1
|
Kumar A, O'Shea CR, Yadav VK, Kandasamy G, Moorthy BT, Ambrose EA, Mulati A, Fontanesi F, Zhang F. Arginyltransferase1 drives a mitochondria-dependent program to induce cell death. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.22.624728. [PMID: 39605427 PMCID: PMC11601567 DOI: 10.1101/2024.11.22.624728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Cell death regulation is essential for stress adaptation and/or signal response. Past studies have shown that eukaryotic cell death is mediated by an evolutionarily conserved enzyme, arginyltransferase1 (Ate1). The downregulation of Ate1, as seen in many types of cancer, prominently increases cellular tolerance to a variety of stressing conditions. Conversely, in yeast and mammalian cells, Ate1 is elevated under acute oxidative stress conditions and this change appears to be essential for triggering cell death. However, studies of Ate1 were conventionally focused on its function in inducing protein degradation via the N-end rule pathway in the cytosol, leading to an incomplete understanding of the role of Ate1 in cell death. Our recent investigation shows that Ate1 dually exists in the cytosol and mitochondria, the latter of which has an established role in cell death initiation. Here, by using budding yeast as a model organism, we found that mitochondrial translocation of Ate1 is promoted by the presence of oxidative stressors and is essential for inducing cell death with characteristics of apoptosis. Also, we found that Ate1-induced cell death is dependent on the formation of the mitochondrial permeability pore and at least partly dependent on the action of mitochondria-contained factors including the apoptosis-inducing factor, but is not directly dependent on mitochondrial electron transport chain activity or its derived reactive oxygen species (ROS). Furthermore, our evidence suggests that, contrary to widespread assumptions, the cytosolic protein degradation pathways including ubiquitin-proteasome, autophagy, or endoplasmic reticulum (ER) stress response has little or negligible impacts on Ate1-induced cell death. We conclude that Ate1 controls the mitochondria-dependent cell death pathway.
Collapse
|
2
|
Wasąg P, Suwińska A, Richert A, Lenartowska M, Lenartowski R. Plant-specific calreticulin is localized in the nuclei of highly specialized cells in the pistil-new observations for an old hypothesis. PROTOPLASMA 2024; 261:1171-1184. [PMID: 38849663 PMCID: PMC11511736 DOI: 10.1007/s00709-024-01961-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 05/31/2024] [Indexed: 06/09/2024]
Abstract
One of the first cellular locations of the calreticulin (CRT) chaperone in eukaryotic cells, apart from its obvious localization in the endoplasmic reticulum (ER), was the cell nucleus (Opas et al. 1991). The presence of CRT has been detected inside the nucleus and in the nuclear envelope of animal and plant cells, and a putative nuclear localization signal (NLS) in the CRT amino acid sequence has been mapped in several animal and plant species. Over the last 30 years, other localization sites of this protein outside the ER and cell nucleus have also been discovered, suggesting that CRT is a multifunctional Ca2+-binding protein widely found in various cell types. In our previous studies focusing on plant developmental biology, we have demonstrated the presence of CRT inside and outside the ER in highly specialized plant cells, as well as the possibility of CRT localization in the cell nucleus. In this paper, we present a detailed analysis of immunocytochemical localization of CRT inside nuclei of the pistil transmission tract somatic cells before and after pollination. We show a similar pattern of the nuclear CRT localization in relation to exchangeable Ca2+ for two selected species of angiosperms, dicotyledonous Petunia and monocot Haemanthus, that differ in anatomical structure of the pistil and discuss the potential role of CRT in the cell nucleus.
Collapse
Affiliation(s)
- Piotr Wasąg
- Department of Cellular and Molecular Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Toruń, Poland.
| | - Anna Suwińska
- Department of Cellular and Molecular Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Toruń, Poland
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Anna Richert
- Department of Cellular and Molecular Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Marta Lenartowska
- Department of Cellular and Molecular Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Toruń, Poland
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Robert Lenartowski
- Department of Cellular and Molecular Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Toruń, Poland
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Toruń, Poland
| |
Collapse
|
3
|
Naga R, Poddar S, Bhattacharjee A, Kar P, Bose A, Mattaparthi VSK, Mukherjee O, Saha S. Structural analysis of human ATE1 isoforms and their interactions with Arg-tRNA Arg. J Biomol Struct Dyn 2024; 42:7554-7573. [PMID: 37505085 DOI: 10.1080/07391102.2023.2240449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 07/18/2023] [Indexed: 07/29/2023]
Abstract
Posttranslational protein arginylation has been shown as a key regulator of cellular processes in eukaryotes by affecting protein stability, function, and interaction with macromolecules. Thus, the enzyme Arginyltransferase and its targets, are of immense interest to modulate cellular processes in the normal and diseased state. While the study on the effect of this posttranslational modification in mammalian systems gained momentum in the recent times, the detail structures of human ATE1 (hATE1) enzymes has not been investigated so far. Thus, the purpose of this study was to predict the overall structure and the structure function relationship of hATE1 enzyme and its four isoforms. The structure of four ATE1 isoforms were modelled and were docked with 3'end of the Arg-tRNAArg which acts as arginine donor in the arginylation reaction, followed by MD simulation. All the isoforms showed two distinct domains. A compact domain and a somewhat flexible domain as observed in the RMSF plot. A distinct similarity in the overall structure and interacting residues were observed between hATE1-1 and X4 compared to hATE1-2 and 5. While the putative active sites of all the hATE1 isoforms were located at the same pocket, differences were observed in the active site residues across hATE1 isoforms suggesting different substrate specificity. Mining of nsSNPs showed several nsSNPs including cancer associated SNPs with deleterious consequences on hATE1 structure and function. Thus, the current study for the first time shows the structural differences in the mammalian ATE1 isoforms and their possible implications in the function of these proteins.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Rahul Naga
- Department of Biotechnology, National Institute of Technology, Durgapur, West Bengal, India
| | - Sayan Poddar
- Department of Bioscience and Biomedical Engineering, IIT Indore, Indore, India
| | - Arghyadeep Bhattacharjee
- Department of Biotechnology, National Institute of Technology, Durgapur, West Bengal, India
- Department of Microbiology, Kingston College of Science, Barasat, Kolkata, West Bengal, India
| | - Parimal Kar
- Department of Bioscience and Biomedical Engineering, IIT Indore, Indore, India
| | - Avishek Bose
- Department of Biotechnology, National Institute of Technology, Durgapur, West Bengal, India
| | | | - Oindrilla Mukherjee
- Department of Biotechnology, National Institute of Technology, Durgapur, West Bengal, India
| | - Sougata Saha
- Department of Biotechnology, National Institute of Technology, Durgapur, West Bengal, India
| |
Collapse
|
4
|
Searfoss RM, Liu X, Garcia BA, Lin Z. Top-down Proteomics for the Characterization and Quantification of Calreticulin Arginylation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.08.607245. [PMID: 39149376 PMCID: PMC11326232 DOI: 10.1101/2024.08.08.607245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Arginylation installed by arginyltransferase 1 (ATE1) features an addition of arginine (Arg) to the reactive amino acids (e.g., Glu and Asp) at the protein N-terminus or side chain. Systemic removal of arginylation after ATE1 knockout (KO) in mouse models resulted in heart defects leading to embryonic lethality. The biological importance of arginylation has motivated the discovery of arginylation sites on proteins using bottom-up approaches. While bottom-up proteomics is powerful in localizing peptide arginylation, it lacks the ability to quantify proteoforms at the protein level. Here we developed a top-down proteomics workflow for characterizing and quantifying calreticulin (CALR) arginylation. To generate fully arginylated CALR (R-CALR), we have inserted an R residue after the signaling peptide (AA1-17). Upon overexpression in ATE1 KO cells, CALR and R-CALR were purified by affinity purification and analyzed by LCMS in positive mode. Both proteoforms showed charge states ranging from 27-68 with charge 58 as the most intense charge state. Their MS2 spectra from electron-activated dissociation (EAD) showed preferential fragmentation at the protein N-terminals which yielded sufficient c ions facilitating precise localization of the arginylation sites. The calcium-binding domain (CBD) gave minimum characteristic ions possibly due to the abundant presence of >100 D and E residues. Ultraviolet photodissociation (UVPD) compared with EAD and ETD significantly improved the sequence coverage of CBD. This method can identify and quantify CALR arginylation at absence, endogenous (low), and high levels. To our knowledge, our work is the first application of top-down proteomics in characterizing post-translational arginylation in vitro and in vivo.
Collapse
Affiliation(s)
- Richard M. Searfoss
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, St. Louis, Missouri 63110, United States
| | - Xingyu Liu
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, St. Louis, Missouri 63110, United States
| | - Benjamin A. Garcia
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, St. Louis, Missouri 63110, United States
| | - Zongtao Lin
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, St. Louis, Missouri 63110, United States
| |
Collapse
|
5
|
Shokeen K, Baroi MK, Chahar M, Das D, Saini H, Kumar S. Arginyltransferase 1 (ATE1)-mediated proteasomal degradation of viral haemagglutinin protein: a unique host defence mechanism. J Gen Virol 2024; 105. [PMID: 39207120 DOI: 10.1099/jgv.0.002020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
The extensive protein production in virus-infected cells can disrupt protein homeostasis and activate various proteolytic pathways. These pathways utilize post-translational modifications (PTMs) to drive the ubiquitin-mediated proteasomal degradation of surplus proteins. Protein arginylation is the least explored PTM facilitated by arginyltransferase 1 (ATE1) enzyme. Several studies have provided evidence supporting its importance in multiple physiological processes, including ageing, stress, nerve regeneration, actin formation and embryo development. However, its function in viral pathogenesis is still unexplored. The present work utilizes Newcastle disease virus (NDV) as a model to establish the role of the ATE1 enzyme and its activity in pathogenesis. Our data indicate a rise in levels of N-arginylated cellular proteins in the infected cells. Here, we also explore the haemagglutinin-neuraminidase (HN) protein of NDV as a presumable target for arginylation. The data indicate that the administration of Arg amplifies the arginylation process, resulting in reduced stability of the HN protein. ATE1 enzyme activity inhibition and gene expression knockdown studies were also conducted to analyse modulation in HN protein levels, which further substantiated the findings. Moreover, we also observed Arg addition and probable ubiquitin modification to the HN protein, indicating engagement of the proteasomal degradation machinery. Lastly, we concluded that the enhanced levels of the ATE1 enzyme could transfer the Arg residue to the N-terminus of the HN protein, ultimately driving its proteasomal degradation.
