1
|
Vien KM, Duan Q, Yeung C, Barish S, Volkan PC. Atypical cadherin, Fat2, regulates axon terminal organization in the developing Drosophila olfactory receptor neurons. iScience 2024; 27:110340. [PMID: 39055932 PMCID: PMC11269957 DOI: 10.1016/j.isci.2024.110340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/08/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
The process of how neuronal identity confers circuit organization is intricately related to the mechanisms underlying neurodegeneration and neuropathologies. Modeling this process, the olfactory circuit builds a functionally organized topographic map, which requires widely dispersed neurons with the same identity to converge their axons into one a class-specific neuropil, a glomerulus. In this article, we identified Fat2 (also known as Kugelei) as a regulator of class-specific axon organization. In fat2 mutants, axons belonging to the highest fat2-expressing classes present with a more severe phenotype compared to axons belonging to low fat2-expressing classes. In extreme cases, mutations lead to neural degeneration. Lastly, we found that Fat2 intracellular domain interactors, APC1/2 (Adenomatous polyposis coli) and dop (Drop out), likely orchestrate the cytoskeletal remodeling required for axon condensation. Altogether, we provide a potential mechanism for how cell surface proteins' regulation of cytoskeletal remodeling necessitates identity specific circuit organization.
Collapse
Affiliation(s)
- Khanh M. Vien
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Qichen Duan
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Chun Yeung
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Scott Barish
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Pelin Cayirlioglu Volkan
- Department of Biology, Duke University, Durham, NC 27708, USA
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
2
|
Riascos-Bernal DF, Ressa G, Korrapati A, Sibinga NES. The FAT1 Cadherin Drives Vascular Smooth Muscle Cell Migration. Cells 2023; 12:1621. [PMID: 37371091 PMCID: PMC10297709 DOI: 10.3390/cells12121621] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/11/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Vascular smooth muscle cells (VSMCs) are normally quiescent and non-migratory, regulating the contraction and relaxation of blood vessels to control the vascular tone. In response to arterial injury, these cells become active; they proliferate, secrete matrix proteins, and migrate, and thereby contribute importantly to the progression of several cardiovascular diseases. VSMC migration specifically supports atherosclerosis, restenosis after catheter-based intervention, transplant vasculopathy, and vascular remodeling during the formation of aneurysms. The atypical cadherin FAT1 is expressed robustly in activated VSMCs and promotes their migration. A positive role of FAT1 in the migration of other cell types, including neurons, fibroblasts, podocytes, and astrocyte progenitors, has also been described. In cancer biology, however, the effect of FAT1 on migration depends on the cancer type or context, as FAT1 either suppresses or enhances cancer cell migration and invasion. With this review, we describe what is known about FAT1's effects on cell migration as well as the factors that influence FAT1-dependent migration. In VSMCs, these factors include angiotensin II, which activates FAT1 expression and cell migration, and proteins of the Atrophin family: Atrophin-1 and the short isoform of Atrophin-2, which promote VSMC migration, and the long isoform of Atrophin-2, which exerts negative effects on FAT1-dependent VSMC migration.
Collapse
Affiliation(s)
- Dario F. Riascos-Bernal
- Department of Medicine (Cardiology) and Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (G.R.); (A.K.)
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Gaia Ressa
- Department of Medicine (Cardiology) and Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (G.R.); (A.K.)
| | - Anish Korrapati
- Department of Medicine (Cardiology) and Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (G.R.); (A.K.)
| | - Nicholas E. S. Sibinga
- Department of Medicine (Cardiology) and Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (G.R.); (A.K.)
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
3
|
Riascos-Bernal DF, Maira A, Sibinga NES. The Atypical Cadherin FAT1 Limits Mitochondrial Respiration and Proliferation of Vascular Smooth Muscle Cells. Front Cardiovasc Med 2022; 9:905717. [PMID: 35647082 PMCID: PMC9130956 DOI: 10.3389/fcvm.2022.905717] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 04/19/2022] [Indexed: 12/23/2022] Open
Abstract
Smooth muscle cells contribute to cardiovascular disease, the leading cause of death worldwide. The capacity of these cells to undergo phenotypic switching in mature arteries of the systemic circulation underlies their pathogenic role in atherosclerosis and restenosis, among other vascular diseases. Growth factors and cytokines, extracellular matrix components, regulation of gene expression, neuronal influences, and mechanical forces contribute to smooth muscle cell phenotypic switching. Comparatively little is known about cell metabolism in this process. Studies of cancer and endothelial cell biology have highlighted the importance of cellular metabolic processes for phenotypic transitions that accompany tumor growth and angiogenesis. However, the understanding of cell metabolism during smooth muscle cell phenotypic modulation is incipient. Studies of the atypical cadherin FAT1, which is strongly upregulated in smooth muscle cells in response to arterial injury, suggest that it has important and distinctive functions in this context, mediating control of both smooth muscle cell mitochondrial metabolism and cell proliferation. Here we review the progress made in understanding how FAT1 affects the smooth muscle cell phenotype, highlighting the significance of FAT1 as a processed protein and unexpected regulator of mitochondrial respiration. These mechanisms suggest how a transmembrane protein may relay signals from the extracellular milieu to mitochondria to control metabolic activity during smooth muscle cell phenotypic switching.
