1
|
Ignatochkina A, Iguchi J, Kore A, Ho C. Trypanosome mRNA recapping is triggered by hypermethylation originating from cap 4. Nucleic Acids Res 2024; 52:10645-10653. [PMID: 39011881 PMCID: PMC11417388 DOI: 10.1093/nar/gkae614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/01/2024] [Accepted: 07/12/2024] [Indexed: 07/17/2024] Open
Abstract
RNA methylation adjacent to the 5' cap plays a critical role in controlling mRNA stability and protein synthesis. In trypanosomes the 5'-terminus of mRNA is protected by hypermethylated cap 4. Trypanosomes encode a cytoplasmic recapping enzyme TbCe1 which possesses an RNA kinase and guanylyltransferase activities that can convert decapped 5'-monophosphate-terminated pRNA into GpppRNA. Here, we demonstrated that the RNA kinase activity is stimulated by two orders of magnitude on a hypermethylated pRNA derived from cap 4. The N6, N6-2'-O trimethyladenosine modification on the first nucleotide was primarily accountable for enhancing both the RNA kinase and the guanylyltransferase activity of TbCe1. In contrast, N6 methyladenosine severely inhibits the guanylyltransferase activity of the mammalian capping enzyme. Furthermore, we showed that TbCmt1 cap (guanine N7) methyltransferase was localized in the cytoplasm, and its activity was also stimulated by hypermethylation at 2'-O ribose, suggesting that TbCe1 and TbCmt1 act together as a recapping enzyme to regenerate translatable mRNA from decapped mRNA. Our result establishes the functional role of cap 4 hypermethylation in recruitment and activation of mRNA recapping pathway. Methylation status at the 5'-end of transcripts could serve as a chemical landmark to selectively regulate the level of functional mRNA by recapping enzymes.
Collapse
Affiliation(s)
- Anna V Ignatochkina
- Department of Infection Biology, Graduate School of Comprehensive Human Sciences, Institute of Medicine, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Jesavel A Iguchi
- Department of Infection Biology, Graduate School of Comprehensive Human Sciences, Institute of Medicine, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Anilkumar R Kore
- Life Sciences Solutions Group, Thermo Fisher Scientific, 2130 Woodward Street, Austin, TX 78744-1832, USA
| | - C Kiong Ho
- Department of Infection Biology, Graduate School of Comprehensive Human Sciences, Institute of Medicine, University of Tsukuba, Ibaraki 305-8575, Japan
| |
Collapse
|
2
|
Marcelino TDP, Fala AM, da Silva MM, Souza-Melo N, Malvezzi AM, Klippel AH, Zoltner M, Padilla-Mejia N, Kosto S, Field MC, Burle-Caldas GDA, Teixeira SMR, Couñago RM, Massirer KB, Schenkman S. Identification of inhibitors for the transmembrane Trypanosoma cruzi eIF2α kinase relevant for parasite proliferation. J Biol Chem 2023; 299:104857. [PMID: 37230387 PMCID: PMC10300260 DOI: 10.1016/j.jbc.2023.104857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 05/02/2023] [Accepted: 05/05/2023] [Indexed: 05/27/2023] Open
Abstract
The TcK2 protein kinase of Trypanosoma cruzi, the causative agent of Chagas disease, is structurally similar to the human kinase PERK, which phosphorylates the initiation factor eIF2α and, in turn, inhibits translation initiation. We have previously shown that absence of TcK2 kinase impairs parasite proliferation within mammalian cells, positioning it as a potential target for treatment of Chagas disease. To better understand its role in the parasite, here we initially confirmed the importance of TcK2 in parasite proliferation by generating CRISPR/Cas9 TcK2-null cells, albeit they more efficiently differentiate into infective forms. Proteomics indicates that the TcK2 knockout of proliferative forms expresses proteins including trans-sialidases, normally restricted to infective and nonproliferative trypomastigotes explaining decreased proliferation and better differentiation. TcK2 knockout cells lost phosphorylation of eukaryotic initiation factor 3 and cyclic AMP responsive-like element, recognized to promote growth, likely explaining both decreased proliferation and augmented differentiation. To identify specific inhibitors, a library of 379 kinase inhibitors was screened by differential scanning fluorimetry using a recombinant TcK2 encompassing the kinase domain and selected molecules were tested for kinase inhibition. Only Dasatinib and PF-477736, inhibitors of Src/Abl and ChK1 kinases, showed inhibitory activity with IC50 of 0.2 ± 0.02 mM and 0.8 ± 0.1, respectively. In infected cells Dasatinib inhibited growth of parental amastigotes (IC50 = 0.6 ± 0.2 mM) but not TcK2 of depleted parasites (IC50 > 34 mM) identifying Dasatinib as a potential lead for development of therapeutics for Chagas disease targeting TcK2.
Collapse
Affiliation(s)
- Tiago de Paula Marcelino
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Angela Maria Fala
- Center for Molecular Biology and Genetic Engineering - CBMEG, Center of Medicinal Chemistry - CQMED, Structural Genomics Consortium - SGC, University of Campinas - UNICAMP, Campinas, SP, Brazil
| | - Matheus Monteiro da Silva
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Normanda Souza-Melo
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Amaranta Muniz Malvezzi
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Angélica Hollunder Klippel
- Center for Molecular Biology and Genetic Engineering - CBMEG, Center of Medicinal Chemistry - CQMED, Structural Genomics Consortium - SGC, University of Campinas - UNICAMP, Campinas, SP, Brazil; Departamento de Ciências Biológicas da Faculdade de Ciências Farmacêuticas da Universidade Estadual Paulista "Júlio de Mesquita Filho"-Unesp, Araraquara, SP, Brazil
| | - Martin Zoltner
- Drug Discovery and Evaluation Unit, Department of Parasitology, Faculty of Science, Charles University in Prague, BIOCEV, Vestec, Czech Republic
| | | | - Samantha Kosto
- School of Life Sciences, University of Dundee, Dundee, UK
| | - Mark C Field
- School of Life Sciences, University of Dundee, Dundee, UK; Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | | | | | - Rafael Miguez Couñago
- Center for Molecular Biology and Genetic Engineering - CBMEG, Center of Medicinal Chemistry - CQMED, Structural Genomics Consortium - SGC, University of Campinas - UNICAMP, Campinas, SP, Brazil
| | - Katlin Brauer Massirer
- Center for Molecular Biology and Genetic Engineering - CBMEG, Center of Medicinal Chemistry - CQMED, Structural Genomics Consortium - SGC, University of Campinas - UNICAMP, Campinas, SP, Brazil.
