1
|
Kao G, Zhang XN, Nasertorabi F, Katz BB, Li Z, Dai Z, Zhang Z, Zhang L, Louie SG, Cherezov V, Zhang Y. Nicotinamide Riboside and CD38: Covalent Inhibition and Live-Cell Labeling. JACS AU 2024; 4:4345-4360. [PMID: 39610739 PMCID: PMC11600175 DOI: 10.1021/jacsau.4c00695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/03/2024] [Accepted: 10/21/2024] [Indexed: 11/30/2024]
Abstract
Nicotinamide adenine dinucleotide (NAD+) is required for a myriad of metabolic, signaling, and post-translational events in cells. Its levels in tissues and organs are closely associated with health conditions. The homeostasis of NAD+ is regulated by biosynthetic pathways and consuming enzymes. As a membrane-bound protein with robust NAD+ hydrolase activity, cluster of differentiation 38 (CD38) is a major degrader of NAD+. Deficiency or inhibition of CD38 enhances NAD+ levels in vivo, resulting in various therapeutic benefits. As a metabolic precursor of NAD+, nicotinamide mononucleotide can be rapidly hydrolyzed by CD38, whereas nicotinamide riboside (NR) lacks CD38 substrate activity. Given their structural similarities, we explored the inhibition potential of NR. To our surprise, NR exhibits marked inhibitory activity against CD38 by forming a stable ribosyl-ester bond with the glutamate residue 226 at the active site. Inspired by this discovery, we designed and synthesized a clickable NR featuring an azido substitution at the 5'-OH position. This cell-permeable NR analogue enables covalent labeling and imaging of both extracellular and intracellular CD38 in live cells. Our work discovers an unrecognized molecular function of NR and generates a covalent probe for health-related CD38. These findings offer new insights into the role of NR in modulating NAD+ metabolism and CD38-mediated signaling as well as an innovative tool for in-depth studies of CD38 in physiology and pathophysiology.
Collapse
Affiliation(s)
- Guoyun Kao
- Department
of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School
of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, California 90089, United States
| | - Xiao-Nan Zhang
- Department
of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School
of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, California 90089, United States
| | - Fariborz Nasertorabi
- Departments
of Biological Sciences and Chemistry, Bridge Institute, Michelson
Center for Convergent Bioscience, USC Structure Biology Center, University of Southern California, Los Angeles, California 90089, United States
| | - Benjamin B. Katz
- Department
of Chemistry, University of California Irvine, Irvine, California 92697, United States
| | - Zeyang Li
- Titus
Family Department of Clinical Pharmacy, Alfred E. Mann School of Pharmacy
and Pharmaceutical Sciences, University
of Southern California, Los Angeles, California 90089, United States
| | - Zhefu Dai
- Department
of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School
of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, California 90089, United States
| | - Zeyu Zhang
- Department
of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School
of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, California 90089, United States
| | - Lei Zhang
- Department
of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School
of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, California 90089, United States
| | - Stan G. Louie
- Titus
Family Department of Clinical Pharmacy, Alfred E. Mann School of Pharmacy
and Pharmaceutical Sciences, University
of Southern California, Los Angeles, California 90089, United States
| | - Vadim Cherezov
- Bridge
Institute, University of Southern California, Los Angeles, California 90089, United States
- Department
of Chemistry, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California 90089, United States
| | - Yong Zhang
- Department
of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School
of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, California 90089, United States
- Department
of Chemistry, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California 90089, United States
- Norris
Comprehensive Cancer Center, University
of Southern California, Los Angeles, California 90089, United States
- Research
Center for Liver Diseases, University of
Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
2
|
Watt JM, Graeff R, Potter BVL. Small Molecule CD38 Inhibitors: Synthesis of 8-Amino- N1-inosine 5'-monophosphate, Analogues and Early Structure-Activity Relationship. Molecules 2021; 26:molecules26237165. [PMID: 34885748 PMCID: PMC8658804 DOI: 10.3390/molecules26237165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 11/23/2022] Open
Abstract
Although a monoclonal antibody targeting the multifunctional ectoenzyme CD38 is an FDA-approved drug, few small molecule inhibitors exist for this enzyme that catalyzes inter alia the formation and metabolism of the N1-ribosylated, Ca2+-mobilizing, second messenger cyclic adenosine 5′-diphosphoribose (cADPR). N1-Inosine 5′-monophosphate (N1-IMP) is a fragment directly related to cADPR. 8-Substituted-N1-IMP derivatives, prepared by degradation of cyclic parent compounds, inhibit CD38-mediated cADPR hydrolysis more efficiently than related cyclic analogues, making them attractive for inhibitor development. We report a total synthesis of the N1-IMP scaffold from adenine and a small initial compound series that facilitated early delineation of structure-activity parameters, with analogues evaluated for inhibition of CD38-mediated hydrolysis of cADPR. The 5′-phosphate group proved essential for useful activity, but substitution of this group by a sulfonamide bioisostere was not fruitful. 8-NH2-N1-IMP is the most potent inhibitor (IC50 = 7.6 μM) and importantly HPLC studies showed this ligand to be cleaved at high CD38 concentrations, confirming its access to the CD38 catalytic machinery and demonstrating the potential of our fragment approach.