Collapse
Affiliation(s)
- Kamal Shokeen
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - Malay Kumar Baroi
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, India
| | - Manjeet Chahar
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, India
| | - Debapratim Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, India
| | - Harimohan Saini
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, India
| | - Sachin Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| |
Collapse
|
6
|
Lan X, Huang W, Kim SB, Fu D, Abeywansha T, Lou J, Balamurugan U, Kwon YT, Ji CH, Taylor DJ, Zhang Y. Oligomerization and a distinct tRNA-binding loop are important regulators of human arginyl-transferase function. Nat Commun 2024; 15:6350. [PMID: 39068213 PMCID: PMC11283454 DOI: 10.1038/s41467-024-50719-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 07/18/2024] [Indexed: 07/30/2024] Open
Abstract
The arginyl-transferase ATE1 is a tRNA-dependent enzyme that covalently attaches an arginine molecule to a protein substrate. Conserved from yeast to humans, ATE1 deficiency in mice correlates with defects in cardiovascular development and angiogenesis and results in embryonic lethality, while conditional knockouts exhibit reproductive, developmental, and neurological deficiencies. Despite the recent revelation of the tRNA binding mechanism and the catalytic cycle of yeast ATE1, the structure-function relationship of ATE1 in higher organisms is not well understood. In this study, we present the three-dimensional structure of human ATE1 in an apo-state and in complex with its tRNA cofactor and a peptide substrate. In contrast to its yeast counterpart, human ATE1 forms a symmetric homodimer, which dissociates upon binding of a substrate. Furthermore, human ATE1 includes a unique and extended loop that wraps around tRNAArg, creating extensive contacts with the T-arm of the tRNA cofactor. Substituting key residues identified in the substrate binding site of ATE1 abolishes enzymatic activity and results in the accumulation of ATE1 substrates in cells.
Collapse
Affiliation(s)
- Xin Lan
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH, USA
| | - Wei Huang
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA
| | - Su Bin Kim
- Cellular Degradation Biology Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Korea
| | - Dechen Fu
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH, USA
| | - Thilini Abeywansha
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH, USA
| | - Jiemin Lou
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH, USA
| | | | - Yong Tae Kwon
- Cellular Degradation Biology Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Korea
- AUTOTAC Bio Inc., Changkkyunggung-ro 254, Jongno-gu, Seoul, Korea
- Seoul National University Hospital, 71 Daehak ro, Seoul, Republic of Korea
| | - Chang Hoon Ji
- Cellular Degradation Biology Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Korea.
- AUTOTAC Bio Inc., Changkkyunggung-ro 254, Jongno-gu, Seoul, Korea.
| | - Derek J Taylor
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH, USA.
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA.
- Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
| | - Yi Zhang
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH, USA.
- Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
7
|
Lin Z, Xie Y, Gongora J, Liu X, Zahn E, Palai BB, Ramirez D, Searfoss RM, Vitorino FN, Dann GP, Zhao C, Han X, MacTaggart B, Lan X, Fu D, Greenberg L, Zhang Y, Lavine KJ, Greenberg MJ, Lv D, Kashina A, Garcia BA. An Unbiased Proteomic Platform for Activity-based Arginylation Profiling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.01.596974. [PMID: 38854050 PMCID: PMC11160793 DOI: 10.1101/2024.06.01.596974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Protein arginylation is an essential posttranslational modification (PTM) catalyzed by arginyl-tRNA-protein transferase 1 (ATE1) in mammalian systems. Arginylation features a post-translational conjugation of an arginyl to a protein, making it extremely challenging to differentiate from translational arginine residues with the same mass in a protein sequence. Here we present a general activity-based arginylation profiling (ABAP) platform for the unbiased discovery of arginylation substrates and their precise modification sites. This method integrates isotopic arginine labeling into an ATE1 assay utilizing biological lysates (ex vivo) rather than live cells, thus eliminating translational bias derived from the ribosomal activity and enabling bona fide arginylation identification using isotopic features. ABAP has been successfully applied to an array of peptide, protein, cell, patient, and animal tissue samples using 20 μg sample input, with 229 unique arginylation sites revealed from human proteomes. Representative sites were validated and followed up for their biological functions. The developed platform is globally applicable to the aforementioned sample types and therefore paves the way for functional studies of this difficult-to-characterize protein modification.
Collapse
Affiliation(s)
- Zongtao Lin
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, St. Louis, MO 63110
| | - Yixuan Xie
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, St. Louis, MO 63110
| | - Joanna Gongora
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, St. Louis, MO 63110
| | - Xingyu Liu
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, St. Louis, MO 63110
| | - Emily Zahn
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, St. Louis, MO 63110
| | - Bibhuti Bhusana Palai
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, St. Louis, MO 63110
| | - Daniel Ramirez
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, St. Louis, MO 63110
| | - Rick M. Searfoss
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, St. Louis, MO 63110
| | - Francisca N. Vitorino
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, St. Louis, MO 63110
| | - Geoffrey P. Dann
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, 19104
| | - Chenfeng Zhao
- McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO 63110
| | - Xian Han
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, St. Louis, MO 63110
| | - Brittany MacTaggart
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Xin Lan
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH 44106
| | - Dechen Fu
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH 44106
| | - Lina Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, St. Louis, MO 63110
| | - Yi Zhang
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH 44106
| | - Kory J. Lavine
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Michael J. Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, St. Louis, MO 63110
| | - Dongwen Lv
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| | - Anna Kashina
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Benjamin A. Garcia
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, St. Louis, MO 63110
| |
Collapse
|
8
|
Le LTHL, Park S, Lee JH, Kim YK, Lee MJ. N-recognins UBR1 and UBR2 as central ER stress sensors in mammals. Mol Cells 2024; 47:100001. [PMID: 38376480 PMCID: PMC10880078 DOI: 10.1016/j.mocell.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/22/2023] [Accepted: 11/22/2023] [Indexed: 02/21/2024] Open
Abstract
In eukaryotes, a primary protein quality control (PQC) process involves the destruction of conformationally misfolded proteins through the ubiquitin-proteasome system. Because approximately one-third of eukaryotic proteomes fold and assemble within the endoplasmic reticulum (ER) before being sent to their destinations, the ER plays a crucial role in PQC. The specific functions and biochemical roles of several E3 ubiquitin ligases involved in ER-associated degradation in mammals, on the other hand, are mainly unknown. We identified 2 E3 ligases, ubiquitin protein ligase E3 component N-recognin 1 (UBR1) and ubiquitin protein ligase E3 component N-recognin 2 (UBR2), which are the key N-recognins in the N-degron pathway and participate in the ER stress response in mammalian cells by modulating their stability. Cells lacking UBR1 and UBR2 are hypersensitive to ER stress-induced apoptosis. Under normal circumstances, these proteins are polyubiquitinated through Lys48-specific linkages and are then degraded by the 26S proteasome. In contrast, when cells are subjected to ER stress, UBR1 and UBR2 exhibit greater stability, potentially as a cellular adaptive response to stressful conditions. Although the precise mechanisms underlying these findings require further investigation, our findings show that cytoplasmic UBR1 and UBR2 have anti-ER stress activities and contribute to global PQC in mammals. These data also reveal an additional level of complexity within the mammalian ER-associated degradation system, implicating potential involvement of the N-degron pathway.
Collapse
Affiliation(s)
- Ly Thi Huong Luu Le
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea; Department of Biomedical Sciences, Seoul National University Graduate School, Seoul 03080, Korea
| | - Seoyoung Park
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea; Inspharmtech Inc., Seoul 08511, Korea
| | - Jung Hoon Lee
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Yun Kyung Kim
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
| | - Min Jae Lee
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea; Department of Biomedical Sciences, Seoul National University Graduate School, Seoul 03080, Korea; Ischemic/Hypoxic Disease Institute, Convergence Research Center for Dementia, Seoul National University College of Medicine, Seoul 03080, Korea.
| |
Collapse
|
9
|
Galiano MR, Hallak ME. Assaying the Posttranslational Arginylation of Proteins in Cultured Cells. Methods Mol Biol 2023; 2620:51-61. [PMID: 37010748 DOI: 10.1007/978-1-0716-2942-0_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
Abstract
To evaluate the posttranslational arginylation of proteins in vivo, we describe a protocol for studying the 14C-Arg incorporation into proteins of cells in culture. The conditions determined for this particular modification contemplate both the biochemical requirements of the enzyme ATE1 and the adjustments that allowed the discrimination between posttranslational arginylation of proteins and de novo synthesis. These conditions are applicable for different cell lines or primary cultures, representing an optimal procedure for the identification and the validation of putative ATE1 substrates.
Collapse
Affiliation(s)
- Mauricio R Galiano
- Dpt. Quimica Biologica Ranwel Caputto, Facultad de Ciencias Quimicas, Universidad Nacional de Córdoba, CIQUIBIC-CONICET, Córdoba, Argentina
| | - Marta E Hallak
- Dpt. Quimica Biologica Ranwel Caputto, Facultad de Ciencias Quimicas, Universidad Nacional de Córdoba, CIQUIBIC-CONICET, Córdoba, Argentina.
| |
Collapse
|
10
|
Kashina AS. Protein Arginylation: Milestones of Discovery. Methods Mol Biol 2023; 2620:1-13. [PMID: 37010742 DOI: 10.1007/978-1-0716-2942-0_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
Abstract
Posttranslational modifications have emerged in recent years as the major biological regulators responsible for the orders of magnitude increase in complexity during gene expression and regulation. These "molecular switches" affect nearly every protein in vivo by modulating their structure, activity, molecular interactions, and homeostasis ultimately regulating their functions. While over 350 posttranslational modifications have been described, only a handful of them have been characterized. Until recently, protein arginylation has belonged to the list of obscure, poorly understood posttranslational modifications, before the recent explosion of studies has put arginylation on the map of intracellular metabolic pathways and biological functions. This chapter contains an overview of all the major milestones in the protein arginylation field, from its original discovery in 1963 to this day.
Collapse
Affiliation(s)
- Anna S Kashina
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
11
|
Fina ME, Wang J, Vedula P, Tang HY, Kashina A, Dong DW. Arginylation Regulates G-protein Signaling in the Retina. Front Cell Dev Biol 2022; 9:807345. [PMID: 35127722 PMCID: PMC8815403 DOI: 10.3389/fcell.2021.807345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/17/2021] [Indexed: 12/03/2022] Open
Abstract
Arginylation is a post-translational modification mediated by the arginyltransferase (Ate1). We recently showed that conditional deletion of Ate1 in the nervous system leads to increased light-evoked response sensitivities of ON-bipolar cells in the retina, indicating that arginylation regulates the G-protein signaling complexes of those neurons and/or photoreceptors. However, none of the key players in the signaling pathway were previously shown to be arginylated. Here we show that Gαt1, Gβ1, RGS6, and RGS7 are arginylated in the retina and RGS6 and RGS7 protein levels are elevated in Ate1 knockout, suggesting that arginylation plays a direct role in regulating their protein level and the G-protein-mediated responses in the retina.
