem2 conditional knockout mice, Tmem2 knock-in reporter mice, and in vitro cell cultures demonstrate that TMEM2 is essential for generating a tissue environment needed for efficient migration of neural crest cells from the neural tube. Our paper reveals for the first time that the degradation of hyaluronan plays a specific regulatory role in embryonic morphogenesis, and that dysregulation of hyaluronan degradation leads to severe developmental defects.
Collapse
Affiliation(s)
- Toshihiro Inubushi
- Department of Orthodontics and Dentofacial Orthopedics, Osaka University Graduate School of Dentistry, Osaka, Japan
- * E-mail:
| | - Yuichiro Nakanishi
- Department of Orthodontics and Dentofacial Orthopedics, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Makoto Abe
- Department of Oral Anatomy and Developmental Biology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Yoshifumi Takahata
- Department of Molecular and Cellular Biochemistry, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Riko Nishimura
- Department of Molecular and Cellular Biochemistry, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Hiroshi Kurosaka
- Department of Orthodontics and Dentofacial Orthopedics, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Fumitoshi Irie
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, United States of America
| | - Takashi Yamashiro
- Department of Orthodontics and Dentofacial Orthopedics, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Yu Yamaguchi
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, United States of America
| |
Collapse
|
38
|
Dominguez-Gutierrez PR, Kwenda EP, Donelan W, Miranda M, Doty A, O'Malley P, Crispen PL, Kusmartsev S. Detection of PD-L1-Expressing Myeloid Cell Clusters in the Hyaluronan-Enriched Stroma in Tumor Tissue and Tumor-Draining Lymph Nodes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:2829-2836. [PMID: 35589125 DOI: 10.4049/jimmunol.2100026] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/03/2022] [Indexed: 12/30/2022]
Abstract
Expression of the transmembrane protein PD-L1 is frequently upregulated in cancer. Because PD-L1-expressing cells can induce apoptosis or anergy of T lymphocytes through binding to the PD1 receptor, the PD-L1-mediated inhibition of activated PD1+ T cells is considered a major pathway for tumor immune escape. However, the mechanisms that regulate the expression of PD-L1 in the tumor microenvironment are not fully understood. Analysis of organotypic tumor tissue slice cultures, obtained from mice with implanted syngeneic tumors (MBT2 bladder tumors in C3H mice, Renca kidney, and CT26 colon tumors in BALB/c mice), as well as from patients with cancer, revealed that tumor-associated hyaluronan (HA) supports the development of immunosuppressive PD-L1+ macrophages. Using genetically modified tumor cells, we identified epithelial tumor cells and cancer-associated mesenchymal fibroblast-like cells as a major source of HA in the tumor microenvironment. These HA-producing tumor cells, and particularly the vimentin-positive fibroblast-like cells of bone marrow origin, directly interact with tumor-recruited myeloid cells to form large stromal congregates/clusters that are highly enriched for both HA and PD-L1. Furthermore, similar cell clusters composed of HA-producing fibroblast-like cells and PD-L1+ macrophages were detected in tumor-draining, but not in distant, lymph nodes. Collectively, our findings indicate that the formation of multiple large HA-enriched stromal clusters that support the development of PD-L1-expressing APCs in the tumor microenvironment and draining lymph nodes could contribute to the immune escape and resistance to immunotherapy in cancer.