Collapse
Affiliation(s)
- Joanna M. Watt
- Medicinal Chemistry & Drug Discovery, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK;
- Wolfson Laboratory of Medicinal Chemistry, Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Richard Graeff
- Department of Physiology, University of Hong Kong, Hong Kong, China;
| | - Barry V. L. Potter
- Medicinal Chemistry & Drug Discovery, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK;
- Wolfson Laboratory of Medicinal Chemistry, Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, UK
- Correspondence: ; Tel.: +44-1865-271945
| |
Collapse
|
3
|
Vaisitti T, Arruga F, Guerra G, Deaglio S. Ectonucleotidases in Blood Malignancies: A Tale of Surface Markers and Therapeutic Targets. Front Immunol 2019; 10:2301. [PMID: 31636635 PMCID: PMC6788384 DOI: 10.3389/fimmu.2019.02301] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 09/11/2019] [Indexed: 12/11/2022] Open
Abstract
Leukemia develops as the result of intrinsic features of the transformed cell, such as gene mutations and derived oncogenic signaling, and extrinsic factors, such as a tumor-friendly, immunosuppressed microenvironment, predominantly in the lymph nodes and the bone marrow. There, high extracellular levels of nucleotides, mainly NAD+ and ATP, are catabolized by different ectonucleotidases, which can be divided in two families according to substrate specificity: on one side those that metabolize NAD+, including CD38, CD157, and CD203a; on the other, those that convert ATP, namely CD39 (and other ENTPDases) and CD73. They generate products that modulate intracellular calcium levels and that activate purinergic receptors. They can also converge on adenosine generation with profound effects, both on leukemic cells, enhancing chemoresistance and homing, and on non-malignant immune cells, polarizing them toward tolerance. This review will first provide an overview of ectonucleotidases expression within the immune system, in physiological and pathological conditions. We will then focus on different hematological malignancies, discussing their role as disease markers and possibly pathogenic agents. Lastly, we will describe current efforts aimed at therapeutic targeting of this family of enzymes.
Collapse
Affiliation(s)
- Tiziana Vaisitti
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Francesca Arruga
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Giulia Guerra
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Silvia Deaglio
- Department of Medical Sciences, University of Turin, Turin, Italy
| |
Collapse
|
4
|
Watt JM, Thomas MP, Potter BVL. Synthetic cADPR analogues may form only one of two possible conformational diastereoisomers. Sci Rep 2018; 8:15268. [PMID: 30323284 PMCID: PMC6189198 DOI: 10.1038/s41598-018-33484-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 09/27/2018] [Indexed: 12/03/2022] Open
Abstract
Cyclic adenosine 5′-diphosphate ribose (cADPR) is an emerging Ca2+-mobilising second messenger. cADPR analogues have been generated as chemical biology tools via both chemo-enzymatic and total synthetic routes. Both routes rely on the cyclisation of a linear precursor to close an 18-membered macrocyclic ring. We show here that, after cyclisation, there are two possible macrocyclic product conformers that may be formed, depending on whether cyclisation occurs to the “right” or the “left” of the adenine base (as viewed along the H-8 → C-8 base axis). Molecular modelling demonstrates that these two conformers are distinct and cannot interconvert. The two conformers would present a different spatial layout of binding partners to the cADPR receptor/binding site. For chemo-enzymatically generated analogues Aplysia californica ADP-ribosyl cyclase acts as a template to generate solely the “right-handed” conformer and this corresponds to that of the natural messenger, as originally explored using crystallography. However, for a total synthetic analogue it is theoretically possible to generate either product, or a mixture, from a given linear precursor. Cyclisation on either face of the adenine base is broadly illustrated by the first chemical synthesis of the two enantiomers of a “southern” ribose-simplified cIDPR analogue 8-Br-N9-butyl-cIDPR, a cADPR analogue containing only one chiral sugar in the “northern” ribose, i.e. 8-Br-D- and its mirror image 8-Br-L-N9-butyl-cIDPR. By replacing the D-ribose with the unnatural L-ribose sugar, cyclisation of the linear precursor with pyrophosphate closure generates a cyclised product spectroscopically identical, but displaying equal and opposite specific rotation. These findings have implications for cADPR analogue design, synthesis and activity.
Collapse
Affiliation(s)
- Joanna M Watt
- Medicinal Chemistry and Drug Discovery, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK.,Wolfson Laboratory of Medicinal Chemistry, Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Mark P Thomas
- Wolfson Laboratory of Medicinal Chemistry, Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Barry V L Potter
- Medicinal Chemistry and Drug Discovery, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK.
| |
Collapse
|
5
|
Second messenger analogues highlight unexpected substrate sensitivity of CD38: total synthesis of the hybrid "L-cyclic inosine 5'-diphosphate ribose". Sci Rep 2017; 7:16100. [PMID: 29170518 PMCID: PMC5700923 DOI: 10.1038/s41598-017-16388-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 11/13/2017] [Indexed: 02/07/2023] Open
Abstract
The multifunctional, transmembrane glycoprotein human CD38 catalyses the synthesis of three key Ca2+-mobilising messengers, including cyclic adenosine 5′-diphosphate ribose (cADPR), and CD38 knockout studies have revealed the relevance of the related signalling pathways to disease. To generate inhibitors of CD38 by total synthesis, analogues based on the cyclic inosine 5′-diphosphate ribose (cIDPR) template were synthesised. In the first example of a sugar hybrid cIDPR analogue, “L-cIDPR”, the natural “northern” N1-linked D-ribose of cADPR was replaced by L-ribose. L-cIDPR is surprisingly still hydrolysed by CD38, whereas 8-Br-L-cIDPR is not cleaved, even at high enzyme concentrations. Thus, the inhibitory activity of L-cIDPR analogues appears to depend upon substitution of the base at C-8; 8-Br-L-cIDPR and 8-NH2-L-cIDPR inhibit CD38-mediated cADPR hydrolysis (IC50 7 μM and 21 µM respectively) with 8-Br-L-cIDPR over 20-fold more potent than 8-Br-cIDPR. In contrast, L-cIDPR displays a comparative 75-fold reduction in activity, but is only ca 2-fold less potent than cIDPR itself. Molecular modelling was used to explore the interaction of the CD38 catalytic residue Glu-226 with the “northern” ribose. We propose that Glu226 still acts as the catalytic residue even for an L-sugar substrate. 8-Br-L-cIDPR potentially binds non-productively in an upside-down fashion. Results highlight the key role of the “northern” ribose in the interaction of cADPR with CD38.