| | - Sergio Schenkman
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
3
|
Abstract
The passage of mRNAs through the nuclear pores into the cytoplasm is essential in all eukaryotes. For regulation, mRNA export is tightly connected to the full machinery of nuclear mRNA processing, starting at transcription. Export competence of pre-mRNAs gradually increases by both transient and permanent interactions with multiple RNA processing and export factors. mRNA export is best understood in opisthokonts, with limited knowledge in plants and protozoa. Here, I review and compare nuclear mRNA processing and export between opisthokonts and Trypanosoma brucei. The parasite has many unusual features in nuclear mRNA processing, such as polycistronic transcription and trans-splicing. It lacks several nuclear complexes and nuclear-pore-associated proteins that in opisthokonts play major roles in mRNA export. As a consequence, trypanosome mRNA export control is not tight and export can even start co-transcriptionally. Whether trypanosomes regulate mRNA export at all, or whether leakage of immature mRNA to the cytoplasm is kept to a low level by a fast kinetics of mRNA processing remains to be investigated. mRNA export had to be present in the last common ancestor of eukaryotes. Trypanosomes are evolutionary very distant from opisthokonts and a comparison helps understanding the evolution of mRNA export.
Collapse
|
4
|
Spatial integration of transcription and splicing in a dedicated compartment sustains monogenic antigen expression in African trypanosomes. Nat Microbiol 2021; 6:289-300. [PMID: 33432154 PMCID: PMC7610597 DOI: 10.1038/s41564-020-00833-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 11/16/2020] [Indexed: 12/13/2022]
Abstract
Highly selective gene expression is a key requirement for antigenic variation in several pathogens, allowing evasion of host immune responses and maintenance of persistent infections 1. African trypanosomes, parasites that cause lethal diseases in humans and livestock, employ an antigenic variation mechanism that involves monogenic antigen expression from a pool of >2600 antigen-coding genes 2. In other eukaryotes, the expression of individual genes can be enhanced by mechanisms involving the juxtaposition of otherwise distal chromosomal loci in the three-dimensional nuclear space 3–5. However, trypanosomes lack classical enhancer sequences or regulated transcription initiation 6,7. In this context, it has remained unclear how genome architecture contributes to monogenic transcription elongation and transcript processing. Here, we show that the single expressed antigen coding gene displays a specific inter-chromosomal interaction with a major mRNA splicing locus. Chromosome conformation capture (Hi-C) revealed a dynamic reconfiguration of this inter-chromosomal interaction upon activation of another antigen. Super-resolution microscopy showed the interaction to be heritable and splicing dependent. We find a specific association of the two genomic loci with the antigen exclusion complex, whereby VEX1 occupied the splicing locus and VEX2 the antigen coding locus. Following VEX2 depletion, loss of monogenic antigen expression was accompanied by increased interactions between previously silent antigen genes and the splicing locus. Our results reveal a mechanism to ensure monogenic expression, where antigen transcription and mRNA splicing occur in a specific nuclear compartment. These findings suggest a new means of post-transcriptional gene regulation.
Collapse
|
5
|
Bell PJ. Evidence supporting a viral origin of the eukaryotic nucleus. Virus Res 2020; 289:198168. [DOI: 10.1016/j.virusres.2020.198168] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 09/10/2020] [Accepted: 09/14/2020] [Indexed: 12/22/2022]
|
6
|
Takagi Y, Akutsu Y, Doi M, Furukawa K. Utilization of proliferable extracellular amastigotes for transient gene expression, drug sensitivity assay, and CRISPR/Cas9-mediated gene knockout in Trypanosoma cruzi. PLoS Negl Trop Dis 2019; 13:e0007088. [PMID: 30640901 PMCID: PMC6347291 DOI: 10.1371/journal.pntd.0007088] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 01/25/2019] [Accepted: 12/18/2018] [Indexed: 12/21/2022] Open
Abstract
Trypanosoma cruzi has three distinct life cycle stages; epimastigote, trypomastigote, and amastigote. Amastigote is the replication stage in host mammalian cells, hence this stage of parasite has clinical significance in drug development research. Presence of extracellular amastigotes (EA) and their infection capability have been known for some decades. Here, we demonstrate that EA can be utilized as an axenic culture to aid in stage-specific study of T. cruzi. Amastigote-like property of axenic amastigote can be sustained in LIT medium at 37°C at least for 1 week, judging from their morphology, amastigote-specific UTR-regulated GFP expression, and stage-specific expression of selected endogenous genes. Inhibitory effect of benznidazole and nifurtimox on axenic amastigotes was comparable to that on intracellular amastigotes. Exogenous nucleic acids can be transfected into EA via conventional electroporation, and selective marker could be utilized for enrichment of transfectants. We also demonstrate that CRISPR/Cas9-mediated gene knockout can be performed in EA. Essentiality of the target gene can be evaluated by the growth capability of the knockout EA, either by continuation of axenic culturing or by host infection and following replication as intracellular amastigotes. By taking advantage of the accessibility and sturdiness of EA, we can potentially expand our experimental freedom in studying amastigote stage of T. cruzi.
Collapse
Affiliation(s)
- Yuko Takagi
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
- * E-mail:
| | - Yukie Akutsu
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| | - Motomichi Doi
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| | - Koji Furukawa
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| |
Collapse
|
7
|
Trotman JB, Schoenberg *DR. A recap of RNA recapping. WILEY INTERDISCIPLINARY REVIEWS. RNA 2019; 10:e1504. [PMID: 30252202 PMCID: PMC6294674 DOI: 10.1002/wrna.1504] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/13/2018] [Accepted: 08/01/2018] [Indexed: 12/12/2022]
Abstract
The N7-methylguanosine cap is a hallmark of the 5' end of eukaryotic mRNAs and is required for gene expression. Loss of the cap was believed to lead irreversibly to decay. However, nearly a decade ago, it was discovered that mammalian cells contain enzymes in the cytoplasm that are capable of restoring caps onto uncapped RNAs. In this review, we summarize recent advances in our understanding of cytoplasmic RNA recapping and discuss the biochemistry of this process and its impact on regulating and diversifying the transcriptome. Although most studies focus on mammalian RNA recapping, we also highlight new observations for recapping in disparate eukaryotic organisms, with the trypanosome recapping system appearing to be a fascinating example of convergent evolution. We conclude with emerging insights into the biological significance of RNA recapping and prospects for the future of this evolving area of study. This article is categorized under: RNA Processing > RNA Editing and Modification Translation > Translation Regulation RNA Processing > Capping and 5' End Modifications RNA Turnover and Surveillance > Regulation of RNA Stability.