Collapse
Affiliation(s)
- Dario F Riascos-Bernal
- Department of Medicine (Cardiology) and Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, United States.,Department of Developmental & Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Alishba Maira
- Department of Developmental & Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Nicholas E S Sibinga
- Department of Medicine (Cardiology) and Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, United States.,Department of Developmental & Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
4
|
Avilés EC, Krol A, Henle SJ, Burroughs-Garcia J, Deans MR, Goodrich LV. Fat3 acts through independent cytoskeletal effectors to coordinate asymmetric cell behaviors during polarized circuit assembly. Cell Rep 2022; 38:110307. [PMID: 35108541 PMCID: PMC8865054 DOI: 10.1016/j.celrep.2022.110307] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/23/2021] [Accepted: 01/06/2022] [Indexed: 02/01/2023] Open
Abstract
The polarized flow of information through neural circuits depends on the orderly arrangement of neurons, their processes, and their synapses. This polarity emerges sequentially in development, starting with the directed migration of neuronal precursors, which subsequently elaborate neurites that form synapses in specific locations. In other organs, Fat cadherins sense the position and then polarize individual cells by inducing localized changes in the cytoskeleton that are coordinated across the tissue. Here, we show that the Fat-related protein Fat3 plays an analogous role during the assembly of polarized circuits in the murine retina. We find that the Fat3 intracellular domain (ICD) binds to cytoskeletal regulators and synaptic proteins, with discrete motifs required for amacrine cell migration and neurite retraction. Moreover, upon ICD deletion, extra neurites form but do not make ectopic synapses, suggesting that Fat3 independently regulates synapse localization. Thus, Fat3 serves as a molecular node to coordinate asymmetric cell behaviors across development.
Collapse
Affiliation(s)
- Evelyn C Avilés
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Alexandra Krol
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Steven J Henle
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Jessica Burroughs-Garcia
- Department of Neurobiology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Michael R Deans
- Department of Neurobiology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA; Department of Surgery, Division of Otolaryngology - Head and Neck Surgery, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Lisa V Goodrich
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
5
|
Du M, Wang Y, Gu D, Guo L. Identification of vital genes and pathways associated with mucosal melanoma in Chinese. Ann Diagn Pathol 2021; 50:151648. [PMID: 33189033 DOI: 10.1016/j.anndiagpath.2020.151648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 10/16/2020] [Indexed: 12/01/2022]
Abstract
Mucosal melanoma is a rare malignant melanoma with more aggressive and poorer outcomes. The incidence of mucosal melanoma varies greatly among different ethnic groups. We herein sought to characterize the vital genes and pathways of Chinese mucosal melanoma patients. By whole-exome sequencing in six patients with mucosal melanoma, we detected a total of 21,733 CNVs and 2372 SNPs. The CNV/SNP burden varies greatly between individuals, including recurrent CNV targeting PIK3 family, KRAS, APC and BRCA1. Significantly mutated genes were NUDT5, ZBTB18, NEURL4, ZNF430, RBM44, GAK, PCDHA13, STK38 and UBR5. Besides, FAT1 gene was identified frequently mutated in anorectal melanoma patients (3/3, 100%). Moreover, our result showed that HPV infection may be associated with mucosal melanoma. In conclusion, this study indicated that mucosal melanomas have a low SNPs burden and a high number of CNVs and expand the spectrum of mucosal melanoma variants, also provided an insight for the pathological mechanism of mucosal melanoma.
Collapse
Affiliation(s)
- Mingzhan Du
- Department of Pathology, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou city, Jiangsu Province 215006, China
| | - Yuhong Wang
- Department of Pathology, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou city, Jiangsu Province 215006, China
| | - Dongmei Gu
- Department of Pathology, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou city, Jiangsu Province 215006, China.
| | - Lingchuan Guo
- Department of Pathology, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou city, Jiangsu Province 215006, China.
| |
Collapse
|
6
|
Configuring a robust nervous system with Fat cadherins. Semin Cell Dev Biol 2017; 69:91-101. [PMID: 28603077 DOI: 10.1016/j.semcdb.2017.06.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/26/2017] [Accepted: 06/07/2017] [Indexed: 01/14/2023]
Abstract
Atypical Fat cadherins represent a small but versatile group of signaling molecules that influence proliferation and tissue polarity. With huge extracellular domains and intracellular domains harboring many independent protein interaction sites, Fat cadherins are poised to translate local cell adhesion events into a variety of cell behaviors. The need for such global coordination is particularly prominent in the nervous system, where millions of morphologically diverse neurons are organized into functional networks. As we learn more about their biological functions and molecular properties, increasing evidence suggests that Fat cadherins mediate contact-induced changes that ultimately impose a structure to developing neuronal circuits.
Collapse
|
7
|
Horne-Badovinac S. Fat-like cadherins in cell migration-leading from both the front and the back. Curr Opin Cell Biol 2017; 48:26-32. [PMID: 28551508 DOI: 10.1016/j.ceb.2017.04.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 04/13/2017] [Indexed: 01/15/2023]
Abstract
When cells migrate through the body, their motility is continually influenced by interactions with other cells. The Fat-like cadherins are cell-cell signaling proteins that promote migration in multiple cell types. Recent studies suggest, however, that Fat-like cadherins influence motility differently in mammals versus Drosophila, with the cadherin acting at the leading edge of mammalian cells and the trailing edge of Drosophila cells. As opposed to this being a difference between organisms, it is more likely that the Fat-like cadherins are highly versatile proteins that can interact with the migration machinery in multiple ways. Here, I review what is known about how Fat-like cadherins promote migration, and then explore where conserved features may be found between the mammalian and Drosophila models.