Collapse
|
6
|
Zhang S, Xue X, Zhang L, Zhang L, Liu Z. Comparative Analysis of Pharmacophore Features and Quantitative Structure-Activity Relationships for CD38 Covalent and Non-covalent Inhibitors. Chem Biol Drug Des 2015; 86:1411-24. [PMID: 26072680 DOI: 10.1111/cbdd.12606] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 05/09/2015] [Accepted: 06/03/2015] [Indexed: 01/19/2023]
Abstract
In the past decade, the discovery, synthesis, and evaluation for hundreds of CD38 covalent and non-covalent inhibitors has been reported sequentially by our group and partners; however, a systematic structure-based guidance is still lacking for rational design of CD38 inhibitor. Here, we carried out a comparative analysis of pharmacophore features and quantitative structure-activity relationships for CD38 inhibitors. The results uncover that the essential interactions between key residues and covalent/non-covalent CD38 inhibitors include (i) hydrogen bond and hydrophobic interactions with residues Glu226 and Trp125, (ii) electrostatic or hydrogen bond interaction with the positively charged residue Arg127 region, and (iii) the hydrophobic interaction with residue Trp189. For covalent inhibitors, besides the covalent effect with residue Glu226, the electrostatic interaction with residue Arg127 is also necessary, while another hydrogen/non-bonded interaction with residues Trp125 and Trp189 can also be detected. By means of the SYBYL multifit alignment function, the best CoMFA and CoMSIA with CD38 covalent inhibitors presented cross-validated correlation coefficient values (q(2)) of 0.564 and 0.571, and non-cross-validated values (r(2)) of 0.967 and 0.971, respectively. The CD38 non-covalent inhibitors can be classified into five groups according to their chemical scaffolds, and the residues Glu226, Trp189, and Trp125 are indispensable for those non-covalent inhibitors binding to CD38, while the residues Ser126, Arg127, Asp155, Thr221, and Phe222 are also important. The best CoMFA and CoMSIA with the F12 analogues presented cross-validated correlation coefficient values (q(2)) of 0.469 and 0.454, and non-cross-validated values (r(2)) of 0.814 and 0.819, respectively.
Collapse
Affiliation(s)
- Shuang Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Xiwen Xue
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Liangren Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Lihe Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Zhenming Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| |
Collapse
|
7
|
Swarbrick J, Graeff R, Zhang H, Thomas MP, Hao Q, Potter BVL. Cyclic adenosine 5'-diphosphate ribose analogs without a "southern" ribose inhibit ADP-ribosyl cyclase-hydrolase CD38. J Med Chem 2014; 57:8517-29. [PMID: 25226087 PMCID: PMC4207131 DOI: 10.1021/jm501037u] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Cyclic adenosine 5'-diphosphate ribose (cADPR) analogs based on the cyclic inosine 5'-diphosphate ribose (cIDPR) template were synthesized by recently developed stereo- and regioselective N1-ribosylation. Replacing the base N9-ribose with a butyl chain generates inhibitors of cADPR hydrolysis by the human ADP-ribosyl cyclase CD38 catalytic domain (shCD38), illustrating the nonessential nature of the "southern" ribose for binding. Butyl substitution generally improves potency relative to the parent cIDPRs, and 8-amino-N9-butyl-cIDPR is comparable to the best noncovalent CD38 inhibitors to date (IC50 = 3.3 μM). Crystallographic analysis of the shCD38:8-amino-N9-butyl-cIDPR complex to a 2.05 Å resolution unexpectedly reveals an N1-hydrolyzed ligand in the active site, suggesting that it is the N6-imino form of cADPR that is hydrolyzed by CD38. While HPLC studies confirm ligand cleavage at very high protein concentrations, they indicate that hydrolysis does not occur under physiological concentrations. Taken together, these analogs confirm that the "northern" ribose is critical for CD38 activity and inhibition, provide new insight into the mechanism of cADPR hydrolysis by CD38, and may aid future inhibitor design.
