1
|
Jayamali BPMV, Wijerathna HMSM, Sirisena DMKP, Hanchapola HACR, Warnakula WADLR, Arachchi UPE, Liyanage DS, Jung S, Wan Q, Lee J. Molecular depiction and functional delineation of E3 ubiquitin ligase MARCH5 in yellowtail clownfish (Amphiprion clarkii). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2025; 162:105283. [PMID: 39481581 DOI: 10.1016/j.dci.2024.105283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 10/10/2024] [Accepted: 10/27/2024] [Indexed: 11/02/2024]
Abstract
Membrane-associated Ring-CH 5 (MARCH5) is a mitochondrial E3 ubiquitin ligase playing a key role in the regulation of mitochondrial dynamics. In mammals, MARCH5 negatively regulates mitochondrial antiviral signaling (MAVS) protein aggregation during viral infection and hampers downstream type I interferon signaling to prevent excessive immune activation. However, its precise functional role in the teleost immune system remains unclear. This study investigated the molecular characteristics and immune response of the MARCH5 ortholog in Amphiprion clarkii (A. clarkii; AcMARCH5). The predicted AcMARCH5 protein sequence consists of 287 amino acids with a molecular weight of 32.02 kDa and a theoretical isoelectric point of 9.11. It contains four C-terminal transmembrane (TM) domains and an N-terminal RING cysteine-histidine (CH) domain, which directly regulates ubiquitin transfer. Multiple sequence alignment revealed a high level of conservation between AcMARCH5 and its orthologs in other vertebrate species. Under normal physiological conditions, AcMARCH5 showed the highest mRNA expression in the muscle, brain, and kidney tissues of A. clarkii. Upon stimulation with polyinosinic:polycytidylic acid (Poly I:C), lipopolysaccharide (LPS), and Vibrio harveyi, AcMARCH5 expression was drastically modulated. Functional assays showed that overexpression of AcMARCH5 in fathead minnow (FHM) cells downregulated antiviral gene expression, accompanied by enhanced viral hemorrhagic septicemia virus (VHSV) replication. In murine macrophages, AcMARCH5 overexpression markedly reduced the production of pro-inflammatory cytokines in response to poly I:C treatment. Additionally, AcMARCH5 exhibited an anti-apoptotic effect in H2O2-treated FHM cells. Collectively, these results suggest that AcMARCH5 may play a role in maintaining cellular homeostasis under disease and stress conditions in A. clarkii.
Collapse
Affiliation(s)
- B P M Vileka Jayamali
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - H M S M Wijerathna
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - D M K P Sirisena
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - H A C R Hanchapola
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - W A D L R Warnakula
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - U P E Arachchi
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - D S Liyanage
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - Sumi Jung
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Life Research Institute, Kidang Marine Science Institute of Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea
| | - Qiang Wan
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Life Research Institute, Kidang Marine Science Institute of Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea.
| | - Jehee Lee
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Life Research Institute, Kidang Marine Science Institute of Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea.
| |
Collapse
|
2
|
Lai WY, Chuang TP, Borenäs M, Lind DE, Hallberg B, Palmer RH. Anaplastic Lymphoma Kinase signaling stabilizes SLC3A2 expression via MARCH11 to promote neuroblastoma cell growth. Cell Death Differ 2024; 31:910-923. [PMID: 38858548 PMCID: PMC11239919 DOI: 10.1038/s41418-024-01319-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/12/2024] Open
Abstract
Solute Carrier Family 3, Member 2 (SLC3A2 or 4F2hc) is a multifunctional glycoprotein that mediates integrin-dependent signaling, acts as a trafficking chaperone for amino acid transporters, and is involved in polyamine transportation. We identified SLC3A2 as a potential Anaplastic Lymphoma Kinase (ALK) interacting partner in a BioID-proximity labeling screen in neuroblastoma (NB) cells. In this work we show that endogenous SLC3A2 and ALK interact in NB cells and that this SLC3A2:ALK interaction was abrogated upon treatment with the ALK inhibitor lorlatinib. We show here that loss of ALK activity leads to decreased SLC3A2 expression and reduced SLC3A2 protein stability in a panel of NB cell lines, while stimulation of ALK with ALKAL2 ligand resulted in increased SLC3A2 protein levels. We further identified MARCH11, an E3 ligase, as a regulator of SLC3A2 ubiquitination downstream of ALK. Further, knockdown of SLC3A2 resulted in inhibition of NB cell growth. To investigate the therapeutic potential of SLC3A2 targeting, we performed monotreatment of NB cells with AMXT-1501 (a polyamine transport inhibitor), which showed only moderate effects in NB cells. In contrast, a combination lorlatinib/AMXT-1501 treatment resulted in synergistic inhibition of cell growth in ALK-driven NB cell lines. Taken together, our results identify a novel role for the ALK receptor tyrosine kinase (RTK), working in concert with the MARCH11 E3 ligase, in regulating SLC3A2 protein stability and function in NB cells. The synergistic effect of combined ALK and polyamine transport inhibition shows that ALK/MARCH11/SLC3A2 regulation of amino acid transport is important for oncogenic growth and survival in NB cells.
Collapse
Affiliation(s)
- Wei-Yun Lai
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-40530, Gothenburg, Sweden
| | - Tzu-Po Chuang
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-40530, Gothenburg, Sweden
| | - Marcus Borenäs
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-40530, Gothenburg, Sweden
| | - Dan E Lind
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-40530, Gothenburg, Sweden
| | - Bengt Hallberg
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-40530, Gothenburg, Sweden.
| | - Ruth H Palmer
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-40530, Gothenburg, Sweden.
| |
Collapse
|
3
|
Ibragimov E, Eriksen EØ, Nielsen JP, Jørgensen CB, Fredholm M, Karlskov-Mortensen P. Towards identification of new genetic determinants for post-weaning diarrhea in piglets. Anim Genet 2024; 55:387-395. [PMID: 38343028 DOI: 10.1111/age.13406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 10/17/2023] [Accepted: 01/31/2024] [Indexed: 05/04/2024]
Abstract
Post-weaning diarrhea in pigs is a considerable challenge in the pig farming industry due to its effect on animal welfare and production costs, as well as the large volume of antibiotics, which are used to treat diarrhea in pigs after weaning. Previous studies have revealed loci on SSC6 and SSC13 associated with susceptibility to specific diarrhea causing pathogens. This study aimed to identify new genetic loci for resistance to diarrhea based on phenotypic data. In depth clinical characterization of diarrhea was performed in 257 pigs belonging to two herds during the first 14 days post weaning. The daily diarrhea assessments were used for the classification of pigs into case and control groups. Pigs were assigned to case and control groups based only on the incidence of diarrhea in the second week of the study in order to differentiate between differences in etiology. Genome-wide association studies and metabolomics association analysis were performed in order to identify new biological determinants for diarrhea susceptibility. With the present work, we revealed a new locus for diarrhea resistance on SSC16. Furthermore, studies of metabolomics in the same pigs revealed one metabolite associated with diarrhea.
Collapse
Affiliation(s)
- Emil Ibragimov
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Esben Østergaard Eriksen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Jens Peter Nielsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Claus B Jørgensen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Merete Fredholm
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Peter Karlskov-Mortensen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
4
|
Tang X, Wang Z, Jiang D, Chen M, Zhang D. Expression profile, subcellular localization of MARCH4 and transcriptome analysis of its potential regulatory signaling pathway in large yellow croaker (Larimichthys crocea). FISH & SHELLFISH IMMUNOLOGY 2022; 130:273-282. [PMID: 36126839 DOI: 10.1016/j.fsi.2022.09.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/22/2022] [Accepted: 09/10/2022] [Indexed: 06/15/2023]
Abstract
Membrane-associated RING-CH (MARCH) family, as Ring-type E3 ligases, have attracted extensive attention to their immune functions. MARCH4 plays an essential role in regulating immune response in mammal. In the present study, it is the first to report on MARCH4 characteristics and signal pathway in fish. MARCH4 in large yellow croaker Larimichthys crocea (named as LcMARCH4) encodes a RING-CH domain and two TM domains, as well as other function domains, including an N-terminal proline rich domain, an AxxxG-motif in TM1, a tyrosine-based YXXØ motif, and a C-terminal PDZ-binding domain. LcMARCH4 is a tissue-specific protein with highly significant expression in brain. The mRNA transcripts of LcMARCH4 were significantly induced in the main organs (skin, gill, spleen, and head-kidney) by C. irritans infection. Consistently, significant increase was observed in spleen and head-kidney after LPS, Poly I:C stimulation and V. parahaemolyticus infection. Subcellular localization analysis showed that LcMARCH4 was localized in the cytoplasm and membrane. Moreover, we found 46 DEGs in a comparative transcriptome analysis between the LcMARCH4 overexpression group and control vector group. The analysis showed that HSPA6, HSPA1B and DNAJB1 might play important regulatory roles to MARCH4 in fish. Notably, two noncoding RNA, both RN7SL1 and RN7SL2, the expression levels went up in MARCH4 overexpression cells. Taken together, this study will provide new insights into finfish MARCH4 and its potential regulatory signaling pathway as well.
Collapse
Affiliation(s)
- Xin Tang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen, China
| | - Zhiyong Wang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Dan Jiang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen, China
| | - Meiling Chen
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen, China
| | - Dongling Zhang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen, China.
| |
Collapse
|
5
|
Xiong Y, Yu C, Zhang Q. Ubiquitin-Proteasome System-Regulated Protein Degradation in Spermatogenesis. Cells 2022; 11:1058. [PMID: 35326509 PMCID: PMC8947704 DOI: 10.3390/cells11061058] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/14/2022] [Accepted: 03/18/2022] [Indexed: 12/12/2022] Open
Abstract
Spermatogenesis is a prolonged and highly ordered physiological process that produces haploid male germ cells through more than 40 steps and experiences dramatic morphological and cellular transformations. The ubiquitin proteasome system (UPS) plays central roles in the precise control of protein homeostasis to ensure the effectiveness of certain protein groups at a given stage and the inactivation of them after this stage. Many UPS components have been demonstrated to regulate the progression of spermatogenesis at different levels. Especially in recent years, novel testis-specific proteasome isoforms have been identified to be essential and unique for spermatogenesis. In this review, we set out to discuss our current knowledge in functions of diverse USP components in mammalian spermatogenesis through: (1) the composition of proteasome isoforms at each stage of spermatogenesis; (2) the specificity of each proteasome isoform and the associated degradation events; (3) the E3 ubiquitin ligases mediating protein ubiquitination in male germ cells; and (4) the deubiquitinases involved in spermatogenesis and male fertility. Exploring the functions of UPS machineries in spermatogenesis provides a global picture of the proteome dynamics during male germ cell production and shed light on the etiology and pathogenesis of human male infertility.
