1
|
Salas A, Cabrera JJ, Jiménez-Leiva A, Mesa S, Bedmar EJ, Richardson DJ, Gates AJ, Delgado MJ. Bacterial nitric oxide metabolism: Recent insights in rhizobia. Adv Microb Physiol 2021; 78:259-315. [PMID: 34147187 DOI: 10.1016/bs.ampbs.2021.05.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nitric oxide (NO) is a reactive gaseous molecule that has several functions in biological systems depending on its concentration. At low concentrations, NO acts as a signaling molecule, while at high concentrations, it becomes very toxic due to its ability to react with multiple cellular targets. Soil bacteria, commonly known as rhizobia, have the capacity to establish a N2-fixing symbiosis with legumes inducing the formation of nodules in their roots. Several reports have shown NO production in the nodules where this gas acts either as a signaling molecule which regulates gene expression, or as a potent inhibitor of nitrogenase and other plant and bacteria enzymes. A better understanding of the sinks and sources of NO in rhizobia is essential to protect symbiotic nitrogen fixation from nitrosative stress. In nodules, both the plant and the microsymbiont contribute to the production of NO. From the bacterial perspective, the main source of NO reported in rhizobia is the denitrification pathway that varies significantly depending on the species. In addition to denitrification, nitrate assimilation is emerging as a new source of NO in rhizobia. To control NO accumulation in the nodules, in addition to plant haemoglobins, bacteroids also contribute to NO detoxification through the expression of a NorBC-type nitric oxide reductase as well as rhizobial haemoglobins. In the present review, updated knowledge about the NO metabolism in legume-associated endosymbiotic bacteria is summarized.
Collapse
Affiliation(s)
- Ana Salas
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Juan J Cabrera
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain; School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Andrea Jiménez-Leiva
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Socorro Mesa
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Eulogio J Bedmar
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - David J Richardson
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Andrew J Gates
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - María J Delgado
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain.
| |
Collapse
|
2
|
Pham KN, Lewis-Ballester A, Yeh SR. Structural Basis of Inhibitor Selectivity in Human Indoleamine 2,3-Dioxygenase 1 and Tryptophan Dioxygenase. J Am Chem Soc 2019; 141:18771-18779. [PMID: 31682426 DOI: 10.1021/jacs.9b08871] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Indoleamine 2,3-dioxygenase 1 (hIDO1) and tryptophan dioxygenase (hTDO) are two of the only three heme-based dioxygenases in humans. They have recently been identified as key cancer immunotherapeutic drug targets. While structures of hIDO1 in complex with inhibitors have been documented, so far there are no structures of hTDO-inhibitor complexes available. Here we use PF-06840003 (IPD), a hIDO1-selective inhibitor in clinical trials, as a structural probe to elucidate inhibitor-selectivity in hIDO1 versus hTDO. Spectroscopic studies show that IPD exhibits 400-fold higher inhibition activity toward hIDO1 with respect to hTDO. Crystallographic structures reveal that the binding pocket of IPD in the active site in hIDO1 is much more flexible as compared to that in hTDO, which offers a molecular explanation for the superior inhibition activity of IPD in hIDO1 with respect to hTDO. In addition to the IPD bound in the active site, a second IPD molecule was identified in an inhibitory site on the proximal side of the heme in hIDO1 and in an exosite that is ∼40 Å away from the active site in hTDO. Taken together the data provide new insights into structure-based design of mono and dual inhibitors targeting hIDO1 and/or hTDO.