Collapse
Affiliation(s)
- Joanna
M. Swarbrick
- Wolfson
Laboratory of Medicinal Chemistry, Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom
| | - Richard Graeff
- Department
of Physiology, University of Hong Kong, Hong Kong, China
| | - Hongmin Zhang
- Department
of Physiology, University of Hong Kong, Hong Kong, China
| | - Mark P. Thomas
- Wolfson
Laboratory of Medicinal Chemistry, Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom
| | - Quan Hao
- Department
of Physiology, University of Hong Kong, Hong Kong, China
| | - Barry V. L. Potter
- Wolfson
Laboratory of Medicinal Chemistry, Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom,Phone: ++44-1225-386639. Fax: ++44-1225-386114. E-mail:
| |
Collapse
|
8
|
Swarbrick JM, Graeff R, Garnham C, Thomas MP, Galione A, Potter BVL. 'Click cyclic ADP-ribose': a neutral second messenger mimic. Chem Commun (Camb) 2014; 50:2458-61. [PMID: 24452494 PMCID: PMC4047616 DOI: 10.1039/c3cc49249d] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 01/08/2014] [Indexed: 11/21/2022]
Abstract
Analogues of the potent Ca(2+) releasing second messenger cyclic ADP-ribose (cADPR) with a 1,2,3-triazole pyrophosphate bioisostere were synthesised by click-mediated macrocyclisation. The ability to activate Ca(2+) release was surprisingly retained, and hydrolysis of cADPR by CD38 could also be inhibited, illustrating the potential of this approach to design drug-like signalling pathway modulators.
Collapse
Affiliation(s)
- Joanna M. Swarbrick
- Wolfson Laboratory of Medicinal Chemistry , Dept. of Pharmacy and Pharmacology , University of Bath , Bath , BA2 7AY , UK . ; Fax: +44-(0)1225-386114 ; Tel: +44-(0)1225-386639
| | - Richard Graeff
- Department of Physiology , University of Hong Kong , Hong Kong , China
| | - Clive Garnham
- Department of Pharmacology , University of Oxford , Mansfield Road , Oxford OX1 3QT , UK
| | - Mark P. Thomas
- Wolfson Laboratory of Medicinal Chemistry , Dept. of Pharmacy and Pharmacology , University of Bath , Bath , BA2 7AY , UK . ; Fax: +44-(0)1225-386114 ; Tel: +44-(0)1225-386639
| | - Antony Galione
- Department of Pharmacology , University of Oxford , Mansfield Road , Oxford OX1 3QT , UK
| | | |
Collapse
|
9
|
Moreau C, Liu Q, Graeff R, Wagner GK, Thomas MP, Swarbrick JM, Shuto S, Lee HC, Hao Q, Potter BVL. CD38 Structure-Based Inhibitor Design Using the N1-Cyclic Inosine 5'-Diphosphate Ribose Template. PLoS One 2013; 8:e66247. [PMID: 23840430 PMCID: PMC3686795 DOI: 10.1371/journal.pone.0066247] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 05/02/2013] [Indexed: 11/19/2022] Open
Abstract
Few inhibitors exist for CD38, a multifunctional enzyme catalyzing the formation and metabolism of the Ca(2+)-mobilizing second messenger cyclic adenosine 5'-diphosphoribose (cADPR). Synthetic, non-hydrolyzable ligands can facilitate structure-based inhibitor design. Molecular docking was used to reproduce the crystallographic binding mode of cyclic inosine 5'-diphosphoribose (N1-cIDPR) with CD38, revealing an exploitable pocket and predicting the potential to introduce an extra hydrogen bond interaction with Asp-155. The purine C-8 position of N1-cIDPR (IC50 276 µM) was extended with an amino or diaminobutane group and the 8-modified compounds were evaluated against CD38-catalyzed cADPR hydrolysis. Crystallography of an 8-amino N1-cIDPR:CD38 complex confirmed the predicted interaction with Asp-155, together with a second H-bond from a realigned Glu-146, rationalizing the improved inhibition (IC50 56 µM). Crystallography of a complex of cyclic ADP-carbocyclic ribose (cADPcR, IC50 129 µM) with CD38 illustrated that Glu-146 hydrogen bonds with the ligand N6-amino group. Both 8-amino N1-cIDPR and cADPcR bind deep in the active site reaching the catalytic residue Glu-226, and mimicking the likely location of cADPR during catalysis. Substantial overlap of the N1-cIDPR "northern" ribose monophosphate and the cADPcR carbocyclic ribose monophosphate regions suggests that this area is crucial for inhibitor design, leading to a new compound series of N1-inosine 5'-monophosphates (N1-IMPs). These small fragments inhibit hydrolysis of cADPR more efficiently than the parent cyclic compounds, with the best in the series demonstrating potent inhibition (IC50 = 7.6 µM). The lower molecular weight and relative simplicity of these compounds compared to cADPR make them attractive as a starting point for further inhibitor design.
