1
|
Li J, Yang M, Li W, Lu C, Feng D, Shang Z, Wang C, Lin W. Structural and functional characterization of a mycobacterial methylenetetrahydrofolate reductase utilizing NADH as the exclusive cofactor. Biochem J 2023; 480:1129-1146. [PMID: 37435857 DOI: 10.1042/bcj20230138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/05/2023] [Accepted: 07/12/2023] [Indexed: 07/13/2023]
Abstract
5,10-Methylenetetraydrofolate reductase (MTHFR) is a key enzyme in folate metabolism. MSMEG_6649, a non-canonical MTHFR from Mycobacterium smegmatis, was previously reported as a monomeric protein lacking the flavin coenzyme. However, the structural basis for its unique flavin-independent catalytic mechanism remains poorly understood. Here, we determined the crystal structures of apo MTHFR MSMEG_6649 and its complex with NADH from M. smegmatis. Structural analysis revealed that the groove formed by the loops 4 and 5 of non-canonical MSMEG_6649 interacting with FAD was significantly larger than that of canonical MTHFR. Meanwhile, the NADH-binding site in MSMEG_6649 is highly similar to the FAD binding site in canonical MTHFR, suggesting that NADH plays the same role (immediate hydride donor for methylenetetraydrofolate) as FAD in the catalytic reaction. Using biochemical analysis, molecular modeling, and site-directed mutagenesis, the critical residues participating in the binding of NADH and the substrate 5,10-methylenetetrahydrofolate as well as the product 5-methyltetrahydrofolate were identified and validated. Taken together, this work not only provides a good starting point for understanding the potential catalytic mechanism for MSMEG_6649, but also identifies an exploitable target for the development of anti-mycobacterial drugs.
Collapse
Affiliation(s)
- Jiacong Li
- Department of Pathogen Biology, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Mingxia Yang
- The Center for Microbes, Development and Health, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Weijia Li
- Department of Pathogen Biology, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chujie Lu
- Department of Pathogen Biology, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Deyu Feng
- The Center for Microbes, Development and Health, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Zhuo Shang
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Chengyuan Wang
- The Center for Microbes, Development and Health, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Wei Lin
- Department of Pathogen Biology, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
2
|
da Silva R, de Sarges KML, Cantanhede MHD, da Costa FP, Dos Santos EF, Rodrigues FBB, de Nazaré do Socorro de Almeida Viana M, de Meira Leite M, da Silva ALS, de Brito MTM, da Silva Torres MK, Queiroz MAF, Vallinoto IMVC, Henriques DF, Dos Santos CP, Viana GMR, Quaresma JAS, Falcão LFM, Vallinoto ACR, Dos Santos EJM. Thrombophilia and Immune-Related Genetic Markers in Long COVID. Viruses 2023; 15:v15040885. [PMID: 37112866 PMCID: PMC10143911 DOI: 10.3390/v15040885] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/27/2023] [Accepted: 03/27/2023] [Indexed: 04/29/2023] Open
Abstract
Aiming to evaluate the role of ten functional polymorphisms in long COVID, involved in major inflammatory, immune response and thrombophilia pathways, a cross-sectional sample composed of 199 long COVID (LC) patients and a cohort composed of 79 COVID-19 patients whose follow-up by over six months did not reveal any evidence of long COVID (NLC) were investigated to detect genetic susceptibility to long COVID. Ten functional polymorphisms located in thrombophilia-related and immune response genes were genotyped by real time PCR. In terms of clinical outcomes, LC patients presented higher prevalence of heart disease as preexistent comorbidity. In general, the proportions of symptoms in acute phase of the disease were higher among LC patients. The genotype AA of the interferon gamma (IFNG) gene was observed in higher frequency among LC patients (60%; p = 0.033). Moreover, the genotype CC of the methylenetetrahydrofolate reductase (MTHFR) gene was also more frequent among LC patients (49%; p = 0.045). Additionally, the frequencies of LC symptoms were higher among carriers of IFNG genotypes AA than among non-AA genotypes (Z = 5.08; p < 0.0001). Two polymorphisms were associated with LC in both inflammatory and thrombophilia pathways, thus reinforcing their role in LC. The higher frequencies of acute phase symptoms among LC and higher frequency of underlying comorbidities might suggest that acute disease severity and the triggering of preexisting condition may play a role in LC development.