Collapse
Affiliation(s)
- Sally Horne-Badovinac
- Department of Molecular Genetics and Cell Biology, The University of Chicago, 920 East 58th Street, Chicago, IL 60637, USA.
| |
Collapse
|
8
|
Disparate Regulatory Mechanisms Control Fat3 and P75NTR Protein Transport through a Conserved Kif5-Interaction Domain. PLoS One 2016; 11:e0165519. [PMID: 27788242 PMCID: PMC5082931 DOI: 10.1371/journal.pone.0165519] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 10/13/2016] [Indexed: 11/19/2022] Open
Abstract
Directed transport delivers proteins to specific cellular locations and is one mechanism by which cells establish and maintain polarized cellular architectures. The atypical cadherin Fat3 directs the polarized extension of dendrites in retinal amacrine cells by influencing the distribution of cytoskeletal regulators during retinal development, however the mechanisms regulating the distribution of Fat3 remain unclear. We report a novel Kinesin/Kif5 Interaction domain (Kif5-ID) in Fat3 that facilitates Kif5B binding, and determines the distribution of Fat3 cytosolic domain constructs in neurons and MDCK cells. The Kif5-ID sequence is conserved in the neurotrophin receptor P75NTR, which also binds Kif5B, and Kif5-ID mutations similarly result in P75NTR mislocalization. Despite these similarities, Kif5B-mediated protein transport is differentially regulated by these two cargos. For Fat3, the Kif5-ID is regulated by alternative splicing, and the timecourse of splicing suggests that the distribution of Fat3 may switch between early and later stages of retinal development. In contrast, P75NTR binding to Kif5B is enhanced by tyrosine phosphorylation and thus has the potential to be dynamically regulated on a more rapid time scale.
Collapse
|
9
|
Dau C, Fliegauf M, Omran H, Schlensog M, Dahl E, van Roeyen CR, Kriz W, Moeller MJ, Braun GS. The atypical cadherin Dachsous1 localizes to the base of the ciliary apparatus in airway epithelia. Biochem Biophys Res Commun 2016; 473:1177-1184. [DOI: 10.1016/j.bbrc.2016.04.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 04/08/2016] [Indexed: 01/12/2023]
|
10
|
Braun GS, Kuszka A, Dau C, Kriz W, Moeller MJ. Interaction of atypical cadherin Fat1 with SoHo adaptor proteins CAP/ponsin and ArgBP2. Biochem Biophys Res Commun 2016; 472:88-94. [PMID: 26903299 DOI: 10.1016/j.bbrc.2016.02.069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 02/17/2016] [Indexed: 12/11/2022]
Abstract
Mammalian Fat1 is a giant atypical cadherin/tumor suppressor involved in the regulation of cellular orientation, migration, and growth. Fat1 is implicated in the development of the brain, eye, and kidney. Altered expression or mutations of FAT1 are also associated with cancer and facioscapulohumeral muscular dystrophy (FSHD). Yet, the mechanistic functions of this pathway remain incompletely understood. Here, we report the identification of Sorbin-homology (SoHo) proteins as novel interaction partners of Fat1 by virtue of a yeast-two-hybrid screen. SoHo proteins play diverse roles as adaptor proteins in cell signaling, cell adhesion and sarcomere architecture, including altered expression in cancer and FSHD. Specifically, we found SoHo proteins CAP/ponsin-1 and -2 (Sorbs1) and ArgBP2 (Sorbs2) to interact with the cytoplasmic domain of Fat1. We mapped the interaction to a prolin-rich classic type II PXXP motif within Fat1 and to the three Src-homology (SH3) domains within SoHo proteins using mutant expression in yeast, pulldown assays, and cell culture. Functionally, endogenous ponsin-2 expression of NRK-52E cells at cellular leading edges was lost upon knockdown of Fat1. In summary, our data point to an interaction of Fat1 with SoHo proteins that is able to recruit SoHo proteins to sites of Fat1 expression.
Collapse
Affiliation(s)
- Gerald S Braun
- Division of Nephrology and Immunology, RWTH Aachen University, Germany.
| | | | - Cécile Dau
- Kaiser-Franz-Josef-Spital mit Gottfried von Preyer'schem Kinderspital, Vienna, Austria
| | - Wilhelm Kriz
- Institute for Neuroanatomy, Medical Faculty Mannheim of the University of Heidelberg, Germany
| | - Marcus J Moeller
- Division of Nephrology and Immunology, RWTH Aachen University, Germany
| |
Collapse
|
11
|
Cai J, Feng D, Hu L, Chen H, Yang G, Cai Q, Gao C, Wei D. FAT4 functions as a tumour suppressor in gastric cancer by modulating Wnt/β-catenin signalling. Br J Cancer 2015; 113:1720-9. [PMID: 26633557 PMCID: PMC4701992 DOI: 10.1038/bjc.2015.367] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 08/14/2015] [Accepted: 09/23/2015] [Indexed: 12/13/2022] Open
Abstract
Background: FAT4, a cadherin-related protein, was shown to function as a tumour suppressor; however, its role in human gastric cancer remains largely unknown. Here, we investigated the role of FAT4 in gastric cancer and examined the underlying molecular mechanisms. Methods: The expression of FAT4 was evaluated by immunohistochemistry, western blotting, and qRT–PCR in relation to the clinicopathological characteristics of gastric cancer patients. The effects of FAT4 silencing on cell proliferation, migration, and invasion were assessed by the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium) assay, and migration and invasion assays in gastric cancer cell lines in vitro and in a mouse xenograft model in vivo. Results: Downregulation of FAT4 expression in gastric cancer tissues compared with adjacent normal tissues was correlated with lymph-node metastasis and poor survival. Knockdown of FAT4 promoted the growth and invasion of gastric cancer cells via the activation of Wnt/β-catenin signalling, and induced epithelial-to-mesenchymal transition (EMT) in gastric cancer cells, as demonstrated by the upregulation and downregulation of mesenchymal and epithelial markers. Silencing of FAT4 promoted tumour growth and metastasis in a gastric cancer xenograft model in vivo. Conclusions: FAT4 has a tumour suppressor role mediated by the modulation of Wnt/β-catenin signalling, providing potential novel targets for the treatment of gastric cancer.
