1
|
Tavili E, Aziziyan F, Khajeh K. Inhibitors of amyloid fibril formation. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 206:291-340. [PMID: 38811084 DOI: 10.1016/bs.pmbts.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Many diseases are caused by misfolded and denatured proteins, leading to neurodegenerative diseases. In recent decades researchers have developed a variety of compounds, including polymeric inhibitors and natural compounds, antibodies, and chaperones, to inhibit protein aggregation, decrease the toxic effects of amyloid fibrils, and facilitate refolding proteins. The causes and mechanisms of amyloid formation are still unclear, and there are no effective treatments for Amyloid diseases. This section describes research and achievements in the field of inhibiting amyloid accumulation and also discusses the importance of various strategies in facilitating the removal of aggregates species (refolding) in the treatment of neurological diseases such as chemical methods like as, small molecules, metal chelators, polymeric inhibitors, and nanomaterials, as well as the use of biomolecules (peptide and, protein, nucleic acid, and saccharide) as amyloid inhibitors, are also highlighted.
Collapse
Affiliation(s)
- Elaheh Tavili
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Aziziyan
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Khosro Khajeh
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
2
|
Murakami K, Izuo N, Bitan G. Aptamers targeting amyloidogenic proteins and their emerging role in neurodegenerative diseases. J Biol Chem 2022; 298:101478. [PMID: 34896392 PMCID: PMC8728582 DOI: 10.1016/j.jbc.2021.101478] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/24/2021] [Accepted: 12/02/2021] [Indexed: 01/08/2023] Open
Abstract
Aptamers are oligonucleotides selected from large pools of random sequences based on their affinity for bioactive molecules and are used in similar ways to antibodies. Aptamers provide several advantages over antibodies, including their small size, facile, large-scale chemical synthesis, high stability, and low immunogenicity. Amyloidogenic proteins, whose aggregation is relevant to neurodegenerative diseases, such as Alzheimer's, Parkinson's, and prion diseases, are among the most challenging targets for aptamer development due to their conformational instability and heterogeneity, the same characteristics that make drug development against amyloidogenic proteins difficult. Recently, chemical tethering of aptagens (equivalent to antigens) and advances in high-throughput sequencing-based analysis have been used to overcome some of these challenges. In addition, internalization technologies using fusion to cellular receptors and extracellular vesicles have facilitated central nervous system (CNS) aptamer delivery. In view of the development of these techniques and resources, here we review antiamyloid aptamers, highlighting preclinical application to CNS therapy.
Collapse
Affiliation(s)
- Kazuma Murakami
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan.
| | - Naotaka Izuo
- Laboratory of Pharmaceutical Therapy and Neuropharmacology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Gal Bitan
- Department of Neurology, David Geffen School of Medicine, Brain Research Institute, and Molecular Biology Institute, University of California Los Angeles, Los Angeles, California, USA.
| |
Collapse
|
3
|
Obata Y, Murakami K, Kawase T, Hirose K, Izuo N, Shimizu T, Irie K. Detection of Amyloid β Oligomers with RNA Aptamers in App NL-G-F/NL-G-F Mice: A Model of Arctic Alzheimer's Disease. ACS OMEGA 2020; 5:21531-21537. [PMID: 32905362 PMCID: PMC7469371 DOI: 10.1021/acsomega.0c02134] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/17/2020] [Indexed: 06/11/2023]
Abstract
RNA aptamers have garnered attention for diagnostic applications due to their ability to recognize diverse targets. Oligomers of 42-mer amyloid β-protein (Aβ42), whose accumulation is relevant to the pathology of Alzheimer's disease (AD), are among the most difficult molecules for aptamer recognition because they are prone to aggregate in heterogeneous forms. In addition to designing haptens for in vitro selection of aptamers, the difficulties involved in determining their effect on Aβ42 oligomerization impede aptamer research. We previously developed three RNA aptamers (E22P-AbD4, -AbD31, and -AbD43) with high affinity for protofibrils (PFs) derived from a toxic Aβ42 dimer. Notably, these aptamers recognized diffuse staining, which likely originated from PFs or higher-order oligomers with curvilinear structures in a knock-in AppNL-G-F/NL-G-F mouse, carrying the Arctic mutation that preferentially induced the formation of PFs, in addition to a PS2Tg2576 mouse. To determine which oligomeric sizes were mainly altered by the aptamer, ion mobility-mass spectrometry (IM-MS) was carried out. One aptamer, E22P-AbD43, formed adducts with the Aβ42 monomer and dimer, leading to suppression of further oligomerization. These findings support the utility of these aptamers as diagnostics for AD.
Collapse
Affiliation(s)
- Yayoi Obata
- Division
of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Kazuma Murakami
- Division
of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | | | | | - Naotaka Izuo
- Department
of Endocrinology, Hematology and Gerontology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Takahiko Shimizu
- Department
of Endocrinology, Hematology and Gerontology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Kazuhiro Irie
- Division
of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
4
|
Fayazi R, Habibi-Rezaei M, Heiat M, Javadi-Zarnaghi F, Taheri RA. Glycated albumin precipitation using aptamer conjugated magnetic nanoparticles. Sci Rep 2020; 10:10716. [PMID: 32612182 PMCID: PMC7329883 DOI: 10.1038/s41598-020-67469-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 06/02/2020] [Indexed: 01/10/2023] Open
Abstract
To develop a strategy for the elimination of prefibrillar amyloid aggregates, a three-step non-modified DNA aptamer conjugation on silica-coated magnetic nanoparticles was carried out to achieve aptamer conjugated on MNP (Ap-SiMNP). Prefibrillar amyloid aggregates are generated under a diabetic condition which are prominently participated in developing diabetic complications. The binding properties of candidate DNA aptamer against serum albumin prefibrillar amyloid aggregates (AA20) were verified using electrophoretic mobility shift assay (EMSA) and surface plasmon resonance spectroscopy (SPR) analysis. The chloro-functionalized silica-coated MNPs were synthesized then a nano-targeting structure as aptamer conjugated on MNP (Ap-SiMNP) was constructed. Finally, Ap-SiMNP was verified for specific binding efficiency and AA20 removal using an external magnetic field. The candidate aptamer showed a high binding capacity at EMSA and SPR analysis (KD = 3.4 × 10─9 M) and successfully used to construct Ap-SiMNP. Here, we show a proof of concept for an efficient bio-scavenger as Ap-SiMNP to provide a promising opportunity to consider as a possible strategy to overcome some diabetic complications through specific binding/removal of toxic AA20 species.
Collapse
Affiliation(s)
- R Fayazi
- School of Biology, University of Tehran, P.O.Box 14155-6455, Tehran, Iran
| | - M Habibi-Rezaei
- School of Biology, University of Tehran, P.O.Box 14155-6455, Tehran, Iran.