Collapse
Affiliation(s)
- Rosilene da Silva
- Laboratory of Genetics of Complex Diseases, Institute of Biological Sciences, Federal University of Pará, Belém 58255-000, Brazil
- Graduate Program in Biology of Infectious and Parasitic Agents, Federal University of Pará, Belém 58255-000, Brazil
| | - Kevin Matheus Lima de Sarges
- Laboratory of Genetics of Complex Diseases, Institute of Biological Sciences, Federal University of Pará, Belém 58255-000, Brazil
- Graduate Program in Biology of Infectious and Parasitic Agents, Federal University of Pará, Belém 58255-000, Brazil
| | - Marcos Henrique Damasceno Cantanhede
- Laboratory of Genetics of Complex Diseases, Institute of Biological Sciences, Federal University of Pará, Belém 58255-000, Brazil
- Graduate Program in Biology of Infectious and Parasitic Agents, Federal University of Pará, Belém 58255-000, Brazil
| | - Flávia Póvoa da Costa
- Laboratory of Genetics of Complex Diseases, Institute of Biological Sciences, Federal University of Pará, Belém 58255-000, Brazil
- Graduate Program in Biology of Infectious and Parasitic Agents, Federal University of Pará, Belém 58255-000, Brazil
| | - Erika Ferreira Dos Santos
- Laboratory of Genetics of Complex Diseases, Institute of Biological Sciences, Federal University of Pará, Belém 58255-000, Brazil
- Graduate Program in Biology of Infectious and Parasitic Agents, Federal University of Pará, Belém 58255-000, Brazil
| | - Fabíola Brasil Barbosa Rodrigues
- Laboratory of Genetics of Complex Diseases, Institute of Biological Sciences, Federal University of Pará, Belém 58255-000, Brazil
- Graduate Program in Biology of Infectious and Parasitic Agents, Federal University of Pará, Belém 58255-000, Brazil
| | - Maria de Nazaré do Socorro de Almeida Viana
- Laboratory of Genetics of Complex Diseases, Institute of Biological Sciences, Federal University of Pará, Belém 58255-000, Brazil
- Graduate Program in Biology of Infectious and Parasitic Agents, Federal University of Pará, Belém 58255-000, Brazil
| | - Mauro de Meira Leite
- Laboratory of Genetics of Complex Diseases, Institute of Biological Sciences, Federal University of Pará, Belém 58255-000, Brazil
- Graduate Program in Biology of Infectious and Parasitic Agents, Federal University of Pará, Belém 58255-000, Brazil
| | - Andréa Luciana Soares da Silva
- Laboratory of Genetics of Complex Diseases, Institute of Biological Sciences, Federal University of Pará, Belém 58255-000, Brazil
- Graduate Program in Clinical Analysis, Federal University of Pará, Belém 58255-000, Brazil
| | - Mioni Thieli Magalhães de Brito
- Laboratory of Genetics of Complex Diseases, Institute of Biological Sciences, Federal University of Pará, Belém 58255-000, Brazil
- Graduate Program in Clinical Analysis, Federal University of Pará, Belém 58255-000, Brazil
| | - Maria Karoliny da Silva Torres
- Graduate Program in Biology of Infectious and Parasitic Agents, Federal University of Pará, Belém 58255-000, Brazil
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará, Belém 58255-000, Brazil
| | - Maria Alice Freitas Queiroz
- Graduate Program in Biology of Infectious and Parasitic Agents, Federal University of Pará, Belém 58255-000, Brazil
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará, Belém 58255-000, Brazil
| | - Izaura Maria Vieira Cayres Vallinoto
- Graduate Program in Biology of Infectious and Parasitic Agents, Federal University of Pará, Belém 58255-000, Brazil
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará, Belém 58255-000, Brazil
| | - Daniele Freitas Henriques
- Section of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Secretary of Health Surveillance, Ministry of Health of Brazil, Ananindeua 67000-000, Brazil
| | - Carla Pinheiro Dos Santos
- Section of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Secretary of Health Surveillance, Ministry of Health of Brazil, Ananindeua 67000-000, Brazil
| | - Giselle Maria Rachid Viana
- Graduate Program in Biology of Infectious and Parasitic Agents, Federal University of Pará, Belém 58255-000, Brazil
- Malaria Basic Research Laboratory, Parasitology Section, Evandro Chagas Institute, Health Surveillance Secretariat, Brazilian Ministry of Health, Ananindeua 67000-000, Brazil
| | - Juarez Antônio Simões Quaresma
- Graduate Program in Biology of Infectious and Parasitic Agents, Federal University of Pará, Belém 58255-000, Brazil
- Center for Biological and Health Sciences, State University of Pará, Belém 58255-000, Brazil
| | - Luiz Fábio Magno Falcão
- Center for Biological and Health Sciences, State University of Pará, Belém 58255-000, Brazil
| | - Antonio Carlos Rosário Vallinoto
- Graduate Program in Biology of Infectious and Parasitic Agents, Federal University of Pará, Belém 58255-000, Brazil
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará, Belém 58255-000, Brazil
| | - Eduardo José Melo Dos Santos
- Laboratory of Genetics of Complex Diseases, Institute of Biological Sciences, Federal University of Pará, Belém 58255-000, Brazil
- Graduate Program in Biology of Infectious and Parasitic Agents, Federal University of Pará, Belém 58255-000, Brazil
- Graduate Program in Clinical Analysis, Federal University of Pará, Belém 58255-000, Brazil
| |
Collapse
|
3
|
Monomeric NADH-Oxidizing Methylenetetrahydrofolate Reductases from Mycobacterium smegmatis Lack Flavin Coenzyme. J Bacteriol 2020; 202:JB.00709-19. [PMID: 32253341 DOI: 10.1128/jb.00709-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 03/27/2020] [Indexed: 01/16/2023] Open
Abstract
5,10-Methylenetetrahydrofolate reductase (MetF/MTHFR) is an essential enzyme in one-carbon metabolism for de novo biosynthesis of methionine. Our in vivo and in vitro analyses of MSMEG_6664/MSMEI_6484, annotated as putative MTHFR in Mycobacterium smegmatis, failed to reveal their function as MTHFRs. However, we identified two hypothetical proteins, MSMEG_6596 and MSMEG_6649, as noncanonical MTHFRs in the bacterium. MTHFRs are known to be oligomeric flavoproteins. Both MSMEG_6596 and MSMEG_6649 are monomeric proteins and lack flavin coenzymes. In vitro, the catalytic efficiency (k cat/Km ) of MSMEG_6596 (MTHFR1) for 5,10-CH2-THF and NADH was ∼13.5- and 15.3-fold higher than that of MSMEG_6649 (MTHFR2). Thus, MSMEG_6596 is the major MTHFR. This interpretation was further supported by better rescue of the E. coli Δmthfr strain by MTHFR1 than by MTHFR2. As identified by liquid chromatography-tandem mass spectrometry, the product of MTHFR1- or MTHFR2-catalyzed reactions was 5-CH3-THF. The M. smegmatis Δmsmeg_6596 strain was partially auxotrophic for methionine and grew only poorly without methionine or without being complemented with a functional copy of MTHFR1 or MTHFR2. Furthermore, the Δmsmeg_6596 strain was more sensitive to folate pathway inhibitors (sulfachloropyridazine, p-aminosalicylic acid, sulfamethoxazole, and trimethoprim). The studies reveal that MTHFR1 and MTHFR2 are two noncanonical MTHFR proteins that are monomeric and lack flavin coenzyme. Both MTHFR1 and MTHFR2 are involved in de novo methionine biosynthesis and required for antifolate resistance in mycobacteria.IMPORTANCE MTHFR/MetF is an essential enzyme in a one-carbon metabolic pathway for de novo biosynthesis of methionine. MTHFRs are known to be oligomeric flavoproteins. Our in vivo and in vitro analyses of Mycobacterium smegmatis MSMEG_6664/MSMEI_6484, annotated as putative MTHFR, failed to reveal their function as MTHFRs. However, we identified two of the hypothetical proteins, MSMEG_6596 and MSMEG_6649, as MTHFR1 and MTHFR2, respectively. Interestingly, both MTHFRs are monomeric and lack flavin coenzymes. M. smegmatis deleted for the major mthfr (mthfr1) was partially auxotroph for methionine and more sensitive to folate pathway inhibitors (sulfachloropyridazine, para-aminosalicylic acid, sulfamethoxazole, and trimethoprim). The studies reveal that MTHFR1 and MTHFR2 are novel MTHFRs involved in de novo methionine biosynthesis and required for antifolate resistance in mycobacteria.