Collapse
Affiliation(s)
| | - Elizabeth P Kwenda
- Department of Urology and Shands Cancer Center, University of Florida, Gainesville, FL; and
| | - William Donelan
- Department of Urology and Shands Cancer Center, University of Florida, Gainesville, FL; and
| | - Mariza Miranda
- Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL
| | - Andria Doty
- Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL
| | - Padraic O'Malley
- Department of Urology and Shands Cancer Center, University of Florida, Gainesville, FL; and
| | - Paul L Crispen
- Department of Urology and Shands Cancer Center, University of Florida, Gainesville, FL; and
| | - Sergei Kusmartsev
- Department of Urology and Shands Cancer Center, University of Florida, Gainesville, FL; and
| |
Collapse
|
39
|
Hu M, Ling Z, Ren X. Extracellular matrix dynamics: tracking in biological systems and their implications. J Biol Eng 2022; 16:13. [PMID: 35637526 PMCID: PMC9153193 DOI: 10.1186/s13036-022-00292-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 05/11/2022] [Indexed: 12/23/2022] Open
Abstract
The extracellular matrix (ECM) constitutes the main acellular microenvironment of cells in almost all tissues and organs. The ECM not only provides mechanical support, but also mediates numerous biochemical interactions to guide cell survival, proliferation, differentiation, and migration. Thus, better understanding the everchanging temporal and spatial shifts in ECM composition and structure - the ECM dynamics - will provide fundamental insight regarding extracellular regulation of tissue homeostasis and how tissue states transition from one to another during diverse pathophysiological processes. This review outlines the mechanisms mediating ECM-cell interactions and highlights how changes in the ECM modulate tissue development and disease progression, using the lung as the primary model organ. We then discuss existing methodologies for revealing ECM compositional dynamics, with a particular focus on tracking newly synthesized ECM proteins. Finally, we discuss the ramifications ECM dynamics have on tissue engineering and how to implement spatial and temporal specific extracellular microenvironments into bioengineered tissues. Overall, this review communicates the current capabilities for studying native ECM dynamics and delineates new research directions in discovering and implementing ECM dynamics to push the frontier forward.
Collapse
Affiliation(s)
- Michael Hu
- Department of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, 15213, USA
| | - Zihan Ling
- Department of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, 15213, USA
| | - Xi Ren
- Department of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
40
|
Collyer SE, Stack GD, Walsh JJ. Selective delivery of clinically approved tubulin binding agents through covalent conjugation to an active targeting moiety. Curr Med Chem 2022; 29:5179-5211. [DOI: 10.2174/0929867329666220401105929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 01/19/2022] [Accepted: 01/24/2022] [Indexed: 11/22/2022]
Abstract
Abstract:
The efficacy and tolerability of tubulin binding agents are hampered by their low specificity for cancer cells, like most clinically used anticancer agents. To improve specificity, tubulin binding agents have been covalently conjugated to agents which target cancer cells to give actively targeted drug conjugates. These conjugates are designed to increase uptake of the drug by cancer cells, while having limited uptake by normal cells thereby improving efficacy and tolerability.
Approaches used include attachment to small molecules, polysaccharides, peptides, proteins and antibodies that exploit the overexpression of receptors for these substances. Antibody targeted strategies have been the most successful to date with six such examples having gained clinical approval. Many other conjugate types, especially those targeting the folate receptor, have shown promising efficacy and toxicity profiles in pre-clinical models and in early-stage clinical studies. Presented herein is a discussion of the success or otherwise of the recent strategies used to form these actively targeted conjugates.
Collapse
Affiliation(s)
- Samuel E. Collyer
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin, Ireland
| | - Gary D. Stack
- Department of Nursing and Healthcare, Technological University of the Shannon: Midlands Midwest, Athlone, Ireland
| | - John J. Walsh
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
41
|
Schmaus A, Rothley M, Schreiber C, Möller S, Roßwag S, Franz S, Garvalov BK, Thiele W, Spataro S, Herskind C, Prunotto M, Anderegg U, Schnabelrauch M, Sleeman J. Sulfated hyaluronic acid inhibits the hyaluronidase CEMIP and regulates the HA metabolism, proliferation and differentiation of fibroblasts. Matrix Biol 2022; 109:173-191. [DOI: 10.1016/j.matbio.2022.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/12/2022] [Accepted: 04/04/2022] [Indexed: 12/23/2022]
|
42
|
Kong W, Lu C, Ding Y, Meng Y. Molecular environment and atypical function: What do we know about enzymes associated with Mucopolysaccharidoses? Orphanet J Rare Dis 2022; 17:112. [PMID: 35246201 PMCID: PMC8895820 DOI: 10.1186/s13023-022-02211-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 02/06/2022] [Indexed: 02/06/2023] Open
Abstract
Mucopolysaccharidoses are a group of lysosomal storage disorders caused by deficiency of enzymes involved in glycosaminoglycans degradation. Relationship between mucopolysaccharidoses and related enzymes has been clarified clearly. Based on such relationship, lots of therapies have been commercialized or are in the process of research and development. However, many potential treatments failed, because those treatments did not demonstrate expected efficacy or safety data. Molecular environment of enzyme, which is essential for their expression and activity, is fundamental for efficacy of therapy. In addition to enzyme activities, mucopolysaccharidoses-related enzymes have other atypical functions, such as regulation, which may cause side effects. This review tried to discuss molecular environment and atypical function of enzymes that are associated with mucopolysaccharidoses, which is very important for the efficacy and safety of potential therapies.