Collapse
Affiliation(s)
- Christelle Moreau
- Wolfson Laboratory of Medicinal Chemistry, Department of Pharmacy and Pharmacology, University of Bath, Bath, United Kingdom
| | - Qun Liu
- Macromolar Diffraction Facility, Cornell High Energy Synchrotron Source, Cornell University, Ithaca, New York, United States of America
| | - Richard Graeff
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Gerd K. Wagner
- Wolfson Laboratory of Medicinal Chemistry, Department of Pharmacy and Pharmacology, University of Bath, Bath, United Kingdom
| | - Mark P. Thomas
- Wolfson Laboratory of Medicinal Chemistry, Department of Pharmacy and Pharmacology, University of Bath, Bath, United Kingdom
| | - Joanna M. Swarbrick
- Wolfson Laboratory of Medicinal Chemistry, Department of Pharmacy and Pharmacology, University of Bath, Bath, United Kingdom
| | - Satoshi Shuto
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Hon Cheung Lee
- Department of Physiology, University of Hong Kong, Hong Kong, China
| | - Quan Hao
- Macromolar Diffraction Facility, Cornell High Energy Synchrotron Source, Cornell University, Ithaca, New York, United States of America
| | - Barry V. L. Potter
- Wolfson Laboratory of Medicinal Chemistry, Department of Pharmacy and Pharmacology, University of Bath, Bath, United Kingdom
| |
Collapse
|
10
|
Lee HC. Cyclic ADP-ribose and nicotinic acid adenine dinucleotide phosphate (NAADP) as messengers for calcium mobilization. J Biol Chem 2012; 287:31633-40. [PMID: 22822066 DOI: 10.1074/jbc.r112.349464] [Citation(s) in RCA: 158] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cyclic ADP-ribose and nicotinic acid adenine dinucleotide phosphate were discovered >2 decades ago. That they are second messengers for mobilizing Ca(2+) stores has since been firmly established. Separate stores and distinct Ca(2+) channels are targeted, with cyclic ADP-ribose acting on the ryanodine receptors in the endoplasmic reticulum, whereas nicotinic acid adenine dinucleotide phosphate mobilizes the endolysosomes via the two-pore channels. Despite the structural and functional differences, both messengers are synthesized by a ubiquitous enzyme, CD38, whose crystal structure and catalytic mechanism have now been well elucidated. How this novel signaling enzyme is regulated remains largely unknown and is the focus of this minireview.
Collapse
Affiliation(s)
- Hon Cheung Lee
- Department of Physiology, University of Hong Kong, Hong Kong, China.
| |
Collapse
|
11
|
Moreau C, Kirchberger T, Zhang B, Thomas MP, Weber K, Guse AH, Potter BVL. Aberrant cyclization affords a C-6 modified cyclic adenosine 5'-diphosphoribose analogue with biological activity in Jurkat T cells. J Med Chem 2012; 55:1478-89. [PMID: 22248391 PMCID: PMC3285147 DOI: 10.1021/jm201127y] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Two nicotinamide adenine dinucleotide (NAD(+)) analogues modified at the 6 position of the purine ring were synthesized, and their substrate properties toward Aplysia californica ADP-ribosyl cyclase were investigated. 6-N-Methyl NAD(+) (6-N-methyl nicotinamide adenosine 5'-dinucleotide 10) hydrolyzes to give the linear 6-N-methyl ADPR (adenosine 5'-diphosphoribose, 11), whereas 6-thio NHD(+) (nicotinamide 6-mercaptopurine 5'-dinucleotide, 17) generates a cyclic dinucleotide. Surprisingly, NMR correlation spectra confirm this compound to be the N1 cyclic product 6-thio N1-cIDPR (6-thio cyclic inosine 5'-diphosphoribose, 3), although the corresponding 6-oxo analogue is well-known to cyclize at N7. In Jurkat T cells, unlike the parent cyclic inosine 5'-diphosphoribose N1-cIDPR 2, 6-thio N1-cIDPR antagonizes both cADPR- and N1-cIDPR-induced Ca(2+) release but possesses weak agonist activity at higher concentration. 3 is thus identified as the first C-6 modified cADPR (cyclic adenosine 5'-diphosphoribose) analogue antagonist; it represents the first example of a fluorescent N1-cyclized cADPR analogue and is a new pharmacological tool for intervention in the cADPR pathway of cellular signaling.
Collapse
Affiliation(s)
- Christelle Moreau
- Wolfson Laboratory of Medicinal Chemistry, Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
12
|
Swarbrick JM, Potter BVL. Total synthesis of a cyclic adenosine 5'-diphosphate ribose receptor agonist. J Org Chem 2012; 77:4191-7. [PMID: 22283398 PMCID: PMC3343700 DOI: 10.1021/jo202319f] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Stable cyclic adenosine 5′-diphosphate ribose
(cADPR) analogues
are chemical biology tools that can probe the Ca2+ release
mechanism and structure–activity relationships of this emerging
potent second messenger. However, analogues with an intact “northern”
ribose have been inaccessible due to the difficulty of generating
the sensitive N1-ribosyl link. We report the first
total synthesis of the membrane permeant, hydrolytically stable, cADPR
receptor agonist 8-Br-N1-cIDPR via regio- and stereoselective N1-ribosylation of protected 8-bromoinosine.
Collapse
Affiliation(s)
- Joanna M Swarbrick
- Wolfson Laboratory of Medicinal Chemistry, University of Bath, Department of Pharmacy and Pharmacology, Claverton Down, Bath BA2 7AY, UK
| | | |
Collapse
|
13
|
Zhou Y, Ting KY, Lam CMC, Kwong AKY, Xia J, Jin H, Liu Z, Zhang L, Cheung Lee H, Zhang L. Design, synthesis and biological evaluation of noncovalent inhibitors of human CD38 NADase. ChemMedChem 2012; 7:223-8. [PMID: 22287152 DOI: 10.1002/cmdc.201100487] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Revised: 12/06/2011] [Indexed: 11/06/2022]
Affiliation(s)
- Yi Zhou
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Kotaka M, Graeff R, Chen Z, Zhang LH, Lee HC, Hao Q. Structural studies of intermediates along the cyclization pathway of Aplysia ADP-ribosyl cyclase. J Mol Biol 2011; 415:514-26. [PMID: 22138343 DOI: 10.1016/j.jmb.2011.11.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 11/02/2011] [Accepted: 11/08/2011] [Indexed: 11/19/2022]
Abstract
Cyclic ADP-ribose (cADPR) is a calcium messenger that can mobilize intracellular Ca²⁺ stores and activate Ca²⁺ influx to regulate a wide range of physiological processes. Aplysia cyclase is the first member of the ADP-ribosyl cyclases identified to catalyze the cyclization of NAD⁺ into cADPR. The catalysis involves a two-step reaction, the elimination of the nicotinamide ring and the cyclization of the intermediate resulting in the covalent attachment of the purine ring to the terminal ribose. Aplysia cyclase exhibits a high degree of leniency towards the purine base of its substrate, and the cyclization reaction takes place at either the N1- or the N7-position of the purine ring. To decipher the mechanism of cyclization in Aplysia cyclase, we used a crystallization setup with multiple Aplysia cyclase molecules present in the asymmetric unit. With the use of natural substrates and analogs, not only were we able to capture multiple snapshots during enzyme catalysis resulting in either N1 or N7 linkage of the purine ring to the terminal ribose, we were also able to observe, for the first time, the cyclized products of both N1 and N7 cyclization bound in the active site of Aplysia cyclase.