Collapse
|
4
|
Butenko A, Kostygov AY, Sádlová J, Kleschenko Y, Bečvář T, Podešvová L, Macedo DH, Žihala D, Lukeš J, Bates PA, Volf P, Opperdoes FR, Yurchenko V. Comparative genomics of Leishmania (Mundinia). BMC Genomics 2019; 20:726. [PMID: 31601168 PMCID: PMC6787982 DOI: 10.1186/s12864-019-6126-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 09/20/2019] [Indexed: 12/31/2022] Open
Abstract
Background Trypanosomatids of the genus Leishmania are parasites of mammals or reptiles transmitted by bloodsucking dipterans. Many species of these flagellates cause important human diseases with clinical symptoms ranging from skin sores to life-threatening damage of visceral organs. The genus Leishmania contains four subgenera: Leishmania, Sauroleishmania, Viannia, and Mundinia. The last subgenus has been established recently and remains understudied, although Mundinia contains human-infecting species. In addition, it is interesting from the evolutionary viewpoint, representing the earliest branch within the genus and possibly with a different type of vector. Here we analyzed the genomes of L. (M.) martiniquensis, L. (M.) enriettii and L. (M.) macropodum to better understand the biology and evolution of these parasites. Results All three genomes analyzed were approximately of the same size (~ 30 Mb) and similar to that of L. (Sauroleishmania) tarentolae, but smaller than those of the members of subgenera Leishmania and Viannia, or the genus Endotrypanum (~ 32 Mb). This difference was explained by domination of gene losses over gains and contractions over expansions at the Mundinia node, although only a few of these genes could be identified. The analysis predicts significant changes in the Mundinia cell surface architecture, with the most important ones relating to losses of LPG-modifying side chain galactosyltransferases and arabinosyltransferases, as well as β-amastins. Among other important changes were gene family contractions for the oxygen-sensing adenylate cyclases and FYVE zinc finger-containing proteins. Conclusions We suggest that adaptation of Mundinia to different vectors and hosts has led to alternative host-parasite relationships and, thereby, made some proteins redundant. Thus, the evolution of genomes in the genus Leishmania and, in particular, in the subgenus Mundinia was mainly shaped by host (or vector) switches.
Collapse
Affiliation(s)
- Anzhelika Butenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic.,Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budejovice (Budweis), Czech Republic
| | - Alexei Y Kostygov
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic.,Zoological Institute of the Russian Academy of Sciences, St Petersburg, Russia
| | - Jovana Sádlová
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Yuliya Kleschenko
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University, Moscow, Russia
| | - Tomáš Bečvář
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Lucie Podešvová
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Diego H Macedo
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - David Žihala
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Julius Lukeš
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budejovice (Budweis), Czech Republic.,Faculty of Sciences, University of South Bohemia, České Budejovice (Budweis), Czech Republic
| | - Paul A Bates
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, UK
| | - Petr Volf
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Fred R Opperdoes
- de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic. .,Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University, Moscow, Russia.
| |
Collapse
|
5
|
Ghoneim AA, Ahmed Elkanzi NA, Bakr RB. Synthesis and studies molecular docking of some new thioxobenzo[g]pteridine derivatives and 1,4-dihydroquinoxaline derivatives with glycosidic moiety. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2018. [DOI: 10.1080/16583655.2018.1510163] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Amira A. Ghoneim
- Chemistry Department, College of Science, Jouf University, Sakaka, Aljouf, Kingdom of Saudi Arabia
- Chemistry Department, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Nadia Ali Ahmed Elkanzi
- Chemistry Department, College of Science, Jouf University, Sakaka, Aljouf, Kingdom of Saudi Arabia
- Chemistry Department, Faculty of Science, Aswan University, Aswan, Egypt
| | - Rania B. Bakr
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Aljouf, Kingdom of Saudi Arabia
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
6
|
Continual renewal and replication of persistent Leishmania major parasites in concomitantly immune hosts. Proc Natl Acad Sci U S A 2017; 114:E801-E810. [PMID: 28096392 DOI: 10.1073/pnas.1619265114] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In most natural infections or after recovery, small numbers of Leishmania parasites remain indefinitely in the host. Persistent parasites play a vital role in protective immunity against disease pathology upon reinfection through the process of concomitant immunity, as well as in transmission and reactivation, yet are poorly understood. A key question is whether persistent parasites undergo replication, and we devised several approaches to probe the small numbers in persistent infections. We find two populations of persistent Leishmania major: one rapidly replicating, similar to parasites in acute infections, and another showing little evidence of replication. Persistent Leishmania were not found in "safe" immunoprivileged cell types, instead residing in macrophages and DCs, ∼60% of which expressed inducible nitric oxide synthase (iNOS). Remarkably, parasites within iNOS+ cells showed normal morphology and genome integrity and labeled comparably with BrdU to parasites within iNOS- cells, suggesting that these parasites may be unexpectedly resistant to NO. Nonetheless, because persistent parasite numbers remain roughly constant over time, their replication implies that ongoing destruction likewise occurs. Similar results were obtained with the attenuated lpg2- mutant, a convenient model that rapidly enters a persistent state without inducing pathology due to loss of the Golgi GDP mannose transporter. These data shed light on Leishmania persistence and concomitant immunity, suggesting a model wherein a parasite reservoir repopulates itself indefinitely, whereas some progeny are terminated in antigen-presenting cells, thereby stimulating immunity. This model may be relevant to understanding immunity to other persistent pathogen infections.