Collapse
Affiliation(s)
- Marie E. Fina
- Department of Biomedical Sciences, School of Veterinary Medicines, University of Pennsylvania, Philadelphia, PA, United States
| | - Junling Wang
- Department of Biomedical Sciences, School of Veterinary Medicines, University of Pennsylvania, Philadelphia, PA, United States
| | - Pavan Vedula
- Department of Biomedical Sciences, School of Veterinary Medicines, University of Pennsylvania, Philadelphia, PA, United States
| | - Hsin-Yao Tang
- Proteomics and Metabolomics Facility, The Wistar Institute, Philadelphia, PA, United States
| | - Anna Kashina
- Department of Biomedical Sciences, School of Veterinary Medicines, University of Pennsylvania, Philadelphia, PA, United States
- *Correspondence: Anna Kashina, ; Dawei W. Dong,
| | - Dawei W. Dong
- Department of Biomedical Sciences, School of Veterinary Medicines, University of Pennsylvania, Philadelphia, PA, United States
- Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- *Correspondence: Anna Kashina, ; Dawei W. Dong,
| |
Collapse
|
12
|
Fina ME, Wang J, Nikonov SS, Sterling S, Vardi N, Kashina A, Dong DW. Arginyltransferase (Ate1) regulates the RGS7 protein level and the sensitivity of light-evoked ON-bipolar responses. Sci Rep 2021; 11:9376. [PMID: 33931669 PMCID: PMC8087773 DOI: 10.1038/s41598-021-88628-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/14/2021] [Indexed: 12/16/2022] Open
Abstract
Regulator of G-protein signaling 7 (RGS7) is predominately present in the nervous system and is essential for neuronal signaling involving G-proteins. Prior studies in cultured cells showed that RGS7 is regulated via proteasomal degradation, however no protein is known to facilitate proteasomal degradation of RGS7 and it has not been shown whether this regulation affects G-protein signaling in neurons. Here we used a knockout mouse model with conditional deletion of arginyltransferase (Ate1) in the nervous system and found that in retinal ON bipolar cells, where RGS7 modulates a G-protein to signal light increments, deletion of Ate1 raised the level of RGS7. Electroretinographs revealed that lack of Ate1 leads to increased light-evoked response sensitivities of ON-bipolar cells, as well as their downstream neurons. In cultured mouse embryonic fibroblasts (MEF), RGS7 was rapidly degraded via proteasome pathway and this degradation was abolished in Ate1 knockout MEF. Our results indicate that Ate1 regulates RGS7 protein level by facilitating proteasomal degradation of RGS7 and thus affects G-protein signaling in neurons.
Collapse
Affiliation(s)
- Marie E Fina
- Department of Biomedical Sciences, School of Veterinary Medicines, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Junling Wang
- Department of Biomedical Sciences, School of Veterinary Medicines, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Sergei S Nikonov
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Stephanie Sterling
- Department of Biomedical Sciences, School of Veterinary Medicines, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Noga Vardi
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Anna Kashina
- Department of Biomedical Sciences, School of Veterinary Medicines, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Dawei W Dong
- Department of Biomedical Sciences, School of Veterinary Medicines, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
13
|
Jiang C, Moorthy BT, Patel DM, Kumar A, Morgan WM, Alfonso B, Huang J, Lampidis TJ, Isom DG, Barrientos A, Fontanesi F, Zhang F. Regulation of Mitochondrial Respiratory Chain Complex Levels, Organization, and Function by Arginyltransferase 1. Front Cell Dev Biol 2020; 8:603688. [PMID: 33409279 PMCID: PMC7779560 DOI: 10.3389/fcell.2020.603688] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/23/2020] [Indexed: 12/24/2022] Open
Abstract
Arginyltransferase 1 (ATE1) is an evolutionary-conserved eukaryotic protein that localizes to the cytosol and nucleus. It is the only known enzyme in metazoans and fungi that catalyzes posttranslational arginylation. Lack of arginylation has been linked to an array of human disorders, including cancer, by altering the response to stress and the regulation of metabolism and apoptosis. Although mitochondria play relevant roles in these processes in health and disease, a causal relationship between ATE1 activity and mitochondrial biology has yet to be established. Here, we report a phylogenetic analysis that traces the roots of ATE1 to alpha-proteobacteria, the mitochondrion microbial ancestor. We then demonstrate that a small fraction of ATE1 localizes within mitochondria. Furthermore, the absence of ATE1 influences the levels, organization, and function of respiratory chain complexes in mouse cells. Specifically, ATE1-KO mouse embryonic fibroblasts have increased levels of respiratory supercomplexes I+III2+IVn. However, they have decreased mitochondrial respiration owing to severely lowered complex II levels, which leads to accumulation of succinate and downstream metabolic effects. Taken together, our findings establish a novel pathway for mitochondrial function regulation that might explain ATE1-dependent effects in various disease conditions, including cancer and aging, in which metabolic shifts are part of the pathogenic or deleterious underlying mechanism.
Collapse
Affiliation(s)
- Chunhua Jiang
- Department of Molecular & Cellular Pharmacology, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States
| | - Balaji T Moorthy
- Department of Molecular & Cellular Pharmacology, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States
| | - Devang M Patel
- Department of Molecular & Cellular Pharmacology, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States
| | - Akhilesh Kumar
- Department of Molecular & Cellular Pharmacology, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States
| | - William M Morgan
- Department of Molecular & Cellular Pharmacology, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States
| | - Belkis Alfonso
- Department of Human Genetics, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States
| | - Jingyu Huang
- Department of Human Genetics, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States
| | - Theodore J Lampidis
- Department of Cell Biology, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States.,Sylvester Comprehensive Cancer Center, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States
| | - Daniel G Isom
- Department of Molecular & Cellular Pharmacology, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States.,Sylvester Comprehensive Cancer Center, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States.,Institute for Data Science and Computing, University of Miami, Coral Gables, FL, United States
| | - Antoni Barrientos
- Department of Neurology, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States.,Department of Biochemistry & Molecular Biology, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States
| | - Flavia Fontanesi
- Department of Biochemistry & Molecular Biology, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States
| | - Fangliang Zhang
- Department of Molecular & Cellular Pharmacology, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States.,Sylvester Comprehensive Cancer Center, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
14
|
Heat stress induced arginylation of HuR promotes alternative polyadenylation of Hsp70.3 by regulating HuR stability and RNA binding. Cell Death Differ 2020; 28:730-747. [PMID: 32929216 DOI: 10.1038/s41418-020-00619-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 08/27/2020] [Accepted: 09/01/2020] [Indexed: 11/08/2022] Open
Abstract
Arginylation was previously found to promote stabilization of heat shock protein 70.3 (Hsp70.3) mRNA and cell survival in mouse embryonic fibroblasts (MEFs) on exposure to heat stress (HS). In search of a factor responsible for these phenomena, the current study identified human antigen R (HuR) as a direct target of arginylation. HS induced arginylation of HuR affected its stability and RNA binding activity. Arginylated HuR failed to bind Hsp70.3 3' UTR, allowing the recruitment of cleavage stimulating factor 64 (CstF64) in the proximal poly-A-site (PAS), generating transcripts with short 3'UTR. However, HuR from Ate1 knock out (KO) MEFs bound to proximal PAS region with higher affinity, thus excluded CstF64 recruitment. This inhibited the alternative polyadenylation (APA) of Hsp70.3 mRNA and generated the unstable transcripts with long 3'UTR. The inhibition of RNA binding activity of HuR was traced to arginylation-coupled phosphorylation of HuR, by check point kinase 2 (Chk2). Arginylation of HuR occurred at the residue D15 and the arginylation was needed for the phosphorylation. Accumulation of HuR also decreased cell viability upon HS. In conclusion, arginylation dependent modifications of HuR maintained its cellular homeostasis, and promoted APA of Hsp70.3 pre-mRNA, during early HS response.
Collapse
|
15
|
Abstract
Calreticulin (CRT) is a pleiotropic and highly conserved molecule that is mainly localized in the endoplasmic reticulum. Recently, CRT has gained special interest for its functions outside the endoplasmic reticulum where it has immunomodulatory properties. CRT translocation to the cell membrane serves as an "eat me" signal and promotes efferocytosis of apoptotic cells and cancer cell removal with completely opposite outcomes. Efferocytosis results in a silenced immune response and homeostasis, while removal of dying cancer cells brought about by anthracycline treatment, ionizing-irradiation or photodynamic therapy results in immunogenic cell death with activation of the innate and adaptive immune responses. In addition, CRT impacts phagocyte activation and cytokine production. The effects of CRT on cytokine production depend on its conformation, species specificity, degree of oligomerization and/or glycosylation, as well as its cellular localization and the molecular partners involved. The controversial roles of CRT in cancer progression and the possible role of the CALR gene mutations in myeloproliferative neoplasms are also addressed. The release of CRT and its influence on the different cells involved during efferocytosis and immunogenic cell death points to additional roles of CRT besides merely acting as an "eat me" signal during apoptosis. Understanding the contribution of CRT in physiological and pathological processes could give us some insight into the potential of CRT as a therapeutic target.
Collapse
|
16
|
Bai B, van der Horst S, Cordewener JHG, America TAHP, Hanson J, Bentsink L. Seed-Stored mRNAs that Are Specifically Associated to Monosomes Are Translationally Regulated during Germination. PLANT PHYSIOLOGY 2020; 182:378-392. [PMID: 31527088 PMCID: PMC6945870 DOI: 10.1104/pp.19.00644] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 09/01/2019] [Indexed: 05/20/2023]
Abstract
The life cycle of many organisms includes a quiescent stage, such as bacterial or fungal spores, insect larvae, or plant seeds. Common to these stages is their low water content and high survivability during harsh conditions. Upon rehydration, organisms need to reactivate metabolism and protein synthesis. Plant seeds contain many mRNAs that are transcribed during seed development. Translation of these mRNAs occurs during early seed germination, even before the requirement of transcription. Therefore, stored mRNAs are postulated to be important for germination. How these mRNAs are stored and protected during long-term storage is unknown. The aim of this study was to investigate how mRNAs are stored in dry seeds and whether they are indeed translated during seed germination. We investigated seed polysome profiles and the mRNAs and protein complexes that are associated with these ribosomes in seeds of the model organism Arabidopsis (Arabidopsis thaliana). We showed that most stored mRNAs are associated with monosomes in dry seeds; therefore, we focus on monosomes in this study. Seed ribosome complexes are associated with mRNA-binding proteins, stress granule, and P-body proteins, which suggests regulated packing of seed mRNAs. Interestingly, ∼17% of the mRNAs that are specifically associated with monosomes are translationally up-regulated during seed germination. These mRNAs are transcribed during seed maturation, suggesting a role for this developmental stage in determining the translational fate of mRNAs during early germination.
Collapse
Affiliation(s)
- Bing Bai
- Wageningen Seed Laboratory, Laboratory of Plant Physiology, Wageningen University, 6708 PB Wageningen, The Netherlands
- Umeå Plant Science Center, Department of Plant Physiology, Umeå University, SE-901 87 Umeå, Sweden
| | - Sjors van der Horst
- Department of Molecular Plant Physiology, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Jan H G Cordewener
- BU Bioscience, Plant Research International, 6700 AP Wageningen, The Netherlands
- Centre for BioSystems Genomics, 6700 AB Wageningen, The Netherlands
- Netherlands Proteomics Centre, 3508 TB Utrecht, The Netherlands
| | - Twan A H P America
- BU Bioscience, Plant Research International, 6700 AP Wageningen, The Netherlands
- Centre for BioSystems Genomics, 6700 AB Wageningen, The Netherlands
- Netherlands Proteomics Centre, 3508 TB Utrecht, The Netherlands
| | - Johannes Hanson
- Umeå Plant Science Center, Department of Plant Physiology, Umeå University, SE-901 87 Umeå, Sweden
| | - Leónie Bentsink
- Wageningen Seed Laboratory, Laboratory of Plant Physiology, Wageningen University, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
17
|
Perrar A, Dissmeyer N, Huesgen PF. New beginnings and new ends: methods for large-scale characterization of protein termini and their use in plant biology. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:2021-2038. [PMID: 30838411 PMCID: PMC6460961 DOI: 10.1093/jxb/erz104] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 02/27/2019] [Indexed: 05/17/2023]
Abstract
Dynamic regulation of protein function and abundance plays an important role in virtually every aspect of plant life. Diversifying mechanisms at the RNA and protein level result in many protein molecules with distinct sequence and modification, termed proteoforms, arising from a single gene. Distinct protein termini define proteoforms arising from translation of alternative transcripts, use of alternative translation initiation sites, and different co- and post-translational modifications of the protein termini. Also site-specific proteolytic processing by endo- and exoproteases generates truncated proteoforms, defined by distinct protease-generated neo-N- and neo-C-termini, that may exhibit altered activity, function, and localization compared with their precursor proteins. In eukaryotes, the N-degron pathway targets cytosolic proteins, exposing destabilizing N-terminal amino acids and/or destabilizing N-terminal modifications for proteasomal degradation. This enables rapid and selective removal not only of unfolded proteins, but also of substrate proteoforms generated by proteolytic processing or changes in N-terminal modifications. Here we summarize current protocols enabling proteome-wide analysis of protein termini, which have provided important new insights into N-terminal modifications and protein stability determinants, protein maturation pathways, and protease-substrate relationships in plants.