Collapse
Affiliation(s)
- Yi Xiong
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, International Campus, Zhejiang University, 718 East Haizhou Rd, Haining 314400, China;
| | - Chao Yu
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Assisted Reproduction Unit, Department of Obstetrics and Gynecology, School of Medicine, Zhejiang University, Sir Run Run Shaw Hospital, 3 East Qing Chun Rd, Hangzhou 310020, China;
- College of Life Sciences, Zhejiang University, 866 Yuhangtang Rd, Hangzhou 310058, China
| | - Qianting Zhang
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, International Campus, Zhejiang University, 718 East Haizhou Rd, Haining 314400, China;
- Department of Dermatology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310029, China
| |
Collapse
|
6
|
Vrba L, Futscher BW, Oshiro M, Watts GS, Menashi E, Hu C, Hammad H, Pennington DR, Golconda U, Gavini H, Roe DJ, Shroff RT, Nelson MA. Liquid biopsy, using a novel DNA methylation signature, distinguishes pancreatic adenocarcinoma from benign pancreatic disease. Clin Epigenetics 2022; 14:28. [PMID: 35193708 PMCID: PMC8864826 DOI: 10.1186/s13148-022-01246-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/09/2022] [Indexed: 12/17/2022] Open
Abstract
We tested the ability of a novel DNA methylation biomarker set to distinguish metastatic pancreatic cancer cases from benign pancreatic cyst patients and to monitor tumor dynamics using quantitative DNA methylation analysis of cell-free DNA (cfDNA) from blood samples. The biomarkers were able to distinguish malignant cases from benign disease with high sensitivity and specificity (AUC = 0.999). Furthermore, the biomarkers detected a consistent decline in tumor-derived cfDNA in samples from patients undergoing chemotherapy. The study indicates that our liquid biopsy assay could be useful for management of pancreatic cancer patients.
Collapse
Affiliation(s)
- Lukas Vrba
- The University of Arizona Cancer Center, Tucson, AZ, USA.,Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, USA
| | - Bernard W Futscher
- The University of Arizona Cancer Center, Tucson, AZ, USA.,Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, USA.,Precision Epigenomics Inc, Tucson, AZ, USA
| | - Marc Oshiro
- The University of Arizona Cancer Center, Tucson, AZ, USA
| | - George S Watts
- The University of Arizona Cancer Center, Tucson, AZ, USA.,Department of Medical Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | | | - Charles Hu
- Dignity Health Chandler Regional Medical Center, Chandler, AZ, USA
| | - Hytham Hammad
- The University of Arizona Cancer Center, Tucson, AZ, USA.,Division of Hematology/Oncology, Department of Medicine, University of Arizona Caner Center, Tucson, AZ, USA
| | - Daniel R Pennington
- The University of Arizona Cancer Center, Tucson, AZ, USA.,Division of Hematology/Oncology, Department of Medicine, University of Arizona Caner Center, Tucson, AZ, USA
| | | | - Hemanth Gavini
- Division of Hematology/Oncology, Department of Medicine, University of Arizona Caner Center, Tucson, AZ, USA
| | - Denise J Roe
- The University of Arizona Cancer Center, Tucson, AZ, USA
| | - Rachna T Shroff
- The University of Arizona Cancer Center, Tucson, AZ, USA.,Division of Hematology/Oncology, Department of Medicine, University of Arizona Caner Center, Tucson, AZ, USA
| | - Mark A Nelson
- The University of Arizona Cancer Center, Tucson, AZ, USA. .,Department of Pathology, College of Medicine, University of Arizona, Tucson, AZ, USA. .,Precision Epigenomics Inc, Tucson, AZ, USA.
| |
Collapse
|
7
|
MARCH8 Restricts Influenza A Virus Infectivity but Does Not Downregulate Viral Glycoprotein Expression at the Surface of Infected Cells. mBio 2021; 12:e0148421. [PMID: 34517760 PMCID: PMC8546552 DOI: 10.1128/mbio.01484-21] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Membrane-associated RING-CH8 (MARCH8) impairs the cell surface expression of envelope glycoproteins from different viruses, reducing their incorporation into virions. Using stable cell lines with inducible MARCH8 expression, we show that MARCH8 did not alter susceptibility to influenza A virus (IAV) infection, but virions released from infected cells were markedly less infectious. Knockdown of endogenous MARCH8 confirmed its effect on IAV infectivity. The expression of MARCH8 impaired the infectivity of both H3N2 and H1N1 strains and was dependent on its E3 ligase activity. Although virions released in the presence of MARCH8 expressed smaller amounts of viral hemagglutinin (HA) and neuraminidase (NA) proteins, there was no impact on levels of the viral HA, NA, or matrix 2 (M2) proteins detected on the surface of infected cells. Moreover, mutation of lysine residues in the cytoplasmic tails of HA, NA, and/or M2, or in the viral M1 protein, did not abrogate MARCH8-mediated restriction. While MARCH1 and -8 target similar immunological ligands and both restrict HIV-1, only MARCH8 inhibited IAV infectivity. Deletion of the N-terminal cytoplasmic (N-CT) domain of MARCH8 confirmed it to be a critical determinant of IAV inhibition. Of interest, deletion of the MARCH1 N-CT or its replacement with the MARCH8 N-CT resulted in acquisition of IAV restriction. Together, these data demonstrate that MARCH8 restricts a late stage in IAV replication by a mechanism distinct to its reported activity against other viruses. Moreover, we show that the N-CT of MARCH8 is essential for anti-IAV activity, whereas the MARCH1 N-CT inhibits its ability to restrict IAV.
Collapse
|
8
|
Chen W, Patel D, Jia Y, Yu Z, Liu X, Shi H, Liu H. MARCH8 Suppresses Tumor Metastasis and Mediates Degradation of STAT3 and CD44 in Breast Cancer Cells. Cancers (Basel) 2021; 13:2550. [PMID: 34067416 PMCID: PMC8196951 DOI: 10.3390/cancers13112550] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/16/2021] [Accepted: 05/17/2021] [Indexed: 12/03/2022] Open
Abstract
Protein stability is largely regulated by post-translational modifications, such as ubiquitination, which is mediated by ubiquitin-activating enzyme E1, ubiquitin-conjugating enzyme E2, and ubiquitin ligase E3 with substrate specificity. Membrane-associated RING-CH (MARCH) proteins represent one novel family of transmembrane E3 ligases which target glycoproteins for lysosomal destruction. While most of the MARCH family members are known to degrade membrane proteins in immune cells, their tumor-intrinsic role is largely unknown. In this study, we found that the expression of one MARCH family member, MARCH8, is specifically downregulated in breast cancer tissues and positively correlated with breast cancer survival rate according to bioinformatic analysis of The Cancer Genomic Atlas (TCGA) dataset. MARCH8 protein expression was also lower in a variety of human breast cancer cell lines in comparison to immortalized human mammary epithelial MCF-12A cells. Restoration of MARCH8 expression induced apoptosis in human breast cancer cell lines MDA-MB-231 and BT549. Stable expression of MARCH8 inhibited tumorigenesis and lung metastases of MDA-MB-231 cells in mice. Moreover, we discovered that the breast cancer stem-cell marker and metastasis driver CD44, a membrane protein, interacts with MARCH8 and is one of the glycoprotein targets subject to MARCH8-dependent lysosomal degradation. Unexpectedly, we identified a nonmembrane protein, signal transducer and transcription activator 3 (STAT3), as another essential ubiquitination target of MARCH8, whose degradation through the proteasome pathway is responsible for the proapoptotic changes mediated by MARCH8. These findings highlight a novel tumor-suppressing function of MARCH8 in targeting both membrane and nonmembrane protein targets required for the survival and metastasis of breast cancer cells.
Collapse
Affiliation(s)
- Wenjing Chen
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (W.C.); (D.P.); (Y.J.); (Z.Y.); (X.L.)
| | - Dhwani Patel
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (W.C.); (D.P.); (Y.J.); (Z.Y.); (X.L.)
| | - Yuzhi Jia
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (W.C.); (D.P.); (Y.J.); (Z.Y.); (X.L.)
| | - Zihao Yu
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (W.C.); (D.P.); (Y.J.); (Z.Y.); (X.L.)
| | - Xia Liu
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (W.C.); (D.P.); (Y.J.); (Z.Y.); (X.L.)
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40506, USA
| | - Hengliang Shi
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (W.C.); (D.P.); (Y.J.); (Z.Y.); (X.L.)
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou 221006, China
- Central Laboratory, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221006, China
| | - Huiping Liu
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (W.C.); (D.P.); (Y.J.); (Z.Y.); (X.L.)
- Department of Medicine, the Division of Hematology and Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
9
|
Tada T, Zhang Y, Fujita H, Tokunaga K. MARCH8: the tie that binds to viruses. FEBS J 2021; 289:3642-3654. [PMID: 33993615 DOI: 10.1111/febs.16017] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/23/2021] [Accepted: 05/12/2021] [Indexed: 11/28/2022]
Abstract
Membrane-associated RING-CH (MARCH) family member proteins are RING-finger E3 ubiquitin ligases that are known to downregulate cellular transmembrane proteins. MARCH8 is a novel antiviral factor that inhibits HIV-1 envelope glycoprotein and vesicular stomatitis virus G by downregulating these envelope glycoproteins from the cell surface, resulting in their reduced incorporation into virions. More recently, we have found that MARCH8 reduces viral infectivity via two different mechanisms. Additionally, several groups have reported further antiviral or virus-supportive functions of the MARCH8 protein and its other cellular mechanisms. In this review, we summarize the current knowledge about the molecular mechanisms by which MARCH8 can regulate cellular homeostasis and inhibit and occasionally support enveloped virus infection.
Collapse
Affiliation(s)
- Takuya Tada
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan.,Department of Microbiology, NYU School of Medicine, NY, USA
| | - Yanzhao Zhang
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hideaki Fujita
- Faculty of Pharmaceutical Sciences, Nagasaki International University, Japan
| | - Kenzo Tokunaga
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
10
|
da Cruz AS, Silva DC, Minasi LB, de Farias Teixeira LK, Rodrigues FM, da Silva CC, do Carmo AS, da Silva MVGB, Utsunomiya YT, Garcia JF, da Cruz AD. Single-Nucleotide Polymorphism Variations Associated With Specific Genes Putatively Identified Enhanced Genetic Predisposition for 305-Day Milk Yield in the Girolando Crossbreed. Front Genet 2021; 11:573344. [PMID: 33584786 PMCID: PMC7876550 DOI: 10.3389/fgene.2020.573344] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 12/07/2020] [Indexed: 01/18/2023] Open
Abstract
Milk production phenotypes are the main focus of genetic selection in dairy herds, and although there are many genes identified as related to the biology of these traits in pure breeds, little is known about crossbreed animals. This study aimed to identify potential genes associated with the 305-day milk yield in 337 crossbreed Gir × Holstein (Girolando) animals. Milk production records were genotyped for 45,613 single-nucleotide polymorphisms (SNPs). This dataset was used for a genome-wide association study (GWAS) using the 305-day milk yield adjusted for the fixed effects of herd and year and linear and quadratic effects of age at calving (in days) and calving factor averaged per animal. Genes within the significant SNPs were retrieved from the Bos taurus ARS-UCD1.2 assembly (bosTau9) for gene ontology analysis. In summary, the GWAS identified 52 SNPs associated [p ≤ 10–4, false discovery rate (FDR) = 8.77%] with milk production, including NUB1 and SLC24A2, which were previously described as related to milk production traits in cattle. The results suggest that SNPs associated mainly with NUB1 and SLC24A2 could be useful to understand milk production in Girolando and used as predictive markers for selecting genetic predisposition for milk yield in Girolando.