Collapse
|
7
|
Characterization of ubiquitin ligase SlATL31 and proteomic analysis of 14-3-3 targets in tomato fruit tissue (Solanum lycopersicum L.). J Proteomics 2016; 143:254-264. [PMID: 27113132 DOI: 10.1016/j.jprot.2016.04.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 04/13/2016] [Accepted: 04/18/2016] [Indexed: 02/01/2023]
Abstract
UNLABELLED The 14-3-3 proteins participate in many aspects of plant physiology by interacting with phosphorylated proteins and thereby regulating target protein functions. In Arabidopsis plant, the ubiquitin ligase ATL31 controls 14-3-3 stability via both direct interaction and ubiquitination, and this consequently regulates post-germinative growth in response to carbon and nitrogen nutrient availability. Since 14-3-3 proteins regulate the activities of many key enzymes related to nutrient metabolism, one would anticipate that they should play an essential role not only in vegetative but also in reproductive tissue. Because fruit yield largely depends on carbon and nitrogen availability and their utilization, the function of 14-3-3 proteins was analyzed in tomato fruit tissue. Here, we isolated and characterized an ubiquitin ligase SlATL31 (Solyc03g112340) from tomato and demonstrated that SlATL31 has ubiquitin ligase activity as well as interaction with tomato 14-3-3 proteins, suggesting the possibility that the SlATL31 functions as an ubiquitin ligase for 14-3-3 similarly to its Arabidopsis ortholog. Furthermore, we performed proteomic analysis of 14-3-3 interacting proteins and identified 106 proteins as putative 14-3-3 targets including key enzymes for carbon metabolism and photosynthesis. This 14-3-3 interactome result and available transcriptome profile suggest a considerable yet complex role of 14-3-3 proteins in tomato fruit tissue. BIOLOGICAL SIGNIFICANCE Considerable cumulative evidence exists which implies that 14-3-3 proteins are involved in the regulation of plant primary metabolism. Here we provide the first report of 14-3-3 interactome analysis and identify putative 14-3-3 targets in tomato fruit tissue, which may be highly important given the documented metabolic shifts, which occur during fruit development and ripening. These data open future research avenues by which to understand the regulation of the role of post-translational regulation in tomato fruit development.
Collapse
|
8
|
Giordana L, Mantilla BS, Santana M, Silber AM, Nowicki C. Cystathionine γ-lyase, an Enzyme Related to the Reverse Transsulfuration Pathway, is Functional in Leishmania
spp. J Eukaryot Microbiol 2014; 61:204-13. [DOI: 10.1111/jeu.12100] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 11/14/2013] [Accepted: 11/27/2013] [Indexed: 01/14/2023]
Affiliation(s)
- Lucila Giordana
- Facultad de Farmacia y Bioquímica; Instituto de Química y Fisicoquímica Biológica IQUIFIB-CONICET; Universidad de Buenos Aires; Junín 956 C1113AAD Buenos Aires Argentina
| | - Brian Suárez Mantilla
- Departamento de Parasitologia; Instituto de Ciências Biomédicas; Universidade de São Paulo; Av Prof Lineu Prestes 1374 05508-000 São Paulo Brazil
| | - Marianela Santana
- Facultad de Farmacia y Bioquímica; Instituto de Química y Fisicoquímica Biológica IQUIFIB-CONICET; Universidad de Buenos Aires; Junín 956 C1113AAD Buenos Aires Argentina
| | - Ariel M. Silber
- Departamento de Parasitologia; Instituto de Ciências Biomédicas; Universidade de São Paulo; Av Prof Lineu Prestes 1374 05508-000 São Paulo Brazil
| | - Cristina Nowicki
- Facultad de Farmacia y Bioquímica; Instituto de Química y Fisicoquímica Biológica IQUIFIB-CONICET; Universidad de Buenos Aires; Junín 956 C1113AAD Buenos Aires Argentina
| |
Collapse
|
9
|
Tang HM, Liu S, Hill-Skinner S, Wu W, Reed D, Yeh CT, Nettleton D, Schnable PS. The maize brown midrib2 (bm2) gene encodes a methylenetetrahydrofolate reductase that contributes to lignin accumulation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 77:380-92. [PMID: 24286468 PMCID: PMC4282534 DOI: 10.1111/tpj.12394] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 10/31/2013] [Accepted: 11/20/2013] [Indexed: 05/02/2023]
Abstract
The midribs of maize brown midrib (bm) mutants exhibit a reddish-brown color associated with reductions in lignin concentration and alterations in lignin composition. Here, we report the mapping, cloning, and functional and biochemical analyses of the bm2 gene. The bm2 gene was mapped to a small region of chromosome 1 that contains a putative methylenetetrahydrofolate reductase (MTHFR) gene, which is down-regulated in bm2 mutant plants. Analyses of multiple Mu-induced bm2-Mu mutant alleles confirmed that this constitutively expressed gene is bm2. Yeast complementation experiments and a previously published biochemical characterization show that the bm2 gene encodes a functional MTHFR. Quantitative RT-PCR analyses demonstrated that the bm2 mutants accumulate substantially reduced levels of bm2 transcript. Alteration of MTHFR function is expected to influence accumulation of the methyl donor S-adenosyl-L-methionine (SAM). Because SAM is consumed by two methyltransferases in the lignin pathway (Ye et al., ), the finding that bm2 encodes a functional MTHFR is consistent with its lignin phenotype. Consistent with this functional assignment of bm2, the expression patterns of genes in a variety of SAM-dependent or -related pathways, including lignin biosynthesis, are altered in the bm2 mutant. Biochemical assays confirmed that bm2 mutants accumulate reduced levels of lignin with altered composition compared to wild-type. Hence, this study demonstrates a role for MTHFR in lignin biosynthesis.