Collapse
Affiliation(s)
- Andreas Perrar
- Forschungszentrum Jülich, Central Institute for Engineering, Electronics and Analytics, ZEA-3 Analytics, Jülich, Germany
| | - Nico Dissmeyer
- Independent Junior Research Group on Protein Recognition and Degradation, Leibniz Institute of Plant Biochemistry (IPB), Weinberg, Halle (Saale), Germany
- ScienceCampus Halle – Plant-based Bioeconomy, Halle (Saale), Germany
| | - Pitter F Huesgen
- Forschungszentrum Jülich, Central Institute for Engineering, Electronics and Analytics, ZEA-3 Analytics, Jülich, Germany
- Medical Faculty and University Hospital, University of Cologne, Cologne, Germany
| |
Collapse
|
18
|
Singh A, Borah AK, Deka K, Gogoi AP, Verma K, Barah P, Saha S. Arginylation regulates adipogenesis by regulating expression of PPARγ at transcript and protein level. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:596-607. [DOI: 10.1016/j.bbalip.2018.12.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 11/28/2022]
|
19
|
Thermal unfolding of calreticulin. Structural and thermodynamic characterization of the transition. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1867:175-183. [DOI: 10.1016/j.bbapap.2018.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 12/07/2018] [Accepted: 12/10/2018] [Indexed: 12/11/2022]
|
20
|
Wang J, Pejaver VR, Dann GP, Wolf MY, Kellis M, Huang Y, Garcia BA, Radivojac P, Kashina A. Target site specificity and in vivo complexity of the mammalian arginylome. Sci Rep 2018; 8:16177. [PMID: 30385798 PMCID: PMC6212499 DOI: 10.1038/s41598-018-34639-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 10/22/2018] [Indexed: 01/16/2023] Open
Abstract
Protein arginylation mediated by arginyltransferase ATE1 is a key regulatory process essential for mammalian embryogenesis, cell migration, and protein regulation. Despite decades of studies, very little is known about the specificity of ATE1-mediated target site recognition. Here, we used in vitro assays and computational analysis to dissect target site specificity of mouse arginyltransferases and gain insights into the complexity of the mammalian arginylome. We found that the four ATE1 isoforms have different, only partially overlapping target site specificity that includes more variability in the target residues than previously believed. Based on all the available data, we generated an algorithm for identifying potential arginylation consensus motif and used this algorithm for global prediction of proteins arginylated in vivo on the N-terminal D and E. Our analysis reveals multiple proteins with potential ATE1 target sites and expand our understanding of the biological complexity of the intracellular arginylome.
Collapse
Affiliation(s)
- Junling Wang
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Vikas Rao Pejaver
- Department of Computer Science, Indiana University, Bloomington, IN, 47405, USA
- Department of Biomedical Informatics and Medical Education and the eScience Institute, University of Washington, Washington, USA
| | - Geoffrey P Dann
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Biochemistry and Biophysics, School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Max Y Wolf
- Broad Institute of MIT and Harvard, and MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA, USA
| | - Manolis Kellis
- Broad Institute of MIT and Harvard, and MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA, USA
| | - Yun Huang
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Benjamin A Garcia
- Department of Biochemistry and Biophysics, School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Predrag Radivojac
- Department of Computer Science, Indiana University, Bloomington, IN, 47405, USA.
| | - Anna Kashina
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
21
|
Comba A, Bonnet LV, Goitea VE, Hallak ME, Galiano MR. Arginylated Calreticulin Increases Apoptotic Response Induced by Bortezomib in Glioma Cells. Mol Neurobiol 2018; 56:1653-1664. [PMID: 29916141 DOI: 10.1007/s12035-018-1182-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 06/07/2018] [Indexed: 10/14/2022]
Abstract
After retrotranslocation from the endoplasmic reticulum to the cytoplasm, calreticulin is modified by the enzyme arginyltransferase-1 (ATE1). Cellular levels of arginylated calreticulin (R-CRT) are regulated in part by the proteasomal system. Under various stress conditions, R-CRT becomes associated with stress granules (SGs) or reaches the plasma membrane (PM), where it participates in pro-apoptotic signaling. The mechanisms underlying the resistance of tumor cells to apoptosis induced by specific drugs remain unclear. We evaluated the regulatory role of R-CRT in apoptosis of human glioma cell lines treated with the proteasome inhibitor bortezomib (BT). Two cell lines (HOG, MO59K) displaying distinctive susceptibility to apoptosis induction were studied further. BT efficiency was found to be correlated with a subcellular distribution of R-CRT. In MO59K (apoptosis-resistant), R-CRT was confined to SGs formed following BT treatment. In contrast, HOG (apoptosis-susceptible) treated with BT showed lower SG formation and higher levels of cytosolic and PM R-CRT. Increased R-CRT level was associated with enhanced mobilization of intracellular Ca2+ and with sustained apoptosis activation via upregulation of cell death receptor DR5. R-CRT overexpression in the cytoplasm of MO59K rendered the cells susceptible to BT-induced, DR5-mediated cell death. Our findings suggest that R-CRT plays an essential role in the effect of BT treatment on tumor cells and that ATE1 is a strong candidate target for future studies of cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Andrea Comba
- Facultad de Ciencias Químicas, Departamento de Química Biológica Ranwel Caputto, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC-CONICET), Universidad Nacional de Córdoba, 5000, Córdoba, Argentina
| | - Laura V Bonnet
- Facultad de Ciencias Químicas, Departamento de Química Biológica Ranwel Caputto, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC-CONICET), Universidad Nacional de Córdoba, 5000, Córdoba, Argentina
| | - Victor E Goitea
- Facultad de Ciencias Químicas, Departamento de Química Biológica Ranwel Caputto, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC-CONICET), Universidad Nacional de Córdoba, 5000, Córdoba, Argentina
| | - Marta E Hallak
- Facultad de Ciencias Químicas, Departamento de Química Biológica Ranwel Caputto, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC-CONICET), Universidad Nacional de Córdoba, 5000, Córdoba, Argentina
| | - Mauricio R Galiano
- Facultad de Ciencias Químicas, Departamento de Química Biológica Ranwel Caputto, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC-CONICET), Universidad Nacional de Córdoba, 5000, Córdoba, Argentina.
| |
Collapse
|
22
|
N-terminal arginylation generates a bimodal degron that modulates autophagic proteolysis. Proc Natl Acad Sci U S A 2018; 115:E2716-E2724. [PMID: 29507222 DOI: 10.1073/pnas.1719110115] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The conjugation of amino acids to the protein N termini is universally observed in eukaryotes and prokaryotes, yet its functions remain poorly understood. In eukaryotes, the amino acid l-arginine (l-Arg) is conjugated to N-terminal Asp (Nt-Asp), Glu, Gln, Asn, and Cys, directly or associated with posttranslational modifications. Following Nt-arginylation, the Nt-Arg is recognized by UBR boxes of N-recognins such as UBR1, UBR2, UBR4/p600, and UBR5/EDD, leading to substrate ubiquitination and proteasomal degradation via the N-end rule pathway. It has been a mystery, however, why studies for the past five decades identified only a handful of Nt-arginylated substrates in mammals, although five of 20 principal amino acids are eligible for arginylation. Here, we show that the Nt-Arg functions as a bimodal degron that directs substrates to either the ubiquitin (Ub)-proteasome system (UPS) or macroautophagy depending on physiological states. In normal conditions, the arginylated forms of proteolytic cleavage products, D101-CDC6 and D1156-BRCA1, are targeted to UBR box-containing N-recognins and degraded by the proteasome. However, when proteostasis by the UPS is perturbed, their Nt-Arg redirects these otherwise cellular wastes to macroautophagy through its binding to the ZZ domain of the autophagic adaptor p62/STQSM/Sequestosome-1. Upon binding to the Nt-Arg, p62 acts as an autophagic N-recognin that undergoes self-polymerization, facilitating cargo collection and lysosomal degradation of p62-cargo complexes. A chemical mimic of Nt-Arg redirects Ub-conjugated substrates from the UPS to macroautophagy and promotes their lysosomal degradation. Our results suggest that the Nt-Arg proteome of arginylated proteins contributes to reprogramming global proteolytic flux under stresses.
Collapse
|
23
|
Deka K, Singh A, Chakraborty S, Mukhopadhyay R, Saha S. Protein arginylation regulates cellular stress response by stabilizing HSP70 and HSP40 transcripts. Cell Death Discov 2016; 2:16074. [PMID: 27752365 PMCID: PMC5045964 DOI: 10.1038/cddiscovery.2016.74] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 08/23/2016] [Indexed: 01/29/2023] Open
Abstract
ATE1-mediated post-translational addition of arginine to a protein has been shown to regulate activity, interaction, and stability of the protein substrates. Arginylation has been linked to many different stress conditions, namely ER stress, cytosolic misfolded protein stress, and nitrosative stress. However, clear understanding about the effect of arginylation in cellular stress responses is yet to emerge. In this study, we investigated the role of arginylation in heat-stress response. Our findings suggest that Ate1 knock out (KO) cells are more susceptible to heat stress compared with its wild-type counterparts due to the induction of apoptosis in KO cells. Gene expression analysis of inducible heat-shock proteins (HSP70.1, HSP70.3, and HSP40) showed induction of these genes in KO cells early in the heat shock, but were drastically diminished at the later period of heat shock. Further analysis revealed that loss of ATE1 drastically reduced the stability of all three HSP mRNAs. These phenotypes were greatly restored by overexpression of Ate1 in KO cells. Our findings show that arginylation plays a protective role during heat stress by regulating HSP gene expression and mRNA stability.