Collapse
Affiliation(s)
- Alex Silva da Cruz
- Mestrado em Genética, Núcleo de Pesquisas Replicon, Escola de Ciências Agrárias e Biológicas, Pontifícia Universidade Católica de Goiás, Goiânia, Brazil
| | - Danilo Conrado Silva
- Curso de Graduação em Medicina Veterinária, Instituto Acadêmico de Ciências Agrárias e Sustentabilidade, Universidade Estadual de Goiás, São Luís de Montes Belos, Brazil
| | - Lysa Bernardes Minasi
- Mestrado em Genética, Núcleo de Pesquisas Replicon, Escola de Ciências Agrárias e Biológicas, Pontifícia Universidade Católica de Goiás, Goiânia, Brazil
| | - Larissa Kamídia de Farias Teixeira
- Mestrado em Genética, Núcleo de Pesquisas Replicon, Escola de Ciências Agrárias e Biológicas, Pontifícia Universidade Católica de Goiás, Goiânia, Brazil
| | - Flávia Melo Rodrigues
- Mestrado em Genética, Núcleo de Pesquisas Replicon, Escola de Ciências Agrárias e Biológicas, Pontifícia Universidade Católica de Goiás, Goiânia, Brazil
| | - Claudio Carlos da Silva
- Mestrado em Genética, Núcleo de Pesquisas Replicon, Escola de Ciências Agrárias e Biológicas, Pontifícia Universidade Católica de Goiás, Goiânia, Brazil
| | - Adriana Santana do Carmo
- Escola de Veterinária e Zootecnia, Departamento de Zootecnia, Universidade Federal de Goiás, Goiânia, Brazil
| | | | - Yuri Tani Utsunomiya
- Departamento de Apoio a Produção e Saúde Animal, Faculdade de Medicina Veterinária, Universidade Estadual Paulista Júlio de Mesquita Filho, Araçatuba, Brazil
| | - José Fernando Garcia
- Departamento de Apoio a Produção e Saúde Animal, Faculdade de Medicina Veterinária, Universidade Estadual Paulista Júlio de Mesquita Filho, Araçatuba, Brazil
| | - Aparecido Divino da Cruz
- Mestrado em Genética, Núcleo de Pesquisas Replicon, Escola de Ciências Agrárias e Biológicas, Pontifícia Universidade Católica de Goiás, Goiânia, Brazil
| |
Collapse
|
11
|
Zhang Y, Tada T, Ozono S, Kishigami S, Fujita H, Tokunaga K. MARCH8 inhibits viral infection by two different mechanisms. eLife 2020; 9:57763. [PMID: 32778221 PMCID: PMC7419139 DOI: 10.7554/elife.57763] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 07/30/2020] [Indexed: 12/03/2022] Open
Abstract
Membrane-associated RING-CH 8 (MARCH8) inhibits infection with both HIV-1 and vesicular stomatitis virus G-glycoprotein (VSV-G)-pseudotyped viruses by reducing virion incorporation of envelope glycoproteins. The molecular mechanisms by which MARCH8 targets envelope glycoproteins remain unknown. Here, we show two different mechanisms by which MARCH8 inhibits viral infection. Viruses pseudotyped with the VSV-G mutant, in which cytoplasmic lysine residues were mutated, were insensitive to the inhibitory effect of MARCH8, whereas those with a similar lysine mutant of HIV-1 Env remained sensitive to it. Indeed, the wild-type VSV-G, but not its lysine mutant, was ubiquitinated by MARCH8. Furthermore, the MARCH8 mutant, which had a disrupted cytoplasmic tyrosine motif that is critical for intracellular protein sorting, did not inhibit HIV-1 Env-mediated infection, while it still impaired infection by VSV-G-pseudotyped viruses. Overall, we conclude that MARCH8 reduces viral infectivity by downregulating envelope glycoproteins through two different mechanisms mediated by a ubiquitination-dependent or tyrosine motif-dependent pathway.
Collapse
Affiliation(s)
- Yanzhao Zhang
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takuya Tada
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Seiya Ozono
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan.,Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi, Japan
| | - Satoshi Kishigami
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi, Japan
| | - Hideaki Fujita
- Faculty of Pharmaceutical Sciences, Nagasaki International University, Nagasaki, Japan
| | - Kenzo Tokunaga
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
12
|
Lin H, Li S, Shu HB. The Membrane-Associated MARCH E3 Ligase Family: Emerging Roles in Immune Regulation. Front Immunol 2019; 10:1751. [PMID: 31404274 PMCID: PMC6669941 DOI: 10.3389/fimmu.2019.01751] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 07/10/2019] [Indexed: 01/13/2023] Open
Abstract
The membrane-associated RING-CH-type finger (MARCH) proteins of E3 ubiquitin ligases have emerged as critical regulators of immune responses. MARCH proteins target immune receptors, viral proteins as well as components in innate immune response for polyubiquitination and degradations via distinct routes. This review summarizes the current progress about MARCH proteins and their regulation on immune responses.
Collapse
Affiliation(s)
- Heng Lin
- Department of Infectious Diseases, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Shu Li
- Department of Infectious Diseases, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Hong-Bing Shu
- Department of Infectious Diseases, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| |
Collapse
|
13
|
Kiser JN, Keuter EM, Seabury CM, Neupane M, Moraes JGN, Dalton J, Burns GW, Spencer TE, Neibergs HL. Validation of 46 loci associated with female fertility traits in cattle. BMC Genomics 2019; 20:576. [PMID: 31299913 PMCID: PMC6624949 DOI: 10.1186/s12864-019-5935-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 06/25/2019] [Indexed: 12/25/2022] Open
Abstract
Background Subfertility is one challenge facing the dairy industry as the average Holstein heifer conception rate (HCR), the proportion of heifers that conceive and maintain a pregnancy per breeding, is estimated at 55–60%. Of the loci associated with HCR, few have been validated in an independent cattle population, limiting their usefulness for selection or furthering our understanding of the mechanisms involved in successful pregnancy. Therefore, the objectives here were to identify loci associated with HCR: 1) to the first artificial insemination (AI) service (HCR1), 2) to repeated AI services required for a heifer to conceive (TBRD) and 3) to validate loci previously associated with fertility. Breeding and health records from 3359 Holstein heifers were obtained after heifers were bred by AI at observed estrus, with pregnancy determined at day 35 via palpation. Heifer DNA was genotyped using the Illumina BovineHD BeadChip, and genome-wide association analyses (GWAA) were performed with additive, dominant and recessive models using the Efficient Mixed Model Association eXpedited (EMMAX) method with a relationship matrix for two phenotypes. The HCR1 GWAA compared heifers that were pregnant after the first AI service (n = 497) to heifers that were open following the first AI service (n = 405), which included those that never conceived. The TBRD GWAA compared only those heifers which did conceive, across variable numbers of AI service (n = 712). Comparison of loci previously associated with fertility, HCR1 or TBRD were considered the same locus for validation when in linkage disequilibrium (D’ > 0.7). Results The HCR1 GWAA identified 116, 187 and 28 loci associated (P < 5 × 10− 8) in additive, dominant and recessive models, respectively. The TBRD GWAA identified 235, 362, and 69 QTL associated (P < 5 × 10− 8) with additive, dominant and recessive models, respectively. Loci previously associated with fertility were in linkage disequilibrium with 22 loci shared with HCR1 and TBRD, 5 HCR1 and 19 TBRD loci. Conclusions Loci associated with HCR1 and TBRD that have been identified and validated can be used to improve HCR through genomic selection, and to better understand possible mechanisms associated with subfertility. Electronic supplementary material The online version of this article (10.1186/s12864-019-5935-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jennifer N Kiser
- Department of Animal Sciences and Center for Reproductive Biology, Washington State University, Pullman, WA, USA
| | - Elizabeth M Keuter
- Department of Animal Sciences and Center for Reproductive Biology, Washington State University, Pullman, WA, USA
| | - Christopher M Seabury
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX, USA
| | - Mahesh Neupane
- Department of Animal Sciences and Center for Reproductive Biology, Washington State University, Pullman, WA, USA
| | - Joao G N Moraes
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Joseph Dalton
- Department of Animal and Veterinary Sciences, University of Idaho, Caldwell, ID, USA
| | - Gregory W Burns
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Thomas E Spencer
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Holly L Neibergs
- Department of Animal Sciences and Center for Reproductive Biology, Washington State University, Pullman, WA, USA.
| |
Collapse
|
14
|
Comprehensive Molecular Characterization of Adamantinoma and OFD-like Adamantinoma Bone Tumors. Am J Surg Pathol 2019; 43:965-974. [DOI: 10.1097/pas.0000000000001251] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
15
|
Transcriptional Analysis Shows a Robust Host Response to Toxoplasma gondii during Early and Late Chronic Infection in Both Male and Female Mice. Infect Immun 2019; 87:IAI.00024-19. [PMID: 30858341 DOI: 10.1128/iai.00024-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 03/01/2019] [Indexed: 01/01/2023] Open
Abstract
The long-term host effects caused by the protozoan parasite Toxoplasma gondii are poorly understood. High-throughput RNA sequencing analysis previously determined that the host response in the brain was greater and more complex at 28 days than at 10 days postinfection. Here, we analyzed the host transcriptional profile of age- and sex-matched mice during very early (21 days), early (28 days), mid (3 months), and late (6 months) chronic infection. We found that a majority of the host genes which increase in abundance at day 21 postinfection are still increased at 6 months postinfection for both male and female mice. While most of the differentially expressed genes were similar between sexes, females had far fewer genes that were significantly less abundant, which may have led to the slightly increased cyst burden in males. Transcripts for C-X-C motif chemokine ligand 13 and a C-C motif chemokine receptor 2 (CCR2) were significantly higher in females than in males during infection. As T. gondii chronic infection and profilin (PRF) confer resistance to Listeria monocytogenes infection in a CCR2-dependent manner, the differences in CCR2 expression led us to retest the protection of PRF in both sexes. Male mice were nearly as effective as female mice at reducing the bacterial burden either with a chronic infection or when treated with PRF. These data show that most of the host genes differentially expressed in response to T. gondii infection are similar between males and females. While differences in transcript abundance exist between the sexes, the infection phenotypes tested here did not show significant differences.