- Center of Excellence in Nano-Biomedicine, University of Tehran, Tehran, Iran.
| | - M Heiat
- Research Center for Gastroenterology and Liver Disease, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - F Javadi-Zarnaghi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - R A Taheri
- Nanobiotechnolology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Zhang Y, Ren B, Zhang D, Liu Y, Zhang M, Zhao C, Zheng J. Design principles and fundamental understanding of biosensors for amyloid-β detection. J Mater Chem B 2020; 8:6179-6196. [DOI: 10.1039/d0tb00344a] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Aβ as biomarker in Alzheimer’s disease (AD) drives the significant research efforts for developing different biosensors with different sensing strategies, materials, and mechanisms for Aβ detection.
Collapse
Affiliation(s)
- Yanxian Zhang
- Department of Chemical
- Biomolecular, and Corrosion Engineering
- The University of Akron
- Ohio
- USA
| | - Baiping Ren
- Department of Chemical
- Biomolecular, and Corrosion Engineering
- The University of Akron
- Ohio
- USA
| | - Dong Zhang
- Department of Chemical
- Biomolecular, and Corrosion Engineering
- The University of Akron
- Ohio
- USA
| | - Yonglan Liu
- Department of Chemical
- Biomolecular, and Corrosion Engineering
- The University of Akron
- Ohio
- USA
| | - Mingzhen Zhang
- Department of Chemical
- Biomolecular, and Corrosion Engineering
- The University of Akron
- Ohio
- USA
| | - Chao Zhao
- Department of Chemical and Biomolecular Engineering
- The University of Alabama
- USA
| | - Jie Zheng
- Department of Chemical
- Biomolecular, and Corrosion Engineering
- The University of Akron
- Ohio
- USA
| |
Collapse
|
6
|
Haines MC, Storch M, Oyarzún DA, Stan GB, Baldwin GS. Riboswitch identification using Ligase-Assisted Selection for the Enrichment of Responsive Ribozymes (LigASERR). Synth Biol (Oxf) 2019; 4:ysz019. [PMID: 32995542 PMCID: PMC7445825 DOI: 10.1093/synbio/ysz019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/17/2019] [Accepted: 06/18/2019] [Indexed: 12/22/2022] Open
Abstract
In vitro selection of ligand-responsive ribozymes can identify rare, functional sequences from large libraries. While powerful, key caveats of this approach include lengthy and demanding experimental workflows; unpredictable experimental outcomes and unknown functionality of enriched sequences in vivo. To address the first of these limitations, we developed Ligase-Assisted Selection for the Enrichment of Responsive Ribozymes (LigASERR). LigASERR is scalable, amenable to automation and requires less time to implement compared to alternative methods. To improve the predictability of experiments, we modeled the underlying selection process, predicting experimental outcomes based on sequence and population parameters. We applied this new methodology and model to the enrichment of a known, in vitro-selected sequence from a bespoke library. Prior to implementing selection, conditions were optimized and target sequence dynamics accurately predicted for the majority of the experiment. In addition to enriching the target sequence, we identified two new, theophylline-activated ribozymes. Notably, all three sequences yielded riboswitches functional in Escherichia coli, suggesting LigASERR and similar in vitro selection methods can be utilized for generating functional riboswitches in this organism.
Collapse
Affiliation(s)
- Matthew C Haines
- Department of Life Sciences, Imperial College London, London, UK.,Imperial College Centre for Synthetic Biology, Imperial College London, London, UK
| | - Marko Storch
- Department of Life Sciences, Imperial College London, London, UK.,Imperial College Centre for Synthetic Biology, Imperial College London, London, UK.,London BioFoundry, Imperial College Translation & Innovation Hub, London, UK
| | - Diego A Oyarzún
- School of Informatics, University of Edinburgh, Edinburgh, UK.,School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Guy-Bart Stan
- Imperial College Centre for Synthetic Biology, Imperial College London, London, UK.,Department of Bioengineering, Imperial College London, London, UK
| | - Geoff S Baldwin
- Department of Life Sciences, Imperial College London, London, UK.,Imperial College Centre for Synthetic Biology, Imperial College London, London, UK
| |
Collapse
|
7
|
Rahimi F. Aptamers Selected for Recognizing Amyloid β-Protein-A Case for Cautious Optimism. Int J Mol Sci 2018; 19:ijms19030668. [PMID: 29495486 PMCID: PMC5877529 DOI: 10.3390/ijms19030668] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 02/18/2018] [Accepted: 02/22/2018] [Indexed: 02/07/2023] Open
Abstract
Aptamers are versatile oligonucleotide ligands used for molecular recognition of diverse targets. However, application of aptamers to the field of amyloid β-protein (Aβ) has been limited so far. Aβ is an intrinsically disordered protein that exists in a dynamic conformational equilibrium, presenting time-dependent ensembles of short-lived, metastable structures and assemblies that have been generally difficult to isolate and characterize. Moreover, despite understanding of potential physiological roles of Aβ, this peptide has been linked to the pathogenesis of Alzheimer disease, and its pathogenic roles remain controversial. Accumulated scientific evidence thus far highlights undesirable or nonspecific interactions between selected aptamers and different Aβ assemblies likely due to the metastable nature of Aβ or inherent affinity of RNA oligonucleotides to β-sheet-rich fibrillar structures of amyloidogenic proteins. Accordingly, lessons drawn from Aβ–aptamer studies emphasize that purity and uniformity of the protein target and rigorous characterization of aptamers’ specificity are important for realizing and garnering the full potential of aptamers selected for recognizing Aβ or other intrinsically disordered proteins. This review summarizes studies of aptamers selected for recognizing different Aβ assemblies and highlights controversies, difficulties, and limitations of such studies.
Collapse
Affiliation(s)
- Farid Rahimi
- Division of Biomedical Science and Biochemistry, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia.
| |
Collapse
|
8
|
Fukasawa K, Higashimoto Y, Ando Y, Motomiya Y. Selection of DNA Aptamer That Blocks the Fibrillogenesis of a Proteolytic Amyloidogenic Fragment of β 2 m. Ther Apher Dial 2017; 22:61-66. [PMID: 28960840 DOI: 10.1111/1744-9987.12591] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 05/22/2017] [Accepted: 06/14/2017] [Indexed: 01/10/2023]
Abstract
Dialysis-related amyloidosis (DRA) is a severe complication of hemodialysis that results in progressive destruction of bones and joints. Elevated concentrations of the β2 -microglobulin (β2 m) level in the serum of subjects on hemodialysis promote the formation of amyloid fibrils in osteoarticular tissues. β2 m lacking the N-terminal six residues of the mature protein (ΔN6β2 m) constitutes 25-30% of β2 m in ex vivo DRA amyloid. Unlike full-length wild-type β2 m, ΔN6β2 m forms amyloid fibrils at neutral pH in vitro. However, the role of ΔN6β2 m in DRA is, at present, poorly understood. In the present study, we screened novel phosphorothioate-modified aptamers directed against ΔN6β2 m using combinatorial chemistry in vitro. We identified 11 ΔN6β2 m aptamers; among the identified aptamers, clone #2, #8, and #10 aptamers had higher binding affinity to ΔN6β2 m than the others. Biolayer interferometry analysis revealed that KD values of clone #2, #8, and #10 aptamers were 56, 23, and 44 nM, respectively. Furthermore, the clone #8 aptamer inhibited fibril formation in a dose-dependent manner, as assessed by Thioflavin T fluorescence assay. Fibrils formed from ΔN6β2 m bind to Congo red, displaying changes in the absorbance spectrum of the dye characteristic of binding to amyloid fibrils, which was completely blocked by treatment with clone #8 aptamer. These results suggest the potential of ΔN6β2 m aptamers as tools for elucidating co-assembly mechanisms in amyloid formation.