Collapse
Affiliation(s)
- Khoa N Pham
- Department of Physiology and Biophysics , Albert Einstein College of Medicine , The Bronx , New York 10461 , United States
| | - Ariel Lewis-Ballester
- Department of Physiology and Biophysics , Albert Einstein College of Medicine , The Bronx , New York 10461 , United States
| | - Syun-Ru Yeh
- Department of Physiology and Biophysics , Albert Einstein College of Medicine , The Bronx , New York 10461 , United States
| |
Collapse
|
3
|
Geeraerts Z, Celis AI, Mayfield JA, Lorenz M, Rodgers KR, DuBois JL, Lukat-Rodgers GS. Distinguishing Active Site Characteristics of Chlorite Dismutases with Their Cyanide Complexes. Biochemistry 2018; 57:1501-1516. [PMID: 29406727 PMCID: PMC5849076 DOI: 10.1021/acs.biochem.7b01278] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
O2-evolving chlorite dismutases (Clds) efficiently convert chlorite (ClO2-) to O2 and Cl-. Dechloromonas aromatica Cld ( DaCld) is a highly active chlorite-decomposing homopentameric enzyme, typical of Clds found in perchlorate- and chlorate-respiring bacteria. The Gram-negative, human pathogen Klebsiella pneumoniae contains a homodimeric Cld ( KpCld) that also decomposes ClO2-, albeit with an activity 10-fold lower and a turnover number lower than those of DaCld. The interactions between the distal pocket and heme ligand of the DaCld and KpCld active sites have been probed via kinetic, thermodynamic, and spectroscopic behaviors of their cyanide complexes for insight into active site characteristics that are deterministic for chlorite decomposition. At 4.7 × 10-9 M, the KD for the KpCld-CN- complex is 2 orders of magnitude smaller than that of DaCld-CN- and indicates an affinity for CN- that is greater than that of most heme proteins. The difference in CN- affinity between Kp- and DaClds is predominantly due to differences in koff. The kinetics of binding of cyanide to DaCld, DaCld(R183Q), and KpCld between pH 4 and 8.5 corroborate the importance of distal Arg183 and a p Ka of ∼7 in stabilizing complexes of anionic ligands, including the substrate. The Fe-C stretching and FeCN bending modes of the DaCld-CN- (νFe-C, 441 cm-1; δFeCN, 396 cm-1) and KpCld-CN- (νFe-C, 441 cm-1; δFeCN, 356 cm-1) complexes reveal differences in their FeCN angle, which suggest different distal pocket interactions with their bound cyanide. Conformational differences in their catalytic sites are also reported by the single ferrous KpCld carbonyl complex, which is in contrast to the two conformers observed for DaCld-CO.
Collapse
Affiliation(s)
- Zachary Geeraerts
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, USA
| | - Arianna I. Celis
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
| | - Jeffery A. Mayfield
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Megan Lorenz
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, USA
| | - Kenton R. Rodgers
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, USA
| | - Jennifer L. DuBois
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
| | - Gudrun S. Lukat-Rodgers
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, USA
| |
Collapse
|
4
|
Gell DA. Structure and function of haemoglobins. Blood Cells Mol Dis 2017; 70:13-42. [PMID: 29126700 DOI: 10.1016/j.bcmd.2017.10.006] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 10/29/2017] [Accepted: 10/30/2017] [Indexed: 12/18/2022]
Abstract
Haemoglobin (Hb) is widely known as the iron-containing protein in blood that is essential for O2 transport in mammals. Less widely recognised is that erythrocyte Hb belongs to a large family of Hb proteins with members distributed across all three domains of life-bacteria, archaea and eukaryotes. This review, aimed chiefly at researchers new to the field, attempts a broad overview of the diversity, and common features, in Hb structure and function. Topics include structural and functional classification of Hbs; principles of O2 binding affinity and selectivity between O2/NO/CO and other small ligands; hexacoordinate (containing bis-imidazole coordinated haem) Hbs; bacterial truncated Hbs; flavohaemoglobins; enzymatic reactions of Hbs with bioactive gases, particularly NO, and protection from nitrosative stress; and, sensor Hbs. A final section sketches the evolution of work on the structural basis for allosteric O2 binding by mammalian RBC Hb, including the development of newer kinetic models. Where possible, reference to historical works is included, in order to provide context for current advances in Hb research.