Collapse
|
16
|
Kang Z, Jiang E, Wang K, Pan C, Chen H, Yan H, Zhu H, Liu J, Qu L, Lan X. Goat membrane associated ring-CH-type finger 1 (MARCH1) mRNA expression and association with litter size. Theriogenology 2019; 128:8-16. [DOI: 10.1016/j.theriogenology.2019.01.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 12/28/2018] [Accepted: 01/13/2019] [Indexed: 01/09/2023]
|
17
|
Zhang Y, Tada T, Ozono S, Yao W, Tanaka M, Yamaoka S, Kishigami S, Fujita H, Tokunaga K. Membrane-associated RING-CH (MARCH) 1 and 2 are MARCH family members that inhibit HIV-1 infection. J Biol Chem 2019; 294:3397-3405. [PMID: 30630952 DOI: 10.1074/jbc.ac118.005907] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 01/08/2019] [Indexed: 11/06/2022] Open
Abstract
Membrane-associated RING-CH 8 (MARCH8) is one of 11 members of the MARCH family of RING finger E3 ubiquitin ligases and down-regulates several membrane proteins (e.g. major histocompatibility complex II [MHC-II], CD86, and transferrin receptor). We recently reported that MARCH8 also targets HIV-1 envelope glycoproteins and acts as an antiviral factor. However, it remains unclear whether other family members might have antiviral functions similar to those of MARCH8. Here we show that MARCH1 and MARCH2 are MARCH family members that reduce virion incorporation of envelope glycoproteins. Infectivity assays revealed that MARCH1 and MARCH2 dose-dependently suppress viral infection. Treatment with type I interferon enhanced endogenous expression levels of MARCH1 and MARCH2 in monocyte-derived macrophages. Expression of these proteins in virus-producing cells decreased the efficiency of viral entry and down-regulated HIV-1 envelope glycoproteins from the cell surface, resulting in reduced incorporation of envelope glycoproteins into virions, as observed in MARCH8 expression. With the demonstration that MARCH1 and MARCH2 are antiviral MARCH family members as presented here, these two proteins join a growing list of host factors that inhibit HIV-1 infection.
Collapse
Affiliation(s)
- Yanzhao Zhang
- From the Department of Pathology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Takuya Tada
- From the Department of Pathology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Seiya Ozono
- From the Department of Pathology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan.,the Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi 400-8510, Japan
| | - Weitong Yao
- From the Department of Pathology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan.,the Department of Molecular Virology, Tokyo Medical and Dental University, Tokyo 113-8519, and
| | - Michiko Tanaka
- From the Department of Pathology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Shoji Yamaoka
- the Department of Molecular Virology, Tokyo Medical and Dental University, Tokyo 113-8519, and
| | - Satoshi Kishigami
- the Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi 400-8510, Japan
| | - Hideaki Fujita
- the Faculty of Pharmaceutical Sciences, Nagasaki International University, Nagasaki 859-3298, Japan
| | - Kenzo Tokunaga
- From the Department of Pathology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan,
| |
Collapse
|
18
|
Tesner P, Drabova J, Stolfa M, Kudr M, Kyncl M, Moslerova V, Novotna D, Kremlikova Pourova R, Kocarek E, Rasplickova T, Sedlacek Z, Vlckova M. A boy with developmental delay and mosaic supernumerary inv dup(5)(p15.33p15.1) leading to distal 5p tetrasomy - case report and review of the literature. Mol Cytogenet 2018; 11:29. [PMID: 29760779 PMCID: PMC5941596 DOI: 10.1186/s13039-018-0377-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 04/20/2018] [Indexed: 01/01/2023] Open
Abstract
Background With only 11 patients reported, 5p tetrasomy belongs to rare postnatal findings. Most cases are due to small supernumerary marker chromosomes (sSMCs) or isochromosomes. The patients share common but unspecific symptoms such as developmental delay, seizures, ventriculomegaly, hypotonia, and fifth finger clinodactyly. Simple interstitial duplications leading to trisomies of parts of 5p are much more frequent and better described. Duplications encompassing 5p13.2 cause a defined syndrome with macrocephaly, distinct facial phenotype, heart defects, talipes equinovarus, feeding difficulties, respiratory distress and anomalies of the central nervous system, developmental delay and hypotonia. Case presentation We present a boy with dysmorphic features, developmental delay, intellectual disability and congenital anomalies, and a mosaic sSMC inv dup(5)(p15.33p15.1). He is the fourth and the oldest reported patient with distal 5p tetrasomy. His level of mosaicism was significantly different in lymphocytes (13.2%) and buccal cells (64.7%). The amplification in our patient is smaller than that in the three previously published patients but the only phenotype difference is the absence of seizures in our patient. Conclusions Our observations indicate that for the assessment of prognosis, especially with respect to intellectual functioning, the level of mosaicism could be more important than the extent of amplification and the number of extra copies. Evaluation of the phenotypical effect of rare chromosomal aberrations is challenging and each additional case is valuable for refinement of the genotype-phenotype correlation. Moreover, our patient demonstrates that if the phenotype is severe and if the level of sSMC mosaicism is low in lymphocytes, other tissues should be tested. Electronic supplementary material The online version of this article (10.1186/s13039-018-0377-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pavel Tesner
- 1Department of Biology and Medical Genetics, Charles University 2nd Faculty of Medicine and University Hospital Motol, V Uvalu 84, 15006 Prague 5, Czech Republic
| | - Jana Drabova
- 1Department of Biology and Medical Genetics, Charles University 2nd Faculty of Medicine and University Hospital Motol, V Uvalu 84, 15006 Prague 5, Czech Republic
| | - Miroslav Stolfa
- 1Department of Biology and Medical Genetics, Charles University 2nd Faculty of Medicine and University Hospital Motol, V Uvalu 84, 15006 Prague 5, Czech Republic
| | - Martin Kudr
- 2Department of Paediatric Neurology, Charles University 2nd Faculty of Medicine and University Hospital Motol, V Uvalu 84, 15006 Prague 5, Czech Republic
| | - Martin Kyncl
- 3Department of Radiology, Charles University 2nd Faculty of Medicine and University Hospital Motol, V Uvalu 84, 15006 Prague 5, Czech Republic
| | - Veronika Moslerova
- 1Department of Biology and Medical Genetics, Charles University 2nd Faculty of Medicine and University Hospital Motol, V Uvalu 84, 15006 Prague 5, Czech Republic
| | - Drahuse Novotna
- 1Department of Biology and Medical Genetics, Charles University 2nd Faculty of Medicine and University Hospital Motol, V Uvalu 84, 15006 Prague 5, Czech Republic
| | - Radka Kremlikova Pourova
- 1Department of Biology and Medical Genetics, Charles University 2nd Faculty of Medicine and University Hospital Motol, V Uvalu 84, 15006 Prague 5, Czech Republic
| | - Eduard Kocarek
- 1Department of Biology and Medical Genetics, Charles University 2nd Faculty of Medicine and University Hospital Motol, V Uvalu 84, 15006 Prague 5, Czech Republic
| | - Tereza Rasplickova
- 1Department of Biology and Medical Genetics, Charles University 2nd Faculty of Medicine and University Hospital Motol, V Uvalu 84, 15006 Prague 5, Czech Republic
| | - Zdenek Sedlacek
- 1Department of Biology and Medical Genetics, Charles University 2nd Faculty of Medicine and University Hospital Motol, V Uvalu 84, 15006 Prague 5, Czech Republic
| | - Marketa Vlckova
- 1Department of Biology and Medical Genetics, Charles University 2nd Faculty of Medicine and University Hospital Motol, V Uvalu 84, 15006 Prague 5, Czech Republic
| |
Collapse
|
19
|
Bauer J, Bakke O, Morth JP. Overview of the membrane-associated RING-CH (MARCH) E3 ligase family. N Biotechnol 2017; 38:7-15. [DOI: 10.1016/j.nbt.2016.12.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 12/05/2016] [Accepted: 12/13/2016] [Indexed: 12/17/2022]
|
20
|
Liu S, Yin H, Li C, Qin C, Cai W, Cao M, Zhang S. Genetic effects of PDGFRB and MARCH1 identified in GWAS revealing strong associations with semen production traits in Chinese Holstein bulls. BMC Genet 2017; 18:63. [PMID: 28673243 PMCID: PMC5496367 DOI: 10.1186/s12863-017-0527-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 06/19/2017] [Indexed: 11/11/2022] Open
Abstract
Background Using a genome-wide association study strategy, our previous study discovered 19 significant single-nucleotide polymorphisms (SNPs) related to semen production traits in Chinese Holstein bulls. Among them, three SNPs were within or close to the phosphodiesterase 3A (PDE3A), membrane associated ring-CH-type finger 1 (MARCH1) and platelet derived growth factor receptor beta (PDGFRB) genes. The present study was designed with the objectives of identifying genetic polymorphism of the PDE3A, PDGFRB and MARCH1 genes and their effects on semen production traits in a Holstein bull population. Results A total of 20 SNPs were detected and genotyped in 730 bulls. Association analyses using de-regressed estimated breeding values of each semen production trait revealed four statistically significant SNPs for one or more semen production traits (P < 0.05): one SNP was located downstream of PDGFRB and three SNPs were located in the promoter of MARCH1. Interestingly, for MARCH1, haplotype-based analysis revealed significant associations of haplotypes with semen volume per ejaculate. Furthermore, high expression of the MARCH1 gene was observed in sperm cells. One SNP (rs43445726) in the regulatory region of MARCH1 had a significant effect on gene expression. Conclusion Our study demonstrated the significant associations of genetic variants of the PDGFRB and MARCH1 genes with semen production traits. The identified SNPs may serve as genetic markers to optimize breeding programs for semen production traits in Holstein bull populations. Electronic supplementary material The online version of this article (doi:10.1186/s12863-017-0527-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shuli Liu
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, 100193, China
| | - Hongwei Yin
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, 100193, China
| | - Cong Li
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, 100193, China
| | - Chunhua Qin
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, 100193, China
| | - Wentao Cai
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, 100193, China
| | - Mingyue Cao
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, 100193, China
| | - Shengli Zhang
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
21
|
Zhang L, Wang H, Tian L, Li H. Expression of USP7 and MARCH7 Is Correlated with Poor Prognosis in Epithelial Ovarian Cancer. TOHOKU J EXP MED 2017; 239:165-75. [PMID: 27302477 DOI: 10.1620/tjem.239.165] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Epithelial ovarian cancer (EOC) is one of the worst malignancies in females with poor overall survival due to the rapid metastasis and the absence of ideal biomarkers. Ubiquitin-specific protease 7 (USP7), an important deubiquitinating enzyme, was reported to be upregulated in several cancers, including liver, prostate and colon cancers. Membrane associated RING-CH protein 7 (MARCH7) belongs to the member of the E3 ubiquitin ligases. In addition, MARCH7 regulates T cell proliferation and the neuronal development and participates in the membrane trafficking and protein degradation. Importantly, MARCH7 itself is ubiquitinated and acts as a potential substrate of USP7. However, the roles of USP7 and MARCH7 in EOC remain to be investigated. We collected 121 EOC patients and analyzed the expression levels of USP7 and MARCH7 in tumor tissues with immunohistochemical staining. We found that the high expression of the two proteins was correlated with lymph node metastasis in EOC patients. Univariate and multivariate analyses revealed that the patients with high expression of the two proteins showed poorer prognosis compared with other patients. Subsequently, using SKOV3 human ovarian adenocarcinoma cells, we showed that either USP7 or MARCH7 enhanced the proliferation and invasion abilities. Moreover, USP7 could regulate the expression levels of E-cadherin and β-catenin through the MARCH7 signaling pathway. Our findings indicate that USP7 and MARCH7 are involved in the progression of EOC. In conclusion, analyzing the expression of USP7 and MARCH7 has high prognostic value in predicting EOC prognosis.