Collapse
Affiliation(s)
- Kanon Fukasawa
- Department of Chemistry, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Yuichiro Higashimoto
- Department of Chemistry, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Yukio Ando
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Honjo, Kumamoto, Japan
| | | |
Collapse
|
9
|
Chakravarthy M, Chen S, Dodd PR, Veedu RN. Nucleic Acid-Based Theranostics for Tackling Alzheimer's Disease. Theranostics 2017; 7:3933-3947. [PMID: 29109789 PMCID: PMC5667416 DOI: 10.7150/thno.21529] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 07/28/2017] [Indexed: 02/07/2023] Open
Abstract
Nucleic acid-based technologies have received significant interest in recent years as novel theranostic strategies for various diseases. The approval by the United States Food and Drug Administration (FDA) of Nusinersen, an antisense oligonucleotide drug, for the treatment of spinal muscular dystrophy highlights the potential of nucleic acids to treat neurological diseases, including Alzheimer's disease (AD). AD is a devastating neurodegenerative disease characterized by progressive impairment of cognitive function and behavior. It is the most common form of dementia; it affects more than 20% of people over 65 years of age and leads to death 7-15 years after diagnosis. Intervention with novel agents addressing the underlying molecular causes is critical. Here we provide a comprehensive review on recent developments in nucleic acid-based theranostic strategies to diagnose and treat AD.
Collapse
Affiliation(s)
- Madhuri Chakravarthy
- Centre for Comparative Genomics, Murdoch University, Murdoch, Perth, Australia 6150
- Perron Institute for Neurological and Translational Science, QEII Medical Centre, Nedlands, Perth, Australia 6005
| | - Suxiang Chen
- Centre for Comparative Genomics, Murdoch University, Murdoch, Perth, Australia 6150
- Perron Institute for Neurological and Translational Science, QEII Medical Centre, Nedlands, Perth, Australia 6005
| | - Peter R. Dodd
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, Australia 4072
| | - Rakesh N. Veedu
- Centre for Comparative Genomics, Murdoch University, Murdoch, Perth, Australia 6150
- Perron Institute for Neurological and Translational Science, QEII Medical Centre, Nedlands, Perth, Australia 6005
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, Australia 4072
| |
Collapse
|
10
|
Abstract
Aggregation of the amyloid-β (Aβ) peptide is strongly correlated with Alzheimer's disease (AD). Recent research has improved our understanding of the kinetics of amyloid fibril assembly and revealed new details regarding different stages in plaque formation. Presently, interest is turning toward studying this process in a holistic context, focusing on cellular components which interact with the Aβ peptide at various junctures during aggregation, from monomer to cross-β amyloid fibrils. However, even in isolation, a multitude of factors including protein purity, pH, salt content, and agitation affect Aβ fibril formation and deposition, often producing complicated and conflicting results. The failure of numerous inhibitors in clinical trials for AD suggests that a detailed examination of the complex interactions that occur during plaque formation, including binding of carbohydrates, lipids, nucleic acids, and metal ions, is important for understanding the diversity of manifestations of the disease. Unraveling how a variety of key macromolecular modulators interact with the Aβ peptide and change its aggregation properties may provide opportunities for developing therapies. Since no protein acts in isolation, the interplay of these diverse molecules may differentiate disease onset, progression, and severity, and thus are worth careful consideration.
Collapse
Affiliation(s)
- Katie L Stewart
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK.
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
11
|
Unraveling Prion Protein Interactions with Aptamers and Other PrP-Binding Nucleic Acids. Int J Mol Sci 2017; 18:ijms18051023. [PMID: 28513534 PMCID: PMC5454936 DOI: 10.3390/ijms18051023] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 04/23/2017] [Accepted: 05/04/2017] [Indexed: 12/13/2022] Open
Abstract
Transmissible spongiform encephalopathies (TSEs) are a group of neurodegenerative disorders that affect humans and other mammals. The etiologic agents common to these diseases are misfolded conformations of the prion protein (PrP). The molecular mechanisms that trigger the structural conversion of the normal cellular PrP (PrPC) into the pathogenic conformer (PrPSc) are still poorly understood. It is proposed that a molecular cofactor would act as a catalyst, lowering the activation energy of the conversion process, therefore favoring the transition of PrPC to PrPSc. Several in vitro studies have described physical interactions between PrP and different classes of molecules, which might play a role in either PrP physiology or pathology. Among these molecules, nucleic acids (NAs) are highlighted as potential PrP molecular partners. In this context, the SELEX (Systematic Evolution of Ligands by Exponential Enrichment) methodology has proven extremely valuable to investigate PrP–NA interactions, due to its ability to select small nucleic acids, also termed aptamers, that bind PrP with high affinity and specificity. Aptamers are single-stranded DNA or RNA oligonucleotides that can be folded into a wide range of structures (from harpins to G-quadruplexes). They are selected from a nucleic acid pool containing a large number (1014–1016) of random sequences of the same size (~20–100 bases). Aptamers stand out because of their potential ability to bind with different affinities to distinct conformations of the same protein target. Therefore, the identification of high-affinity and selective PrP ligands may aid the development of new therapies and diagnostic tools for TSEs. This review will focus on the selection of aptamers targeted against either full-length or truncated forms of PrP, discussing the implications that result from interactions of PrP with NAs, and their potential advances in the studies of prions. We will also provide a critical evaluation, assuming the advantages and drawbacks of the SELEX (Systematic Evolution of Ligands by Exponential Enrichment) technique in the general field of amyloidogenic proteins.