Collapse
Affiliation(s)
- Jackson B. Trotman
- Department of Biological Chemistry and Pharmacology, Center for RNA Biology, The Ohio State University, Columbus, OH 43210,
| | - *Daniel R. Schoenberg
- Department of Biological Chemistry and Pharmacology, Center for RNA Biology, The Ohio State University, Columbus, OH 43210, schoenberg,
| |
Collapse
|
8
|
Kelner A, Tinti M, Guther MLS, Foth BJ, Chappell L, Berriman M, Cowling VH, Ferguson MAJ. The mRNA cap methyltransferase gene TbCMT1 is not essential in vitro but is a virulence factor in vivo for bloodstream form Trypanosoma brucei. PLoS One 2018; 13:e0201263. [PMID: 30040830 PMCID: PMC6057678 DOI: 10.1371/journal.pone.0201263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 07/11/2018] [Indexed: 01/16/2023] Open
Abstract
Messenger RNA is modified by the addition of a 5' methylated cap structure, which protects the transcript and recruits protein complexes that mediate RNA processing and/or the initiation of translation. Two genes encoding mRNA cap methyltransferases have been identified in T. brucei: TbCMT1 and TbCGM1. Here we analysed the impact of TbCMT1 gene deletion on bloodstream form T. brucei cells. TbCMT1 was dispensable for parasite proliferation in in vitro culture. However, significantly decreased parasitemia was observed in mice inoculated with TbCMT1 null and conditional null cell lines. Using RNA-Seq, we observed that several cysteine peptidase mRNAs were downregulated in TbCMT1 null cells lines. The cysteine peptidase Cathepsin-L was also shown to be reduced at the protein level in TbCMT1 null cell lines. Our data suggest that TbCMT1 is not essential to bloodstream form T. brucei growth in vitro or in vivo but that it contributes significantly to parasite virulence in vivo.
Collapse
Affiliation(s)
- Anna Kelner
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Michele Tinti
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Maria Lucia S. Guther
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | | | - Lia Chappell
- The Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | | | - Victoria Haigh Cowling
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Michael A. J. Ferguson
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
9
|
Zoltner M, Krienitz N, Field MC, Kramer S. Comparative proteomics of the two T. brucei PABPs suggests that PABP2 controls bulk mRNA. PLoS Negl Trop Dis 2018; 12:e0006679. [PMID: 30040867 PMCID: PMC6075789 DOI: 10.1371/journal.pntd.0006679] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 08/03/2018] [Accepted: 07/10/2018] [Indexed: 01/17/2023] Open
Abstract
Poly(A)-binding proteins (PABPs) regulate mRNA fate by controlling stability and translation through interactions with both the poly(A) tail and eIF4F complex. Many organisms have several paralogs of PABPs and eIF4F complex components and it is likely that different eIF4F/PABP complex combinations regulate distinct sets of mRNAs. Trypanosomes have five eIF4G paralogs, six of eIF4E and two PABPs, PABP1 and PABP2. Under starvation, polysomes dissociate and the majority of mRNAs, most translation initiation factors and PABP2 reversibly localise to starvation stress granules. To understand this more broadly we identified a protein interaction cohort for both T. brucei PABPs by cryo-mill/affinity purification-mass spectrometry. PABP1 very specifically interacts with the previously identified interactors eIF4E4 and eIF4G3 and few others. In contrast PABP2 is promiscuous, with a larger set of interactors including most translation initiation factors and most prominently eIF4G1, with its two partners TbG1-IP and TbG1-IP2. Only RBP23 was specific to PABP1, whilst 14 RNA-binding proteins were exclusively immunoprecipitated with PABP2. Significantly, PABP1 and associated proteins are largely excluded from starvation stress granules, but PABP2 and most interactors translocate to granules on starvation. We suggest that PABP1 regulates a small subpopulation of mainly small-sized mRNAs, as it interacts with a small and distinct set of proteins unable to enter the dominant pathway into starvation stress granules and localises preferentially to a subfraction of small polysomes. By contrast PABP2 likely regulates bulk mRNA translation, as it interacts with a wide range of proteins, enters stress granules and distributes over the full range of polysomes.
Collapse
Affiliation(s)
- Martin Zoltner
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Nina Krienitz
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Am Hubland, Würzburg, Germany
| | - Mark C. Field
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Susanne Kramer
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Am Hubland, Würzburg, Germany
| |
Collapse
|
10
|
The Role of Cytoplasmic mRNA Cap-Binding Protein Complexes in Trypanosoma brucei and Other Trypanosomatids. Pathogens 2017; 6:pathogens6040055. [PMID: 29077018 PMCID: PMC5750579 DOI: 10.3390/pathogens6040055] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 10/21/2017] [Accepted: 10/22/2017] [Indexed: 11/16/2022] Open
Abstract
Trypanosomatid protozoa are unusual eukaryotes that are well known for having unusual ways of controlling their gene expression. The lack of a refined mode of transcriptional control in these organisms is compensated by several post-transcriptional control mechanisms, such as control of mRNA turnover and selection of mRNA for translation, that may modulate protein synthesis in response to several environmental conditions found in different hosts. In other eukaryotes, selection of mRNA for translation is mediated by the complex eIF4F, a heterotrimeric protein complex composed by the subunits eIF4E, eIF4G, and eIF4A, where the eIF4E binds to the 5'-cap structure of mature mRNAs. In this review, we present and discuss the characteristics of six trypanosomatid eIF4E homologs and their associated proteins that form multiple eIF4F complexes. The existence of multiple eIF4F complexes in trypanosomatids evokes exquisite mechanisms for differential mRNA recognition for translation.