Collapse
Affiliation(s)
- Li Zhang
- Yidu Central Hospital of Weifang
| | | | | | | |
Collapse
|
22
|
Abstract
Newly synthesized transmembrane proteins undergo a series of steps to ensure that only the required amount of correctly folded protein is localized to the membrane. The regulation of protein quality and its abundance at the membrane are often controlled by ubiquitination, a multistep enzymatic process that results in the attachment of ubiquitin, or chains of ubiquitin to the target protein. Protein ubiquitination acts as a signal for sorting, trafficking, and the removal of membrane proteins via endocytosis, a process through which multiple ubiquitin ligases are known to specifically regulate the functions of a number of ion channels, transporters, and signaling receptors. Endocytic removal of these proteins through ubiquitin-dependent endocytosis provides a way to rapidly downregulate the physiological outcomes, and defects in such controls are directly linked to human pathologies. Recent evidence suggests that ubiquitination is also involved in the shedding of membranes and associated proteins as extracellular vesicles, thereby not only controlling the cell surface levels of some membrane proteins, but also their potential transport to neighboring cells. In this review, we summarize the mechanisms and functions of ubiquitination of membrane proteins and provide specific examples of ubiquitin-dependent regulation of membrane proteins.
Collapse
Affiliation(s)
- Natalie Foot
- Centre for Cancer Biology, University of South Australia, Adelaide, Australia
| | - Tanya Henshall
- Centre for Cancer Biology, University of South Australia, Adelaide, Australia
| | - Sharad Kumar
- Centre for Cancer Biology, University of South Australia, Adelaide, Australia
| |
Collapse
|
23
|
Berruti G. Towards defining an ‘origin’—The case for the mammalian acrosome. Semin Cell Dev Biol 2016; 59:46-53. [DOI: 10.1016/j.semcdb.2016.01.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 01/07/2016] [Accepted: 01/08/2016] [Indexed: 01/19/2023]
|
24
|
Da Ros M, Hirvonen N, Olotu O, Toppari J, Kotaja N. Retromer vesicles interact with RNA granules in haploid male germ cells. Mol Cell Endocrinol 2015; 401:73-83. [PMID: 25486514 DOI: 10.1016/j.mce.2014.11.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 11/21/2014] [Accepted: 11/28/2014] [Indexed: 10/24/2022]
Abstract
Spermatozoa are produced during spermatogenesis as a result of mitotic proliferation, meiosis and cellular differentiation. Postmeiotic spermatids are exceptional cells given their haploid genome and remarkable sperm-specific structural transformations to compact and reshape the nucleus and to construct the flagellum and acrosome. These processes require delicate coordination and active communication between distinct cellular compartments. In this study, we elucidated the interplay between the haploid RNA regulation and the vesicular transport system. We identified a novel interaction between VPS26A/VPS35-containing retromer vesicles and the chromatoid body (CB), which is a large ribonucleoprotein (RNP) granule unique to haploid male germ cells. VPS26A/VPS35-positive vesicles were shown to be involved in the endosomal pathway, as well as in acrosomal formation that is dependent on the Golgi complex-derived vesicular trafficking. While the exact role of the retromer vesicles in the CB function remains unclear, our results suggest a direct functional link between vesicle transport and CB-mediated RNA regulation.
Collapse
Affiliation(s)
- Matteo Da Ros
- Institute of Biomedicine, Department of Physiology, University of Turku, Turku FIN-20520, Finland
| | - Noora Hirvonen
- Institute of Biomedicine, Department of Physiology, University of Turku, Turku FIN-20520, Finland
| | - Opeyemi Olotu
- Institute of Biomedicine, Department of Physiology, University of Turku, Turku FIN-20520, Finland
| | - Jorma Toppari
- Institute of Biomedicine, Department of Physiology, University of Turku, Turku FIN-20520, Finland; Department of Pediatrics, University of Turku, Turku FIN-20520, Finland
| | - Noora Kotaja
- Institute of Biomedicine, Department of Physiology, University of Turku, Turku FIN-20520, Finland.
| |
Collapse
|
25
|
The Membrane Associated RING-CH Proteins: A Family of E3 Ligases with Diverse Roles through the Cell. INTERNATIONAL SCHOLARLY RESEARCH NOTICES 2014; 2014:637295. [PMID: 27419207 PMCID: PMC4897099 DOI: 10.1155/2014/637295] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 08/22/2014] [Indexed: 01/03/2023]
Abstract
Since the discovery that conjugation of ubiquitin to proteins can drive proteolytic degradation, ubiquitination has been shown to perform a diverse range of functions in the cell. It plays an important role in endocytosis, signal transduction, trafficking of vesicles inside the cell, and even DNA repair. The process of ubiquitination-mediated control has turned out to be remarkably complex, involving a diverse array of proteins and many levels of control. This review focuses on a family of structurally related E3 ligases termed the membrane-associated RING-CH (MARCH) ubiquitin ligases, which were originally discovered as structural homologs to the virals E3s, K3, and K5 from Kaposi's sarcoma-associated herpesvirus (KSHV). These proteins contain a catalytic RING-CH finger and are typically membrane-bound, with some having up to 14 putative transmembrane domains. Despite several lines of evidence showing that the MARCH proteins play a complex and essential role in several cellular processes, this family remains understudied.
Collapse
|
26
|
Ubiquitin-proteasome system in spermatogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 759:181-213. [PMID: 25030765 DOI: 10.1007/978-1-4939-0817-2_9] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Spermatogenesis represents a complex succession of cell division and differentiation events resulting in the continuous formation of spermatozoa. Such a complex program requires precise expression of enzymes and structural proteins which is effected not only by regulation of gene transcription and translation, but also by targeted protein degradation. In this chapter, we review current knowledge about the role of the ubiquitin-proteasome system in spermatogenesis, describing both proteolytic and non-proteolytic functions of ubiquitination. Ubiquitination plays essential roles in the establishment of both spermatogonial stem cells and differentiating spermatogonia from gonocytes. It also plays critical roles in several key processes during meiosis such as genetic recombination and sex chromosome silencing. Finally, in spermiogenesis, we summarize current knowledge of the role of the ubiquitin-proteasome system in nucleosome removal and establishment of key structures in the mature spermatid. Many mechanisms remain to be precisely defined, but present knowledge indicates that research in this area has significant potential to translate into benefits that will address problems in both human and animal reproduction.
Collapse
|
27
|
Nakamura N. Ubiquitination regulates the morphogenesis and function of sperm organelles. Cells 2013; 2:732-50. [PMID: 24709878 PMCID: PMC3972651 DOI: 10.3390/cells2040732] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 11/12/2013] [Accepted: 11/29/2013] [Indexed: 11/29/2022] Open
Abstract
It is now understood that protein ubiquitination has diverse cellular functions in eukaryotes. The molecular mechanism and physiological significance of ubiquitin-mediated processes have been extensively studied in yeast, Drosophila and mammalian somatic cells. Moreover, an increasing number of studies have emphasized the importance of ubiquitination in spermatogenesis and fertilization. The dysfunction of various ubiquitin systems results in impaired sperm development with abnormal organelle morphology and function, which in turn is highly associated with male infertility. This review will focus on the emerging roles of ubiquitination in biogenesis, function and stability of sperm organelles in mammals.
Collapse
Affiliation(s)
- Nobuhiro Nakamura
- Department of Biological Sciences, Tokyo Institute of Technology, 4259-B13 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan.
| |
Collapse
|
28
|
Zhang Y, Kent JW, Olivier M, Ali O, Cerjak D, Broeckel U, Abdou RM, Dyer TD, Comuzzie A, Curran JE, Carless MA, Rainwater DL, Göring HHH, Blangero J, Kissebah AH. A comprehensive analysis of adiponectin QTLs using SNP association, SNP cis-effects on peripheral blood gene expression and gene expression correlation identified novel metabolic syndrome (MetS) genes with potential role in carcinogenesis and systemic inflammation. BMC Med Genomics 2013; 6:14. [PMID: 23628382 PMCID: PMC3643849 DOI: 10.1186/1755-8794-6-14] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 04/23/2013] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Metabolic syndrome (MetS) is an aberration associated with increased risk for cancer and inflammation. Adiponectin, an adipocyte-produced abundant protein hormone, has countering effect on the diabetogenic and atherogenic components of MetS. Plasma levels of adiponectin are negatively correlated with onset of cancer and cancer patient mortality. We previously performed microsatellite linkage analyses using adiponectin as a surrogate marker and revealed two QTLs on chr5 (5p14) and chr14 (14q13). METHODS Using individuals from 85 extended families that contributed to the linkage and who were measured for 42 clinical and biologic MetS phenotypes, we tested QTL-based SNP associations, peripheral white blood cell (PWBC) gene expression, and the effects of cis-acting SNPs on gene expression to discover genomic elements that could affect the pathophysiology and complications of MetS. RESULTS Adiponectin levels were found to be highly intercorrelated phenotypically with the majority of MetS traits. QTL-specific haplotype-tagging SNPs associated with MetS phenotypes were annotated to 14 genes whose function could influence MetS biology as well as oncogenesis or inflammation. These were mechanistically categorized into four groups: cell-cell adhesion and mobility, signal transduction, transcription and protein sorting. Four genes were highly prioritized: cadherin 18 (CDH18), myosin X (MYO10), anchor protein 6 of AMPK (AKAP6), and neuronal PAS domain protein 3 (NPAS3). PWBC expression was detectable only for the following genes with multi-organ or with multi-function properties: NPAS3, MARCH6, MYO10 and FBXL7. Strong evidence of cis-effects on the expression of MYO10 in PWBC was found with SNPs clustered near the gene's transcription start site. MYO10 expression in PWBC was marginally correlated with body composition (p = 0.065) and adipokine levels in the periphery (p = 0.064). Variants of genes AKAP6, NPAS3, MARCH6 and FBXL7 have been previously reported to be associated with insulin resistance, inflammatory markers or adiposity studies using genome-wide approaches whereas associations of CDH18 and MYO10 with MetS traits have not been reported before. CONCLUSIONS Adiponectin QTLs-based SNP association and mRNA expression identified genes that could mediate the association between MetS and cancer or inflammation.
Collapse
Affiliation(s)
- Yi Zhang
- TOPS Obesity and Metabolic Research Center, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Jack W Kent
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Michael Olivier
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Omar Ali
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Diana Cerjak
- TOPS Obesity and Metabolic Research Center, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Ulrich Broeckel
- Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Reham M Abdou
- TOPS Obesity and Metabolic Research Center, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Thomas D Dyer
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Anthony Comuzzie
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Joanne E Curran
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Melanie A Carless
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - David L Rainwater
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Harald H H Göring
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - John Blangero
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Ahmed H Kissebah
- TOPS Obesity and Metabolic Research Center, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
29
|
Fujita H, Iwabu Y, Tokunaga K, Tanaka Y. Membrane-associated RING-CH (MARCH) 8 mediates the ubiquitination and lysosomal degradation of the transferrin receptor. J Cell Sci 2013; 126:2798-809. [PMID: 23606747 DOI: 10.1242/jcs.119909] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The transferrin receptor (TfR) mediates the uptake of transferrin (Tf)-bound iron from the plasma into the cells of peripheral tissues. The TfR continuously recycles between the plasma membrane and early/recycling endosomes. TfR expression is tightly controlled by the intracellular iron concentration through the regulation of TfR mRNA stability. However, much less is known about the mechanism by which TfR is degraded in cells. Previously, we reported a correlation between TfR ubiquitination and its iron-induced lysosomal degradation. The identification and characterization of a specific ubiquitin ligase for TfR is important in understanding the mechanism of iron homeostasis. Here, we show that membrane-associated RING-CH (MARCH) 8 ubiquitinates TfR and promotes its lysosomal degradation. Similar to other RING-type ubiquitin ligases, the RING-CH domain of MARCH8, which is located in the N-terminal cytoplasmic domain, is essential for the ubiquitination and downregulation of TfR. MARCH8 specifically recognizes the transmembrane domain of TfR and mediates ubiquitination of its cytoplasmic domain. In addition, the six-amino-acid sequence located in the C-terminal domain of MARCH8, which is highly conserved among different species, is required for the downregulation of TfR. Finally, and most importantly, TfR expression was markedly increased by siRNA-mediated knockdown of endogenous MARCH8. These findings demonstrate that the endogenous level of MARCH8 regulates TfR protein turnover through the downregulation and ubiquitination of TfR.