Collapse
Affiliation(s)
- Kamalakshi Deka
- Department of Molecular Biology and Biotechnology, Tezpur University , Napaam, Assam, India
| | - Archana Singh
- Department of Molecular Biology and Biotechnology, Tezpur University , Napaam, Assam, India
| | - Surajit Chakraborty
- Department of Molecular Biology and Biotechnology, Tezpur University , Napaam, Assam, India
| | - Rupak Mukhopadhyay
- Department of Molecular Biology and Biotechnology, Tezpur University , Napaam, Assam, India
| | - Sougata Saha
- Department of Molecular Biology and Biotechnology, Tezpur University , Napaam, Assam, India
| |
Collapse
|
24
|
Galiano MR, Goitea VE, Hallak ME. Post-translational protein arginylation in the normal nervous system and in neurodegeneration. J Neurochem 2016; 138:506-17. [PMID: 27318192 DOI: 10.1111/jnc.13708] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 05/24/2016] [Accepted: 06/13/2016] [Indexed: 02/07/2023]
Abstract
Post-translational arginylation of proteins is an important regulator of many physiological pathways in cells. This modification was originally noted in protein degradation during neurodegenerative processes, with an apparently different physiological relevance between central and peripheral nervous system. Subsequent studies have identified a steadily increasing number of proteins and proteolysis-derived polypeptides as arginyltransferase (ATE1) substrates, including β-amyloid, α-synuclein, and TDP43 proteolytic fragments. Arginylation is involved in signaling processes of proteins and polypeptides that are further ubiquitinated and degraded by the proteasome. In addition, it is also implicated in autophagy/lysosomal degradation pathway. Recent studies using mutant mouse strains deficient in ATE1 indicate additional roles of this modification in neuronal physiology. As ATE1 is capable of modifying proteins either at the N-terminus or middle-chain acidic residues, determining which proteins function are modulated by arginylation represents a big challenge. Here, we review studies addressing various roles of ATE1 activity in nervous system function, and suggest future research directions that will clarify the role of post-translational protein arginylation in brain development and various neurological disorders. Arginyltransferase (ATE1), the enzyme responsible for post-translational arginylation, modulates the functions of a wide variety of proteins and polypeptides, and is also involved in the main degradation pathways of intracellular proteins. Regulatory roles of ATE1 have been well defined for certain organs. However, its roles in nervous system development and neurodegenerative processes remain largely unknown, and present exciting opportunities for future research, as discussed in this review.
Collapse
Affiliation(s)
- Mauricio R Galiano
- Centro de Investigaciones de Química Biológica de Córdoba, CIQUIBIC, Departamento de Química Biológica, Facultad de Ciencias Químicas, CONICET, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, Argentina
| | - Victor E Goitea
- Centro de Investigaciones de Química Biológica de Córdoba, CIQUIBIC, Departamento de Química Biológica, Facultad de Ciencias Químicas, CONICET, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, Argentina
| | - Marta E Hallak
- Centro de Investigaciones de Química Biológica de Córdoba, CIQUIBIC, Departamento de Química Biológica, Facultad de Ciencias Químicas, CONICET, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, Argentina
| |
Collapse
|
25
|
Poblete-Durán N, Prades-Pérez Y, Vera-Otarola J, Soto-Rifo R, Valiente-Echeverría F. Who Regulates Whom? An Overview of RNA Granules and Viral Infections. Viruses 2016; 8:v8070180. [PMID: 27367717 PMCID: PMC4974515 DOI: 10.3390/v8070180] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 06/10/2016] [Accepted: 06/21/2016] [Indexed: 12/22/2022] Open
Abstract
After viral infection, host cells respond by mounting an anti-viral stress response in order to create a hostile atmosphere for viral replication, leading to the shut-off of mRNA translation (protein synthesis) and the assembly of RNA granules. Two of these RNA granules have been well characterized in yeast and mammalian cells, stress granules (SGs), which are translationally silent sites of RNA triage and processing bodies (PBs), which are involved in mRNA degradation. This review discusses the role of these RNA granules in the evasion of anti-viral stress responses through virus-induced remodeling of cellular ribonucleoproteins (RNPs).
Collapse
Affiliation(s)
- Natalia Poblete-Durán
- Molecular and Cellular Virology Laboratory, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Independencia 1027, Santiago, 8389100, Chile.
| | - Yara Prades-Pérez
- Molecular and Cellular Virology Laboratory, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Independencia 1027, Santiago, 8389100, Chile.
| | - Jorge Vera-Otarola
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Centro de Investigaciones Médicas, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago 8330024, Chile.
| | - Ricardo Soto-Rifo
- Molecular and Cellular Virology Laboratory, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Independencia 1027, Santiago, 8389100, Chile.
| | - Fernando Valiente-Echeverría
- Molecular and Cellular Virology Laboratory, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Independencia 1027, Santiago, 8389100, Chile.
| |
Collapse
|
26
|
Galiano MR, Hallak ME. Assaying the Posttranslational Arginylation of Proteins in Cultured Cells. Methods Mol Biol 2016; 1337:49-58. [PMID: 26285880 DOI: 10.1007/978-1-4939-2935-1_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
To evaluate the posttranslational arginylation of proteins in vivo, we describe a protocol for studying the (14)C-Arg incorporation into proteins of cells in culture. The conditions determined for this particular modification contemplate both the biochemical requirements of the enzyme ATE1 and the adjustments that allowed the discrimination between posttranslational arginylation of proteins and de novo synthesis. These conditions are applicable for different cell lines or primary cultures, representing an optimal procedure for the identification and the validation of putative ATE1 substrates.
Collapse
Affiliation(s)
- Mauricio R Galiano
- Departamento de Química Biológica, Facultad de Ciencias Químicas, Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC, (UNC-CONICET), Universidad Nacional de Córdoba (X5000HUA), Córdoba, Argentina
| | | |
Collapse
|
27
|
Xu FF, Liu XH. Calreticulin translocation aggravates endoplasmic reticulum stress-associated apoptosis during cardiomyocyte hypoxia/reoxygenation. Chin Med J (Engl) 2015; 128:353-60. [PMID: 25635431 PMCID: PMC4837866 DOI: 10.4103/0366-6999.150103] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Background: Calreticulin (CRT) is major Ca2+-binding chaperone mainly resident in the endoplasmic reticulum (ER) lumen. Recently, it has been shown that non-ER CRT regulates a wide array of cellular responses. We previously found that CRT was up-regulated during hypoxia/reoxygenation (H/R) and this study was aimed to investigate whether CRT nuclear translocation aggravates ER stress (ERS)-associated apoptosis during H/R injury in neonatal rat cardiomyocytes. Methods: Apoptosis rate and lactate dehydrogenase (LDH) leakage in culture medium were measured as indices of cell injury. Immunofluorescence staining showed the morphological changes of ER and intracellular translocation of CRT. Western blotting or reverse transcription polymerase chain reaction was used to detect the expression of target molecules. Results: Compared with control, H/R increased apoptosis rate and LDH activity. The ER became condensed and bubbled, and CRT translocated to the nucleus. Western blotting showed up-regulation of CRT, Nrf2, activating transcription factor 4 (ATF4), CHOP and caspase-12 expression after H/R. Exogenous CRT overexpression induced by plasmid transfection before H/R increased cell apoptosis, LDH leakage, ER disorder, CRT nuclear translocation and the expression of ERS-associated molecules. However, administration of the ERS inhibitor, taurine, or CRT siRNA alleviated cell injury, ER disorder, and inhibited ERS-associated apoptosis. Conclusions: Our results indicated that during H/R stress, CRT translocation increases cell apoptosis and LDH leakage, aggravates ER disorder, up-regulates expression of nuclear transcription factors, Nrf2 and ATF4, and activates ERS-associated apoptosis.
Collapse
Affiliation(s)
| | - Xiu-Hua Liu
- Department of Pathophysiology; State Key Laboratory of Kidney Disease, Chinese People's Liberation Army General Hospital, Beijing 100853, China
| |
Collapse
|
28
|
Caramelo JJ, Parodi AJ. A sweet code for glycoprotein folding. FEBS Lett 2015; 589:3379-87. [PMID: 26226420 DOI: 10.1016/j.febslet.2015.07.021] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 07/15/2015] [Accepted: 07/15/2015] [Indexed: 12/11/2022]
Abstract
Glycoprotein synthesis is initiated in the endoplasmic reticulum (ER) lumen upon transfer of a glycan (Glc3Man9GlcNAc2) from a lipid derivative to Asn residues (N-glycosylation). N-Glycan-dependent quality control of glycoprotein folding in the ER prevents exit to Golgi of folding intermediates, irreparably misfolded glycoproteins and incompletely assembled multimeric complexes. It also enhances folding efficiency by preventing aggregation and facilitating formation of proper disulfide bonds. The control mechanism essentially involves four components, resident lectin-chaperones (calnexin and calreticulin) that recognize monoglucosylated polymannose protein-linked glycans, lectin-associated oxidoreductase acting on monoglucosylated glycoproteins (ERp57), a glucosyltransferase that creates monoglucosylated epitopes in protein-linked glycans (UGGT) and a glucosidase (GII) that removes the glucose units added by UGGT. This last enzyme is the only mechanism component sensing glycoprotein conformations as it creates monoglucosylated glycans exclusively in not properly folded glycoproteins or in not completely assembled multimeric glycoprotein complexes. Glycoproteins that fail to properly fold are eventually driven to proteasomal degradation in the cytosol following the ER-associated degradation pathway, in which the extent of N-glycan demannosylation by ER mannosidases play a relevant role in the identification of irreparably misfolded glycoproteins.
Collapse
Affiliation(s)
- Julio J Caramelo
- Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), Avda. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina.
| | - Armando J Parodi
- Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), Avda. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina.
| |
Collapse
|
29
|
Amino-terminal arginylation targets endoplasmic reticulum chaperone BiP for autophagy through p62 binding. Nat Cell Biol 2015; 17:917-29. [PMID: 26075355 PMCID: PMC4490096 DOI: 10.1038/ncb3177] [Citation(s) in RCA: 187] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 04/20/2015] [Indexed: 02/07/2023]
Abstract
We show that ATE1-encoded Arg-transfer RNA transferase (R-transferase) of the N-end rule pathway mediates N-terminal arginylation of multiple endoplasmic reticulum (ER)-residing chaperones, leading to their cytosolic relocalization and turnover. N-terminal arginylation of BiP (also known as GRP78), protein disulphide isomerase and calreticulin is co-induced with autophagy during innate immune responses to cytosolic foreign DNA or proteasomal inhibition, associated with increased ubiquitylation. Arginylated BiP (R-BiP) is induced by and associated with cytosolic misfolded proteins destined for p62 (also known as sequestosome 1, SQSTM1) bodies. R-BiP binds the autophagic adaptor p62 through the interaction of its N-terminal arginine with the p62 ZZ domain. This allosterically induces self-oligomerization and aggregation of p62 and increases p62 interaction with LC3, leading to p62 targeting to autophagosomes and selective lysosomal co-degradation of R-BiP and p62 together with associated cargoes. In this autophagic mechanism, Nt-arginine functions as a delivery determinant, a degron and an activating ligand. Bioinformatics analysis predicts that many ER residents use arginylation to regulate non-ER processes.
Collapse
|
30
|
Goitea VE, Hallak ME. Calreticulin and Arginylated Calreticulin Have Different Susceptibilities to Proteasomal Degradation. J Biol Chem 2015; 290:16403-14. [PMID: 25969538 DOI: 10.1074/jbc.m114.626127] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Indexed: 12/31/2022] Open
Abstract
Post-translational arginylation has been suggested to target proteins for proteasomal degradation. The degradation mechanism for arginylated calreticulin (R-CRT) localized in the cytoplasm is unknown. To evaluate the effect of arginylation on CRT stability, we examined the metabolic fates and degradation mechanisms of cytoplasmic CRT and R-CRT in NIH 3T3 and CHO cells. Both CRT isoforms were found to be proteasomal substrates, but the half-life of R-CRT (2 h) was longer than that of cytoplasmic CRT (0.7 h). Arginylation was not required for proteasomal degradation of CRT, although R-CRT displays ubiquitin modification. A CRT mutant incapable of dimerization showed reduced metabolic stability of R-CRT, indicating that R-CRT dimerization may protect it from proteasomal degradation. Our findings, taken together, demonstrate a novel function of arginylation: increasing the half-life of CRT in cytoplasm.