Collapse
|
12
|
Wu YX, Kwon YJ. Aptamers: The "evolution" of SELEX. Methods 2016; 106:21-8. [PMID: 27109056 DOI: 10.1016/j.ymeth.2016.04.020] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 04/14/2016] [Accepted: 04/15/2016] [Indexed: 01/09/2023] Open
Abstract
It has been more than two decades since the first aptamer molecule was discovered. Since then, aptamer molecules have gain much attention in the scientific field. This increasing traction can be attributed to their many desirable traits, such as 1) their potentials to bind a wide range of molecules, 2) their malleability, and 3) their low cost of production. These traits have made aptamer molecules an ideal platform to pursue in the realm of pharmaceuticals and bio-sensors. Despite the broad applications of aptamers, tedious procedure, high resource consumption, and limited nucleobase repertoire have hindered aptamer in application usage. To address these issues, new innovative methodologies, such as automation and single round SELEX, are being developed to improve the outcomes and rates in which aptamers are discovered.
Collapse
Affiliation(s)
- Yi Xi Wu
- Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697, United States
| | - Young Jik Kwon
- Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697, United States; Department of Chemical Engineering and Materials Science, University of California, Irvine, CA 92697, United States; Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, United States; Department of Biomedical Engineering, University of California, Irvine, CA 92697, United States.
| |
Collapse
|
13
|
McConnell EM, Holahan MR, DeRosa MC. Aptamers as promising molecular recognition elements for diagnostics and therapeutics in the central nervous system. Nucleic Acid Ther 2015; 24:388-404. [PMID: 25296265 DOI: 10.1089/nat.2014.0492] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Oligonucleotide aptamers are short, synthetic, single-stranded DNA or RNA able to recognize and bind to a multitude of targets ranging from small molecules to cells. Aptamers have emerged as valuable tools for fundamental research, clinical diagnosis, and therapy. Due to their small size, strong target affinity, lack of immunogenicity, and ease of chemical modification, aptamers are an attractive alternative to other molecular recognition elements, such as antibodies. Although it is a challenging environment, the central nervous system and related molecular targets present an exciting potential area for aptamer research. Aptamers hold promise for targeted drug delivery, diagnostics, and therapeutics. Here we review recent advances in aptamer research for neurotransmitter and neurotoxin targets, demyelinating disease and spinal cord injury, cerebrovascular disorders, pathologies related to protein aggregation (Alzheimer's, Parkinson's, and prions), brain cancer (glioblastomas and gliomas), and regulation of receptor function. Challenges and limitations posed by the blood brain barrier are described. Future perspectives for the application of aptamers to the central nervous system are also discussed.
Collapse
Affiliation(s)
- Erin M McConnell
- 1 Department of Chemistry, Carleton University , Ottawa, Ontario, Canada
| | | | | |
Collapse
|
14
|
Alkoxy bridged binuclear rhenium (I) complexes as a potential sensor for β-amyloid aggregation. Talanta 2014; 130:274-9. [DOI: 10.1016/j.talanta.2014.06.070] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 06/27/2014] [Accepted: 06/28/2014] [Indexed: 01/05/2023]
|
15
|
Babu E, Muthu Mareeswaran P, Sathish V, Singaravadivel S, Rajagopal S. Sensing and inhibition of amyloid-β based on the simple luminescent aptamer-ruthenium complex system. Talanta 2014; 134:348-353. [PMID: 25618678 DOI: 10.1016/j.talanta.2014.11.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 11/08/2014] [Accepted: 11/10/2014] [Indexed: 12/21/2022]
Abstract
Aggregation of amyloid-β (Aβ) peptide has been known to be pathologically associated with Alzheimer and dementia diseases. Amyloid-β fibrils serve as an important target for the drugs development and diagnosis of neurodegenerative diseases. Herein, we report a new [Ru(dmbpy)(dcbpy)dppz)] complex (dmbpy; 4,4'-dimethyl-2,2'-bipyridine, dcbpy; 4,4'-dicorboxy-2,2'-bipyridine, dppz; dipyridophenazine) intercalated aptamer based recognition of amyloid-β. Interestingly, aforementioned Ru(II) complex shows weak luminescence intensity in the aqueous medium but it shows strong luminescence intensity in the presence of RNA aptamer. Upon addition of amyloid-β monomers, the luminescence intensity of Ru(II) complex is reduced due to the strong interaction of aptamer with amyloid-β monomer/small oligomers. Furthermore, present study implies that our system has ability to inhibit the formation of amyloid-β fibrils, which is confirmed from the AFM morphological structures in the absence and presence of aptamer. This work may contribute the rapid diagnosis and inhibition of amyloid-β aggregation in the clinical applications.
Collapse
Affiliation(s)
- Eththilu Babu
- Department of Physical Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai, Tamil Nadu, India; Department of Chemistry, VV College of Engineering, Tisaiyanvilai, Tamil Nadu, India
| | - Paulpandian Muthu Mareeswaran
- Department of Physical Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai, Tamil Nadu, India; Graduate School of EEWS, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Veerasamy Sathish
- Department of Physical Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai, Tamil Nadu, India; Department of Physical Science, Bannari Amman Institute of Technology, Sathiyamangalam, Tamil Nadu, India
| | - Subramanian Singaravadivel
- Department of Physical Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai, Tamil Nadu, India
| | - Seenivasan Rajagopal
- Department of Physical Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai, Tamil Nadu, India.
| |
Collapse
|
16
|
Ashrafuzzaman M. Aptamers as both drugs and drug-carriers. BIOMED RESEARCH INTERNATIONAL 2014; 2014:697923. [PMID: 25295268 PMCID: PMC4177733 DOI: 10.1155/2014/697923] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 08/04/2014] [Accepted: 08/22/2014] [Indexed: 11/17/2022]
Abstract
Aptamers are short nucleic acid oligos. They may serve as both drugs and drug-carriers. Their use as diagnostic tools is also evident. They can be generated using various experimental, theoretical, and computational techniques. The systematic evolution of ligands by exponential enrichment which uses iterative screening of nucleic acid libraries is a popular experimental technique. Theory inspired methodology entropy-based seed-and-grow strategy that designs aptamer templates to bind specifically to targets is another one. Aptamers are predicted to be highly useful in producing general drugs and theranostic drugs occasionally for certain diseases like cancer, Alzheimer's disease, and so on. They bind to various targets like lipids, nucleic acids, proteins, small organic compounds, and even entire organisms. Aptamers may also serve as drug-carriers or nanoparticles helping drugs to get released in specific target regions. Due to better target specific physical binding properties aptamers cause less off-target toxicity effects. Therefore, search for aptamer based drugs, drug-carriers, and even diagnostic tools is expanding fast. The biophysical properties in relation to the target specific binding phenomena of aptamers, energetics behind the aptamer transport of drugs, and the consequent biological implications will be discussed. This review will open up avenues leading to novel drug discovery and drug delivery.