Collapse
Affiliation(s)
- Hideaki Fujita
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | | | | | | |
Collapse
|
30
|
van de Kooij B, Verbrugge I, de Vries E, Gijsen M, Montserrat V, Maas C, Neefjes J, Borst J. Ubiquitination by the membrane-associated RING-CH-8 (MARCH-8) ligase controls steady-state cell surface expression of tumor necrosis factor-related apoptosis inducing ligand (TRAIL) receptor 1. J Biol Chem 2013; 288:6617-28. [PMID: 23300075 PMCID: PMC3585101 DOI: 10.1074/jbc.m112.448209] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The eleven members of the membrane-associated RING-CH (MARCH) ubiquitin ligase family are relatively unexplored. Upon exogenous (over)expression, a number of these ligases can affect the trafficking of membrane molecules. However, only for MARCH-1 endogenous functions have been demonstrated. For the other endogenous MARCH proteins, no functions or substrates are known. We report here that TRAIL-R1 is a physiological substrate of the endogenous MARCH-8 ligase. Human TRAIL-R1 and R2 play a role in immunosurveillance and are targets for cancer therapy, because they selectively induce apoptosis in tumor cells. We demonstrate that TRAIL-R1 is down-regulated from the cell surface, with great preference over TRAIL-R2, by exogenous expression of MARCH ligases that are implicated in endosomal trafficking, such as MARCH-1 and -8. MARCH-8 attenuated TRAIL-R1 cell surface expression and apoptosis signaling by virtue of its ligase activity. This suggested that ubiquitination of TRAIL-R1 was instrumental in its down-regulation by MARCH-8. Indeed, in cells with endogenous MARCH expression, TRAIL-R1 was ubiquitinated at steady-state, with the conserved membrane-proximal lysine 273 as one of the potential acceptor sites. This residue was also essential for the interaction of TRAIL-R1 with MARCH-1 and MARCH-8 and its down-regulation by these ligases. Gene silencing identified MARCH-8 as the endogenous ligase that ubiquitinates TRAIL-R1 and attenuates its cell surface expression. These findings reveal that endogenous MARCH-8 regulates the steady-state cell surface expression of TRAIL-R1.
Collapse
Affiliation(s)
- Bert van de Kooij
- Division of Immunology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Hou CC, Yang WX. New insights to the ubiquitin–proteasome pathway (UPP) mechanism during spermatogenesis. Mol Biol Rep 2012; 40:3213-30. [DOI: 10.1007/s11033-012-2397-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Accepted: 12/17/2012] [Indexed: 12/12/2022]
|
32
|
MARCH7 E3 ubiquitin ligase is highly expressed in developing spermatids of rats and its possible involvement in head and tail formation. Histochem Cell Biol 2012; 139:447-60. [PMID: 23104140 DOI: 10.1007/s00418-012-1043-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2012] [Indexed: 10/27/2022]
Abstract
Spermatogenesis is a highly complicated metamorphosis process of male germ cells. Recent studies have provided evidence that the ubiquitin-proteasome system plays an important role in sperm head shaping, but the underlying mechanism is less understood. In this study, we localized membrane-associated RING-CH (MARCH)7, an E3 ubiquitin ligase, in rat testis. Northern blot analysis showed that March7 mRNA is expressed ubiquitously but highly in the testis and ovary. In situ hybridization of rat testis demonstrated that March7 mRNA is expressed weakly in spermatogonia and its level is gradually increased as they develop. Immunohistochemical analysis detected MARCH7 protein expression in spermiogenic cells from late round spermatids to elongated spermatids and in epididymal spermatozoa. Moreover, MARCH7 was found to be localized to the caudal end of the developing acrosome of late round and elongating spermatids, colocalizing with β-actin, a component of the acroplaxome. In addition, MARCH7 was also detected in the developing flagella and its expression levels were prominent in elongated spermatids. We also showed that MARCH7 catalyzes lysine 48 (K48)-linked ubiquitination. Immunolocalization studies revealed that K48-linked ubiquitin chains were detected in the heads of elongating spermatids and in the acrosome/acroplaxome, neck, midpiece and cytoplasmic lobes of elongated spermatids. These results suggest that MARCH7 is involved in spermiogenesis by regulating the structural and functional integrity of the head and tail of developing spermatids.
Collapse
|
33
|
Hassink G, Slotman J, Oorschot V, Van Der Reijden BA, Monteferrario D, Noordermeer SM, Van Kerkhof P, Klumperman J, Strous GJ. Identification of the ubiquitin ligase Triad1 as a regulator of endosomal transport. Biol Open 2012; 1:607-14. [PMID: 23213454 PMCID: PMC3509441 DOI: 10.1242/bio.2012778] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The ubiquitin system plays an important role in trafficking of signaling receptors from the plasma membrane to lysosomes. Triad1 is a ubiquitin ligase that catalyzes the formation of poly-ubiquitin chains linked via lysine-48 as well as lysine-63 residues. We show that depletion of Triad1 affects the sorting of both growth hormone and epidermal growth factor. Triad1-depleted cells accumulate both ligands in endosomes. While fluid phase transport to the lysosomes is reduced in the absence of Triad1, growth hormone receptor can recycle back to the plasma membrane together with transferrin. Using immune electron microscopy we show that Triad1 depletion results in enlarged endosomes with enlarged and irregular shaped intraluminal vesicles. The endosomes display prominent clathrin coats and show increased levels of growth hormone label. We conclude that Triad1 is required for the proper function of multivesicular bodies.
Collapse
Affiliation(s)
- Gerco Hassink
- Department of Cell Biology and Institute of Biomembranes, University Medical Center Utrecht , 3584 CX Utrecht , The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Nakamura N. The Role of the Transmembrane RING Finger Proteins in Cellular and Organelle Function. MEMBRANES 2011; 1:354-93. [PMID: 24957874 PMCID: PMC4021871 DOI: 10.3390/membranes1040354] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 11/24/2011] [Accepted: 12/05/2011] [Indexed: 01/08/2023]
Abstract
A large number of RING finger (RNF) proteins are present in eukaryotic cells and the majority of them are believed to act as E3 ubiquitin ligases. In humans, 49 RNF proteins are predicted to contain transmembrane domains, several of which are specifically localized to membrane compartments in the secretory and endocytic pathways, as well as to mitochondria and peroxisomes. They are thought to be molecular regulators of the organization and integrity of the functions and dynamic architecture of cellular membrane and membranous organelles. Emerging evidence has suggested that transmembrane RNF proteins control the stability, trafficking and activity of proteins that are involved in many aspects of cellular and physiological processes. This review summarizes the current knowledge of mammalian transmembrane RNF proteins, focusing on their roles and significance.
Collapse
Affiliation(s)
- Nobuhiro Nakamura
- Department of Biological Sciences, Tokyo Institute of Technology, 4259-B13 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan.
| |
Collapse
|
35
|
Rebl A, Köbis JM, Fischer U, Takizawa F, Verleih M, Wimmers K, Goldammer T. MARCH5 gene is duplicated in rainbow trout, but only fish-specific gene copy is up-regulated after VHSV infection. FISH & SHELLFISH IMMUNOLOGY 2011; 31:1041-1050. [PMID: 21939770 DOI: 10.1016/j.fsi.2011.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 07/19/2011] [Accepted: 09/06/2011] [Indexed: 05/31/2023]
Abstract
Ubiquitination regulates the activity, stability, and localization of a wide variety of proteins. Several mammalian MARCH ubiquitin E3 ligase proteins have been suggested to control cell surface immunoreceptors. The mitochondrial protein MARCH5 is a positive regulator of Toll-like receptor 7-mediated NF-κB activation in mammals. In the present study, duplicated MARCH5-like cDNA sequences were isolated from rainbow trout (Oncorhynchus mykiss) comprising open reading frames of 882 bp (MARCH5A) and 885 bp (MARCH5B), respectively. Trout MARCH5A and MARCH5B-encoding sequences share only 65% sequence identity. Phylogenetic analyses including an additionally isolated MARCH5-like sequence from whitefish (Coregonus maraena) suggest that teleosts possess an additional MARCH5 gene copy resulting from a fish-specific whole genome duplication. Coding sequences of MARCH5A and MARCH5B genes from trout are distributed over six exons. Hypothetical MARCH5 proteins from trout comprise four transmembrane helices and a single motif similar to a RING variant domain (RINGv) including eight highly conserved cysteine and histidine residues. A 'reverse-northern blot' analysis revealed furthermore a MARCH5B Δexon5 transcript variant. Both MARCH5 genes from trout show a strain-, tissue- and cell-specific expression profile indicating different functional roles. Fish-specific MARCH5A gene for instance might be involved in defense mechanisms, since in vivo-challenge with the viral pathogen VHSV caused a significant 1.7-fold elevated copy number of the respective gene in gills four days after infection, whereas MARCH5B transcript level did not increase.
Collapse
Affiliation(s)
- Alexander Rebl
- Leibniz-Institut für Nutztierbiologie (FBN), Fachbereich Molekularbiologie, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | | | | | | | | | | | | |
Collapse
|
36
|
Yogo K, Tojima H, Ohno JY, Ogawa T, Nakamura N, Hirose S, Takeya T, Kohsaka T. Identification of SAMT family proteins as substrates of MARCH11 in mouse spermatids. Histochem Cell Biol 2011; 137:53-65. [PMID: 22075566 DOI: 10.1007/s00418-011-0887-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2011] [Indexed: 12/12/2022]
Abstract
MARCH11, a RING-finger transmembrane ubiquitin ligase, is predominantly expressed in spermatids and localized to the trans-Golgi network (TGN) and multivesicular bodies (MVBs). Because ubiquitination acts as a sorting signal of cargo proteins, MARCH11 has been postulated to mediate selective protein sorting via the TGN-MVB pathway. However, the physiological substrate of MARCH11 has not been identified. In this study, we have identified and characterized SAMT1, a member of a novel 4-transmembrane protein family, which consists of four members. Samt1 mRNA and its expression product were found to be specific to the testis and were first detected in germ cells 25 days after birth in mice. Immunohistochemical analysis further revealed that SAMT1 was specifically expressed in haploid spermatids during the cap and acrosome phases. Confocal microscopic analysis showed that SAMT1 co-localized with MARCH11 as well as with fucose-containing glycoproteins, another TGN/MVB marker, and LAPM2, a late endosome/lysosome marker. Furthermore, we found that MARCH11 could increase the ubiquitination of SAMT1 and enhance its lysosomal delivery and degradation in an E3 ligase activity-dependent manner. In addition, the C-terminal region of SAMT1 was indispensable for its ubiquitination and proper localization. The other member proteins of the SAMT family also showed similar expression profile, intracellular localization, and biochemical properties, including ubiquitination by MARCH11. These results suggest that SAMT family proteins are physiological substrates of MARCH11 and are delivered to lysosomes through the TGN-MVB pathway by a ubiquitin-dependent sorting system in mouse spermatids.