Collapse
Affiliation(s)
- David A Gell
- School of Medicine, University of Tasmania, TAS 7000, Australia.
| |
Collapse
|
5
|
Peroxidase activity and involvement in the oxidative stress response of roseobacter denitrificans truncated hemoglobin. PLoS One 2015; 10:e0117768. [PMID: 25658318 PMCID: PMC4319818 DOI: 10.1371/journal.pone.0117768] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 01/01/2015] [Indexed: 11/19/2022] Open
Abstract
Roseobacter denitrificans is a member of the widespread marine Roseobacter genus. We report the first characterization of a truncated hemoglobin from R. denitrificans (Rd. trHb) that was purified in the heme-bound form from heterologous expression of the protein in Escherichia coli. Rd. trHb exhibits predominantly alpha-helical secondary structure and absorbs light at 412, 538 and 572 nm. The phylogenetic classification suggests that Rd. trHb falls into group II trHbs, whereas sequence alignments indicate that it shares certain important heme pocket residues with group I trHbs in addition to those of group II trHbs. The resonance Raman spectra indicate that the isolated Rd. trHb contains a ferric heme that is mostly 6-coordinate low-spin and that the heme of the ferrous form displays a mixture of 5- and 6-coordinate states. Two Fe-His stretching modes were detected, notably one at 248 cm-1, which has been reported in peroxidases and some flavohemoglobins that contain an Fe-His-Asp (or Glu) catalytic triad, but was never reported before in a trHb. We show that Rd. trHb exhibits a significant peroxidase activity with a (kcat/Km) value three orders of magnitude higher than that of bovine Hb and only one order lower than that of horseradish peroxidase. This enzymatic activity is pH-dependent with a pKa value ~6.8. Homology modeling suggests that residues known to be important for interactions with heme-bound ligands in group II trHbs from Mycobacterium tuberculosis and Bacillus subtilis are pointing toward to heme in Rd. trHb. Genomic organization and gene expression profiles imply possible functions for detoxification of reactive oxygen and nitrogen species in vivo. Altogether, Rd. trHb exhibits some distinctive features and appears equipped to help the bacterium to cope with reactive oxygen/nitrogen species and/or to operate redox biochemistry.
Collapse
|
6
|
Nitric oxide reactivities of the two globins of the foodborne pathogen Campylobacter jejuni: roles in protection from nitrosative stress and analysis of potential reductants. Nitric Oxide 2013; 34:65-75. [PMID: 23764490 DOI: 10.1016/j.niox.2013.06.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 05/30/2013] [Accepted: 06/03/2013] [Indexed: 12/29/2022]
Abstract
BACKGROUND During infection and pathogenesis, Campylobacter, the leading cause of gastroenteritis, encounters NO and reactive nitrogen species (RNS) derived from the host. To combat these species, Campylobacter jejuni expresses two haemoglobins: the single domain haemoglobin (Cgb) detoxifies NO but the role of the truncated globin (Ctb) is unclear. Confirmation of Cgb activity and more extensive exploration of Ctb function(s) in vivo are restricted due to difficulties in expressing proteins in Campylobacter and our lack of understanding of how the globin haems are re-reduced after ligand reactions. METHODS The cgb and ctb genes were cloned under the control of arabinose-inducible promoters and the globins expressed in an Escherichia coli mutant lacking the main NO detoxification mechanisms (Hmp and the Nor system comprising the transcription regulator NorR, the flavorubredoxin and its reductase (NorVW)); cellular responses under oxidative and nitrosative stress conditions were assessed. Spectroscopic changes of the Cgb and Ctb haems in soluble fractions after oxidation by NO were evaluated. Construction of E. coli nor mutants and a ubiquinone-defective strain allowed the exploration of the flavorubredoxin reductase and the aerobic respiratory chain as candidates for Cgb electron donors in E. coli mutants. RESULTS Cgb, but not Ctb, complements the NO- and RNS-sensitive phenotype of an E. coli hmp mutant in aerobic conditions; however, Cgb fails to protect an hmp norR mutant in the absence of oxygen. Reduction of Cgb and Ctb in E. coli and C. jejuni soluble extracts and turnover after NO oxidation is demonstrated. Finally, we report a minor role for NorW as a Cgb reductase partner in E. coli but no role for respiratory electron flux in globin redox cycling. CONCLUSIONS The NO detoxification capacity of Cgb is confirmed by heterologous expression in E. coli. The reducibility of Cgb and Ctb in E. coli and C. jejuni extracts and the lack of dependence of reduction upon flavorubredoxin reductase and the respiratory chain in E. coli argue in favor of a non-specific reductase system. GENERAL SIGNIFICANCE We present the most persuasive evidence to date that Cgb, but not Ctb, confers tolerance to NO and RNS by reaction with NO. Since certain hypotheses for the mechanism of haem re-reduction in E. coli following the reaction with NO are not proven, the mechanisms of reduction in C. jejuni now require challenging experimental evaluation.