Collapse
|
11
|
Ho CK. Detection and Identification of Uncapped RNA by Ligation-Mediated Reverse Transcription Polymerase Chain Reaction. Methods Mol Biol 2017; 1648:1-9. [PMID: 28766285 DOI: 10.1007/978-1-4939-7204-3_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
The 5'-cap structure is an essential feature in eukaryotic mRNA required for mRNA stability and enhancement of translation. Ceratin transcripts are selectively silenced by decapping in the cytoplasm and later become translationally active again by acquiring the cap structure to regenerate translatable mRNAs. Identification of uncapped mRNA transcripts will reveal how gene expression is regulated by the mRNA recapping pathway. What follows is a sensitive method to detect and identify the uncapped mRNA from the cells. The technique consists of three parts: selective ligation of anchor RNA to the 5'-end of monophosphate RNA by double-strand RNA ligase, conversion of ligated RNA product into cDNA by reverse transcription, and amplification of a specific cDNA by polymerase chain reaction.
Collapse
Affiliation(s)
- C Kiong Ho
- Department of Infection Biology, Graduate School of Comprehensive Human Sciences, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8575, Japan.
| |
Collapse
|
12
|
Smith P, Ho CK, Takagi Y, Djaballah H, Shuman S. Nanomolar Inhibitors of Trypanosoma brucei RNA Triphosphatase. mBio 2016; 7:e00058-16. [PMID: 26908574 PMCID: PMC4791841 DOI: 10.1128/mbio.00058-16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 01/19/2016] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED Eukaryal taxa differ with respect to the structure and mechanism of the RNA triphosphatase (RTPase) component of the mRNA capping apparatus. Protozoa, fungi, and certain DNA viruses have a metal-dependent RTPase that belongs to the triphosphate tunnel metalloenzyme (TTM) superfamily. Because the structures, active sites, and chemical mechanisms of the TTM-type RTPases differ from those of mammalian RTPases, the TTM RTPases are potential targets for antiprotozoal, antifungal, and antiviral drug discovery. Here, we employed RNA interference (RNAi) knockdown methods to show that Trypanosoma brucei RTPase Cet1 (TbCet1) is necessary for proliferation of procyclic cells in culture. We then conducted a high-throughput biochemical screen for small-molecule inhibitors of the phosphohydrolase activity of TbCet1. We identified several classes of chemicals-including chlorogenic acids, phenolic glycopyranosides, flavonoids, and other phenolics-that inhibit TbCet1 with nanomolar to low-micromolar 50% inhibitory concentrations (IC50s). We confirmed the activity of these compounds, and tested various analogs thereof, by direct manual assays of TbCet1 phosphohydrolase activity. The most potent nanomolar inhibitors included tetracaffeoylquinic acid, 5-galloylgalloylquinic acid, pentagalloylglucose, rosmarinic acid, and miquelianin. TbCet1 inhibitors were less active (or inactive) against the orthologous TTM-type RTPases of mimivirus, baculovirus, and budding yeast (Saccharomyces cerevisiae). Our results affirm that a TTM RTPase is subject to potent inhibition by small molecules, with the caveat that parallel screens against TTM RTPases from multiple different pathogens may be required to fully probe the chemical space of TTM inhibition. IMPORTANCE The stark differences between the structure and mechanism of the RNA triphosphatase (RTPase) component of the mRNA capping apparatus in pathogenic protozoa, fungi, and viruses and those of their metazoan hosts highlight RTPase as a target for anti-infective drug discovery. Protozoan, fungal, and DNA virus RTPases belong to the triphosphate tunnel metalloenzyme family. This study shows that a protozoan RTPase, TbCet1 from Trypanosoma brucei, is essential for growth of the parasite in culture and identifies, via in vitro screening of chemical libraries, several classes of potent small-molecule inhibitors of TbCet1 phosphohydrolase activity.
Collapse
Affiliation(s)
- Paul Smith
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York, USA
| | - C Kiong Ho
- Department of Infection Biology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York, USA
| | - Yuko Takagi
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York, USA
| | - Hakim Djaballah
- High Throughput Screening Core Facility, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - Stewart Shuman
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York, USA
| |
Collapse
|
13
|
Byszewska M, Śmietański M, Purta E, Bujnicki JM. RNA methyltransferases involved in 5' cap biosynthesis. RNA Biol 2015; 11:1597-607. [PMID: 25626080 PMCID: PMC4615557 DOI: 10.1080/15476286.2015.1004955] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
In eukaryotes and viruses that infect them, the 5′ end of mRNA molecules, and also many other functionally important RNAs, are modified to form a so-called cap structure that is important for interactions of these RNAs with many nuclear and cytoplasmic proteins. The RNA cap has multiple roles in gene expression, including enhancement of RNA stability, splicing, nucleocytoplasmic transport, and translation initiation. Apart from guanosine addition to the 5′ end in the most typical cap structure common to transcripts produced by RNA polymerase II (in particular mRNA), essentially all cap modifications are due to methylation. The complexity of the cap structure and its formation can range from just a single methylation of the unprocessed 5′ end of the primary transcript, as in mammalian U6 and 7SK, mouse B2, and plant U3 RNAs, to an elaborate m7Gpppm6,6AmpAmpCmpm3Um structure at the 5′ end of processed RNA in trypanosomes, which are formed by as many as 8 methylation reactions. While all enzymes responsible for methylation of the cap structure characterized to date were found to belong to the same evolutionarily related and structurally similar Rossmann Fold Methyltransferase superfamily, that uses the same methyl group donor, S-adenosylmethionine; the enzymes also exhibit interesting differences that are responsible for their distinct functions. This review focuses on the evolutionary classification of enzymes responsible for cap methylation in RNA, with a focus on the sequence relationships and structural similarities and dissimilarities that provide the basis for understanding the mechanism of biosynthesis of different caps in cellular and viral RNAs. Particular attention is paid to the similarities and differences between methyltransferases from human cells and from human pathogens that may be helpful in the development of antiviral and antiparasitic drugs.