Collapse
Affiliation(s)
- Ho Man Tang
- Department of Genetics, Development and Cell Biology, Iowa State UniversityAmes, IA, 50011, USA
- †Center for Cell Dynamics, Department of Biological Chemistry, Johns Hopkins University School of MedicineBaltimore, MD, 21205, USA
| | - Sanzhen Liu
- Department of Agronomy, Iowa State University2035 Roy J. Carver Co-Lab, Ames, IA, 50011-3650, USA
- *For correspondence (e-mails (SL) or (PSS))
| | - Sarah Hill-Skinner
- Department of Agronomy, Iowa State University2035 Roy J. Carver Co-Lab, Ames, IA, 50011-3650, USA
| | - Wei Wu
- Department of Agronomy, Iowa State University2035 Roy J. Carver Co-Lab, Ames, IA, 50011-3650, USA
- Center for Plant Genomics, Iowa State University2035 Roy J. Carver Co-Lab, Ames, IA, 50011-3650, USA
- §Pioneer Hi-Bred International Inc.Johnston, IA, 50131, USA
| | - Danielle Reed
- Department of Genetics, Development and Cell Biology, Iowa State UniversityAmes, IA, 50011, USA
- §Pioneer Hi-Bred International Inc.Johnston, IA, 50131, USA
| | - Cheng-Ting Yeh
- Department of Agronomy, Iowa State University2035 Roy J. Carver Co-Lab, Ames, IA, 50011-3650, USA
| | - Dan Nettleton
- Center for Plant Genomics, Iowa State University2035 Roy J. Carver Co-Lab, Ames, IA, 50011-3650, USA
- Department of Statistics, Iowa State University2115 Snedecor, Ames, IA, 50011, USA
| | - Patrick S Schnable
- Department of Genetics, Development and Cell Biology, Iowa State UniversityAmes, IA, 50011, USA
- Department of Agronomy, Iowa State University2035 Roy J. Carver Co-Lab, Ames, IA, 50011-3650, USA
- Center for Plant Genomics, Iowa State University2035 Roy J. Carver Co-Lab, Ames, IA, 50011-3650, USA
- *For correspondence (e-mails (SL) or (PSS))
| |
Collapse
|
10
|
The MET13 methylenetetrahydrofolate reductase gene is essential for infection-related morphogenesis in the rice blast fungus Magnaporthe oryzae. PLoS One 2013; 8:e76914. [PMID: 24116181 PMCID: PMC3792160 DOI: 10.1371/journal.pone.0076914] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 08/27/2013] [Indexed: 11/19/2022] Open
Abstract
Methylenetetrahydrofolate reductases (MTHFRs) play a key role in the biosynthesis of methionine in both prokaryotic and eukaryotic organisms. In this study, we report the identification of a novel T-DNA-tagged mutant WH672 in the rice blast fungus Magnaporthe oryzae, which was defective in vegetative growth, conidiation and pathogenicity. Analysis of the mutation confirmed a single T-DNA insertion upstream of MET13, which encodes a 626-amino-acid protein encoding a MTHFR. Targeted gene deletion of MET13 resulted in mutants that were non-pathogenic and significantly impaired in aerial growth and melanin pigmentation. All phenotypes associated with Δmet13 mutants could be overcome by addition of exogenous methionine. The M. oryzae genome contains a second predicted MTHFR-encoding gene, MET12. The deduced amino acid sequences of Met13 and Met12 share 32% identity. Interestingly, Δmet12 mutants produced significantly less conidia compared with the isogenic wild-type strain and grew very poorly in the absence of methionine, but were fully pathogenic. Deletion of both genes resulted in Δmet13Δmet12 mutants that showed similar phenotypes to single Δmet13 mutants. Taken together, we conclude that the MTHFR gene, MET13, is essential for infection-related morphogenesis by the rice blast fungus M. oryzae.
Collapse
|
11
|
Sansom FM, Tang L, Ralton JE, Saunders EC, Naderer T, McConville MJ. Leishmania major methionine sulfoxide reductase A is required for resistance to oxidative stress and efficient replication in macrophages. PLoS One 2013; 8:e56064. [PMID: 23437085 PMCID: PMC3577802 DOI: 10.1371/journal.pone.0056064] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 01/04/2013] [Indexed: 12/25/2022] Open
Abstract
Leishmania are protozoan parasites that proliferate within the phagolysome of mammalian macrophages. While a number of anti-oxidant systems in these parasites have been shown to protect against endogenous as well as host-generated reactive oxygen species, the potential role of enzymes involved in the repair of oxidatively damaged proteins remains uncharacterized. The Leishmania spp genomes encode a single putative methionine sulfoxide reductase (MsrA) that could have a role in reducing oxidized free and proteinogenic methionine residues. A GFP-fusion of L. major MsrA was shown to have a cytoplasmic localization by immunofluorescence microscopy and subcellular fractionation. An L. major msrA null mutant, generated by targeted replacement of both chromosomal allelles, was viable in rich medium but was unable to reduce exogenous methionine sulfoxide when cultivated in the presence of this amino acid, indicating that msrA encodes a functional MsrA. The ΔmsrA mutant exhibited increased sensitivity to H2O2 compared to wild type parasites and was unable to proliferate normally in macrophages. Wild type sensitivity to H2O2 and infectivity in macrophages was restored by complementation of the mutant with a plasmid encoding MsrA. Unexpectedly, the ΔmsrA mutant was able to induce normal lesions in susceptible BALB/c indicating that this protein is not essential for pathogenesis in vivo. Our results suggest that Leishmania MsrA contributes to the anti-oxidative defences of these parasites, but that complementary oxidative defence mechansims are up-regulated in lesion amastigotes.