Collapse
Affiliation(s)
- Masayo Kotaka
- Department of Physiology, University of Hong Kong, Hong Kong SAR, China
| | | | | | | | | | | |
Collapse
|
15
|
Dong M, Si YQ, Sun SY, Pu XP, Yang ZJ, Zhang LR, Zhang LH, Leung FP, Lam CMC, Kwong AKY, Yue J, Zhou Y, Kriksunov IA, Hao Q, Lee HC. Design, synthesis and biological characterization of novel inhibitors of CD38. Org Biomol Chem 2011; 9:3246-57. [PMID: 21431168 DOI: 10.1039/c0ob00768d] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Human CD38 is a novel multi-functional protein that acts not only as an antigen for B-lymphocyte activation, but also as an enzyme catalyzing the synthesis of a Ca(2+) messenger molecule, cyclic ADP-ribose, from NAD(+). It is well established that this novel Ca(2+) signaling enzyme is responsible for regulating a wide range of physiological functions. Based on the crystal structure of the CD38/NAD(+) complex, we synthesized a series of simplified N-substituted nicotinamide derivatives (Compound 1-14). A number of these compounds exhibited moderate inhibition of the NAD(+) utilizing activity of CD38, with Compound 4 showing the highest potency. The crystal structure of CD38/Compound 4 complex and computer simulation of Compound 7 docking to CD38 show a significant role of the nicotinamide moiety and the distal aromatic group of the compounds for substrate recognition by the active site of CD38. Biologically, we showed that both Compounds 4 and 7 effectively relaxed the agonist-induced contraction of muscle preparations from rats and guinea pigs. This study is a rational design of inhibitors for CD38 that exhibit important physiological effects, and can serve as a model for future drug development.
Collapse
Affiliation(s)
- Min Dong
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Expression of CD38 with intracellular enzymatic activity: a possible explanation for the insulin release induced by intracellular cADPR. Mol Cell Biochem 2011; 352:293-9. [PMID: 21387169 DOI: 10.1007/s11010-011-0765-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Accepted: 02/24/2011] [Indexed: 10/18/2022]
Abstract
CD38 is a transmembrane glycoprotein expressed in multiple cell types, including pancreatic β cells. It can serve as an enzyme that catalyzes the metabolism of two different Ca(2+)-mobilizing compounds, cyclic adenosine diphosphoribose (cADPR) and nicotinic acid adenine dinucleotide phosphate. One of these metabolites, cADPR, is known to be involved in glucose-induced insulin secretion from pancreatic β cells. Although the essential role of CD38 for endogenous cADPR synthesis has been established, the relationship between the proposed extracellular enzymatic activity of CD38 and the intracellular Ca(2+) modulation caused by the intracellular cADPR accumulation has not yet been fully explained. For a better understanding of the role of CD38 in the insulin secretion machinery, analysis of the intracellular localization of this molecule in pancreatic β cells is essential. In an attempt to provide a method to probe the N-terminal and C-terminal of CD38 separately, we generated an insulin-secreting MIN6 murine pancreatic β cell line expressing a human CD38 bearing an N-terminal FLAG epitope tag. We found a weak but consistent expression of the FLAG epitope outside of the cells, indicating the presence of a small amount of CD38 with cytoplasmic enzymatic activity. MIN6 cells transfected with human CD38 exhibited increased glucose-induced insulin release. In addition, anti-FLAG cross-linking further enhanced the insulin release, suggesting that the N-terminal of CD38 expressed on the cell surface functions as a receptor for an unknown ligand and triggers positive signals for insulin secretion.
Collapse
|
17
|
Hałuszczak J, Macdonald SJF, Migaud ME. A one pot three-step process for the synthesis of an array of arylated benzimidazoribosyl nucleosides. Org Biomol Chem 2011; 9:2821-31. [PMID: 21373690 DOI: 10.1039/c0ob00866d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A three-step one pot reaction/purification protocol was developed to facilitate rapid access to benzimidazole-based nucleosides, for which benzoylated benzimidazoribosyl nucleosides incorporating boronic esters were key reaction intermediates.