Collapse
|
7
|
Nicoletti FP, Droghetti E, Howes BD, Bustamante JP, Bonamore A, Sciamanna N, Estrin DA, Feis A, Boffi A, Smulevich G. H-bonding networks of the distal residues and water molecules in the active site of Thermobifida fusca hemoglobin. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:1901-9. [PMID: 23467007 DOI: 10.1016/j.bbapap.2013.02.033] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 02/19/2013] [Accepted: 02/22/2013] [Indexed: 10/27/2022]
Abstract
The ferric form of truncated hemoglobin II from Thermobifida fusca (Tf-trHb) and its triple mutant WG8F-YB10F-YCD1F at neutral and alkaline pH, and in the presence of CN(-) have been characterized by resonance Raman spectroscopy, electron paramagnetic resonance spectroscopy, and molecular dynamics simulations. Tf-trHb contains three polar residues in the distal site, namely TrpG8, TyrCD1 and TyrB10. Whereas TrpG8 can act as a potential hydrogen-bond donor, the tyrosines can act as donors or acceptors. Ligand binding in heme-containing proteins is determined by a number of factors, including the nature and conformation of the distal residues and their capability to stabilize the heme-bound ligand via hydrogen-bonding and electrostatic interactions. Since both the RR Fe-OH(-) and Fe-CN(-) frequencies are very sensitive to the distal environment, detailed information on structural variations has been obtained. The hydroxyl ligand binds only the WT protein giving rise to two different conformers. In form 1 the anion is stabilized by H-bonds with TrpG8, TyrCD1 and a water molecule, in turn H-bonded to TyrB10. In form 2, H-bonding with TyrCD1 is mediated by a water molecule. Unlike the OH(-) ligand, CN(-) binds both WT and the triple mutant giving rise to two forms with similar spectroscopic characteristics. The overall results clearly indicate that H-bonding interactions both with distal residues and water molecules are important structural determinants in the active site of Tf-trHb. This article is part of a Special Issue entitled: Oxygen Binding and Sensing Proteins.
Collapse
|
8
|
Laver JR, McLean S, Bowman LAH, Harrison LJ, Read RC, Poole RK. Nitrosothiols in bacterial pathogens and pathogenesis. Antioxid Redox Signal 2013; 18:309-22. [PMID: 22768799 DOI: 10.1089/ars.2012.4767] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
SIGNIFICANCE The formation and degradation of S-nitrosothiols (SNOs) are important mechanisms of post-translational protein modification and appear to be ubiquitous in biology. These processes play well-characterized roles in eukaryotic cells, including a variety of pathologies and in relation to chronic conditions. We know little of the roles of these processes in pathogenic and other bacteria. RECENT ADVANCES It is clear, mostly from growth and transcriptional studies, that bacteria sense and respond to exogenous SNOs. These responses are phenotypically and mechanistically distinct from the responses of bacteria to nitric oxide (NO) and NO-releasing agents, as well as peroxynitrite. Small SNOs, such as S-nitrosoglutathione (GSNO), are accumulated by bacteria with the result that intracellular S-nitrosoproteins (the 'S-nitrosoproteome') are detectable. Recently, conditions for endogenous SNO formation in enterobacteria have been described. CRITICAL ISSUES The propensity of intracellular proteins to form SNOs is presumably constrained by the same rules of selectivity that have been discovered in eukaryotic systems, but is also influenced by uniquely bacterial NO detoxification systems, exemplified by the flavohemoglobin Hmp in enterobacteria and NO reductase of meningococci. Furthermore, the bacterial expression of such proteins impacts upon the formation of SNOs in mammalian hosts. FUTURE DIRECTIONS The impairment during bacterial infections of specific SNO events in the mammalian host is of considerable interest in the context of proteins involved in innate immunity and intracellular signalling. In bacteria, numerous mechanisms of S-nitrosothiol degradation have been reported (e.g., GSNO reductase); others are thought to operate, based on consideration of their mammalian counterparts. The nitrosothiols of bacteria and particularly of pathogens warrant more intensive investigation.