Collapse
Affiliation(s)
- Jian Cai
- Department of General Surgery, Institute of Anal-Colorectal Surgery, No. 150 Central Hospital of PLA, No. 2, Huaxiaxi Road, Luoyang 471031, China.,Department of General Surgery, The No. 150 Clinical Medical College, Second Military Medical University, Shanghai 200433, China
| | - Dan Feng
- Department of Oncology, Shanghai Changhai Hospital, 168 Changhai Road, Shanghai 200433, China
| | - Liang Hu
- Department of General Surgery, Institute of Anal-Colorectal Surgery, No. 150 Central Hospital of PLA, No. 2, Huaxiaxi Road, Luoyang 471031, China
| | - Haiyang Chen
- Department of General Surgery, Institute of Anal-Colorectal Surgery, No. 150 Central Hospital of PLA, No. 2, Huaxiaxi Road, Luoyang 471031, China
| | - Guangzhen Yang
- Department of General Surgery, Institute of Anal-Colorectal Surgery, No. 150 Central Hospital of PLA, No. 2, Huaxiaxi Road, Luoyang 471031, China
| | - Qingping Cai
- Department of Gastrointestinal Surgery, Shanghai Changzheng Hospital, 415 Fengyang Road, Shanghai 200003, China
| | - Chunfang Gao
- Department of General Surgery, Institute of Anal-Colorectal Surgery, No. 150 Central Hospital of PLA, No. 2, Huaxiaxi Road, Luoyang 471031, China.,Department of General Surgery, The No. 150 Clinical Medical College, Second Military Medical University, Shanghai 200433, China
| | - Dong Wei
- Department of General Surgery, Institute of Anal-Colorectal Surgery, No. 150 Central Hospital of PLA, No. 2, Huaxiaxi Road, Luoyang 471031, China.,Department of General Surgery, The No. 150 Clinical Medical College, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
12
|
Transcriptional analysis of the dachsous gene uncovers novel isoforms expressed during development in Drosophila. FEBS Lett 2015; 589:3595-603. [PMID: 26497083 DOI: 10.1016/j.febslet.2015.10.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 09/27/2015] [Accepted: 10/14/2015] [Indexed: 11/23/2022]
Abstract
The Drosophila cadherin-related protein Dachsous (Ds) plays a prominent role in planar cell polarity (PCP) and growth. The regulation of these two processes is based on the interaction between Ds and Fat proteins, generating an intracellular response required for tissue polarization and modulation of Hippo pathway activity. Here we have performed a comprehensive molecular study of the ds gene during larval development that has shown an unexpected complexity in its transcriptional regulation and revealed the expression of hitherto unsuspected transcripts. Also, knockdown of several isoforms provides new evidence on the importance of the cytoplasmic domain in the mechanism of action of Ds during development.
Collapse
|
13
|
Mariot V, Roche S, Hourdé C, Portilho D, Sacconi S, Puppo F, Duguez S, Rameau P, Caruso N, Delezoide AL, Desnuelle C, Bessières B, Collardeau S, Feasson L, Maisonobe T, Magdinier F, Helmbacher F, Butler-Browne G, Mouly V, Dumonceaux J. Correlation between low FAT1 expression and early affected muscle in facioscapulohumeral muscular dystrophy. Ann Neurol 2015; 78:387-400. [DOI: 10.1002/ana.24446] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 05/26/2015] [Accepted: 05/26/2015] [Indexed: 12/18/2022]
Affiliation(s)
- Virginie Mariot
- Center of Research in Myology, Pierre and Marie Curie University, Sorbonne Universities; Paris
- Mixed health research unit 974, National Institute of Health and Medical Research; Paris
- Unit undergoing review 3617, National Center for Scientific Research; Paris
- Institute of Myology; Paris
| | - Stephane Roche
- Timone Faculty of Medicine, Aix-Marseille University, Mixed health research unit 910, National Institute of Health and Medical Research; Marseille
| | - Christophe Hourdé
- Physiology and Exercise Laboratory, EA4338, Technolac Scientific Campus, University of Savoie Mont Blanc; Le Bourget-du-Lac
| | - Debora Portilho
- Center of Research in Myology, Pierre and Marie Curie University, Sorbonne Universities; Paris
- Mixed health research unit 974, National Institute of Health and Medical Research; Paris
- Unit undergoing review 3617, National Center for Scientific Research; Paris
- Institute of Myology; Paris
| | - Sabrina Sacconi
- Mixed Unit of Research 7277, National Center for Scientific Research, Nice University Hospital; Nice
- Neuromuscular Disease Reference Center, Nice University Hospital; Nice
| | - Francesca Puppo
- Timone Faculty of Medicine, Aix-Marseille University, Mixed health research unit 910, National Institute of Health and Medical Research; Marseille
| | - Stephanie Duguez
- Center of Research in Myology, Pierre and Marie Curie University, Sorbonne Universities; Paris
- Mixed health research unit 974, National Institute of Health and Medical Research; Paris
- Unit undergoing review 3617, National Center for Scientific Research; Paris
- Institute of Myology; Paris
| | - Philippe Rameau
- Imaging and Cytometry Platform, Gustave Roussy Institute; Villejuif
| | - Nathalie Caruso
- Aix-Marseille University, Developmental Biology Institute of Marseille, National Center for Scientific Research Mixed Unit of Research 7288; Luminy Scientific Park Marseille
| | - Anne-Lise Delezoide
- Department of Developmental Biology; Robert Debré Hospital, U696, National Institute of Health and Medical Research; Paris
| | - Claude Desnuelle
- Mixed Unit of Research 7277, National Center for Scientific Research, Nice University Hospital; Nice
- Neuromuscular Disease Reference Center, Nice University Hospital; Nice
| | - Bettina Bessières
- U781, National Institute of Health and Medical Research and IMAGINE Foundation, Department of Genetics, Necker Hospital for Sick Children, Public Hospital Network of Paris and Paris Descartes University; Paris
| | | | - Leonard Feasson
- Physiology and Exercise Laboratory EA4338, Rare Neuromuscular Diseases Referent Center, Rhône-Alpes Bellevue Hospital, University Hospital Center of Saint-Étienne; Saint-Étienne
| | - Thierry Maisonobe
- Department of Clinical Neurophysiology; Pitié-Salpêtrière Hospital Group; Paris France
| | - Frederique Magdinier