Collapse
Affiliation(s)
- Jolanta Hałuszczak
- Queen's University Belfast, School of Pharmacy, Medical Biology Centre, 97 Lisburn Road, Belfast, UK BT9 7BL
| | | | | |
Collapse
|
18
|
Moreau C, Ashamu GA, Bailey VC, Galione A, Guse AH, Potter BVL. Synthesis of cyclic adenosine 5'-diphosphate ribose analogues: a C2'endo/syn "southern" ribose conformation underlies activity at the sea urchin cADPR receptor. Org Biomol Chem 2011; 9:278-90. [PMID: 20976353 PMCID: PMC3172588 DOI: 10.1039/c0ob00396d] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Accepted: 09/14/2010] [Indexed: 12/03/2022]
Abstract
Novel 8-substituted base and sugar-modified analogues of the Ca(2+) mobilizing second messenger cyclic adenosine 5'-diphosphate ribose (cADPR) were synthesized using a chemoenzymatic approach and evaluated for activity in sea urchin egg homogenate (SUH) and in Jurkat T-lymphocytes; conformational analysis investigated by (1)H NMR spectroscopy revealed that a C2'endo/syn conformation of the "southern" ribose is crucial for agonist or antagonist activity at the SUH-, but not at the T cell-cADPR receptor.
Collapse
Affiliation(s)
- Christelle Moreau
- Wolfson Laboratory of Medicinal Chemistry , Department of Pharmacy and Pharmacology , University of Bath , Bath , UK BA2 7AY . ; Fax: +44 1225 386114 ; Tel: +44 1225 386639
| | - Gloria A. Ashamu
- Wolfson Laboratory of Medicinal Chemistry , Department of Pharmacy and Pharmacology , University of Bath , Bath , UK BA2 7AY . ; Fax: +44 1225 386114 ; Tel: +44 1225 386639
| | - Victoria C. Bailey
- Wolfson Laboratory of Medicinal Chemistry , Department of Pharmacy and Pharmacology , University of Bath , Bath , UK BA2 7AY . ; Fax: +44 1225 386114 ; Tel: +44 1225 386639
| | - Antony Galione
- Department of Pharmacology , University of Oxford , Mansfield Road , Oxford , UK OX1 3QT
| | - Andreas H. Guse
- Institute of Biochemistry and Molecular Biology I: Cellular Signal Transduction , University Medical Center Hamburg-Eppendorf , Germany
| | - Barry V. L. Potter
- Wolfson Laboratory of Medicinal Chemistry , Department of Pharmacy and Pharmacology , University of Bath , Bath , UK BA2 7AY . ; Fax: +44 1225 386114 ; Tel: +44 1225 386639
| |
Collapse
|
19
|
Zhang H, Graeff R, Chen Z, Zhang L, Zhang L, Lee H, Hao Q. Dynamic conformations of the CD38-mediated NAD cyclization captured in a single crystal. J Mol Biol 2010; 405:1070-8. [PMID: 21134381 DOI: 10.1016/j.jmb.2010.11.044] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 11/22/2010] [Accepted: 11/23/2010] [Indexed: 10/18/2022]
Abstract
The extracellular domain of human CD38 is a multifunctional enzyme involved in the metabolism of two Ca(2+) messengers: cyclic ADP-ribose and nicotinic acid adenine dinucleotide phosphate. When NAD is used as substrate, CD38 predominantly hydrolyzes it to ADP-ribose, with a trace amount of cyclic ADP-ribose produced through cyclization of the substrate. However, mutation of a key residue at the active site, E146, inhibits the hydrolysis activity of CD38 but greatly increases its cyclization activity. To understand the role of the residue E146 in the catalytic process, we determined the crystal structure of the E146A mutant protein with a substrate analogue, arabinosyl-2'-fluoro-deoxy-nicotinamide adenine dinucleotide. The structure captured the enzymatic reaction intermediates in six different conformations in a crystallographic asymmetric unit. The structural results indicate a folding-back process for the adenine ring of the substrate and provide the first multiple snapshots of the process. Our approach of utilizing multiple molecules in the crystallographic asymmetric unit should be generally applicable for capturing the dynamic nature of enzymatic catalysis.
Collapse
Affiliation(s)
- HongMin Zhang
- Department of Physiology, The University of Hong Kong, Hong Kong SAR, China
| | | | | | | | | | | | | |
Collapse
|
20
|
Liu Q, Graeff R, Kriksunov IA, Jiang H, Zhang B, Oppenheimer N, Lin H, Potter BVL, Lee HC, Hao Q. Structural basis for enzymatic evolution from a dedicated ADP-ribosyl cyclase to a multifunctional NAD hydrolase. J Biol Chem 2009; 284:27637-45. [PMID: 19640846 PMCID: PMC2785692 DOI: 10.1074/jbc.m109.031005] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cyclic ADP-ribose (cADPR) is a universal calcium messenger molecule that regulates many physiological processes. The production and degradation of cADPR are catalyzed by a family of related enzymes, including the ADP-ribosyl cyclase from Aplysia california (ADPRAC) and CD38 from human. Although ADPRC and CD38 share a common evolutionary ancestor, their enzymatic functions toward NAD and cADPR homeostasis have evolved divergently. Thus, ADPRC can only generate cADPR from NAD (cyclase), whereas CD38, in contrast, has multiple activities, i.e. in cADPR production and degradation, as well as NAD hydrolysis (NADase). In this study, we determined a number of ADPRC and CD38 structures bound with various nucleotides. From these complexes, we elucidated the structural features required for the cyclization (cyclase) reaction of ADPRC and the NADase reaction of CD38. Using the structural approach in combination with site-directed mutagenesis, we identified Phe-174 in ADPRC as a critical residue in directing the folding of the substrate during the cyclization reaction. Thus, a point mutation of Phe-174 to glycine can turn ADPRC from a cyclase toward an NADase. The equivalent residue in CD38, Thr-221, is shown to disfavor the cyclizing folding of the substrate, resulting in NADase being the dominant activity. The comprehensive structural comparison of CD38 and APDRC presented in this study thus provides insights into the structural determinants for the functional evolution from a cyclase to a hydrolase.