Collapse
Affiliation(s)
- Md. Ashrafuzzaman
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
17
|
Sarell CJ, Karamanos TK, White SJ, Bunka DHJ, Kalverda AP, Thompson GS, Barker AM, Stockley PG, Radford SE. Distinguishing closely related amyloid precursors using an RNA aptamer. J Biol Chem 2014; 289:26859-26871. [PMID: 25100729 PMCID: PMC4175327 DOI: 10.1074/jbc.m114.595066] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although amyloid fibrils assembled in vitro commonly involve a single protein, fibrils formed in vivo can contain multiple protein sequences. The amyloidogenic protein human β2-microglobulin (hβ2m) can co-polymerize with its N-terminally truncated variant (ΔN6) in vitro to form hetero-polymeric fibrils that differ from their homo-polymeric counterparts. Discrimination between the different assembly precursors, for example by binding of a biomolecule to one species in a mixture of conformers, offers an opportunity to alter the course of co-assembly and the properties of the fibrils formed. Here, using hβ2m and its amyloidogenic counterpart, ΔΝ6, we describe selection of a 2'F-modified RNA aptamer able to distinguish between these very similar proteins. SELEX with a N30 RNA pool yielded an aptamer (B6) that binds hβ2m with an EC50 of ∼200 nM. NMR spectroscopy was used to assign the (1)H-(15)N HSQC spectrum of the B6-hβ2m complex, revealing that the aptamer binds to the face of hβ2m containing the A, B, E, and D β-strands. In contrast, binding of B6 to ΔN6 is weak and less specific. Kinetic analysis of the effect of B6 on co-polymerization of hβ2m and ΔN6 revealed that the aptamer alters the kinetics of co-polymerization of the two proteins. The results reveal the potential of RNA aptamers as tools for elucidating the mechanisms of co-assembly in amyloid formation and as reagents able to discriminate between very similar protein conformers with different amyloid propensity.
Collapse
Affiliation(s)
- Claire J Sarell
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Theodoros K Karamanos
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Simon J White
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - David H J Bunka
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Arnout P Kalverda
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Gary S Thompson
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Amy M Barker
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Peter G Stockley
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom.
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom.
| |
Collapse
|
18
|
Karamanos TK, Kalverda AP, Thompson GS, Radford SE. Visualization of transient protein-protein interactions that promote or inhibit amyloid assembly. Mol Cell 2014; 55:214-26. [PMID: 24981172 PMCID: PMC4104025 DOI: 10.1016/j.molcel.2014.05.026] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 04/22/2014] [Accepted: 05/08/2014] [Indexed: 11/30/2022]
Abstract
In the early stages of amyloid formation, heterogeneous populations of oligomeric species are generated, the affinity, specificity, and nature of which may promote, inhibit, or define the course of assembly. Despite the importance of the intermolecular interactions that initiate amyloid assembly, our understanding of these events remains poor. Here, using amyloidogenic and nonamyloidogenic variants of β2-microglobulin, we identify the interactions that inhibit or promote fibril formation in atomic detail. The results reveal that different outcomes of assembly result from biomolecular interactions involving similar surfaces. Specifically, inhibition occurs via rigid body docking of monomers in a head-to-head orientation to form kinetically trapped dimers. By contrast, the promotion of fibrillation involves relatively weak protein association in a similar orientation, which results in conformational changes in the initially nonfibrillogenic partner. The results highlight the complexity of interactions early in amyloid assembly and reveal atomic-level information about species barriers in amyloid formation. Dissection of protein-protein interactions in the early stages of amyloid assembly Rare biomolecular collisions and the course of amyloid assembly Interaction surfaces and different outcomes of amyloid assembly Molecular description of species barriers in amyloid assembly
Collapse
Affiliation(s)
- Theodoros K Karamanos
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Arnout P Kalverda
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Gary S Thompson
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
19
|
Svobodova M, Bunka DHJ, Nadal P, Stockley PG, O'Sullivan CK. Selection of 2'F-modified RNA aptamers against prostate-specific antigen and their evaluation for diagnostic and therapeutic applications. Anal Bioanal Chem 2013; 405:9149-57. [PMID: 24043377 DOI: 10.1007/s00216-013-7350-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 08/30/2013] [Accepted: 09/05/2013] [Indexed: 12/11/2022]
Abstract
Currently, prostate-specific antigen (PSA) is considered to be the most sensitive marker available for prostate cancer detection and for monitoring of disease progression. In addition to its importance as a tumor marker, PSA has a role in the biological activity of cancer growth and proliferation. Therefore, the inhibition or activation of its biological activity may be used in prostate cancer therapy. Here, we describe the isolation and characterization of new 2'F-modified RNA aptamers directed against PSA. Binding studies demonstrate the ability of these new aptamers to specifically recognize their target with dissociation constants in the nanomolar range. In order to demonstrate the functionality of the selected aptamers, an apta-PCR approach was used for the quantitative detection of PSA, achieving a limit of detection of 11 nM. Furthermore, the potential use of the selected aptamers in therapeutics was demonstrated with the 2'F-modified aptamers being highly stable in human serum and having the ability to moderate the activity of PSA, which will be explored for the treatment of prostate cancer.
Collapse
Affiliation(s)
- M Svobodova
- Nanobiotechnology and Bioanalysis group, Department of Chemical Engineering, Universitat Rovira i Virgili, 43007, Tarragona, Spain,
| | | | | | | | | |
Collapse
|
20
|
Mitkevich OV, Kochneva-Pervukhova NV, Surina ER, Benevolensky SV, Kushnirov VV, Ter-Avanesyan MD. DNA aptamers detecting generic amyloid epitopes. Prion 2012; 6:400-6. [PMID: 22874671 DOI: 10.4161/pri.20678] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Amyloids are fibrillar protein aggregates resulting from non-covalent autocatalytic polymerization of various structurally and functionally unrelated proteins. Previously we have selected DNA aptamers, which bind specifically to the in vitro assembled amyloid fibrils of the yeast prionogenic protein Sup35. Here we show that such DNA aptamers can be used to detect SDS-insoluble amyloid aggregates of the Sup35 protein, and of some other amyloidogenic proteins, including mouse PrP, formed in yeast cells. The obtained data suggest that these aggregates and the Sup35 amyloid fibrils assembled in vitro possess common conformational epitopes recognizable by aptamers. The described DNA aptamers may be used for detection of various amyloid aggregates in yeast and, presumably, other organisms.