- Timone Faculty of Medicine, Aix-Marseille University, Mixed health research unit 910, National Institute of Health and Medical Research; Marseille
| | - Françoise Helmbacher
- Aix-Marseille University, Developmental Biology Institute of Marseille, National Center for Scientific Research Mixed Unit of Research 7288; Luminy Scientific Park Marseille
| | - Gillian Butler-Browne
- Center of Research in Myology, Pierre and Marie Curie University, Sorbonne Universities; Paris
- Mixed health research unit 974, National Institute of Health and Medical Research; Paris
- Unit undergoing review 3617, National Center for Scientific Research; Paris
- Institute of Myology; Paris
| | - Vincent Mouly
- Center of Research in Myology, Pierre and Marie Curie University, Sorbonne Universities; Paris
- Mixed health research unit 974, National Institute of Health and Medical Research; Paris
- Unit undergoing review 3617, National Center for Scientific Research; Paris
- Institute of Myology; Paris
| | - Julie Dumonceaux
- Center of Research in Myology, Pierre and Marie Curie University, Sorbonne Universities; Paris
- Mixed health research unit 974, National Institute of Health and Medical Research; Paris
- Unit undergoing review 3617, National Center for Scientific Research; Paris
- Institute of Myology; Paris
| |
Collapse
|
14
|
Angiotensin II induces Fat1 expression/activation and vascular smooth muscle cell migration via Nox1-dependent reactive oxygen species generation. J Mol Cell Cardiol 2014; 66:18-26. [PMID: 24445059 DOI: 10.1016/j.yjmcc.2013.10.013] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Revised: 10/11/2013] [Accepted: 10/15/2013] [Indexed: 01/06/2023]
Abstract
Fat1 is an atypical cadherin that controls vascular smooth muscle cell (VSMC) proliferation and migration. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 1 (Nox1) is an important source of reactive oxygen species (ROS) in VSMCs. Angiotensin II (Ang II) induces the expression and/or activation of both Fat1 and Nox1 proteins. This study tested the hypothesis that Ang II-induced Fat1 activation and VSMC migration are mediated by Nox1-dependent ROS generation and redox signaling. Studies were performed in cultured VSMCs from Sprague–Dawley rats. Cells were treated with Ang II (1 μmol/L) for short (5 to 30 min) or long term stimulations (3 to 12 h) in the absence or presence of the antioxidant apocynin (10 μmol/L), extracellular-signal-regulated kinases 1/2 (Erk1/2) inhibitor PD98059 (1 μmol/L), or Ang II type 1 receptor (AT1R) valsartan (1 μmol/L). siRNA was used to knockdown Nox1 or Fat1. Cell migration was determined by Boyden chamber assay. Ang II increased Fat1 mRNA and protein levels and promoted Fat1 translocation to the cell membrane, responses that were inhibited by AT1R antagonist and antioxidant treatment. Downregulation of Nox1 inhibited the effects of Ang II on Fat1 protein expression. Nox1 protein induction, ROS generation, and p44/p42 MAPK phosphorylation in response to Ang II were prevented by valsartan and apocynin, and Nox1 siRNA inhibited Ang II-induced ROS generation. Knockdown of Fat1 did not affect Ang II-mediated increases in Nox1 expression or ROS. Inhibition of p44/p42 MAPK phosphorylation by PD98059 abrogated the Ang II-induced increase in Fat1 expression and membrane translocation. Knockdown of Fat1 inhibited Ang II-induced VSMC migration, which was also prevented by valsartan, apocynin, PD98059, and Nox1 siRNA. Our findings indicate that Ang II regulates Fat1 expression and activity and induces Fat1-dependent VSMC migration via activation of AT1R, ERK1/2, and Nox1-derived ROS, suggesting a role for Fat1 downstream of Ang II signaling that leads to vascular remodeling.
Collapse
|
15
|
Valletta D, Czech B, Spruss T, Ikenberg K, Wild P, Hartmann A, Weiss TS, Oefner PJ, Müller M, Bosserhoff AK, Hellerbrand C. Regulation and function of the atypical cadherin FAT1 in hepatocellular carcinoma. Carcinogenesis 2014; 35:1407-15. [DOI: 10.1093/carcin/bgu054] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
16
|
Caruso N, Herberth B, Bartoli M, Puppo F, Dumonceaux J, Zimmermann A, Denadai S, Lebossé M, Roche S, Geng L, Magdinier F, Attarian S, Bernard R, Maina F, Levy N, Helmbacher F. Deregulation of the protocadherin gene FAT1 alters muscle shapes: implications for the pathogenesis of facioscapulohumeral dystrophy. PLoS Genet 2013; 9:e1003550. [PMID: 23785297 PMCID: PMC3681729 DOI: 10.1371/journal.pgen.1003550] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 04/23/2013] [Indexed: 01/01/2023] Open
Abstract
Generation of skeletal muscles with forms adapted to their function is essential for normal movement. Muscle shape is patterned by the coordinated polarity of collectively migrating myoblasts. Constitutive inactivation of the protocadherin gene Fat1 uncoupled individual myoblast polarity within chains, altering the shape of selective groups of muscles in the shoulder and face. These shape abnormalities were followed by early onset regionalised muscle defects in adult Fat1-deficient mice. Tissue-specific ablation of Fat1 driven by Pax3-cre reproduced muscle shape defects in limb but not face muscles, indicating a cell-autonomous contribution of Fat1 in migrating muscle precursors. Strikingly, the topography of muscle abnormalities caused by Fat1 loss-of-function resembles that of human patients with facioscapulohumeral dystrophy (FSHD). FAT1 lies near the critical locus involved in causing FSHD, and Fat1 mutant mice also show retinal vasculopathy, mimicking another symptom of FSHD, and showed abnormal inner ear patterning, predictive of deafness, reminiscent of another burden of FSHD. Muscle-specific reduction of FAT1 expression and promoter silencing was observed in foetal FSHD1 cases. CGH array-based studies identified deletion polymorphisms within a putative regulatory enhancer of FAT1, predictive of tissue-specific depletion of FAT1 expression, which preferentially segregate with FSHD. Our study identifies FAT1 as a critical determinant of muscle form, misregulation of which associates with FSHD.