Collapse
Affiliation(s)
- Victor E Goitea
- From the Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Consejo Nacional de Investigaciones Científicas y Técnicas, and Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
| | - Marta E Hallak
- From the Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Consejo Nacional de Investigaciones Científicas y Técnicas, and Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
| |
Collapse
|
31
|
Kashina A. Protein arginylation, a global biological regulator that targets actin cytoskeleton and the muscle. Anat Rec (Hoboken) 2015; 297:1630-6. [PMID: 25125176 DOI: 10.1002/ar.22969] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 03/14/2014] [Indexed: 12/20/2022]
Abstract
Posttranslational addition of Arg to proteins, mediated by arginyltransferase ATE1 has been first observed in 1963 and remained poorly understood for decades since its original discovery. Recent work demonstrated the global nature of arginylation and its essential role in multiple physiological pathways during embryogenesis and adulthood and identified over a hundred of proteins arginylated in vivo. Among these proteins, the prominent role belongs to the actin cytoskeleton and the muscle, and follow up studies strongly suggests that arginylation constitutes a novel biological regulator of contractility. This review presents an overview of the studies of protein arginylation that led to the discovery of its major role in the muscle.
Collapse
Affiliation(s)
- Anna Kashina
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
32
|
Park SE, Kim JM, Seok OH, Cho H, Wadas B, Kim SY, Varshavsky A, Hwang CS. Control of mammalian G protein signaling by N-terminal acetylation and the N-end rule pathway. Science 2015; 347:1249-1252. [PMID: 25766235 PMCID: PMC4748709 DOI: 10.1126/science.aaa3844] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Rgs2, a regulator of G proteins, lowers blood pressure by decreasing signaling through Gαq. Human patients expressing Met-Leu-Rgs2 (ML-Rgs2) or Met-Arg-Rgs2 (MR-Rgs2) are hypertensive relative to people expressing wild-type Met-Gln-Rgs2 (MQ-Rgs2). We found that wild-type MQ-Rgs2 and its mutant, MR-Rgs2, were destroyed by the Ac/N-end rule pathway, which recognizes N(α)-terminally acetylated (Nt-acetylated) proteins. The shortest-lived mutant, ML-Rgs2, was targeted by both the Ac/N-end rule and Arg/N-end rule pathways. The latter pathway recognizes unacetylated N-terminal residues. Thus, the Nt-acetylated Ac-MX-Rgs2 (X = Arg, Gln, Leu) proteins are specific substrates of the mammalian Ac/N-end rule pathway. Furthermore, the Ac/N-degron of Ac-MQ-Rgs2 was conditional, and Teb4, an endoplasmic reticulum (ER) membrane-embedded ubiquitin ligase, was able to regulate G protein signaling by targeting Ac-MX-Rgs2 proteins for degradation through their N(α)-terminal acetyl group.
Collapse
Affiliation(s)
- Sang-Eun Park
- Department of Life Sciences, Pohang University of Science and
Technology, Pohang, Gyeongbuk 790-784, South Korea
| | - Jeong-Mok Kim
- Department of Life Sciences, Pohang University of Science and
Technology, Pohang, Gyeongbuk 790-784, South Korea
| | - Ok-Hee Seok
- Department of Life Sciences, Pohang University of Science and
Technology, Pohang, Gyeongbuk 790-784, South Korea
| | - Hanna Cho
- Department of Life Sciences, Pohang University of Science and
Technology, Pohang, Gyeongbuk 790-784, South Korea
| | - Brandon Wadas
- Division of Biology and Biological Engineering, California Institute
of Technology, Pasadena, CA 91125, USA
| | - Seon-Young Kim
- Medical Genomics Research Center, KRIBB, Daejeon, South Korea
- Department of Functional Genomics, University of Science and
Technology, Daejeon, South Korea
| | - Alexander Varshavsky
- Division of Biology and Biological Engineering, California Institute
of Technology, Pasadena, CA 91125, USA
| | - Cheol-Sang Hwang
- Department of Life Sciences, Pohang University of Science and
Technology, Pohang, Gyeongbuk 790-784, South Korea
| |
Collapse
|
33
|
Wiersma VR, Michalak M, Abdullah TM, Bremer E, Eggleton P. Mechanisms of Translocation of ER Chaperones to the Cell Surface and Immunomodulatory Roles in Cancer and Autoimmunity. Front Oncol 2015; 5:7. [PMID: 25688334 PMCID: PMC4310273 DOI: 10.3389/fonc.2015.00007] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 01/10/2015] [Indexed: 01/12/2023] Open
Abstract
Endoplasmic reticulum (ER) chaperones (e.g., calreticulin, heat shock proteins, and isomerases) perform a multitude of functions within the ER. However, many of these chaperones can translocate to the cytosol and eventually the surface of cells, particularly during ER stress induced by e.g., drugs, UV irradiation, and microbial stimuli. Once on the cell surface or in the extracellular space, the ER chaperones can take on immunogenic characteristics, as mostly described in the context of cancer, appearing as damage-associated molecular patterns recognized by the immune system. How ER chaperones relocate to the cell surface and interact with other intracellular proteins appears to influence whether a tumor cell is targeted for cell death. The relocation of ER proteins to the cell surface can be exploited to target cancer cells for elimination by immune mechanism. Here we evaluate the evidence for the different mechanisms of ER protein translocation and binding to the cell surface and how ER protein translocation can act as a signal for cancer cells to undergo killing by immunogenic cell death and other cell death pathways. The release of chaperones can also exacerbate underlying autoimmune conditions, such as rheumatoid arthritis and multiple sclerosis, and the immunomodulatory role of extracellular chaperones as potential cancer immunotherapies requires cautious monitoring, particularly in cancer patients with underlying autoimmune disease.
Collapse
Affiliation(s)
- Valerie R. Wiersma
- Department of Surgery, Translational Surgical Oncology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Marek Michalak
- University of Exeter Medical School, Exeter Devon, UK
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | | | - Edwin Bremer
- Department of Surgery, Translational Surgical Oncology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- University of Exeter Medical School, Exeter Devon, UK
| | - Paul Eggleton
- University of Exeter Medical School, Exeter Devon, UK
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
34
|
Abstract
Posttranslational modifications have emerged in recent years as the major biological regulators responsible for the orders of magnitude increase in complexity of protein functions. These "molecular switches" affect nearly every protein in vivo by modulating their protein structure, activity, molecular interactions, and homeostasis. While over 350 protein modifications have been described, only a handful of them have been characterized. Until recently, protein arginylation has belonged to the list of obscure, poorly understood posttranslational modifications, before the recent explosion of studies has put arginylation on the map of intracellular metabolic pathways and biological processes. This chapter contains an overview of all the major milestones in the protein arginylation field, from its original discovery in 1963 to this day.
Collapse
|
35
|
Borhani Dizaji N, Basseri HR, Naddaf SR, Heidari M. Molecular characterization of calreticulin from Anopheles stephensi midgut cells and functional assay of the recombinant calreticulin with Plasmodium berghei ookinetes. Gene 2014; 550:245-52. [PMID: 25150160 DOI: 10.1016/j.gene.2014.08.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Revised: 06/02/2014] [Accepted: 08/19/2014] [Indexed: 11/24/2022]
Abstract
Transmission blocking vaccines (TBVs) that target the antigens on the midgut epithelium of Anopheles mosquitoes are among the promising tools for the elimination of the malaria parasite. Characterization and analysis of effective antigens is the first step to design TBVs. Calreticulin (CRT), a lectin-like protein, from Anopheles albimanus midgut, has shown antigenic features, suggesting a promising and novel TBV target. CRT is a highly conserved protein with similar features in vertebrates and invertebrates including anopheline. We cloned the full-length crt gene from malaria vector, Anopheles stephensi (AsCrt) and explored the interaction of recombinant AsCrt protein, expressed in a prokaryotic system (pGEX-6p-1), with surface proteins of Plasmodium berghei ookinetes by immunofluorescence assay. The cellular localization of AsCrt was determined using the baculovirus expression system. Sequence analysis of the whole cDNA of AsCrt revealed that AsCrt contains an ORF of 1221 bp. The amino acid sequence of AsCrt protein obtained in this study showed 64% homology with similar protein in human. The AsCrt shares the most common features of CRTs from other species. This gene encodes a 406 amino-acid protein with a molecular mass of 46 kDa, which contains a predicted 16 amino-acid signal peptides, conserved cysteine residues, a proline-rich region, and highly acidic C-terminal domain with endoplasmic reticulum retrieval sequence HDEL. The production of GST-AsCrt recombinant protein was confirmed by Western blot analysis using an antibody against the GST protein. The FITC-labeled GST-AsCrt exhibited a significant interaction with P. berghei ookinete surface proteins. Purified recombinant GST-AsCrt, labeled with FITC, displayed specific binding to the surface of P. berghei ookinetes in comparison with control. Moreover, the expression of AsCrt in baculovirus expression system indicated that AsCrt was localized on the surface of Sf9 cells. Our results suggest that AsCrt could be utilized as a potential target for future studies in TBV area for malaria control.
Collapse
Affiliation(s)
- Nahid Borhani Dizaji
- Department of Medical Entomology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Department of Parasitology, Pasteur Institute of Iran, Tehran, Iran
| | - Hamid Reza Basseri
- Department of Medical Entomology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mansour Heidari
- Department of Medical Genetics, Tehran University of Medical Sciences, Tehran, Iran; Stem Cell Preparation Unit, Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
36
|
Carpio MA, Decca MB, Lopez Sambrooks C, Durand ES, Montich GG, Hallak ME. Calreticulin-dimerization induced by post-translational arginylation is critical for stress granules scaffolding. Int J Biochem Cell Biol 2013; 45:1223-35. [PMID: 23567256 DOI: 10.1016/j.biocel.2013.03.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 03/12/2013] [Accepted: 03/26/2013] [Indexed: 11/18/2022]
Abstract
Protein arginylation mediated by arginyl-tRNA protein transferase is a post-translational modification that occurs widely in biology, it has been shown to regulate protein and properties and functions. Post-translational arginylation is critical for embryogenesis, cardiovascular development and angiogenesis but the molecular effects of proteins arginylated in vivo are largely unknown. In the present study, we demonstrate that arginylation reduces CRT (calreticulin) thermostability and induces a greater degree of dimerization and oligomerization. R-CRT (arginylated calreticulin) forms disulfide-bridged dimers that are increased in low Ca(2+) conditions at physiological temperatures, a similar condition to the cellular environment that it required for arginylation of CRT. Moreover, R-CRT self-oligomerizes through non-covalent interactions that are enhanced at temperatures above 40 °C, condition that mimics the heat shock treatment where R-CRT is the only isoespecies of CRT that associates in cells to SGs (stress granules). We show that in cells lacking CRT the scaffolding of larger SGs is impaired; the transfection with CRT (hence R-CRT expression) restores SGs assembly whereas the transfection with CRT mutated in Cys146 does not. Thus, R-CRT disulfide-bridged dimers (through Cys146) are essential for the scaffolding of larger SGs under heat shock, although these dimers are not required for R-CRT association to SGs. The alteration in SGs assembly is critical for the normal cellular recover of cells after heat induced stress. We conclude that R-CRT is emerging as a novel protein that has an impact on the regulation of SGs scaffolding and cell survival.