Collapse
Affiliation(s)
- Olga V Mitkevich
- A.N. Bach Institute of Biochemistry, The Russian Academy of Sciences, Moscow, Russia
| | | | | | | | | | | |
Collapse
|
21
|
Derbyshire N, White SJ, Bunka DHJ, Song L, Stead S, Tarbin J, Sharman M, Zhou D, Stockley PG. Toggled RNA aptamers against aminoglycosides allowing facile detection of antibiotics using gold nanoparticle assays. Anal Chem 2012; 84:6595-602. [PMID: 22793869 PMCID: PMC3413241 DOI: 10.1021/ac300815c] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 07/12/2012] [Indexed: 11/28/2022]
Abstract
We have used systematic evolution of ligands by exponential enrichment (SELEX) to isolate RNA aptamers against aminoglycoside antibiotics. The SELEX rounds were toggled against four pairs of aminoglycosides with the goal of isolating reagents that recognize conserved structural features. The resulting aptamers bind both of their selection targets with nanomolar affinities. They also bind the less structurally related targets, although they show clear specificity for this class of antibiotics. We show that this lack of aminoglycoside specificity is a common property of aptamers previously selected against single compounds and described as "specific". Broad target specificity aptamers would be ideal for sensors detecting the entire class of aminoglycosides. We have used ligand-induced aggregation of gold-nanoparticles coated with our aptamers as a rapid and sensitive assay for these compounds. In contrast to DNA aptamers, unmodified RNA aptamers cannot be used as the recognition ligand in this assay, whereas 2'-fluoro-pyrimidine derivatives work reliably. We discuss the possible application of these reagents as sensors for drug residues and the challenges for understanding the structural basis of aminoglycoside-aptamer recognition highlighted by the SELEX results.
Collapse
Affiliation(s)
- Nicola Derbyshire
- Astbury
Centre for Structural Molecular Biology and School of Chemistry, University of Leeds, Leeds, LS2 9JT,
United Kingdom
| | - Simon J. White
- Astbury
Centre for Structural Molecular Biology and School of Chemistry, University of Leeds, Leeds, LS2 9JT,
United Kingdom
| | - David H. J. Bunka
- Astbury
Centre for Structural Molecular Biology and School of Chemistry, University of Leeds, Leeds, LS2 9JT,
United Kingdom
| | - Lei Song
- Astbury
Centre for Structural Molecular Biology and School of Chemistry, University of Leeds, Leeds, LS2 9JT,
United Kingdom
| | - Sara Stead
- The Food and Environmental
Research Agency, Sand Hutton, Yorkshire, YO41 1LZ, United
Kingdom
| | - Jonathan Tarbin
- The Food and Environmental
Research Agency, Sand Hutton, Yorkshire, YO41 1LZ, United
Kingdom
| | - Matthew Sharman
- The Food and Environmental
Research Agency, Sand Hutton, Yorkshire, YO41 1LZ, United
Kingdom
| | - Dejian Zhou
- Astbury
Centre for Structural Molecular Biology and School of Chemistry, University of Leeds, Leeds, LS2 9JT,
United Kingdom
| | - Peter G. Stockley
- Astbury
Centre for Structural Molecular Biology and School of Chemistry, University of Leeds, Leeds, LS2 9JT,
United Kingdom
| |
Collapse
|
22
|
Mathew A, Aravind A, Brahatheeswaran D, Fukuda T, Nagaoka Y, Hasumura T, Iwai S, Morimoto H, Yoshida Y, Maekawa T, Venugopal K, Kumar DS. Amyloid-Binding Aptamer Conjugated Curcumin–PLGA Nanoparticle for Potential Use in Alzheimer’s Disease. BIONANOSCIENCE 2012. [DOI: 10.1007/s12668-012-0040-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
23
|
Bunka DHJ, Lane SW, Lane CL, Dykeman EC, Ford RJ, Barker AM, Twarock R, Phillips SEV, Stockley PG. Degenerate RNA packaging signals in the genome of Satellite Tobacco Necrosis Virus: implications for the assembly of a T=1 capsid. J Mol Biol 2011; 413:51-65. [PMID: 21839093 DOI: 10.1016/j.jmb.2011.07.063] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 07/20/2011] [Accepted: 07/26/2011] [Indexed: 11/26/2022]
Abstract
Using a recombinant, T=1 Satellite Tobacco Necrosis Virus (STNV)-like particle expressed in Escherichia coli, we have established conditions for in vitro disassembly and reassembly of the viral capsid. In vivo assembly is dependent on the presence of the coat protein (CP) N-terminal region, and in vitro assembly requires RNA. Using immobilised CP monomers under reassembly conditions with "free" CP subunits, we have prepared a range of partially assembled CP species for RNA aptamer selection. SELEX directed against the RNA-binding face of the STNV CP resulted in the isolation of several clones, one of which (B3) matches the STNV-1 genome in 16 out of 25 nucleotide positions, including across a statistically significant 10/10 stretch. This 10-base region folds into a stem-loop displaying the motif ACAA and has been shown to bind to STNV CP. Analysis of the other aptamer sequences reveals that the majority can be folded into stem-loops displaying versions of this motif. Using a sequence and secondary structure search motif to analyse the genomic sequence of STNV-1, we identified 30 stem-loops displaying the sequence motif AxxA. The implication is that there are many stem-loops in the genome carrying essential recognition features for binding STNV CP. Secondary structure predictions of the genomic RNA using Mfold showed that only 8 out of 30 of these stem-loops would be formed in the lowest-energy structure. These results are consistent with an assembly mechanism based on kinetically driven folding of the RNA.
Collapse
Affiliation(s)
- David H J Bunka
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Yam AY, Wang X, Gao CM, Connolly MD, Zuckermann RN, Bleu T, Hall J, Fedynyshyn JP, Allauzen S, Peretz D, Salisbury CM. A Universal Method for Detection of Amyloidogenic Misfolded Proteins. Biochemistry 2011; 50:4322-9. [DOI: 10.1021/bi200215j] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Alice Y. Yam
- Novartis Vaccines and Diagnostics, Inc., 4560 Horton St, Emeryville, California 94608, United States
| | - Xuemei Wang
- Novartis Vaccines and Diagnostics, Inc., 4560 Horton St, Emeryville, California 94608, United States
| | - Carol Man Gao
- Novartis Vaccines and Diagnostics, Inc., 4560 Horton St, Emeryville, California 94608, United States
| | - Michael D. Connolly
- Novartis Vaccines and Diagnostics, Inc., 4560 Horton St, Emeryville, California 94608, United States
| | - Ronald N. Zuckermann
- Novartis Vaccines and Diagnostics, Inc., 4560 Horton St, Emeryville, California 94608, United States
| | - Thieu Bleu
- Novartis Vaccines and Diagnostics, Inc., 4560 Horton St, Emeryville, California 94608, United States
| | - John Hall
- Novartis Vaccines and Diagnostics, Inc., 4560 Horton St, Emeryville, California 94608, United States
| | - Joseph P. Fedynyshyn
- Novartis Vaccines and Diagnostics, Inc., 4560 Horton St, Emeryville, California 94608, United States
| | - Sophie Allauzen
- Novartis Vaccines and Diagnostics, Inc., 4560 Horton St, Emeryville, California 94608, United States
| | - David Peretz
- Novartis Vaccines and Diagnostics, Inc., 4560 Horton St, Emeryville, California 94608, United States
| | - Cleo M. Salisbury
- Novartis Vaccines and Diagnostics, Inc., 4560 Horton St, Emeryville, California 94608, United States
| |
Collapse
|
25
|
Moore MD, Bunka DHJ, Forzan M, Spear PG, Stockley PG, McGowan I, James W. Generation of neutralizing aptamers against herpes simplex virus type 2: potential components of multivalent microbicides. J Gen Virol 2011; 92:1493-1499. [PMID: 21471320 DOI: 10.1099/vir.0.030601-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The prophylactic use of topical antiviral agents has recently been validated by the reduction in human immunodeficiency virus (HIV) type 1 infection incidence seen using tonofovir-containing microbicides. In order to develop a wide-spectrum microbicide to prevent infection with a wide range of sexually transmitted viruses, we have previously reported the development of HIV-neutralizing aptamers and here report the isolation and characterization of aptamers that neutralize herpes simplex virus type 2 (HSV-2). These aptamers bind the envelope glycoprotein (gD), are potent (IC(50) of 20-50 nM) and are able to block infection pathways dependent on both major entry receptors, Nectin1 and HVEM. Structural analysis and mutagenesis of these aptamers reveal a core specificity element that could provide the basis for pharmaceutical development. As HSV-2 is a major risk factor for the acquisition of HIV-1, a microbicide capable of preventing HSV-2 infection would not only reduce the morbidity associated with HSV-2, but also that derived from HIV-1.