Collapse
Affiliation(s)
- Nathalie Caruso
- Aix-Marseille Université, CNRS, IBDML UMR 7288, Parc Scientifique de Luminy, Case 907, Marseille, France
| | - Balàzs Herberth
- Aix-Marseille Université, CNRS, IBDML UMR 7288, Parc Scientifique de Luminy, Case 907, Marseille, France
| | - Marc Bartoli
- Aix-Marseille Université, Faculté de Médecine de la Timone, INSERM UMR 910, Marseille, France
| | - Francesca Puppo
- Aix-Marseille Université, Faculté de Médecine de la Timone, INSERM UMR 910, Marseille, France
| | - Julie Dumonceaux
- INSERM U974, UMR 7215 CNRS, Institut de Myologie, UM 76 Université Pierre et Marie Curie, Paris, France
| | - Angela Zimmermann
- Aix-Marseille Université, CNRS, IBDML UMR 7288, Parc Scientifique de Luminy, Case 907, Marseille, France
| | - Simon Denadai
- Aix-Marseille Université, CNRS, IBDML UMR 7288, Parc Scientifique de Luminy, Case 907, Marseille, France
| | - Marie Lebossé
- Aix-Marseille Université, CNRS, IBDML UMR 7288, Parc Scientifique de Luminy, Case 907, Marseille, France
| | - Stephane Roche
- Aix-Marseille Université, Faculté de Médecine de la Timone, INSERM UMR 910, Marseille, France
| | - Linda Geng
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Frederique Magdinier
- Aix-Marseille Université, Faculté de Médecine de la Timone, INSERM UMR 910, Marseille, France
| | - Shahram Attarian
- Aix-Marseille Université, Faculté de Médecine de la Timone, INSERM UMR 910, Marseille, France
- AP-HM, Neurologie, maladies neuro-musculaires, Hôpital de la Timone, Marseille, France
| | - Rafaelle Bernard
- Aix-Marseille Université, Faculté de Médecine de la Timone, INSERM UMR 910, Marseille, France
- AP-HM, Département de Génétique Médicale, Hôpital d'enfants Timone, Marseille, France
| | - Flavio Maina
- Aix-Marseille Université, CNRS, IBDML UMR 7288, Parc Scientifique de Luminy, Case 907, Marseille, France
| | - Nicolas Levy
- Aix-Marseille Université, Faculté de Médecine de la Timone, INSERM UMR 910, Marseille, France
- AP-HM, Département de Génétique Médicale, Hôpital d'enfants Timone, Marseille, France
| | - Françoise Helmbacher
- Aix-Marseille Université, CNRS, IBDML UMR 7288, Parc Scientifique de Luminy, Case 907, Marseille, France
| |
Collapse
|
17
|
Sadeqzadeh E, de Bock CE, Thorne RF. Sleeping giants: emerging roles for the fat cadherins in health and disease. Med Res Rev 2013; 34:190-221. [PMID: 23720094 DOI: 10.1002/med.21286] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The vertebrate Fat cadherins comprise a small gene family of four members, Fat1-Fat4, all closely related in structure to Drosophila ft and ft2. Over the past decade, knock-out mouse studies, genetic manipulation, and large sequencing projects has aided our understanding of the function of vertebrate Fat cadherins in tissue development and disease. The majority of studies of this family have focused on Fat1, with evidence now showing it can bind enable (ENA)/Vasodilator-stimulated phosphoprotein (VASP), β-catenin and Atrophin proteins to influence cell polarity and motility; HOMER-1 and HOMER-3 proteins to regulate actin accumulation in neuronal synapses; and scribble to influence the Hippo signaling pathway. Fat2 and Fat3 can regulate cell migration in a tissue specific manner and Fat4 appears to influence both planar cell polarity and Hippo signaling recapitulating the activity of Drosophila ft. Knowledge about the exact downstream signaling pathways activated by each family member remains in its infancy, but it is becoming clearer that they have tissue specific and redundant roles in development and may be lost or gained in cancer. In this review, we summarize the recent progress on understanding the role of the Fat cadherin family, integrating the current knowledge of molecular interactions and tissue distributions, together with the accumulating evidence of their changed expression in human disease. The latter is now beginning to promote interest in these molecules as both biomarkers and new targets for therapeutic intervention.