Collapse
|
14
|
The messenger RNA decapping and recapping pathway in Trypanosoma. Proc Natl Acad Sci U S A 2015; 112:6967-72. [PMID: 26038549 DOI: 10.1073/pnas.1424909112] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The 5' terminus of trypanosome mRNA is protected by a hypermethylated cap 4 derived from spliced leader (SL) RNA. Trypanosoma brucei nuclear capping enzyme with cap guanylyltransferase and methyltransferase activities (TbCgm1) modifies the 5'-diphosphate RNA (ppRNA) end to generate an m7G SL RNA cap. Here we show that T. brucei cytoplasmic capping enzyme (TbCe1) is a bifunctional 5'-RNA kinase and guanylyltransferase that transfers a γ-phosphate from ATP to pRNA to form ppRNA, which is then capped by transfer of GMP from GTP to the RNA β-phosphate. A Walker A-box motif in the N-terminal domain is essential for the RNA kinase activity and is targeted preferentially to a SL RNA sequence with a 5'-terminal methylated nucleoside. Silencing of TbCe1 leads to accumulation of uncapped mRNAs, consistent with selective capping of mRNA that has undergone trans-splicing and decapping. We identify T. brucei mRNA decapping enzyme (TbDcp2) that cleaves m7GDP from capped RNA to generate pRNA, a substrate for TbCe1. TbDcp2 can also remove GDP from unmethylated capped RNA but is less active at a mature cap 4 end and thus may function in RNA cap quality surveillance. Our results establish the enzymology and relevant protein catalysts of a cytoplasmic recapping pathway that has broad implications for the functional reactivation of processed mRNA ends.
Collapse
|
15
|
Freire ER, Vashisht AA, Malvezzi AM, Zuberek J, Langousis G, Saada EA, Nascimento JDF, Stepinski J, Darzynkiewicz E, Hill K, De Melo Neto OP, Wohlschlegel JA, Sturm NR, Campbell DA. eIF4F-like complexes formed by cap-binding homolog TbEIF4E5 with TbEIF4G1 or TbEIF4G2 are implicated in post-transcriptional regulation in Trypanosoma brucei. RNA (NEW YORK, N.Y.) 2014; 20:1272-86. [PMID: 24962368 PMCID: PMC4105752 DOI: 10.1261/rna.045534.114] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 05/12/2014] [Indexed: 05/19/2023]
Abstract
Members of the eIF4E mRNA cap-binding family are involved in translation and the modulation of transcript availability in other systems as part of a three-component complex including eIF4G and eIF4A. The kinetoplastids possess four described eIF4E and five eIF4G homologs. We have identified two new eIF4E family proteins in Trypanosoma brucei, and define distinct complexes associated with the fifth member, TbEIF4E5. The cytosolic TbEIF4E5 protein binds cap 0 in vitro. TbEIF4E5 was found in association with two of the five TbEIF4Gs. TbIF4EG1 bound TbEIF4E5, a 47.5-kDa protein with two RNA-binding domains, and either the regulatory protein 14-3-3 II or a 117.5-kDa protein with guanylyltransferase and methyltransferase domains in a potentially dynamic interaction. The TbEIF4G2/TbEIF4E5 complex was associated with a 17.9-kDa hypothetical protein and both 14-3-3 variants I and II. Knockdown of TbEIF4E5 resulted in the loss of productive cell movement, as evidenced by the inability of the cells to remain in suspension in liquid culture and the loss of social motility on semisolid plating medium, as well as a minor reduction of translation. Cells appeared lethargic, as opposed to compromised in flagellar function per se. The minimal use of transcriptional control in kinetoplastids requires these organisms to implement downstream mechanisms to regulate gene expression, and the TbEIF4E5/TbEIF4G1/117.5-kDa complex in particular may be a key player in that process. We suggest that a pathway involved in cell motility is affected, directly or indirectly, by one of the TbEIF4E5 complexes.
Collapse
Affiliation(s)
- Eden R Freire
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California 90095, USA
| | - Ajay A Vashisht
- Department of Biological Chemistry, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California 90095, USA
| | - Amaranta M Malvezzi
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California 90095, USA Department of Microbiology, Centro de Pesquisas Aggeu Magalhães, Fundação Oswaldo Cruz, Recife, Pernambuco 50670-420, Brazil
| | - Joanna Zuberek
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-089 Warsaw, Poland
| | - Gerasimos Langousis
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California 90095, USA
| | - Edwin A Saada
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California 90095, USA
| | - Janaína De F Nascimento
- Department of Microbiology, Centro de Pesquisas Aggeu Magalhães, Fundação Oswaldo Cruz, Recife, Pernambuco 50670-420, Brazil
| | - Janusz Stepinski
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-089 Warsaw, Poland
| | - Edward Darzynkiewicz
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-089 Warsaw, Poland Centre of New Technologies, University of Warsaw, 02-089 Warsaw, Poland
| | - Kent Hill
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California 90095, USA
| | - Osvaldo P De Melo Neto
- Department of Microbiology, Centro de Pesquisas Aggeu Magalhães, Fundação Oswaldo Cruz, Recife, Pernambuco 50670-420, Brazil
| | - James A Wohlschlegel
- Department of Biological Chemistry, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California 90095, USA
| | - Nancy R Sturm
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California 90095, USA
| | - David A Campbell
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California 90095, USA
| |
Collapse
|
16
|
Trypanosoma brucei translation initiation factor homolog EIF4E6 forms a tripartite cytosolic complex with EIF4G5 and a capping enzyme homolog. EUKARYOTIC CELL 2014; 13:896-908. [PMID: 24839125 DOI: 10.1128/ec.00071-14] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Trypanosomes lack the transcriptional control characteristic of the majority of eukaryotes that is mediated by gene-specific promoters in a one-gene-one-promoter arrangement. Rather, their genomes are transcribed in large polycistrons with no obvious functional linkage. Posttranscriptional regulation of gene expression must thus play a larger role in these organisms. The eIF4E homolog TbEIF4E6 binds mRNA cap analogs in vitro and is part of a complex in vivo that may fulfill such a role. Knockdown of TbEIF4E6 tagged with protein A-tobacco etch virus protease cleavage site-protein C to approximately 15% of the normal expression level resulted in viable cells that displayed a set of phenotypes linked to detachment of the flagellum from the length of the cell body, if not outright flagellum loss. While these cells appeared and behaved as normal under stationary liquid culture conditions, standard centrifugation resulted in a marked increase in flagellar detachment. Furthermore, the ability of TbEIF4E6-depleted cells to engage in social motility was reduced. The TbEIF4E6 protein forms a cytosolic complex containing a triad of proteins, including the eIF4G homolog TbEIF4G5 and a hypothetical protein of 70.3 kDa, referred to as TbG5-IP. The TbG5-IP analysis revealed two domains with predicted secondary structures conserved in mRNA capping enzymes: nucleoside triphosphate hydrolase and guanylyltransferase. These complex members have the potential for RNA interaction, either via the 5' cap structure for TbEIF4E6 and TbG5-IP or through RNA-binding domains in TbEIF4G5. The associated proteins provide a signpost for future studies to determine how this complex affects capped RNA molecules.