Collapse
Affiliation(s)
- Fiona M. Sansom
- Department of Biochemistry and Molecular Biology, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, Victoria, Australia
- Faculty of Veterinary Science, University of Melbourne, Parkville, Victoria, Australia
| | - Leonie Tang
- Department of Biochemistry and Molecular Biology, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, Victoria, Australia
| | - Julie E. Ralton
- Department of Biochemistry and Molecular Biology, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, Victoria, Australia
| | - Eleanor C. Saunders
- Department of Biochemistry and Molecular Biology, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, Victoria, Australia
| | - Thomas Naderer
- Department of Biochemistry and Molecular Biology, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, Victoria, Australia
| | - Malcolm J. McConville
- Department of Biochemistry and Molecular Biology, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, Victoria, Australia
- * E-mail:
| |
Collapse
|
12
|
Abstract
Trypanosomatid parasitic protozoans of the genus Leishmania are autotrophic for both folate and unconjugated pteridines. Leishmania salvage these metabolites from their mammalian hosts and insect vectors through multiple transporters. Within the parasite, folates are reduced by a bifunctional DHFR (dihydrofolate reductase)-TS (thymidylate synthase) and by a novel PTR1 (pteridine reductase 1), which reduces both folates and unconjugated pteridines. PTR1 can act as a metabolic bypass of DHFR inhibition, reducing the effectiveness of existing antifolate drugs. Leishmania possess a reduced set of folate-dependent metabolic reactions and can salvage many of the key products of folate metabolism from their hosts. For example, they lack purine synthesis, which normally requires 10-formyltetrahydrofolate, and instead rely on a network of purine salvage enzymes. Leishmania elaborate at least three pathways for the synthesis of the key metabolite 5,10-methylene-tetrahydrofolate, required for the synthesis of thymidylate, and for 10-formyltetrahydrofolate, whose presumptive function is for methionyl-tRNAMet formylation required for mitochondrial protein synthesis. Genetic studies have shown that the synthesis of methionine using 5-methyltetrahydrofolate is dispensable, as is the activity of the glycine cleavage complex, probably due to redundancy with serine hydroxymethyltransferase. Although not always essential, the loss of several folate metabolic enzymes results in attenuation or loss of virulence in animal models, and a null DHFR-TS mutant has been used to induce protective immunity. The folate metabolic pathway provides numerous opportunities for targeted chemotherapy, with strong potential for 'repurposing' of compounds developed originally for treatment of human cancers or other infectious agents.
Collapse
|
13
|
EPR and potentiometric studies of copper(II) binding to nicotinamide adenine dinucleotide (NAD+) in water solution. J Inorg Biochem 2012; 111:18-24. [PMID: 22484248 DOI: 10.1016/j.jinorgbio.2012.02.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 02/23/2012] [Accepted: 02/23/2012] [Indexed: 11/24/2022]
Abstract
Coordination of Cu(II) by nicotinamide adenine dinucleotide (NAD(+)) molecule has been studied in water solutions of various pH by potentiometry and electron paramagnetic resonance (EPR) and electron spin echo (ESE) spectroscopy. Potentiometric results indicate Cu(II) coordination by protonated NAD(+) at low pH and by deprotonated NAD(+) at high pH. At medium pH value (around pH=7) NAD(+) is not able to coordinate Cu(II) ions effectively and mainly the Cu(H(2)O)(6) complexes exist in the studied solution. This has been confirmed by EPR results. Electronic structure of Cu(II)-NAD complex and coordination sites is determined from EPR and ESE measurements in frozen solutions (at 77K and 6K). EPR spectra exclude coordination with nitrogen atoms. Detailed analysis of EPR parameters (g(||)=2.420, g(perpendicular)==2.080, A(||)=-131×10(-4)cm(-1) and A(perpendicular)=8×10(-4)cm(-1)) performed in terms of molecular orbital (MO) theory shows that Cu(II)NAD complex has elongated axial octahedral symmetry with a relatively strong delocalization of unpaired electron density on in-plane and axial ligands. The distortion of octahedron is analyzed using A(||) vs. g(||) diagram for various CuO(x) complexes. Electron spin echo decay modulation excludes the coordination by oxygen atoms of phosphate groups. We postulate a coordination of Cu(II) by two hydroxyl oxygen atoms of two ribose moieties of the NAD molecules and four solvated water molecules both at low and high pH values with larger elongation of the octahedron at higher pH.
Collapse
|
14
|
McConville MJ, Naderer T. Metabolic pathways required for the intracellular survival of Leishmania. Annu Rev Microbiol 2012; 65:543-61. [PMID: 21721937 DOI: 10.1146/annurev-micro-090110-102913] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Leishmania spp. are sandfly-transmitted parasitic protozoa that cause a spectrum of important diseases and lifelong chronic infections in humans. In the mammalian host, these parasites proliferate within acidified vacuoles in several phagocytic host cells, including macrophages, dendritic cells, and neutrophils. In this review, we discuss recent progress that has been made in defining the nutrient composition of the Leishmania parasitophorous vacuole, as well as metabolic pathways required by these parasites for virulence. Analysis of the virulence phenotype of Leishmania mutants has been particularly useful in defining carbon sources and nutrient salvage pathways that are essential for parasite persistence and/or induction of pathology. We also review data suggesting that intracellular parasite stages modulate metabolic processes in their host cells in order to generate a more permissive niche.