Collapse
Affiliation(s)
- Marcos A Carpio
- Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC, CONICET-Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende X5000HUA, Córdoba, Argentina
| | | | | | | | | | | |
Collapse
|
37
|
Wilson CH, Indarto D, Doucet A, Pogson LD, Pitman MR, McNicholas K, Menz RI, Overall CM, Abbott CA. Identifying natural substrates for dipeptidyl peptidases 8 and 9 using terminal amine isotopic labeling of substrates (TAILS) reveals in vivo roles in cellular homeostasis and energy metabolism. J Biol Chem 2013; 288:13936-13949. [PMID: 23519473 PMCID: PMC3656252 DOI: 10.1074/jbc.m112.445841] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Dipeptidyl peptidases (DP) 8 and 9 are homologous, cytoplasmic N-terminal post-proline-cleaving enzymes that are anti-targets for the development of DP4 (DPPIV/CD26) inhibitors for treating type II diabetes. To date, DP8 and DP9 have been implicated in immune responses and cancer biology, but their pathophysiological functions and substrate repertoire remain unknown. This study utilizes terminal amine isotopic labeling of substrates (TAILS), an N-terminal positional proteomic approach, for the discovery of in vivo DP8 and DP9 substrates. In vivo roles for DP8 and DP9 in cellular metabolism and homeostasis were revealed via the identification of more than 29 candidate natural substrates and pathways affected by DP8/DP9 overexpression. Cleavage of 14 substrates was investigated in vitro; 9/14 substrates for both DP8 and DP9 were confirmed by MALDI-TOF MS, including two of high confidence, calreticulin and adenylate kinase 2. Adenylate kinase 2 plays key roles in cellular energy and nucleotide homeostasis. These results demonstrate remarkable in vivo substrate overlap between DP8/DP9, suggesting compensatory roles for these enzymes. This work provides the first global investigation into DP8 and DP9 substrates, providing a number of leads for future investigations into the biological roles and significance of DP8 and DP9 in human health and disease.
Collapse
Affiliation(s)
- Claire H Wilson
- School of Biological Sciences, Flinders University, Adelaide, South Australia 5001, Australia; Departments of Biochemistry and Molecular Biology and Oral Biological and Medical Sciences, Centre for Blood Research and Faculty Dentistry, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Dono Indarto
- School of Biological Sciences, Flinders University, Adelaide, South Australia 5001, Australia; Flinders Centre for Innovation in Cancer, Flinders University, Adelaide, South Australia 5001, Australia
| | - Alain Doucet
- Departments of Biochemistry and Molecular Biology and Oral Biological and Medical Sciences, Centre for Blood Research and Faculty Dentistry, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Lisa D Pogson
- School of Biological Sciences, Flinders University, Adelaide, South Australia 5001, Australia; Flinders Centre for Innovation in Cancer, Flinders University, Adelaide, South Australia 5001, Australia
| | - Melissa R Pitman
- School of Biological Sciences, Flinders University, Adelaide, South Australia 5001, Australia
| | - Kym McNicholas
- School of Biological Sciences, Flinders University, Adelaide, South Australia 5001, Australia
| | - R Ian Menz
- School of Biological Sciences, Flinders University, Adelaide, South Australia 5001, Australia
| | - Christopher M Overall
- Departments of Biochemistry and Molecular Biology and Oral Biological and Medical Sciences, Centre for Blood Research and Faculty Dentistry, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada.
| | - Catherine A Abbott
- School of Biological Sciences, Flinders University, Adelaide, South Australia 5001, Australia; Flinders Centre for Innovation in Cancer, Flinders University, Adelaide, South Australia 5001, Australia.
| |
Collapse
|
38
|
Wang L, Fang Q, Zhu J, Wang F, Rean Akhtar Z, Ye G. Molecular cloning and functional study of calreticulin from a lepidopteran pest, Pieris rapae. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2012; 38:55-65. [PMID: 22516748 DOI: 10.1016/j.dci.2012.03.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 03/15/2012] [Accepted: 03/20/2012] [Indexed: 05/31/2023]
Abstract
Insects have an effective innate immune system to protect themselves from exogenous invaders. Calreticulin is a multifunctional protein mainly involved in directing proper conformation of proteins, controlling calcium level, and participating in immune responses. Previous suppression subtractive hybridization assay showed that the expression of Pieris rapae calreticulin (PrCRT) was suppressed after injection of Pteromalus puparum venom. In this study, we obtained a full length cDNA of PrCRT and expressed recombinant wild type and the N-domain deleted mutant PrCRT in bacteria. Real time quantitative PCR and western blot analyses showed that PrCRT mRNA and protein were expressed in hemocytes, Malpighian tubule, midgut, epidermis and fat body, with a higher level in hemocytes. PrCRT was probably located in endoplasmic reticulum distributing in the cytoplasm of hemocytes. Recombinant PrCRT was first able to attach and then enter the hemocytes by endocytosis. PrCRT mRNA in hemocytes was significantly induced after injection of yeast or beads, but did not change noticeably after injection of Escherichia coli or Micrococcus lysodeikticus. Recombinant PrCRT enhanced cellular encapsulation by P. rapae hemocytes in vitro, and the N-domain of PrCRT was required for encapsulation. RNAi of PrCRT by dsRNA injection impaired the ability of hemocytes to encapsulate beads. After parasitization by P. puparum, PrCRT mRNA and protein levels in P. rapae pupal hemocytes were significantly suppressed compared to non-parasitized control. Our results suggest that PrCRT is involved in cellular encapsulation and the pupal parasitoid P. puparum can decrease PrCRT expression to impair host cellular immune response.
Collapse
Affiliation(s)
- Lei Wang
- State Key Laboratory of Rice Biology & Key Laboratory of Agricultural Entomology of Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | | | | | | | | | | |
Collapse
|
39
|
López Sambrooks C, Carpio MA, Hallak ME. Arginylated calreticulin at plasma membrane increases susceptibility of cells to apoptosis. J Biol Chem 2012; 287:22043-54. [PMID: 22577148 DOI: 10.1074/jbc.m111.338335] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Post-translational modifications of proteins are important for the regulation of cell fate and functions; one of these post-translational modifications is arginylation. We have previously established that calreticulin (CRT), an endoplasmic reticulum resident, is also one of the arginylated substrates found in the cytoplasm. In the present study, we describe that arginylated CRT (R-CRT) binds to the cell membrane and identified its role as a preapoptotic signal. We also show that cells lacking arginyl-tRNA protein transferase are less susceptible to apoptosis than wild type cells. Under these conditions R-CRT is present on the cell membrane but at early stages is differently localized in stress granules. Moreover, cells induced to undergo apoptosis by arsenite show increased R-CRT on their cell surface. Exogenously applied R-CRT binds to the cell membrane and is able to both increase the number of cells undergoing apoptosis in wild type cells and overcome apoptosis resistance in cells lacking arginyl-tRNA protein transferase that express R-CRT on the cell surface. Thus, these results demonstrate the importance of surface R-CRT in the apoptotic response of cells, implying that post-translational arginylation of CRT can regulate its intracellular localization, cell function, and survival.
Collapse
Affiliation(s)
- Cecilia López Sambrooks
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC-CONICET), Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, 5000 Cordoba, Argentina
| | | | | |
Collapse
|
40
|
Calreticulin signaling in health and disease. Int J Biochem Cell Biol 2012; 44:842-6. [PMID: 22373697 DOI: 10.1016/j.biocel.2012.02.009] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 02/08/2012] [Accepted: 02/13/2012] [Indexed: 01/19/2023]
Abstract
Calreticulin is an endoplasmic reticulum Ca(2+) binding chaperone that has multiple functions inside and outside of the endoplasmic reticulum. It is involved in the quality control of newly synthesized proteins and glycoproteins, interacting with various other endoplasmic reticulum chaperones, specifically calnexin and ER protein of 57-kDa in the calreticulin/calnexin cycle. Calreticulin also plays a crucial role in regulating intracellular Ca(2+) homeostasis, associating calreticulin with a wide variety of signaling processes, such as cardiogenesis, adipocyte differentiation and cellular stress responses. The role of calreticulin outside of the endoplasmic reticulum is also extensive, including functions in wound healing and immunity. Therefore, calreticulin has important implications in health and disease. Signaling facts.
Collapse
|
41
|
Sriram SM, Kim BY, Kwon YT. The N-end rule pathway: emerging functions and molecular principles of substrate recognition. Nat Rev Mol Cell Biol 2011; 12:735-47. [PMID: 22016057 DOI: 10.1038/nrm3217] [Citation(s) in RCA: 157] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The N-end rule defines the protein-destabilizing activity of a given amino-terminal residue and its post-translational modification. Since its discovery 25 years ago, the pathway involved in the N-end rule has been thought to target only a limited set of specific substrates of the ubiquitin-proteasome system. Recent studies have provided insights into the components, substrates, functions and structural basis of substrate recognition. The N-end rule pathway is now emerging as a major cellular proteolytic system, in which the majority of proteins are born with or acquire specific N-terminal degradation determinants through protein-specific or global post-translational modifications.
Collapse
Affiliation(s)
- Shashikanth M Sriram
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | | | | |
Collapse
|
42
|
Posttranslational arginylation as a global biological regulator. Dev Biol 2011; 358:1-8. [PMID: 21784066 DOI: 10.1016/j.ydbio.2011.06.043] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 06/08/2011] [Accepted: 06/29/2011] [Indexed: 02/03/2023]
Abstract
Posttranslational modifications constitute a major field of emerging biological significance as mounting evidence demonstrates their key role in multiple physiological processes. Following in the footsteps of protein phosphorylation studies, new modifications are being shown to regulate protein properties and functions in vivo. Among such modifications, an important role belongs to protein arginylation - posttranslational tRNA-mediated addition of arginine, to proteins by arginyltransferase, ATE1. Recent studies show that arginylation is essential for embryogenesis in many organisms and that it regulates such important processes as heart development, angiogenesis, and tissue morphogenesis in mammals. This review summarizes the key data in the protein arginylation field since its original discovery to date.
Collapse
|
43
|
Arginyltransferase is an ATP-independent self-regulating enzyme that forms distinct functional complexes in vivo. ACTA ACUST UNITED AC 2011; 18:121-30. [PMID: 21276945 DOI: 10.1016/j.chembiol.2010.10.016] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Revised: 10/11/2010] [Accepted: 10/25/2010] [Indexed: 11/21/2022]
Abstract
Posttranslational arginylation mediated by arginyl transferase (ATE1) plays an important role in cardiovascular development, cell motility, and regulation of cytoskeleton and metabolic enzymes. This protein modification was discovered decades ago, however, the arginylation reaction and the functioning of ATE1 remained poorly understood because of the lack of good biochemical models. Here, we report the development of an in vitro arginylation system, in which ATE1 function and molecular requirements can be tested using purified recombinant ATE1 isoforms supplemented with a controlled number of components. Our results show that arginylation reaction is a self-sufficient, ATP-independent process that can affect different sites in a polypeptide and that arginyl transferases form different molecular complexes in vivo, associate with components of the translation machinery, and have distinct, partially overlapping subsets of substrates, suggesting that these enzymes play different physiological functions.