Collapse
|
17
|
Rossi A, Ross EJ, Jack A, Sánchez Alvarado A. Molecular cloning and characterization of SL3: a stem cell-specific SL RNA from the planarian Schmidtea mediterranea. Gene 2013; 533:156-67. [PMID: 24120894 DOI: 10.1016/j.gene.2013.09.101] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 08/26/2013] [Accepted: 09/26/2013] [Indexed: 01/03/2023]
Abstract
Spliced leader (SL) trans-splicing is a biological phenomenon, common among many metazoan taxa, consisting in the transfer of a short leader sequence from a small SL RNA to the 5' end of a subset of pre-mRNAs. While knowledge of the biochemical mechanisms driving this process has accumulated over the years, the functional consequences of such post-transcriptional event at the organismal level remain unclear. In addition, the fact that functional analyses have been undertaken mainly in trypanosomes and nematodes leaves a somehow fragmented picture of the possible biological significance and evolution of SL trans-splicing in eukaryotes. Here, we analyzed the spatial expression of SL RNAs in the planarian flatworm Schmidtea mediterranea, with the goal of identifying novel developmental paradigms for the study of trans-splicing in metazoans. Besides the previously identified SL1 and SL2, S. mediterranea expresses a third SL RNA described here as SL3. While, SL1 and SL2 are collectively expressed in a broad range of planarian cell types, SL3 is highly enriched in a subset of the planarian stem cells engaged in regenerative responses. Our findings provide new opportunities to study how trans-splicing may regulate the phenotype of a cell.
Collapse
Affiliation(s)
- Alessandro Rossi
- Stowers Institute for Medical Research, 1000 E 50th St., Kansas City, MO 64110, USA.
| | | | | | | |
Collapse
|
18
|
Kramer S, Marnef A, Standart N, Carrington M. Inhibition of mRNA maturation in trypanosomes causes the formation of novel foci at the nuclear periphery containing cytoplasmic regulators of mRNA fate. J Cell Sci 2012; 125:2896-909. [PMID: 22366449 PMCID: PMC3434824 DOI: 10.1242/jcs.099275] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Maturation of all cytoplasmic mRNAs in trypanosomes involves trans-splicing of a short exon at the 5′ end. Inhibition of trans-splicing results in an accumulation of partially processed oligocistronic mRNAs. Here, we show that the accumulation of newly synthesised partially processed mRNAs results in the formation of foci around the periphery of the nucleus. These nuclear periphery granules (NPGs) contain the full complement of P-body proteins identified in trypanosomes to date, as well as poly(A)-binding protein 2 and the trypanosome homologue of the RNA helicase VASA. NPGs resemble perinuclear germ granules from metazoa more than P-bodies because they: (1) are localised around the nuclear periphery; (2) are dependent on active transcription; (3) are not dissipated by cycloheximide; (4) contain VASA; and (5) depend on nuclear integrity. In addition, NPGs can be induced in cells depleted of the P-body core component SCD6. The description of NPGs in trypanosomes provides evidence that there is a perinuclear compartment that can determine the fate of newly transcribed mRNAs and that germ granules could be a specialised derivative.
Collapse
Affiliation(s)
- Susanne Kramer
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK
| | | | | | | |
Collapse
|
19
|
Chemical approaches for structure and function of RNA in postgenomic era. J Nucleic Acids 2012; 2012:369058. [PMID: 22347623 PMCID: PMC3278928 DOI: 10.1155/2012/369058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Revised: 06/21/2011] [Accepted: 07/05/2011] [Indexed: 01/11/2023] Open
Abstract
In the study of cellular RNA chemistry, a major thrust of research focused upon sequence determinations for decades. Structures of snRNAs (4.5S RNA I (Alu), U1, U2, U3, U4, U5, and U6) were determined at Baylor College of Medicine, Houston, Tex, in an earlier time of pregenomic era. They show novel modifications including base methylation, sugar methylation, 5′-cap structures (types 0–III) and sequence heterogeneity. This work offered an exciting problem of posttranscriptional modification and underwent numerous significant advances through technological revolutions during pregenomic, genomic, and postgenomic eras. Presently, snRNA research is making progresses involved in enzymology of snRNA modifications, molecular evolution, mechanism of spliceosome assembly, chemical mechanism of intron removal, high-order structure of snRNA in spliceosome, and pathology of splicing. These works are destined to reach final pathway of work “Function and Structure of Spliceosome” in addition to exciting new exploitation of other noncoding RNAs in all aspects of regulatory functions.
Collapse
|
20
|
SL RNA Biogenesis in Kinetoplastids: A Long and Winding Road. RNA METABOLISM IN TRYPANOSOMES 2012. [DOI: 10.1007/978-3-642-28687-2_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
21
|
Michaeli S. Trans-splicing in trypanosomes: machinery and its impact on the parasite transcriptome. Future Microbiol 2011; 6:459-74. [PMID: 21526946 DOI: 10.2217/fmb.11.20] [Citation(s) in RCA: 139] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In trypanosomes, all RNAs are processed by the concerted action of trans-splicing and polyadenylation. In trans-splicing, a common spliced leader (SL) is donated to all mRNAs from a small RNA molecule, the SL RNA. This article summarizes recent findings in the field focusing on SL RNA transcription, cap modifications and pseudouridylation. The role(s) of these modifications for splicing and gene expression are discussed. The recruitment of SL RNA to the spliceosome depends on splicing factors and recent progress in identifying such factors is described. A recent major advance in understanding the role of trans-splicing in the trypanosome transcriptome was obtained by whole-genome mapping of the SL and polyadenylation sites, revealing surprising heterogeneity and suggesting that gene regulation, especially during cycling between the two hosts of the parasite, involves alternative trans-splicing. Finally, the SL silencing mechanism, which is harnessed by the parasite to control gene expression under stress, is discussed.