Collapse
Affiliation(s)
- Keiichiro Yogo
- Animal Reproduction and Physiology, Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga, Shizuoka 422-8529, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Iyengar PV, Hirota T, Hirose S, Nakamura N. Membrane-associated RING-CH 10 (MARCH10 protein) is a microtubule-associated E3 ubiquitin ligase of the spermatid flagella. J Biol Chem 2011; 286:39082-90. [PMID: 21937444 DOI: 10.1074/jbc.m111.256875] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Spermiogenesis is a complex and dynamic process of the metamorphosis of spermatids into spermatozoa. There is a great deal that is still unknown regarding the regulatory mechanisms for the formation of the sperm flagellum. In this study, we determined that the membrane-associated RING-CH 10 (March10) gene is predominantly expressed in rat testis. We isolated two March10 isoforms encoding MARCH10a and MARCH10b, which are generated by alternative splicing. MARCH10a is a long RING finger protein, and MARCH10b is a short RING finger-less protein. Immunohistochemical staining revealed that the MARCH10 proteins are specifically expressed in elongating and elongated spermatids, and the expression is absent in epididymal spermatozoa. MARCH10 immunoreactivity was observed in the cytoplasmic lobes as well as the principal piece and annulus of the flagella. When overexpressed in COS7 cells, MARCH10a was localized along the microtubules, whereas MARCH10b was distributed throughout the cytoplasm. An in vitro microtubule cosedimentation assay showed that MARCH10a is directly associated with microtubules. An in vitro ubiquitination assay demonstrated that the RING finger domain of MARCH10a exhibits an E3 ubiquitin ligase activity along with the E2 ubiquitin-conjugating enzyme UBE2B. Moreover, MARCH10a undergoes proteasomal degradation by autoubiquitination in transfected COS7 cells, but this activity was abolished upon microtubule disassembly. These results suggest that MARCH10 is involved in spermiogenesis by regulating the formation and maintenance of the flagella in developing spermatids.
Collapse
Affiliation(s)
- Prasanna Vasudevan Iyengar
- Department of Biological Sciences, Tokyo Institute of Technology, 4259-B-19 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | | | | | | |
Collapse
|
38
|
Eyster CA, Cole NB, Petersen S, Viswanathan K, Früh K, Donaldson JG. MARCH ubiquitin ligases alter the itinerary of clathrin-independent cargo from recycling to degradation. Mol Biol Cell 2011; 22:3218-30. [PMID: 21757542 PMCID: PMC3164467 DOI: 10.1091/mbc.e10-11-0874] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The MARCH family of proteins are membrane-associated E3 ubiquitin ligases that down-regulate surface membrane proteins. Expression of MARCH8 in cells causes the ubiquitination and down-regulation of surface CD98 and CD44—cargo proteins that enter cells by clathrin-independent endocytosis and are usually routed to recycling, not degradation. Following endocytosis, internalized plasma membrane proteins can be recycled back to the cell surface or trafficked to late endosomes/lysosomes for degradation. Here we report on the trafficking of multiple proteins that enter cells by clathrin-independent endocytosis (CIE) and determine that a set of proteins (CD44, CD98, and CD147) found primarily in recycling tubules largely failed to reach late endosomes in HeLa cells, whereas other CIE cargo proteins, including major histocompatibility complex class I protein (MHCI), trafficked to both early endosome antigen 1 (EEA1) and late endosomal compartments in addition to recycling tubules. Expression of the membrane-associated RING-CH 8 (MARCH8) E3 ubiquitin ligase completely shifted the trafficking of CD44 and CD98 proteins away from recycling tubules to EEA1 compartments and late endosomes, resulting in reduced surface levels. Cargo affected by MARCH expression, including CD44, CD98, and MHCI, still entered cells by CIE, suggesting that the routing of ubiquitinated cargo occurs after endocytosis. MARCH8 expression led to direct ubiquitination of CD98 and routing of CD98 to late endosomes/lysosomes.
Collapse
Affiliation(s)
- Craig A Eyster
- Laboratory of Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
39
|
Boname JM, Lehner PJ. What has the study of the K3 and K5 viral ubiquitin E3 ligases taught us about ubiquitin-mediated receptor regulation? Viruses 2011; 3:118-131. [PMID: 22049306 PMCID: PMC3206601 DOI: 10.3390/v3020118] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 01/17/2011] [Accepted: 01/20/2011] [Indexed: 12/29/2022] Open
Abstract
Cells communicate with each other and the outside world through surface receptors, which need to be tightly regulated to prevent both overstimulation and receptor desensitization. Understanding the processes involved in the homeostatic control of cell surface receptors is essential, but we are not alone in trying to regulate these receptors. Viruses, as the ultimate host pathogens, have co-evolved over millions of years and have both pirated and adapted host genes to enable viral pathogenesis. K3 and K5 (also known as MIR1 and MIR2) are viral ubiquitin E3 ligases from Kaposi's Sarcoma Associated Herpesvirus (KSHV) which decrease expression of a number of cell surface receptors and have been used to interrogate cellular processes and improve our understanding of ubiquitin-mediated receptor endocytosis and degradation. In this review, we summarize what has been learned from the study of these viral genes and emphasize their role in elucidating the complexity of ubiquitin in receptor regulation.
Collapse
Affiliation(s)
- Jessica M. Boname
- School of Clinical Medicine, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, UK; E-Mail:
| | - Paul J. Lehner
- School of Clinical Medicine, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, UK; E-Mail:
| |
Collapse
|
40
|
Hübner S, Efthymiadis A. Histochemistry and cell biology: the annual review 2010. Histochem Cell Biol 2011; 135:111-40. [PMID: 21279376 DOI: 10.1007/s00418-011-0781-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2011] [Indexed: 10/18/2022]
Abstract
This review summarizes recent advances in histochemistry and cell biology which complement and extend our knowledge regarding various aspects of protein functions, cell and tissue biology, employing appropriate in vivo model systems in conjunction with established and novel approaches. In this context several non-expected results and discoveries were obtained which paved the way of research into new directions. Once the reader embarks on reading this review, it quickly becomes quite obvious that the studies contribute not only to a better understanding of fundamental biological processes but also provide use-oriented aspects that can be derived therefrom.
Collapse
Affiliation(s)
- Stefan Hübner
- Institute of Anatomy and Cell Biology, University of Würzburg, Koellikerstrasse 6, 97070 Würzburg, Germany.
| | | |
Collapse
|
41
|
Bartee E, Eyster CA, Viswanathan K, Mansouri M, Donaldson JG, Früh K. Membrane-Associated RING-CH proteins associate with Bap31 and target CD81 and CD44 to lysosomes. PLoS One 2010; 5:e15132. [PMID: 21151997 PMCID: PMC2996310 DOI: 10.1371/journal.pone.0015132] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Accepted: 10/25/2010] [Indexed: 02/03/2023] Open
Abstract
Membrane-associated RING-CH (MARCH) proteins represent a family of transmembrane ubiquitin ligases modulating intracellular trafficking and turnover of transmembrane protein targets. While homologous proteins encoded by gamma-2 herpesviruses and leporipoxviruses have been studied extensively, limited information is available regarding the physiological targets of cellular MARCH proteins. To identify host cell proteins targeted by the human MARCH-VIII ubiquitin ligase we used stable isotope labeling of amino-acids in cell culture (SILAC) to monitor MARCH-dependent changes in the membrane proteomes of human fibroblasts. Unexpectedly, we observed that MARCH-VIII reduced the surface expression of Bap31, a chaperone that predominantly resides in the endoplasmic reticulum (ER). We demonstrate that Bap31 associates with the transmembrane domains of several MARCH proteins and controls intracellular transport of MARCH proteins. In addition, we observed that MARCH-VIII reduced the surface expression of the hyaluronic acid-receptor CD44 and both MARCH-VIII and MARCH-IV sequestered the tetraspanin CD81 in endo-lysosomal vesicles. Moreover, gene knockdown of MARCH-IV increased surface levels of endogenous CD81 suggesting a constitutive involvement of this family of ubiquitin ligases in the turnover of tetraspanins. Our data thus suggest a role of MARCH-VIII and MARCH-IV in the regulated turnover of CD81 and CD44, two ubiquitously expressed, multifunctional proteins.
Collapse
Affiliation(s)
- Eric Bartee
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Craig A. Eyster
- Laboratory of Cell Biology, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Kasinath Viswanathan
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Mandana Mansouri
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Julie G. Donaldson
- Laboratory of Cell Biology, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Klaus Früh
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
- * E-mail:
| |
Collapse
|
42
|
Zitranski N, Borth H, Ackermann F, Meyer D, Vieweg L, Breit A, Gudermann T, Boekhoff I. The "acrosomal synapse": Subcellular organization by lipid rafts and scaffolding proteins exhibits high similarities in neurons and mammalian spermatozoa. Commun Integr Biol 2010; 3:513-21. [PMID: 21331227 DOI: 10.4161/cib.3.6.13137] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Revised: 07/23/2010] [Accepted: 07/23/2010] [Indexed: 12/18/2022] Open
Abstract
Mammalian spermatozoa are highly polarized cells composed of two morphological and functional units, each optimized for a special task. Although the apparent division into head and tail may as such represent the anatomical basis to avoid random diffusion of their special sets of signaling proteins and lipids, recent findings demonstrate the presence of lipid raft-derived membrane platforms and specific scaffolding proteins, thus indicating that smaller sub-domains exist in the two functional units of male germ cells. The aim of this review is to summarize new insights into the principles of subcellular organization in mammalian spermatozoa. Special emphasis is placed on recent observations indicating that an "acrosomal synapse" is formed by lipid raft-derived membrane micro-environments and multidomain scaffolding proteins. Both mechanisms appear to be responsible for ensuring the attachment of the huge acrosomal vesicle to the overlaying plasma membrane, as well as for preventing an accidental spontaneous loss of the single acrosome.