Collapse
Affiliation(s)
- Weijing Kong
- Department of Pediatrics, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Cheng Lu
- Beijing Hong Jian Medical Device Company, Beijing, 100176, China
| | - Yingxue Ding
- Department of Pediatrics, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
| | - Yan Meng
- Department of Pediatrics, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
43
|
Zhou L, Li Y, Liang Q, Liu J, Liu Y. Combination therapy based on targeted nano drug co-delivery systems for liver fibrosis treatment: A review. J Drug Target 2022; 30:577-588. [PMID: 35179094 DOI: 10.1080/1061186x.2022.2044485] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Liver fibrosis is the hallmark of liver disease and occurs prior to the stages of cirrhosis and hepatocellular carcinoma. Any type of liver damage or inflammation can result in fibrosis. Fibrosis does not develop overnight, but rather as a result of the long-term action of injury factors. At present, however, there are no good treatment methods or specific drugs other than removing the pathogenic factors. Drug application is still limited, which means that drugs with good performance in vitro cannot achieve good therapeutic effects in vivo, owing to various factors such as poor drug targeting, large side effects, and strong hydrophobicity. Hepatic stellate cells (HSC) are the primary effector cells in liver fibrosis. The nano-drug delivery system is a new and safe drug delivery system that has many advantages which are widely used in the field of liver fibrosis. Drug resistance and side effects can be reduced when two or more drugs are used in combination drug delivery. Combination therapy of drugs with different targets has emerged as a novel approach to treating liver fibrosis, and the nano co-delivery system enhances the benefits of combination therapy. While nano co-delivery systems can maximize benefits while avoiding drug side effects, this is precisely the advantage of the nano co-delivery system. This review briefly described the pathogenesis and current treatment strategies, the different co-delivery systems of combination drugs in the nano delivery system, and targeting strategies for nano delivery systems on liver fibrosis therapy. Because of their superior performance, nano delivery systems and targeting drug delivery systems have received a lot of attention in the new drug delivery system. The new delivery systems offer a new pathway in the treatment of liver fibrosis, and it is believed that it can be a new treatment for fibrosis in the future. Nano co-delivery system of combination drugs and targeting strategies has proven the effectiveness of anti-fibrosis at the experimental level.
Collapse
Affiliation(s)
- Liyue Zhou
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Yifan Li
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Qiangwei Liang
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Jinxia Liu
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Yanhua Liu
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China.,Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
44
|
The Degradation of Hyaluronan in the Skin. Biomolecules 2022; 12:biom12020251. [PMID: 35204753 PMCID: PMC8961566 DOI: 10.3390/biom12020251] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/28/2022] [Accepted: 01/31/2022] [Indexed: 02/04/2023] Open
Abstract
Hyaluronan (HA) comprises a fundamental component of the extracellular matrix and participates in a variety of biological processes. Half of the total amount of HA in the human body is present in the skin. HA exhibits a dynamic turnover; its half-life in the skin is less than one day. Nevertheless, the specific participants in the catabolism of HA in the skin have not yet been described in detail, despite the essential role of HA in cutaneous biology. A deeper knowledge of the processes involved will act to support the development of HA-based topical and implantable materials and enhance the understanding of the various related pathological cutaneous conditions. This study aimed to characterize the distribution and activity of hyaluronidases and the other proteins involved in the degradation of HA in healthy human full-thickness skin, the epidermis and the dermis. Hyaluronidase activity was detected for the first time in healthy human skin. The degradation of HA occurred in lysates at an acidic pH. HA gel zymography revealed a single band corresponding to approximately 50 kDa. This study provided the first comprehensive view of the distribution of canonic HA-degrading proteins (HYAL1 and HYAL2) in human skin employing IHF and IHC. Furthermore, contrary to previous assumptions TMEM2, a novel hyaluronidase, as well as CEMIP, a protein involved in HA degradation, were localized in the human epidermis, as well as in the dermis.