Collapse
Affiliation(s)
- Malcolm J McConville
- Department of Biochemistry and Molecular Biology, University of Melbourne, Bio21 Institute of Molecular Science and Biotechnology, Parkville, Victoria 3010, Australia.
| | | |
Collapse
|
15
|
Ong HB, Sienkiewicz N, Wyllie S, Fairlamb AH. Dissecting the metabolic roles of pteridine reductase 1 in Trypanosoma brucei and Leishmania major. J Biol Chem 2011; 286:10429-38. [PMID: 21239486 PMCID: PMC3060496 DOI: 10.1074/jbc.m110.209593] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Leishmania parasites are pteridine auxotrophs that use an NADPH-dependent pteridine reductase 1 (PTR1) and NADH-dependent quinonoid dihydropteridine reductase (QDPR) to salvage and maintain intracellular pools of tetrahydrobiopterin (H4B). However, the African trypanosome lacks a credible candidate QDPR in its genome despite maintaining apparent QDPR activity. Here we provide evidence that the NADH-dependent activity previously reported by others is an assay artifact. Using an HPLC-based enzyme assay, we demonstrate that there is an NADPH-dependent QDPR activity associated with both TbPTR1 and LmPTR1. The kinetic properties of recombinant PTR1s are reported at physiological pH and ionic strength and compared with LmQDPR. Specificity constants (kcat/Km) for LmPTR1 are similar with dihydrobiopterin (H2B) and quinonoid dihydrobiopterin (qH2B) as substrates and about 20-fold lower than LmQDPR with qH2B. In contrast, TbPTR1 shows a 10-fold higher kcat/Km for H2B over qH2B. Analysis of Trypanosoma brucei isolated from infected rats revealed that H4B (430 nm, 98% of total biopterin) was the predominant intracellular pterin, consistent with a dual role in the salvage and regeneration of H4B. Gene knock-out experiments confirmed this: PTR1-nulls could only be obtained from lines overexpressing LmQDPR with H4B as a medium supplement. These cells grew normally with H4B, which spontaneously oxidizes to qH2B, but were unable to survive in the absence of pterin or with either biopterin or H2B in the medium. These findings establish that PTR1 has an essential and dual role in pterin metabolism in African trypanosomes and underline its potential as a drug target.
Collapse
Affiliation(s)
- Han B Ong
- Division of Biological Chemistry & Drug Discovery, College of Life Sciences, University of Dundee, Wellcome Trust Biocentre, Dundee DD1 5EH, Scotland, United Kingdom
| | | | | | | |
Collapse
|
16
|
Expansion of the target of rapamycin (TOR) kinase family and function in Leishmania shows that TOR3 is required for acidocalcisome biogenesis and animal infectivity. Proc Natl Acad Sci U S A 2010; 107:11965-70. [PMID: 20551225 DOI: 10.1073/pnas.1004599107] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Target of rapamycin (TOR) kinases are key regulators of cell growth, proliferation, and structure in eukaryotes, processes that are highly coordinated during the infectious cycle of eukaryotic pathogens. Database mining revealed three TOR kinases in the trypanosomatid parasite Leishmania major, as defined by homology to the phosphoinositide 3-kinase-related kinase (PIKK) family and a signature conserved FKBP12/rapamycin-binding domain. Consistent with the essential roles of TOR complexes in other organisms, we were unable to generate null TOR1 or TOR2 mutants in cultured L. major promastigotes. In contrast, tor3(-) null mutants were readily obtained; while exhibiting somewhat slower growth, tor3(-) maintained normal morphology, rapamycin sensitivity, and differentiation into the animal-infective metacyclic stage. Significantly, tor3(-) mutants were unable to survive or replicate in macrophages in vitro, or to induce pathology or establish infections in mice in vivo. The loss of virulence was associated with a defect in acidocalcisome formation, as this unique organelle was grossly altered in tor3- mutants and no longer accumulated polyphosphates. Correspondingly, tor3- mutants showed defects in osmoregulation and were sensitive to starvation for glucose but not amino acids, glucose being a limiting nutrient in the parasitophorous vacuole. Thus, in Leishmania, the TOR kinase family has expanded to encompass a unique role in AC function and biology, one that is essential for parasite survival in the mammalian infective stage. Given their important roles in cell survival and virulence, inhibition of TOR kinase function in trypanosomatids offers an attractive target for chemotherapy.
Collapse
|
17
|
Lee MN, Takawira D, Nikolova AP, Ballou DP, Furtado VC, Phung NL, Still BR, Thorstad MK, Tanner JJ, Trimmer EE. Functional role for the conformationally mobile phenylalanine 223 in the reaction of methylenetetrahydrofolate reductase from Escherichia coli. Biochemistry 2009; 48:7673-85. [PMID: 19610625 DOI: 10.1021/bi9007325] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The flavoprotein methylenetetrahydrofolate reductase from Escherichia coli catalyzes the reduction of 5,10-methylenetetrahydrofolate (CH(2)-H(4)folate) by NADH via a ping-pong reaction mechanism. Structures of the reduced enzyme in complex with NADH and of the oxidized Glu28Gln enzyme in complex with CH(3)-H(4)folate [Pejchal, R., Sargeant, R., and Ludwig, M. L. (2005) Biochemistry 44, 11447-11457] have revealed Phe223 as a conformationally mobile active site residue. In the NADH complex, the NADH adopts an unusual hairpin conformation and is wedged between the isoalloxazine ring of the FAD and the side chain of Phe223. In the folate complex, Phe223 swings out from its position in the NADH complex to stack against the p-aminobenzoate ring of the folate. Although Phe223 contacts each substrate in E. coli MTHFR, this residue is not invariant; for example, a leucine occurs at this site in the human enzyme. To examine the role of Phe223 in substrate binding and catalysis, we have constructed mutants Phe223Ala and Phe223Leu. As predicted, our results indicate that Phe223 participates in the binding of both substrates. The Phe223Ala mutation impairs NADH and CH(2)-H(4)folate binding each 40-fold yet slows catalysis of both half-reactions less than 2-fold. Affinity for CH(2)-H(4)folate is unaffected by the Phe223Leu mutation, and the variant catalyzes the oxidative half-reaction 3-fold faster than the wild-type enzyme. Structures of ligand-free Phe223Leu and Phe223Leu/Glu28Gln MTHFR in complex with CH(3)-H(4)folate have been determined at 1.65 and 1.70 A resolution, respectively. The structures show that the folate is bound in a catalytically competent conformation, and Leu223 undergoes a conformational change similar to that observed for Phe223 in the Glu28Gln-CH(3)-H(4)folate structure. Taken together, our results suggest that Leu may be a suitable replacement for Phe223 in the oxidative half-reaction of E. coli MTHFR.