Collapse
Affiliation(s)
- Shulamit Michaeli
- The Mina & Everard Goodman Faculty of Life Sciences & Advanced Materials & Nanotechnology Institute, Bar-Ilan University, Ramat-Gan, Israel.
| |
Collapse
|
22
|
A metazoan/plant-like capping enzyme and cap modified nucleotides in the unicellular eukaryote Trichomonas vaginalis. PLoS Pathog 2010; 6:e1000999. [PMID: 20664792 PMCID: PMC2904801 DOI: 10.1371/journal.ppat.1000999] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Accepted: 06/11/2010] [Indexed: 01/12/2023] Open
Abstract
The cap structure of eukaryotic messenger RNAs is initially elaborated through three enzymatic reactions: hydrolysis of the 5′-triphosphate, transfer of guanosine through a 5′-5′ triphosphate linkage and N7-methylation of the guanine cap. Three distinctive enzymes catalyze each reaction in various microbial eukaryotes, whereas the first two enzymes are fused into a single polypeptide in metazoans and plants. In addition to the guanosine cap, adjacent nucleotides are 2′-O-ribose methylated in metazoa and plants, but not in yeast. Analyses of various cap structures have suggested a linear phylogenetic trend of complexity. These findings have led to a model in which plants and metazoa evolved a two-component capping apparatus and modification of adjacent nucleotides while many microbial eukaryotes maintained the three-component system and did not develop modification of adjacent nucleotides. Here, we have characterized a bifunctional capping enzyme in the divergent microbial eukaryote Trichomonas vaginalis using biochemical and phylogenetic analyses. This unicellular parasite was found to harbor a metazoan/plant-like capping apparatus that is represented by a two-domain polypeptide containing a C-terminus guanylyltransferase and a cysteinyl phosphatase triphosphatase, distinct from its counterpart in other microbial eukaryotes. In addition, T. vaginalis mRNAs contain a cap 1 structure represented by m7GpppAmpUp or m7GpppCmpUp; a feature typical of metazoan and plant mRNAs but absent in yeast mRNAs. Phylogenetic and biochemical analyses of the origin of the T. vaginalis capping enzyme suggests a complex evolutionary model where differential gene loss and/or acquisition occurred in the development of the RNA capping apparatus and cap modified nucleotides during eukaryote diversification. The protozoan parasite Trichomonas vaginalis is the cause of the most common non-viral sexually transmitted disease worldwide. Evolutionary analyses place Trichomonas in a super group called the Excavata, which includes the kinetoplastids and is highly divergent from fungi, metazoa and plants. Despite the vast evolutionary distances that separate these different eukaryotic lineages, a simplified view of eukaryotic evolution based on the complexity of nucleotide modifications at the 5′ end of mRNAs and the distribution of different types of enzymatic apparatus that confer these modifications has been proposed. Our analyses of the T. vaginalis capping enzyme challenges this view and provides the first example of a two-component capping apparatus typically found in metazoa and plants in a protozoan. The 5′-end nucleotide structure of T. vaginalis mRNAs is also shown to contain additional modified nucleotides, similar to that observed for metazoan and plant mRNAs and unlike that found in most eukaryotic microbes and fungi. Evolutionary analyses of the T. vaginalis capping enzyme indicates that this multicellular type capping apparatus may have come into existence earlier than previously thought.
Collapse
|
23
|
Banerjee H, Palenchar JB, Lukaszewicz M, Bojarska E, Stepinski J, Jemielity J, Guranowski A, Ng S, Wah DA, Darzynkiewicz E, Bellofatto V. Identification of the HIT-45 protein from Trypanosoma brucei as an FHIT protein/dinucleoside triphosphatase: substrate specificity studies on the recombinant and endogenous proteins. RNA (NEW YORK, N.Y.) 2009; 15:1554-64. [PMID: 19541768 PMCID: PMC2714743 DOI: 10.1261/rna.1426609] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
A new member of the FHIT protein family, designated HIT-45, has been identified in the African trypanosome Trypanosoma brucei. Recombinant HIT-45 proteins were purified from trypanosomal and bacterial protein expression systems and analyzed for substrate specificity using various dinucleoside polyphosphates, including those that contain the 5'-mRNA cap, i.e., m(7)GMP. This enzyme exhibited typical dinucleoside triphosphatase activity (EC 3.6.1.29), having its highest specificity for diadenosine triphosphate (ApppA). However, the trypanosome enzyme contains a unique amino-terminal extension, and hydrolysis of cap dinucleotides with monomethylated guanosine or dimethylated guanosine always yielded m(7)GMP (or m(2,7)GMP) as one of the reaction products. Interestingly, m(7)Gpppm(3)(N6, N6, 2'O)A was preferred among the methylated substrates. This hypermethylated dinucleotide is unique to trypanosomes and may be an intermediate in the decay of cap 4, i.e., m(7)Gpppm(3)(N6, N6, 2'O)Apm(2'O)Apm(2'O)Cpm(2)(N3, 2'O)U, that occurs in these organisms.
Collapse
Affiliation(s)
- Hiren Banerjee
- Department of Microbiology and Molecular Genetics, University of Medicine and Dentistry-New Jersey Medical School, Newark, New Jersey 07103, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Zamudio JR, Mittra B, Campbell DA, Sturm NR. Hypermethylated cap 4 maximizes Trypanosoma brucei translation. Mol Microbiol 2009; 72:1100-10. [PMID: 19504740 DOI: 10.1111/j.1365-2958.2009.06696.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Through trans-splicing of a 39-nt spliced leader (SL) onto each protein-coding transcript, mature kinetoplastid mRNA acquire a hypermethylated 5'-cap structure, but its function has been unclear. Gene deletions for three Trypanosoma brucei cap 2'-O-ribose methyltransferases, TbMTr1, TbMTr2 and TbMTr3, reveal distinct roles for four 2'-O-methylated nucleotides. Elimination of individual gene pairs yields viable cells; however, attempts at double knock-outs resulted in the generation of a TbMTr2-/-/TbMTr3-/- cell line only. Absence of both kinetoplastid-specific enzymes in TbMTr2-/-/TbMTr3-/- lines yielded substrate SL RNA and mRNA with cap 1. TbMTr1-/- translation is comparable with wildtype, while cap 3 and cap 4 loss reduced translation rates, exacerbated by the additional loss of cap 2. TbMTr1-/- and TbMTr2-/-/TbMTr3-/- lines grow to lower densities under normal culture conditions relative to wildtype cells, with growth rate differences apparent under low serum conditions. Cell viability may not tolerate delays at both the nucleolar Sm-independent and nucleoplasmic Sm-dependent stages of SL RNA maturation combined with reduced rates of translation. A minimal level of mRNA cap ribose methylation is essential for trypanosome viability, providing the first functional role for the cap 4.