Collapse
|
45
|
Quagliariello V, Gennari A, Jain SA, Rosso F, Iaffaioli RV, Barbarisi A, Barbarisi M, Tirelli N. Double-responsive hyaluronic acid-based prodrugs for efficient tumour targeting. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 131:112475. [PMID: 34857264 DOI: 10.1016/j.msec.2021.112475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 10/20/2022]
Abstract
Hyaluronic acid (HA)-based prodrugs bearing double-responsive (acid pH or oxidation) boronates of catechol-containing drugs were used to treat xenografted human prostate tumours (LNCaP) in SCID mice. The HA prodrugs accumulated significantly only in tumours (impressively, up to 40% of the injected dose after 24 h) and in liver, with negligible - actually anti-inflammatory - consequences in the latter. A quercetin-HA prodrug significantly slowed down tumour growth, in a dose-dependent fashion and with a much higher efficacy (up to 4 times) than equivalent doses of free quercetin. In short, boronated HA appears to be a very promising platform for targeted chemotherapy.
Collapse
Affiliation(s)
- Vincenzo Quagliariello
- Department of Cardio-Thoracic and Respiratory Science, University of Campania "Luigi Vanvitelli", 80138 Napoli, Italy
| | - Arianna Gennari
- Laboratory for Polymers and Biomaterials, Fondazione Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Som Akshay Jain
- Department of Cardio-Thoracic and Respiratory Science, University of Campania "Luigi Vanvitelli", 80138 Napoli, Italy
| | - Francesco Rosso
- Department of Cardio-Thoracic and Respiratory Science, University of Campania "Luigi Vanvitelli", 80138 Napoli, Italy
| | | | - Alfonso Barbarisi
- Department of Human Sciences, Pegaso Online University, 80132 Napoli, Italy
| | - Manlio Barbarisi
- Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Nicola Tirelli
- Laboratory for Polymers and Biomaterials, Fondazione Istituto Italiano di Tecnologia, 16163 Genova, Italy; Division of Pharmacy and Optometry, School of Health Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, United Kingdom.
| |
Collapse
|
46
|
Zakusilo FT, Kerry O’Banion M, Gelbard HA, Seluanov A, Gorbunova V. Matters of size: Roles of hyaluronan in CNS aging and disease. Ageing Res Rev 2021; 72:101485. [PMID: 34634492 DOI: 10.1016/j.arr.2021.101485] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 12/29/2022]
Abstract
Involvement of extracellular matrix (ECM) components in aging and age-related neurodegeneration is not well understood. The role of hyaluronan (HA), a major extracellular matrix glycosaminoglycan, in malignancy and inflammation is gaining new understanding. In particular, the differential biological effects of high molecular weight (HMW-HA) and low molecular weight hyaluronan (LMW-HA), and the mechanism behind such differences are being uncovered. Tightly regulated in the brain, HA can have diverse effects on cellular development, growth and degeneration. In this review, we summarize the homeostasis and signaling of HA in healthy tissue, discuss its distribution and ontogeny in the central nervous system (CNS), summarize evidence for its involvement in age-related neurodegeneration and Alzheimer Disease (AD), and assess the potential of HA as a therapeutic target in the CNS.