Collapse
Affiliation(s)
- Moon N Lee
- Department of Chemistry, Grinnell College, Grinnell, Iowa 50112, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Murta SMF, Vickers TJ, Scott DA, Beverley SM. Methylene tetrahydrofolate dehydrogenase/cyclohydrolase and the synthesis of 10-CHO-THF are essential in Leishmania major. Mol Microbiol 2009; 71:1386-401. [PMID: 19183277 PMCID: PMC2692627 DOI: 10.1111/j.1365-2958.2009.06610.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
10-Formyl tetrahydrofolate (10-CHO-THF) is a key metabolite in C1 carbon metabolism, arising through the action of formate-tetrahydrofolate ligase (FTL) and/or 5,10-methenyltetrahydrofolate cyclohydrolase/5,10-methylene tetrahydrofolate dehydrogenase (DHCH). Leishmania major possesses single DHCH1 and FTL genes encoding exclusively cytosolic proteins, unlike other organisms where isoforms occur in the mitochondrion as well. Recombinant DHCH1 showed typical NADP(+)-dependent methylene tetrahydrofolate DH and 5,10-methenyltetrahydrofolate CH activities, and the DH activity was potently inhibited by a substrate analogue 5,10-CO-THF (K(i) 105 nM), as was Leishmania growth (EC(50) 1.1 microM). Previous studies showed null ftl(-) mutants were normal, raising the possibility that loss of the purine synthetic pathway had rendered 10-CHO-THF dispensable in evolution. We were unable to generate dhch1(-) null mutants by gene replacement, despite using a wide spectrum of nutritional supplements expected to bypass DHCH function. We applied an improved method for testing essential genes in Leishmania, based on segregational loss of episomal complementing genes rather than transfection; analysis of approximately 1400 events without successful loss of DHCH1 again established its requirement. Lastly, we employed 'genetic metabolite complementation' using ectopically expressed FTL as an alternative source of 10-CHO-THF; now dhch1(-) null parasites were readily obtained. These data establish a requirement for 10-CHO-THF metabolism in L. major, and provide genetic and pharmacological validation of DHCH as a target for chemotherapy, in this and potentially other protozoan parasites.
Collapse
Affiliation(s)
| | | | | | - Stephen M. Beverley
- Department of Molecular Microbiology, Box 8230, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| |
Collapse
|
19
|
Abstract
Protozoan parasites belonging to the genus Leishmania exhibit a pronounced tropism for macrophages although they have the capacity to infect a variety of other phagocytic and non-phagocytic mammalian cells. Unlike most other intramacrophage pathogens, the major proliferative stage of Leishmania resides in the mature phagolysosomes of these host cells. In this review we highlight some of the strategies utilized by the intracellular amastigote stage of Leishmania to survive in this compartment. Remarkably, and in contrast to many other intracellular pathogens, Leishmania amastigotes have a minimalist surface glycocalyx which may facilitate uptake of essential lipids and promote exposure of phospholipids required for phagocytosis via macrophage apoptotic cell receptors. Leishmania amastigotes also differ from many other intracellular pathogens in having complex nutritional requirements which must be scavenged from the host cell. Amino acids and polyamines appear to be important carbon sources and growth-limiting nutrients, respectively, and their availability to intracellular amastigotes may be regulated by the activation state of host macrophages. Metabolic processes in both the parasite and host cell may thus be crucial determinants of disease outcome.
Collapse
Affiliation(s)
- Thomas Naderer
- Department of Biochemistry and Molecular Biology, University of Melbourne, Bio21 Institute of Molecular Science and Biotechnology, Parkville, Victoria 3010, Australia
| | | |
Collapse
|
20
|
McConville MJ, de Souza D, Saunders E, Likic VA, Naderer T. Living in a phagolysosome; metabolism of Leishmania amastigotes. Trends Parasitol 2007; 23:368-75. [PMID: 17606406 DOI: 10.1016/j.pt.2007.06.009] [Citation(s) in RCA: 154] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Revised: 04/26/2007] [Accepted: 06/13/2007] [Indexed: 12/11/2022]
Abstract
Leishmania amastigotes primarily proliferate within macrophages in the mammalian host. Genome-based metabolic reconstructions, combined with biochemical, reverse genetic and mRNA or protein profiling studies are providing new insights into the metabolism of this intracellular stage. We propose that the complex nutritional requirements of amastigotes have contributed to the tropism of these parasites for the amino acid-rich phagolysosome of macrophages. Amastigote metabolism in this compartment is robust because many metabolic mutants are capable of either growing normally or persisting long term in susceptible animals. New approaches for measuring amastigote metabolism in vivo are discussed.
Collapse
Affiliation(s)
- Malcolm J McConville
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria 3010, Australia.
| | | | | | | | | |
Collapse
|