Collapse
Affiliation(s)
- Jesse R Zamudio
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095-1489, USA
| | | | | | | |
Collapse
|
25
|
Ruan JP, Shen S, Ullu E, Tschudi C. Evidence for a capping enzyme with specificity for the trypanosome spliced leader RNA. Mol Biochem Parasitol 2007; 156:246-54. [PMID: 17949828 PMCID: PMC2706020 DOI: 10.1016/j.molbiopara.2007.09.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2007] [Accepted: 09/10/2007] [Indexed: 02/02/2023]
Abstract
Capping of the pre-mRNA 5' end by addition a monomethylated guanosine cap (m(7)G) is an essential and the earliest modification in the biogenesis of mRNA. The reaction is catalyzed by three enzymes: triphosphatase, guanylyltransferase, and (guanine N-7) methyltransferase. Whereas this modification occurs co-transcriptionally in most eukaryotic organisms, trypanosomatid protozoa mRNAs acquire the m(7)G cap by trans-splicing, which entails the transfer of the capped spliced leader (SL) from the SL RNA to the mRNA. Intriguingly, the genomes of all trypanosomatid protozoa sequenced to date possess two distinct proteins with the signature motifs of guanylyltransferases: TbCGM1 and the previously characterized TbCE1. Here we provide biochemical evidence that TbCgm1 is a capping enzyme. Whereas RNAi-induced downregulation of TbCe1 had no phenotypic consequences, we found that TbCGM1 is essential for trypanosome viability and is required for SL RNA capping. Furthermore, consistent with co-transcriptional addition of the m(7)G cap, chromatin immunoprecipitation revealed recruitment of TbCgm1 to the SL RNA genes.
Collapse
Affiliation(s)
- Jia-peng Ruan
- Department of Epidemiology & Public Health, Yale University Medical School, 295 Congress Avenue, New Haven, CT 06536-0812, USA
| | - Shuiyuan Shen
- Department of Internal Medicine, Yale University Medical School, 295 Congress Avenue, New Haven, CT 06536-0812, USA
| | - Elisabetta Ullu
- Department of Internal Medicine, Yale University Medical School, 295 Congress Avenue, New Haven, CT 06536-0812, USA
- Department of Cell Biology, Yale University Medical School, 295 Congress Avenue, New Haven, CT 06536-0812, USA
| | - Christian Tschudi
- Department of Epidemiology & Public Health, Yale University Medical School, 295 Congress Avenue, New Haven, CT 06536-0812, USA
- Department of Internal Medicine, Yale University Medical School, 295 Congress Avenue, New Haven, CT 06536-0812, USA
| |
Collapse
|
26
|
Mittra B, Zamudio JR, Bujnicki JM, Stepinski J, Darzynkiewicz E, Campbell DA, Sturm NR. The TbMTr1 spliced leader RNA cap 1 2'-O-ribose methyltransferase from Trypanosoma brucei acts with substrate specificity. J Biol Chem 2007; 283:3161-3172. [PMID: 18048356 DOI: 10.1074/jbc.m707367200] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In metazoa cap 1 (m(7)GpppNmp-RNA) is linked to higher levels of translation; however, the enzyme responsible remains unidentified. We have validated the first eukaryotic encoded cap 1 2'-O-ribose methyltransferase, TbMTr1, a member of a conserved family that modifies the first transcribed nucleotide of spliced leader and U1 small nuclear RNAs in the kinetoplastid protozoan Trypanosoma brucei. In addition to cap 0 (m(7)GpppNp-RNA), mRNA in these parasites has ribose methylations on the first four nucleotides with base methylations on the first and fourth (m(7)Gpppm(6,6)AmpAmpCmpm(3)Ump-SL RNA) conveyed via trans-splicing of a universal spliced leader. The function of this cap 4 is unclear. Spliced leader is the majority RNA polymerase II transcript; the RNA polymerase III-transcribed U1 small nuclear RNA has the same first four nucleotides as spliced leader, but it receives an m(2,2,7)G cap with hypermethylation at position one only (m(2,2,7)Gpppm(6,6)AmpApCpUp-U1 snRNA). Here we examine the biochemical properties of recombinant TbMTr1. Active over a pH range of 6.0 to 9.5, TbMTr1 is sensitive to Mg(2+). Positions Lys(95)-Asp(204)-Lys(259)-Glu(285) constitute the conserved catalytic core. A guanosine cap on RNA independent of its N(7) methylation status is required for substrate recognition, but an m(2,2,7G)-cap is not recognized. TbMTr1 favors the spliced leader 5' sequence, as reflected by a preference for A at position 1 and modulation of activity for substrates with base changes at positions 2 and 3. With similarities to human cap 1 methyltransferase activity, TbMTr1 is an excellent model for higher eukaryotic cap 1 methyltransferases and the consequences of cap 1 modification.
Collapse
Affiliation(s)
- Bidyottam Mittra
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, California 90095
| | - Jesse R Zamudio
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, California 90095
| | - Janusz M Bujnicki
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, ul. ks. Trojdena 4, 02-109 Warsaw, Poland; Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznan, Poland
| | - Janusz Stepinski
- Department of Biophysics, Institute of Experimental Physics, Warsaw University, 93 Zwirki and Wigury St., 02-089 Warsaw, Poland
| | - Edward Darzynkiewicz
- Department of Biophysics, Institute of Experimental Physics, Warsaw University, 93 Zwirki and Wigury St., 02-089 Warsaw, Poland
| | - David A Campbell
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, California 90095.
| | - Nancy R Sturm
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, California 90095
| |
Collapse
|