Collapse
|
44
|
von Roretz C, Di Marco S, Mazroui R, Gallouzi IE. Turnover of AU-rich-containing mRNAs during stress: a matter of survival. WILEY INTERDISCIPLINARY REVIEWS-RNA 2010; 2:336-47. [PMID: 21957021 DOI: 10.1002/wrna.55] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cells undergo various adaptive measures in response to stress. Among these are specific changes in the posttranscriptional regulation of various genes. In particular, the turnover of mRNA is modified to either increase or decrease the abundance of certain target messages. Some of the best-studied mRNAs that are affected by stress are those that contain adenine/uridine-rich elements (AREs) in their 3'-untranslated regions. ARE-containing mRNAs are involved in many important cellular processes and are normally labile, but in response to stress they are differentially regulated through the concerted efforts of ARE-binding proteins (AUBPs) such as HuR, AUF1, tristetraprolin, BRF1, and KSRP, along with microRNA-mediated effects. Additionally, the fate of ARE-containing mRNAs is modified by inducing their localization to stress granules or mRNA processing bodies. Coordination of these various mechanisms controls the turnover of ARE-containing mRNAs, and thereby enables proper responses to cellular stress. In this review, we discuss how AUBPs regulate their target mRNAs in response to stress, along with the involvement of cytoplasmic granules in this process.
Collapse
|
45
|
Endoplasmic reticulum calcium regulates the retrotranslocation of Trypanosoma cruzi calreticulin to the cytosol. PLoS One 2010; 5. [PMID: 20957192 PMCID: PMC2950133 DOI: 10.1371/journal.pone.0013141] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Accepted: 09/08/2010] [Indexed: 11/19/2022] Open
Abstract
For most secretory pathway proteins, crossing the endoplasmic reticulum (ER) membrane is an irreversible process. However, in some cases this flow can be reversed. For instance, misfolded proteins retained in the ER are retrotranslocated to the cytosol to be degraded by the proteasome. This mechanism, known as ER associated degradation (ERAD), is exploited by several bacterial toxins to gain access to the cytosol. Interestingly, some ER resident proteins can also be detected in the cytosol or nucleus, calreticulin (CRT) being the most studied. Here we show that in Trypanosoma cruzi a minor fraction of CRT localized to the cytosol. ER calcium depletion, but not increasing cytosolic calcium, triggered the retrotranslocation of CRT in a relatively short period of time. Cytosolic CRT was subsequently degraded by the proteasome. Interestingly, the single disulfide bridge of CRT is reduced when the protein is located in the cytosol. The effect exerted by ER calcium was strictly dependent on the C-terminal domain (CRT-C), since a CRT lacking it was totally retained in the ER, whereas the localization of an unrelated protein fused to CRT-C mirrored that of endogenous CRT. This finding expands the regulatory mechanisms of protein sorting and may represent a new crossroad between diverse physiological processes.
Collapse
|
46
|
A mechanism of release of calreticulin from cells during apoptosis. J Mol Biol 2010; 401:799-812. [PMID: 20624402 DOI: 10.1016/j.jmb.2010.06.064] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Revised: 06/25/2010] [Accepted: 06/30/2010] [Indexed: 11/21/2022]
Abstract
Calreticulin (CRT) is an endoplasmic reticulum (ER) chaperone responsible for glycoprotein folding and Ca(2+) homeostasis. CRT also has extracellular functions, e.g. tumor and apoptotic cell recognition and wound healing, but the mechanism of CRT extracellular release is unknown. Cytosolic localization of CRT is determined by signal peptide and subsequent retrotranslocation of CRT into the cytoplasm. Here, we show that under apoptotic stress conditions, the cytosolic concentration of CRT increases and associates with phosphatidylserine (PS) in a Ca(2)(+)-dependent manner. PS distribution is regulated by aminophospholipid translocase (APLT), which maintains PS on the cytosolic side of the cell membrane. APLT is sensitive to redox modifications of its SH groups by reactive nitrogen species. During apoptosis, both CRT expression and the concentration of nitric oxide (NO) increase. By using S-nitroso-l-cysteine-ethyl-ester, an intracellular NO donor and inhibitor of APLT, we showed that PS and CRT externalization occurred together in an S-nitrosothiol-dependent and caspase-independent manner. Furthermore, the CRT and PS are relocated as punctate clusters on the cell surface. Thus, CRT induced nitrosylation and its externalization with PS could explain how CRT acts as a bridging molecule during apoptotic cell clearance.
Collapse
|
47
|
The arginylation-dependent association of calreticulin with stress granules is regulated by calcium. Biochem J 2010; 429:63-72. [PMID: 20423325 DOI: 10.1042/bj20091953] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Post-translational modifications of proteins are important for the regulation of cell functions; one of these modifications is post-translational arginylation. In the present study, we show that cytoplasmic CRT (calreticulin) is arginylated by ATE1 (arginyl-tRNA protein transferase). We also show that a pool of CRT undergoes retrotranslocation from the ER (endoplasmic reticulum) to the cytosol, because in CRT-knockout cells transfected with full-length CRT (that has the signal peptide), cytoplasmic CRT appears as a consequence of its expression and processing in the ER. After the cleavage of the signal peptide, an N-terminal arginylatable residue is revealed prior to retrotranslocation to the cytoplasm where arginylation takes place. SGs (stress granules) from ATE1-knockout cells do not contain CRT, indicating that CRT arginylation is required for its association to SGs. Furthermore, R-CRT (arginylated CRT) in the cytoplasm associates with SGs in cells treated with several stressors that lead to a reduction of intracellular Ca2+ levels. However, in the presence of stressors that do not affect Ca2+ levels, R-CRT is not recruited to these loci despite the fact that SGs are formed, demonstrating Ca2+-dependent R-CRT association to SGs. We conclude that post-translational arginylation of retrotranslocated CRT, together with the decrease in intracellular Ca2+, promotes the association of CRT to SGs.
Collapse
|
48
|
Arginylation-dependent neural crest cell migration is essential for mouse development. PLoS Genet 2010; 6:e1000878. [PMID: 20300656 PMCID: PMC2837401 DOI: 10.1371/journal.pgen.1000878] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Accepted: 02/09/2010] [Indexed: 11/19/2022] Open
Abstract
Coordinated cell migration during development is crucial for morphogenesis and largely relies on cells of the neural crest lineage that migrate over long distances to give rise to organs and tissues throughout the body. Recent studies of protein arginylation implicated this poorly understood posttranslational modification in the functioning of actin cytoskeleton and in cell migration in culture. Knockout of arginyltransferase (Ate1) in mice leads to embryonic lethality and severe heart defects that are reminiscent of cell migration-dependent phenotypes seen in other mouse models. To test the hypothesis that arginylation regulates cell migration during morphogenesis, we produced Wnt1-Cre Ate1 conditional knockout mice (Wnt1-Ate1), with Ate1 deletion in the neural crest cells driven by Wnt1 promoter. Wnt1-Ate1 mice die at birth and in the first 2-3 weeks after birth with severe breathing problems and with growth and behavioral retardation. Wnt1-Ate1 pups have prominent defects, including short palate and altered opening to the nasopharynx, and cranial defects that likely contribute to the abnormal breathing and early death. Analysis of neural crest cell movement patterns in situ and cell motility in culture shows an overall delay in the migration of Ate1 knockout cells that is likely regulated by intracellular mechanisms rather than extracellular signaling events. Taken together, our data suggest that arginylation plays a general role in the migration of the neural crest cells in development by regulating the molecular machinery that underlies cell migration through tissues and organs during morphogenesis.
Collapse
|
49
|
Saha S, Mundia MM, Zhang F, Demers RW, Korobova F, Svitkina T, Perieteanu AA, Dawson JF, Kashina A. Arginylation regulates intracellular actin polymer level by modulating actin properties and binding of capping and severing proteins. Mol Biol Cell 2010; 21:1350-61. [PMID: 20181827 PMCID: PMC2854093 DOI: 10.1091/mbc.e09-09-0829] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Actin arginylation regulates lamella formation in motile fibroblasts, but the underlying molecular mechanisms are unknown. To understand how arginylation affects the actin cytoskeleton, we investigated the biochemical properties and the structural organization of actin filaments in wild-type and arginyltransferase (Ate1) knockout cells. We found that Ate1 knockout results in a dramatic reduction of the actin polymer levels in vivo accompanied by a corresponding increase in the monomer level. Purified nonarginylated actin has altered polymerization properties, and actin filaments from Ate1 knockout cells show altered interactions with several associated proteins. Ate1 knockout cells have severe impairment of cytoskeletal organization throughout the cell. Thus, arginylation regulates the ability of actin to form filaments in the whole cell rather than preventing the collapse of preformed actin networks at the cell leading edge as proposed in our previous model. This regulation is achieved through interconnected mechanisms that involve actin polymerization per se and through binding of actin-associated proteins.
Collapse
Affiliation(s)
- Sougata Saha
- Department of Animal Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Gold LI, Eggleton P, Sweetwyne MT, Van Duyn LB, Greives MR, Naylor SM, Michalak M, Murphy-Ullrich JE. Calreticulin: non-endoplasmic reticulum functions in physiology and disease. FASEB J 2009; 24:665-83. [PMID: 19940256 DOI: 10.1096/fj.09-145482] [Citation(s) in RCA: 305] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Calreticulin (CRT), when localized to the endoplasmic reticulum (ER), has important functions in directing proper conformation of proteins and glycoproteins, as well as in homeostatic control of cytosolic and ER calcium levels. There is also steadily accumulating evidence for diverse roles for CRT localized outside the ER, including data suggesting important roles for CRT localized to the outer cell surface of a variety of cell types, in the cytosol, and in the extracellular matrix (ECM). Furthermore, the addition of exogenous CRT rescues numerous CRT-driven functions, such as adhesion, migration, phagocytosis, and immunoregulatory functions of CRT-null cells. Recent studies show that topically applied CRT has diverse and profound biological effects that enhance cutaneous wound healing in animal models. This evidence for extracellular bioactivities of CRT has provided new insights into this classically ER-resident protein, despite a lack of knowledge of how CRT exits from the ER to the cell surface or how it is released into the extracellular milieu. Nonetheless, it has become clear that CRT is a multicompartmental protein that regulates a wide array of cellular responses important in physiological and pathological processes, such as wound healing, the immune response, fibrosis, and cancer.-Gold, L. I., Eggleton, P., Sweetwyne, M. T., Van Duyn, L. B., Greives, M. R., Naylor, S.-M., Michalak, M., Murphy-Ullrich, J. E. Calreticulin: non-endoplamic reticulum functions in physiology and disease.
Collapse
Affiliation(s)
- Leslie I Gold
- Departments of Medicine and Pathology, New York, University School of Medicine, 550 First Ave., NB16S13 New York, NY 10016 USA.
| | | | | | | | | | | | | | | |
Collapse
|