Collapse
Affiliation(s)
- Qun Liu
- MacCHESS, Cornell High Energy Synchrotron Source, CornellUniversity, Ithaca, New York 14853, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Liu Q, Graeff R, Kriksunov IA, Lam CMC, Lee HC, Hao Q. Conformational Closure of the Catalytic Site of Human CD38 Induced by Calcium. Biochemistry 2008; 47:13966-13973. [DOI: 10.1021/bi801642q] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Qun Liu
- MacCHESS, Cornell High Energy Synchrotron Source, and School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota 55455, and Department of Physiology, University of Hong Kong, Hong Kong, China
| | - Richard Graeff
- MacCHESS, Cornell High Energy Synchrotron Source, and School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota 55455, and Department of Physiology, University of Hong Kong, Hong Kong, China
| | - Irina A. Kriksunov
- MacCHESS, Cornell High Energy Synchrotron Source, and School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota 55455, and Department of Physiology, University of Hong Kong, Hong Kong, China
| | - Connie M. C. Lam
- MacCHESS, Cornell High Energy Synchrotron Source, and School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota 55455, and Department of Physiology, University of Hong Kong, Hong Kong, China
| | - Hon Cheung Lee
- MacCHESS, Cornell High Energy Synchrotron Source, and School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota 55455, and Department of Physiology, University of Hong Kong, Hong Kong, China
| | - Quan Hao
- MacCHESS, Cornell High Energy Synchrotron Source, and School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota 55455, and Department of Physiology, University of Hong Kong, Hong Kong, China
| |
Collapse
|
22
|
Abstract
Cells possess multiple calcium ion (Ca2+) stores and multiple messenger molecules to mobilize them. These include d-myo-inositol 1,4,5-trisphosphate (IP(3)), cyclic adenosine diphosphoribose (cADPR), and the most recently identified Ca2+-mobilizing messenger, nicotinic acid adenine dinucleotide phosphate (NAADP), which acts on a wide spectrum of cells, from plant cells to mammalian cells. Accumulating evidence indicates that NAADP targets both acidic (lysosome-like) Ca2+ stores and endoplasmic reticular stores. Recent studies in invertebrate and mammalian cells suggest that NAADP provides an initiating Ca2+ signal, which is amplified by cADPR- or IP(3)-dependent mechanisms (or both) through Ca2+-induced Ca2+ release. Diverse stimuli activate a rapid rise of endogenous NAADP concentration, resulting in severalfold increases of NAADP over basal values within seconds. The enzyme CD38 can catalyze both the synthesis and hydrolysis of NAADP, making it ideal for effecting the rapid metabolism of NAADP. The crystal structure of CD38 and the structures of its various substrate complexes have now been determined, clarifying the mechanism of its multifunctional catalysis. We anticipate that these advances will lead to the unmasking of all the key components of the Ca2+ signaling pathway mediated by NAADP.
Collapse
Affiliation(s)
- Andreas H Guse
- The Calcium Signaling Group, Institute of Biochemistry and Molecular Biology I, Cellular Signal Transduction, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20146 Hamburg, Germany.
| | | |
Collapse
|
23
|
Malavasi F, Deaglio S, Funaro A, Ferrero E, Horenstein AL, Ortolan E, Vaisitti T, Aydin S. Evolution and function of the ADP ribosyl cyclase/CD38 gene family in physiology and pathology. Physiol Rev 2008; 88:841-86. [PMID: 18626062 DOI: 10.1152/physrev.00035.2007] [Citation(s) in RCA: 642] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The membrane proteins CD38 and CD157 belong to an evolutionarily conserved family of enzymes that play crucial roles in human physiology. Expressed in distinct patterns in most tissues, CD38 (and CD157) cleaves NAD(+) and NADP(+), generating cyclic ADP ribose (cADPR), NAADP, and ADPR. These reaction products are essential for the regulation of intracellular Ca(2+), the most ancient and universal cell signaling system. The entire family of enzymes controls complex processes, including egg fertilization, cell activation and proliferation, muscle contraction, hormone secretion, and immune responses. Over the course of evolution, the molecules have developed the ability to interact laterally and frontally with other surface proteins and have acquired receptor-like features. As detailed in this review, the loss of CD38 function is associated with impaired immune responses, metabolic disturbances, and behavioral modifications in mice. CD38 is a powerful disease marker for human leukemias and myelomas, is directly involved in the pathogenesis and outcome of human immunodeficiency virus infection and chronic lymphocytic leukemia, and controls insulin release and the development of diabetes. Here, the data concerning diseases are examined in view of potential clinical applications in diagnosis, prognosis, and therapy. The concluding remarks try to frame all of the currently available information within a unified working model that takes into account both the enzymatic and receptorial functions of the molecules.
Collapse
Affiliation(s)
- Fabio Malavasi
- Laboratory of Immunogenetics, Department of Genetics, Biology, and Biochemistry and Centro di Ricerca in Medicina Sperimentale, University of Torino Medical School, Torino, Italy.
| | | | | | | | | | | | | | | |
Collapse
|