Collapse
Affiliation(s)
- M D Moore
- Sir William Dunn School of Pathology, South Parks Road, Oxford OX1 3RE, UK
| | - D H J Bunka
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - M Forzan
- Sir William Dunn School of Pathology, South Parks Road, Oxford OX1 3RE, UK
| | - P G Spear
- Magee-Womens Research Institute, 204 Craft Ave, Room B505, Pittsburgh, PA 15213, USA
| | - P G Stockley
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - I McGowan
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - W James
- Sir William Dunn School of Pathology, South Parks Road, Oxford OX1 3RE, UK
| |
Collapse
|
26
|
Abstract
Like DNA, RNA can be designed and manipulated to produce a variety of different nanostructures. Moreover, RNA has a flexible structure and possesses catalytic functions that are similar to proteins. Although RNA nanotechnology resembles DNA nanotechnology in many ways, the base-pairing rules for constructing nanoparticles are different. The large variety of loops and motifs found in RNA allows it to fold into numerous complicated structures, and this diversity provides a platform for identifying viable building blocks for various applications. The thermal stability of RNA also allows the production of multivalent nanostructures with defined stoichiometry. Here we review techniques for constructing RNA nanoparticles from different building blocks, we describe the distinct attributes of RNA inside the body, and discuss potential applications of RNA nanostructures in medicine. We also offer some perspectives on the yield and cost of RNA production.
Collapse
Affiliation(s)
- Peixuan Guo
- Nanobiomedical Center, College of Engineering and College of Medicine, University of Cincinnati, Cincinnati, Ohio 45221, USA.
| |
Collapse
|
27
|
Rahimi F, Bitan G. Selection of aptamers for amyloid beta-protein, the causative agent of Alzheimer's disease. J Vis Exp 2010:1955. [PMID: 20616783 DOI: 10.3791/1955] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive, age-dependent, neurodegenerative disorder with an insidious course that renders its presymptomatic diagnosis difficult(1). Definite AD diagnosis is achieved only postmortem, thus establishing presymptomatic, early diagnosis of AD is crucial for developing and administering effective therapies(2,3). Amyloid beta-protein (Abeta) is central to AD pathogenesis. Soluble, oligomeric Abeta assemblies are believed to affect neurotoxicity underlying synaptic dysfunction and neuron loss in AD(4,5). Various forms of soluble Abeta assemblies have been described, however, their interrelationships and relevance to AD etiology and pathogenesis are complex and not well understood(6). Specific molecular recognition tools may unravel the relationships amongst Abeta assemblies and facilitate detection and characterization of these assemblies early in the disease course before symptoms emerge. Molecular recognition commonly relies on antibodies. However, an alternative class of molecular recognition tools, aptamers, offers important advantages relative to antibodies(7,8). Aptamers are oligonucleotides generated by in-vitro selection: systematic evolution of ligands by exponential enrichment (SELEX)(9,10). SELEX is an iterative process that, similar to Darwinian evolution, allows selection, amplification, enrichment, and perpetuation of a property, e.g., avid, specific, ligand binding (aptamers) or catalytic activity (ribozymes and DNAzymes). Despite emergence of aptamers as tools in modern biotechnology and medicine(11), they have been underutilized in the amyloid field. Few RNA or ssDNA aptamers have been selected against various forms of prion proteins (PrP)(12-16). An RNA aptamer generated against recombinant bovine PrP was shown to recognize bovine PrP-beta(17), a soluble, oligomeric, beta-sheet-rich conformational variant of full-length PrP that forms amyloid fibrils(18). Aptamers generated using monomeric and several forms of fibrillar beta(2;)-microglobulin (beta(2;)m) were found to bind fibrils of certain other amyloidogenic proteins besides beta(2;)m fibrils(19). Ylera et al. described RNA aptamers selected against immobilized monomeric Abeta40(20). Unexpectedly, these aptamers bound fibrillar Abeta40. Altogether, these data raise several important questions. Why did aptamers selected against monomeric proteins recognize their polymeric forms? Could aptamers against monomeric and/or oligomeric forms of amyloidogenic proteins be obtained? To address these questions, we attempted to select aptamers for covalently-stabilized oligomeric Abeta40(21) generated using photo-induced cross-linking of unmodified proteins (PICUP)(22,23). Similar to previous findings(17,19,20), these aptamers reacted with fibrils of Abeta and several other amyloidogenic proteins likely recognizing a potentially common amyloid structural aptatope(21). Here, we present the SELEX methodology used in production of these aptamers(21).
Collapse
Affiliation(s)
- Farid Rahimi
- Department of Neurology, David Geffen School of Medicine
| | | |
Collapse
|
28
|
Thiel KW, Giangrande PH. Therapeutic applications of DNA and RNA aptamers. Oligonucleotides 2009; 19:209-22. [PMID: 19653880 DOI: 10.1089/oli.2009.0199] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Structured single-stranded nucleic acids, or aptamers, bind target molecules with high affinity and specificity, which translates into unique therapeutic possibilities. Currently, aptamers can be identified to most proteins, including blood-clotting factors, cell-surface receptors, and transcription factors. Chemical modifications to the oligonucleotides enhance their pharmacokinetics and pharmacodynamics, thus extending their therapeutic potential. Several aptamers have entered the clinical pipeline for applications and diseases such as macular degeneration, coronary artery bypass graft surgery, and various types of cancer. Furthermore, the functional repertoire of aptamers has expanded with the descriptions of multivalent agonistic aptamers and aptamers-siRNA chimeras. This review highlights those aptamers and aptamer-based approaches with particular likelihood of achieving therapeutic application.