Collapse
|
47
|
Čēma I, Dzudzilo M, Kleina R, Franckevica I, Svirskis Š. Correlation of Soluble CD44 Expression in Saliva and CD44 Protein in Oral Leukoplakia Tissues. Cancers (Basel) 2021; 13:cancers13225739. [PMID: 34830890 PMCID: PMC8616328 DOI: 10.3390/cancers13225739] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/09/2021] [Accepted: 11/14/2021] [Indexed: 11/16/2022] Open
Abstract
The aim of this study was to determine whether and how pan-CD44 protein expression in leukoplakia tissues correlates with positive SolCD44 test presence and their role in oral leukoplakia. SolCD44 and total protein expression in saliva were determined using an OncAlert® Oral Cancer Rapid test. Comparison of paired associations of total protein, SolCD44, mean number of CD44 expressed epithelial layers in leukoplakia tissue, and macrophages below the basement membrane between control group and patients with leukoplakia showed statistically significant results (p < 0.0001). It is shown that the total protein indicates low or elevated risk of possible malignant transformation processes in leukoplakia. Statistically significant differences between higher total protein level and clinical forms of oral leukoplakia (p < 0.0001), as well as CD44-labeled epithelial cell layer decrease (p < 0.0001), were found. This possibly points to the onset of the stemness loss in leukoplakia tissue. CD9 antigen expression in the exosomes of the oral epithelium explained the intercellular flow of SolCD44 and other fluids in the leukoplakia area. We conclude that the OncAlert® Oral Cancer Rapid test is a valuable screening method in daily clinical practice, in terms of complementing clinical diagnostics methods and to assess the potential for early malignancy.
Collapse
Affiliation(s)
- Ingrīda Čēma
- Department of Oral Medicine, Rīga Stradiņš University, 16 Dzirciema Str., LV-1007 Rīga, Latvia
- Correspondence:
| | - Madara Dzudzilo
- Doctoral Study Department, Rīga Stradiņš University, 16 Dzirciema Str., LV-1007 Rīga, Latvia;
| | - Regīna Kleina
- Department of Pathology, Rīga Stradiņš University, 16 Dzirciema Str., LV-1007 Rīga, Latvia;
| | - Ivanda Franckevica
- Department of Pathology, Children’s Clinical University Hospital, Vienības Gatve 45, LV-1004 Rīga, Latvia;
| | - Šimons Svirskis
- Institute of Microbiology and Virology, Rīga Stradiņš University, 5 Rātsupītes Str., LV-1067 Rīga, Latvia;
| |
Collapse
|
48
|
Evrard C, Lambert de Rouvroit C, Poumay Y. Epidermal Hyaluronan in Barrier Alteration-Related Disease. Cells 2021; 10:3096. [PMID: 34831319 PMCID: PMC8618819 DOI: 10.3390/cells10113096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/08/2021] [Accepted: 11/08/2021] [Indexed: 12/13/2022] Open
Abstract
In skin, although the extracellular matrix (ECM) is highly developed in dermis and hypodermis, discrete intercellular spaces between cells of the living epidermal layers are also filled with ECM components. Herein, we review knowledge about structure, localization and role of epidermal hyaluronan (HA), a key ECM molecule. HA is a non-sulfated glycosaminoglycan non-covalently bound to proteins or lipids. Components of the basal lamina maintain some segregation between the epidermis and the underlying dermis, and all epidermal HA is locally synthesized and degraded. Functions of HA in keratinocyte proliferation and differentiation are still controversial. However, through interactions with partners, such as the TSG-6 protein, HA is involved in the formation, organization and stabilization of the epidermal ECM. In addition, epidermal HA is involved in the formation of an efficient epidermal barrier made of cornified keratinocytes. In atopic dermatitis (AD) with profuse alterations of the epidermal barrier, HA is produced in larger amounts by keratinocytes than in normal skin. Epidermal HA inside AD lesional skin is located in enlarged intercellular spaces, likely as the result of disease-related modifications of HA metabolism.