Collapse
Affiliation(s)
- Elham Sadeqzadeh
- Cancer Research Unit, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, 2308, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia
| | | | | |
Collapse
|
18
|
Dikshit B, Irshad K, Madan E, Aggarwal N, Sarkar C, Chandra PS, Gupta DK, Chattopadhyay P, Sinha S, Chosdol K. FAT1 acts as an upstream regulator of oncogenic and inflammatory pathways, via PDCD4, in glioma cells. Oncogene 2012; 32:3798-808. [DOI: 10.1038/onc.2012.393] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
19
|
Valletta D, Czech B, Thasler WE, Müller M, Bosserhoff AK, Hellerbrand C. Expression and function of the atypical cadherin FAT1 in chronic liver disease. Biochem Biophys Res Commun 2012; 426:404-8. [PMID: 22959770 DOI: 10.1016/j.bbrc.2012.08.104] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2012] [Accepted: 08/21/2012] [Indexed: 12/16/2022]
Abstract
Hepatic fibrosis can be considered as wound healing process in response to hepatocellular injury. Activation of hepatic stellate cells (HSCs) is a key event of hepatic fibrosis since activated HSCs are the cellular source of enhanced extracellular matrix deposition, and reversion of liver fibrosis is accompanied by clearance of activated HSCs by apoptosis. The atypical cadherin FAT1 has been shown to regulate diverse biological functions as cell proliferation and planar cell polarity, and also to affect wound healing. Here, we found increased FAT1 expression in different murine models of chronic liver injury and in cirrhotic livers of patients with different liver disease. Also in hepatic tissue of patients with non-alcoholic steatohepatitis FAT1 expression was significantly enhanced and correlated with collagen alpha I(1) expression. Immunohistochemistry revealed no significant differences in staining intensity between hepatocytes in normal and cirrhotic liver tissue but myofibroblast like cells in fibrotic septa of cirrhotic livers showed a prominent immunosignal. Furthermore, FAT1 mRNA and protein expression markedly increased during in vitro activation of primary human and murine HSCs. Together, these data indicated activated HSCs as cellular source of enhanced FAT1 expression in diseased livers. To gain insight into the functional role of FAT1 in activated HSCs we suppressed FAT1 in these cells by siRNA. We newly found that FAT1 suppression in activated HSCs caused a downregulation of NFκB activity. This transcription factor is critical for apoptosis resistance of HSCs, and consequently, we detected a higher apoptosis rate in FAT1 suppressed HSCs compared to control cells. Our findings suggest FAT1 as new therapeutic target for the prevention and treatment of hepatic fibrosis in chronic liver disease.
Collapse
Affiliation(s)
- Daniela Valletta
- Department of Internal Medicine I, University Hospital Regensburg, Regensburg, Germany
| | | | | | | | | | | |
Collapse
|
20
|
Sadeqzadeh E, de Bock CE, Zhang XD, Shipman KL, Scott NM, Song C, Yeadon T, Oliveira CS, Jin B, Hersey P, Boyd AW, Burns GF, Thorne RF. Dual processing of FAT1 cadherin protein by human melanoma cells generates distinct protein products. J Biol Chem 2011; 286:28181-91. [PMID: 21680732 DOI: 10.1074/jbc.m111.234419] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The giant cadherin FAT1 is one of four vertebrate orthologues of the Drosophila tumor suppressor fat. It engages in several functions, including cell polarity and migration, and in Hippo signaling during development. Homozygous deletions in oral cancer suggest that FAT1 may play a tumor suppressor role, although overexpression of FAT1 has been reported in some other cancers. Here we show using Northern blotting that human melanoma cell lines variably but universally express FAT1 and less commonly FAT2, FAT3, and FAT4. Both normal melanocytes and keratinocytes also express comparable FAT1 mRNA relative to melanoma cells. Analysis of the protein processing of FAT1 in keratinocytes revealed that, like Drosophila FAT, human FAT1 is cleaved into a non-covalent heterodimer before achieving cell surface expression. The use of inhibitors also established that such cleavage requires the proprotein convertase furin. However, in melanoma cells, the non-cleaved proform of FAT1 is also expressed at the cell surface together with the furin-cleaved heterodimer. Moreover, furin-independent processing generates a potentially functional proteolytic product in melanoma cells, a persistent 65-kDa membrane-bound cytoplasmic fragment no longer in association with the extracellular fragment. In vitro localization studies of FAT1 showed that melanoma cells display high levels of cytosolic FAT1 protein, whereas keratinocytes, despite comparable FAT1 expression levels, exhibited mainly cell-cell junctional staining. Such differences in protein distribution appear to reconcile with the different protein products generated by dual FAT1 processing. We suggest that the uncleaved FAT1 could promote altered signaling, and the novel products of alternate processing provide a dominant negative function in melanoma.
Collapse
Affiliation(s)
- Elham Sadeqzadeh
- Cancer Research Unit, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales 2308, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Todorović V, Desai BV, Eigenheer RA, Yin T, Amargo EV, Mrksich M, Green KJ, Patterson MJS. Detection of differentially expressed basal cell proteins by mass spectrometry. Mol Cell Proteomics 2009; 9:351-61. [PMID: 19955077 DOI: 10.1074/mcp.m900358-mcp200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The ability of cells to modulate interactions with each other and the substrate is essential for epithelial tissue remodeling during processes such as wound healing and tumor progression. However, despite strides made in the field of proteomics, proteins involved in adhesion have been difficult to study. Here, we report a method for the enrichment and analysis of proteins associated with the basal surface of the cell and its underlying matrix. The enrichment involves deroofing the cells with 20 mM ammonium hydroxide and the removal of cytosolic and organellar proteins by stringent water wash. Proteomic profiling was achieved by LC-FTMS, which allowed comparison of differentially expressed or shared proteins under different cell states. First, we analyzed and compared the basal cell components of mouse keratinocytes lacking the cell-cell junction molecule plakoglobin with their control counterparts. Changes in the molecules involved in motility and invasion were detected in plakoglobin-deficient cells, including decreased detection of fibronectin, integrin beta(4), and FAT tumor suppressor. Second, we assessed the differences in basal cell components between two human oral squamous cell carcinoma lines originating from different sites in the oral cavity (CAL33 and UM-SCC-1). The data show differences between the two lines in the type and abundance of proteins specific to cell adhesion, migration, and angiogenesis. Therefore, the method described here has the potential to serve as a platform to assess proteomic changes in basal cell components including extracellular and adhesion-specific proteins involved in wound healing, cancer, and chronic and acquired adhesion-related disorders.