Collapse
Affiliation(s)
- Kristina W Thiel
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | | |
Collapse
|
29
|
Rahimi F, Murakami K, Summers JL, Chen CHB, Bitan G. RNA aptamers generated against oligomeric Abeta40 recognize common amyloid aptatopes with low specificity but high sensitivity. PLoS One 2009; 4:e7694. [PMID: 19901993 PMCID: PMC2770325 DOI: 10.1371/journal.pone.0007694] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Accepted: 09/30/2009] [Indexed: 12/02/2022] Open
Abstract
Aptamers are useful molecular recognition tools in research, diagnostics, and therapy. Despite promising results in other fields, aptamer use has remained scarce in amyloid research, including Alzheimer's disease (AD). AD is a progressive neurodegenerative disease believed to be caused by neurotoxic amyloid β-protein (Aβ) oligomers. Aβ oligomers therefore are an attractive target for development of diagnostic and therapeutic reagents. We used covalently-stabilized oligomers of the 40-residue form of Aβ (Aβ40) for aptamer selection. Despite gradually increasing the stringency of selection conditions, the selected aptamers did not recognize Aβ40 oligomers but reacted with fibrils of Aβ40, Aβ42, and several other amyloidogenic proteins. Aptamer reactivity with amyloid fibrils showed some degree of protein-sequence dependency. Significant fibril binding also was found for the naïve library and could not be eliminated by counter-selection using Aβ40 fibrils, suggesting that aptamer binding to amyloid fibrils was RNA-sequence-independent. Aptamer binding depended on fibrillogenesis and showed a lag phase. Interestingly, aptamers detected fibril formation with ≥15-fold higher sensitivity than thioflavin T (ThT), revealing substantial β-sheet and fibril formation undetected by ThT. The data suggest that under physiologic conditions, aptamers for oligomeric forms of amyloidogenic proteins cannot be selected due to high, non-specific affinity of oligonucleotides for amyloid fibrils. Nevertheless, the high sensitivity, whereby aptamers detect β-sheet formation, suggests that they can serve as superior amyloid recognition tools.
Collapse
Affiliation(s)
- Farid Rahimi
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Kazuma Murakami
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Jamie L. Summers
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Chi-Hong B. Chen
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, California, United States of America
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, California, United States of America
| | - Gal Bitan
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- Brain Research Institute, University of California Los Angeles, Los Angeles, California, United States of America
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
30
|
Barton JL, Bunka DHJ, Knowling SE, Lefevre P, Warren AJ, Bonifer C, Stockley PG. Characterization of RNA aptamers that disrupt the RUNX1-CBFbeta/DNA complex. Nucleic Acids Res 2009; 37:6818-30. [PMID: 19740763 PMCID: PMC2777437 DOI: 10.1093/nar/gkp728] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The transcription factor RUNX1 (AML1) is an important regulator of haematopoiesis, and an important fusion partner in leukaemic translocations. High-affinity DNA binding by RUNX1 requires the interaction of the RUNX1 Runt-Homology-Domain (RHD) with the core-binding factor β protein (CBFβ). To generate novel reagents for in vitro and in vivo studies of RUNX1 function, we have selected high-affinity RNA aptamers against a recombinant RHD–CBFβ complex. Selection yielded two sequence families, each dominated by a single consensus sequence. Aptamers from each family disrupt DNA binding by the RUNX1 protein in vitro and compete with sequence-specific dsDNA binding. Minimal, high-affinity (∼100–160 nM) active aptamer fragments 28 and 30 nts in length, consisting of simple short stem-loop structures, were then identified. These bind to the RHD subunit and disrupt its interaction with CBFβ, which is consistent with reduced DNA affinity in the presence of aptamer. These aptamers represent new reagents that target a novel surface on the RHD required to stabilize the recombinant RHD–CBFβ complex and thus will further aid exploring the functions of this key transcription factor.
Collapse
Affiliation(s)
- Jenny L Barton
- Section of Experimental Haematology, Leeds Institute of Molecular Medicine, St James's University Hospital, Leeds LS9 7TF, UK
| | | | | | | | | | | | | |
Collapse
|
31
|
Takahashi T, Tada K, Mihara H. RNA aptamers selected against amyloid beta-peptide (Abeta) inhibit the aggregation of Abeta. MOLECULAR BIOSYSTEMS 2009; 5:986-91. [PMID: 19668864 DOI: 10.1039/b903391b] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aggregation of amyloid beta-peptide (Abeta) is closely related to the pathogenesis of Alzheimer's disease (AD). Much effort has been devoted to the construction of molecules that suppress and neutralize the toxicity of Abeta. Using a systematic evolution of ligands using the exponential enrichment (SELEX) procedure, we have constructed RNA aptamers that bind to Abeta1-40 and inhibit aggregation. To obtain the RNA aptamers, we applied an oligomer model of Abeta as a selection target using Abeta1-40 conjugated with a colloidal gold nanoparticle (Abeta-AuNP). Although the selected RNA sequences did not converge, two RNA aptamers (N2 and E2) bound more tightly to Abeta-AuNP than the other aptamers. The dissociation constants (K(d)) of and , fluorescent-labeled RNAs, to monomeric Abeta1-40 peptide were estimated as K(d) = 21.6 and 10.9 microM, respectively. ELISA revealed that these aptamers can inhibit Abeta aggregation efficiently. Transmission electron micrographs indicated that and aptamers can stop the fibrillization of Abeta1-40. The selected RNA aptamers may have potential as therapeutic agents for AD pathogenesis.
Collapse
Affiliation(s)
- Tsuyoshi Takahashi
- Department of Bioengineering, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259-B40, Nagatsuta, Yokohama 226-8501, Japan.
| | | | | |
Collapse
|
32
|
Abstract
beta(2)-microglobulin (beta(2)m) is capable of forming amyloid in osteoarticular structures in kidney failure patients that undergo chronic hemodialysis treatment. Although sophisticated analytical methods have yielded comprehensive data about the conformation of the native protein both as a monomer and as the light chain of the type I major histocompatibility complex, the cause and mechanisms leading to the transformation of beta(2)m into amyloid deposits in patients with dialysis-related amyloidosis are unsettled. The impact on conformational stability of various truncations, cleavages, amino acid substitutions, and divalent cations, especially Cu(2+), however, are highly relevant for understanding beta(2)m unfolding pathways leading to amyloid formation. This review describes the current knowledge about such conformationally destabilizing and amyloidogenic factors and links these to the structure and function of beta(2)m in normal physiology and pathology. Tables listing modifications of beta(2)m found in amyloid from patients and a systematic overview of laboratory conditions conducive to beta(2)m-fibrillogenesis are also included.
Collapse
|
33
|
Rich RL, Myszka DG. Survey of the year 2007 commercial optical biosensor literature. J Mol Recognit 2008; 21:355-400. [DOI: 10.1002/jmr.928] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|