Collapse
Affiliation(s)
- Nele Zitranski
- Walther-Straub-Institute of Pharmacology and Toxicology; Ludwig-Maximilians-University; Munich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Valbuena G, Madrid JF, Hernández F, Sáez FJ. Identification of fucosylated glycoconjugates in Xenopus laevis testis by lectin histochemistry. Histochem Cell Biol 2010; 134:215-25. [DOI: 10.1007/s00418-010-0722-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2010] [Indexed: 11/30/2022]
|
44
|
Müssig C, Schröder F, Usadel B, Lisso J. Structure and putative function of NFX1-like proteins in plants. PLANT BIOLOGY (STUTTGART, GERMANY) 2010; 12:381-394. [PMID: 20522174 DOI: 10.1111/j.1438-8677.2009.00303.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The human NFX1 transcription factor constitutes a group of NFX1-type zinc finger proteins. It forms a central Cys-rich region with several NFX1-type zinc finger domains that have been shown to mediate DNA binding. Proteins with NFX1-type zinc fingers are found in protists, fungi, animals and plants, and may be ubiquitous in eukaryotes. This review discusses the structure and putative roles of NFX1-like proteins, with a focus on human NFX1 and Arabidopsis NFXL1 proteins. By means of manual sequence analysis and application of hidden Markov models, we demonstrate that NFX1-like proteins form a specific RING finger motif with a C(4)HC(3) Zn ligand signature and additional distinct features, suggesting that these proteins function as E3 ubiquitin ligases. Phylogenetic analysis revealed different clades of NFX1-like proteins. The plant proteins group into two distinct clades. The genomes of plants such as rice, Arabidopsis, poplar and grapevine encode one member of each clade, suggesting that the presence of two NFX1-like factors is sufficient in flowering plants. The Arabidopsis proteins presumably fine-tune opposed biotic and abiotic stress response pathways.
Collapse
Affiliation(s)
- C Müssig
- Universität Potsdam, Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany.
| | | | | | | |
Collapse
|
45
|
Szigyarto CA, Sibbons P, Williams G, Uhlen M, Metcalfe SM. The E3 ligase axotrophin/MARCH-7: protein expression profiling of human tissues reveals links to adult stem cells. J Histochem Cytochem 2009; 58:301-8. [PMID: 19901269 DOI: 10.1369/jhc.2009.954420] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Axotrophin/MARCH-7 was first identified in mouse embryonic stem cells as a neural stem cell gene. Using the axotrophin/MARCH-7 null mouse, we discovered profound effects on T lymphocyte responses, including 8-fold hyperproliferation and 5-fold excess release of the stem cell cytokine leukemia inhibitory factor (LIF). Our further discovery that axotrophin/MARCH-7 is required for targeted degradation of the LIF receptor subunit gp190 implies a direct role in the regulation of LIF signaling. Bioinformatics studies revealed a highly conserved RING-CH domain in common with the MARCH family of E3-ubiquitin ligases, and accordingly, axotrophin was renamed "MARCH-7." To probe protein expression of human axotrophin/MARCH-7, we prepared antibodies against different domains of the protein. Each antibody bound its specific target epitope with high affinity, and immunohistochemistry cross-validated target specificity. Forty-eight human tissue types were screened. Epithelial cells stained strongly, with trophoblasts having the greatest staining. In certain tissues, specific cell types were selectively positive, including neurons and neuronal progenitor cells in the hippocampus and cerebellum, endothelial sinusoids of the spleen, megakaryocytes in the bone marrow, crypt stem cells of the small intestine, and alveolar macrophages in the lung. Approximately 20% of central nervous system neuropils were positive. Notably, axotrophin/MARCH-7 has an expression profile that is distinct from that of other MARCH family members. This manuscript contains online supplemental material at http://www.jhc.org. Please visit this article online to view these materials.
Collapse
Affiliation(s)
- Cristina A Szigyarto
- Human Proteome Resource, School of Biotechnology, Department of Proteomics, Royal Institute of Technology, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
46
|
Herr RA, Harris J, Fang S, Wang X, Hansen TH. Role of the RING-CH domain of viral ligase mK3 in ubiquitination of non-lysine and lysine MHC I residues. Traffic 2009; 10:1301-17. [PMID: 19531064 DOI: 10.1111/j.1600-0854.2009.00946.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A plethora of ubiquitin ligases determine the intracellular location and fate of numerous proteins in a substrate-specific manner. However, the mechanisms for these functions are incompletely understood. Most ligases have structurally related RING domains that are critical for ligase activity including the recruitment of ubiquitin conjugating enzymes. Here we probe the function of the RING-CH domain of murine gamma-herpesvirus-68 ligase mK3 that functions as an immune evasin by targeting major histocompatibility complex (MHC) class I heavy chains for endoplasmic reticulum-associated degradation (ERAD). Interestingly, mK3 mediates ubiquitin conjugation via ester bonds to S or T residues in addition to conventional isopeptide linkages to K residues. To determine the mechanism of non-K ubiquitination of substrates, we introduced into an mK3 background the RING-CH domains of related viral and cellular MARCH (membrane associated RING-CH) ligases. We found that although a conserved W present in all viral RING-CH domains is critical for mK3 function, sequences outside the RING-CH domain determine whether and which non-lysine substrate residues can be ubiquitinated by mK3. Our findings support the model that viral ligases have evolved a highly effective strategy to optimally orient their RING domain with substrate allowing them to ubiquitinate non-K residues.
Collapse
Affiliation(s)
- Roger A Herr
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
47
|
Aihara T, Nakamura N, Honda S, Hirose S. A novel potential role for gametogenetin-binding protein 1 (GGNBP1) in mitochondrial morphogenesis during spermatogenesis in mice. Biol Reprod 2009; 80:762-70. [PMID: 19208545 DOI: 10.1095/biolreprod.108.074013] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Mitochondria are dynamic organelles that undergo fusion, fission, and translocation. The dynamic property is essential for establishing energy-consuming biological processes including cellular differentiation. Early ultrastructural studies have shown that mitochondria of mammalian spermatogenic cells dramatically change their number, size, distribution, and internal structure. However, its regulatory mechanism is largely unknown. In course of searching for molecules involved in the mitochondrial morphogenesis in spermatogenesis, we identified mouse gametogenetin-binding protein 1 (GGNBP1), a DUF1055 domain-containing protein of unknown function, as a mitochondrial protein. When GGNBP1 was expressed in COS7 cells, it was localized in the intermembrane space and induced an extensive fragmentation of mitochondria in the manner dependent on the activity of the mitochondrial fission factor DNM1L. Deletion mutant analyses demonstrated that the N-terminal region is required for its mitochondrial targeting and that the C-terminal region including the DUF1055 domain is responsible for the mitochondrial fragmentation activity. Immunohistochemistry of mouse testis revealed that GGNBP1 is highly expressed in the late pachytene spermatocytes and early round spermatids. However, a subcellular fractionation study showed that it is localized to not only mitochondria but also other membranous compartments in vivo. These results suggest that GGNBP1 is involved in spermatogenesis by modifying mitochondrial dynamics and morphology.
Collapse
Affiliation(s)
- Takeshi Aihara
- Department of Biological Sciences, Tokyo Institute of Technology, Yokohama, Japan
| | | | | | | |
Collapse
|
48
|
The trafficking and regulation of membrane receptors by the RING-CH ubiquitin E3 ligases. Exp Cell Res 2008; 315:1593-600. [PMID: 19013150 DOI: 10.1016/j.yexcr.2008.10.026] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2008] [Accepted: 10/24/2008] [Indexed: 11/22/2022]
Abstract
Ubiquitylation of membrane receptors is recognised as a critical post-translational modification, governing their regulation and function. Following ubiquitylation, membrane proteins may be internalised, recycled or degraded via lysosomal or proteasomal pathways. Viruses have appropriated these cellular pathways as a mechanism of immune evasion. RING (really interesting new gene)-CH ubiquitin E3 ligases were initially identified from the Kaposi's associated herpesvirus (KSHV) and their founding members, K3 and K5, downregulate several critical immunoreceptors to prevent detection by the host immune system. K3 promotes formation of lysine-63 linked polyubiquitin chains on MHC Class I, signalling Class I internalisation and endolysosomal degradation. K5 targets multiple immunoreceptors, including MHC Class I, CD86, intracellular adhesion molecule (ICAM) 1 and MHC Class I-related chain (MIC)-A/B, thereby preventing detection from cytotoxic T lymphocytes (CTLs) and natural killer (NK) cells. The cellular homologues of K3 and K5, the Membrane Associated RING-CH (MARCH) genes, represent eleven proteins that also appear to be important in the downregulation of membrane receptors. While overexpression of several MARCH genes downregulate cell surface receptors such as MHC Class I, MHC Class II, CD86 and ICAM 1, determining their physiological roles has proved difficult. Elucidating the transcriptional regulation, localisation and trafficking of MARCH genes may provide insights into their cellular functions.
Collapse
|
49
|
Natural killer cell evasion by an E3 ubiquitin ligase from Kaposi's sarcoma-associated herpesvirus. Biochem Soc Trans 2008; 36:459-63. [PMID: 18481981 DOI: 10.1042/bst0360459] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Viruses exploit the ubiquitin system by targeting cell-surface receptors recognized by immune cells for internalization, thereby evading recognition. We have characterized the KSHV (Kaposi's sarcoma-associated herpesvirus)-encoded E3 ubiquitin ligases, K3 and K5. We find their activities not only prevent recognition by cytotoxic T-lymphocytes, but also promote evasion of NK (natural killer) cells. NK cells recognize and lyse virus-infected cells expressing ligands for activatory receptors such as NKG2D (NK group 2D). K5 down-regulates cell-surface expression of the NKG2D ligands MICA/B (MHC class I-related chains A and B) by ubiquitination of MIC cytoplasmic tail lysine residues. Ubiquitination results in redistribution of MICA from the plasma membrane to an intracellular compartment, but does not result in an increased rate of degradation. Furthermore, K5 down-regulates cell-surface expression of another NK cell activatory receptor ligand, AICL (activation-induced C-type lectin). This activity requires the K5 RING (really interesting new gene)-CH domain and AICL cytoplasmic tail lysine residues. MICA and AICL down-regulation by K5 reduces NK cell-mediated cytotoxicity towards target cells, thus providing KSHV with an NK cell evasion mechanism.
Collapse
|
50
|
Wang X, Herr RA, Hansen T. Viral and cellular MARCH ubiquitin ligases and cancer. Semin Cancer Biol 2008; 18:441-50. [PMID: 18948196 DOI: 10.1016/j.semcancer.2008.09.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2008] [Accepted: 09/26/2008] [Indexed: 11/18/2022]
Abstract
Covalent conjugation of proteins with ubiquitin is one the most important post-translational modifications because it controls intracellular protein trafficking typically resulting in protein degradation. Frequently ubiquitinated proteins are targeted to the proteasome for degradation in the cytosol. However, ubiquitinated membrane bound proteins can also be targeted for endocytosis and degradation in the lysosome. Ubiquitin-dependent degradation pathways have clear cancer relevance due to their integral involvement in protein quality control, regulation of immune responses, signal transduction, and cell cycle regulation. In spite of its fundamental importance, little is known regarding how proteins are specifically identified for ubiquitin-dependent degradation. In this article we review a newly discovered family of viral and cellular ubiquitin ligases called MARCH proteins. Recent studies of MARCH proteins define new paradigms showing how ubiquitin E3 ligases determine the intracellular location and fate of proteins.
Collapse
Affiliation(s)
- Xiaoli Wang
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | |
Collapse
|