Collapse
Affiliation(s)
- Viktor Todorović
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Hou R, Sibinga NES. Atrophin proteins interact with the Fat1 cadherin and regulate migration and orientation in vascular smooth muscle cells. J Biol Chem 2009; 284:6955-65. [PMID: 19131340 DOI: 10.1074/jbc.m809333200] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Fat1, an atypical cadherin induced robustly after arterial injury, has significant effects on mammalian vascular smooth muscle cell (VSMC) growth and migration. The related Drosophila protein Fat interacts genetically and physically with Atrophin, a protein essential for development and control of cell polarity. We hypothesized that interactions between Fat1 and mammalian Atrophin (Atr) proteins might contribute to Fat1 effects on VSMCs. Like Fat1, mammalian Atr expression increased after arterial injury and in VSMCs stimulated with growth and chemotactic factors including angiotensin II, basic fibroblast growth factor, and platelet-derived growth factor BB. Two distinct Atr2 transcripts, atr2L and atr2S, were identified by Northern analysis; in VSMCs, atr2S mRNA expression was more responsive to stimuli. By immunocytochemistry, Fat1 and Atrs colocalized at cell-cell junctions, in the perinuclear area, and in the nucleus. In coimmunoprecipitation studies, Fat1 interacted with both Atr1 and Atr2; these interactions required Fat1 amino acids 4300-4400 and an intact Atro-box in the Atrs. Knock-down of Atrs by small interfering RNA did not affect VSMC growth but had complex effects on migration, which was impaired by Atr1 knockdown, enhanced by Atr2L knockdown, and unchanged when both Atr2S and Atr2L were depleted. Enhanced migration caused by Atr2L knockdown required Fat1 expression. Similarly, orientation of cells after monolayer denudation was impaired in cells with Atr1 knockdown but enhanced in cells selectively depleted of Atr2L. Together these findings suggest that Fat1 and Atrs act in concert after vascular injury but show further that distinct Atr isoforms have disparate effects on VSMC directional migration.
Collapse
Affiliation(s)
- Rong Hou
- Department of Medicine, Cardiovascular Division, Albert Einstein College of Medicine, Bronx, New York 10461-1602, USA
| | | |
Collapse
|
23
|
Fischer I, Cunliffe C, Bollo RJ, Weiner HL, Devinsky O, Ruiz-Tachiquin ME, Venuto T, Pearlman A, Chiriboga L, Schneider RJ, Ostrer H, Miller DC. Glioma-like proliferation within tissues excised as tubers in patients with tuberous sclerosis complex. Acta Neuropathol 2008; 116:67-77. [PMID: 18581125 DOI: 10.1007/s00401-008-0391-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2007] [Revised: 05/15/2008] [Accepted: 05/16/2008] [Indexed: 01/06/2023]
Abstract
We describe diffuse glioma-like infiltrates in excised tubers in five out of forty Tuberous sclerosis complex (TSC) patients undergoing excision of a tuber at our institution within the last 10 years. All patients presented with refractory seizures. Resection specimens from four patients had the pathognomonic histologic features of neuroglial hamartomas (tubers) and in one case there was cortical microdysgenesis lacking cells typical of TSC. All lesions were associated with an infiltrate of atypical, mostly elongate, glioma-like small cells, which were immunoreactive for GFAP in three, and pS6 (a marker for activity of the mTOR pathway), in two cases. MAP-2 and CD34, were negative and MIB-1 (Ki67) immunostains ranged from <1-21%. Array-based comparative genomic hybridization revealed that these proliferative phenomena were associated with 21 different copy number aberrations in comparison with a tuber without atypical infiltrates. Postoperatively (follow-up period ranging from 8 to 34 months) none of the patients have any evidence of a glioma. We report that tubers resected for treatment of seizures are sometimes associated with glioma-like lesions, which are indistinguishable from infiltrating gliomas by morphology and immunohistochemistry. Genomic analysis with SNP arrays revealed copy number changes which may be associated with the pathogenesis of such infiltrates.
Collapse
Affiliation(s)
- Ingeborg Fischer
- Department of Pathology, New York University School of Medicine, New York, NY, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Altincicek B, Vilcinskas A. Identification of immune inducible genes from the velvet worm Epiperipatus biolleyi (Onychophora). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2008; 32:1416-21. [PMID: 18598713 DOI: 10.1016/j.dci.2008.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Revised: 06/04/2008] [Accepted: 06/07/2008] [Indexed: 05/15/2023]
Abstract
Onychophora are the next relatives of Arthropoda and, hence, represent an important taxon to unravel relationships among Insecta, Crustacea, Arachnida, and Myriapoda. Here, we screened for immune inducible genes from the onychophoran Epiperipatus biolleyi (Peripatidae) by injecting crude bacterial LPS and applying the suppression subtractive hybridization technique. Our analysis of 288 cDNAs resulted in identification of 36 novel genes in E. biolleyi whose potential homologues from other animals are known to mediate immune-related signaling (e.g. mitogen-activated protein kinase kinase 1 and immunoglobulin enhancer binding protein), to be involved in cellular processes (e.g. perilipin and myosin light chain), or to act as immune effector molecules (e.g. lysosomal beta-galactosidase, a putative antimicrobial peptide and a potential thiolester containing protein). Comparisons with homologous genes from other animals including the two most favored ecdysozoan model organisms of innate immunity research, the nematode Caenorhabditis elegans and the fruit fly Drosophila melanogaster, provide further insights into the origin and evolution of Arthropoda immunity.
Collapse
Affiliation(s)
- Boran Altincicek
- Interdisciplinary Research Center, Institute of Phytopathology and Applied Zoology, Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany.
| | | |
Collapse
|