Collapse
Affiliation(s)
| | | | - Yves Poumay
- Research Unit for Molecular Physiology (URPhyM), Department of Medicine, Namur Research Institute for Life Sciences (NARILIS), University of Namur, B-5000 Namur, Belgium; (C.E.); (C.L.d.R.)
| |
Collapse
|
49
|
Plasma hyaluronan, hyaluronidase activity and endogenous hyaluronidase inhibition in sepsis: an experimental and clinical cohort study. Intensive Care Med Exp 2021; 9:53. [PMID: 34632531 PMCID: PMC8502523 DOI: 10.1186/s40635-021-00418-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 09/23/2021] [Indexed: 12/29/2022] Open
Abstract
Background Plasma hyaluronan concentrations are increased during sepsis but underlying mechanisms leading to high plasma hyaluronan concentration are poorly understood. In this study we evaluate the roles of plasma hyaluronan, effective plasma hyaluronidase (HYAL) activity and its endogenous plasma inhibition in clinical and experimental sepsis. We specifically hypothesized that plasma HYAL acts as endothelial glycocalyx shedding enzyme, sheddase. Methods Plasma hyaluronan, effective HYAL activity and HYAL inhibition were measured in healthy volunteers (n = 20), in patients with septic shock (n = 17, day 1 and day 4), in patients with acute pancreatitis (n = 7, day 1 and day 4) and in anesthetized and mechanically ventilated pigs (n = 16). Sixteen pigs were allocated (unblinded, open label) into three groups: Sepsis-1 with infusion of live Escherichia coli (E. coli) 1 × 108 CFU/h of 12 h (n = 5), Sepsis-2 with infusion of E. coli 1 × 108 CFU/h of 6 h followed by 1 × 109 CFU/h of the remaining 6 h (n = 5) or Control with no E. coli infusion (n = 6). Results In experimental E. coli porcine sepsis and in time controls, plasma hyaluronan increases with concomitant decrease in effective plasma HYAL activity and increase of endogenous HYAL inhibition. Plasma hyaluronan increased in patients with septic shock but not in acute pancreatitis. Effective plasma HYAL was lower in septic shock and acute pancreatitis as compared to healthy volunteers, while plasma HYAL inhibition was only increased in septic shock. Conclusion Elevated plasma hyaluronan levels coincided with a concomitant decrease in effective plasma HYAL activity and increase of endogenous plasma HYAL inhibition both in experimental and clinical sepsis. In acute pancreatitis, effective plasma HYAL activity was decreased which was not associated with increased plasma hyaluronan concentrations or endogenous HYAL inhibition. The results suggest that plasma HYAL does not act as sheddase in sepsis or pancreatitis. Supplementary Information The online version contains supplementary material available at 10.1186/s40635-021-00418-3.
Collapse
|
50
|
A γ-PGA/KGM-based injectable hydrogel as immunoactive and antibacterial wound dressing for skin wound repair. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 129:112374. [PMID: 34579893 DOI: 10.1016/j.msec.2021.112374] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 08/06/2021] [Accepted: 08/10/2021] [Indexed: 12/20/2022]
Abstract
Injectable hydrogels, of which the cover area and volume can be flexibly adjusted according to the shape and depth of the wound, are considered to be an ideal material for wound dressing. Konjac glucomannan (KGM) is a natural polysaccharide with immunomodulatory capability, while γ-polyglutamic acid (γ-PGA) is a single chain polyamino acid with moisturizing, water-retention and antibacterial properties. This work intended to combine the advantages of the two materials to prepare an injectable hydrogel (P-OK) by mixing the adipic acid dihydrazide (ADH) modified γ-PGA with oxidized KGM. The chemical structures, the physical and chemical properties, and the biological properties of the P-OK hydrogel were evaluated. The optimal conditions to form the P-OK hydrogel were fixed, and the cytotoxicity, qPCR, antibacterial and animal experiments were performed. Results showed that the P-OK hydrogel had a fast gelation time, good water-retention rate, little cytotoxicity, good immunomodulating and antibacterial capabilities, and could shorten the healing period in the rat full-thickness defect model, which makes it a potential candidate for wound repair dressing.
Collapse
|