Collapse
Affiliation(s)
- Jay R Laver
- Department of Infection and Immunity, The University of Sheffield, Sheffield, United Kingdom.
| | | | | | | | | | | |
Collapse
|
9
|
Abstract
Campylobacter jejuni is a zoonotic Gram-negative bacterial pathogen that is exposed to reactive nitrogen species, such as nitric oxide, from a variety of sources. To combat the toxic effects of this nitrosative stress, C. jejuni upregulates a small regulon under the control of the transcriptional activator NssR, which positively regulates the expression of a single-domain globin protein (Cgb) and a truncated globin protein (Ctb). Cgb has previously been shown to detoxify nitric oxide, but the role of Ctb remains contentious. As C. jejuni is amenable to genetic manipulation, and its globin proteins are easily expressed and purified, a combination of mutagenesis, complementation, transcriptomics, spectroscopic characterisation and structural analyses has been used to probe the regulation, function and structure of Cgb and Ctb. This ability to study Cgb and Ctb with such a multi-pronged approach is a valuable asset, especially since only a small fraction of known globin proteins have been functionally characterised.
Collapse
|
10
|
Bowman LAH, McLean S, Poole RK, Fukuto JM. The diversity of microbial responses to nitric oxide and agents of nitrosative stress close cousins but not identical twins. Adv Microb Physiol 2012; 59:135-219. [PMID: 22114842 DOI: 10.1016/b978-0-12-387661-4.00006-9] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Nitric oxide and related nitrogen species (reactive nitrogen species) now occupy a central position in contemporary medicine, physiology, biochemistry, and microbiology. In particular, NO plays important antimicrobial defenses in innate immunity but microbes have evolved intricate NO-sensing and defense mechanisms that are the subjects of a vast literature. Unfortunately, the burgeoning NO literature has not always been accompanied by an understanding of the intricacies and complexities of this radical and other reactive nitrogen species so that there exists confusion and vagueness about which one or more species exert the reported biological effects. The biological chemistry of NO and derived/related molecules is complex, due to multiple species that can be generated from NO in biological milieu and numerous possible reaction targets. Moreover, the fate and disposition of NO is always a function of its biological environment, which can vary significantly even within a single cell. In this review, we consider newer aspects of the literature but, most importantly, consider the underlying chemistry and draw attention to the distinctiveness of NO and its chemical cousins, nitrosonium (NO(+)), nitroxyl (NO(-), HNO), peroxynitrite (ONOO(-)), nitrite (NO(2)(-)), and nitrogen dioxide (NO(2)). All these species are reported to be generated in biological systems from initial formation of NO (from nitrite, NO synthases, or other sources) or its provision in biological experiments (typically from NO gas, S-nitrosothiols, or NO donor compounds). The major targets of NO and nitrosative damage (metal centers, thiols, and others) are reviewed and emphasis is given to newer "-omic" methods of unraveling the complex repercussions of NO and nitrogen oxide assaults. Microbial defense mechanisms, many of which are critical for pathogenicity, include the activities of hemoglobins that enzymically detoxify NO (to nitrate) and NO reductases and repair mechanisms (e.g., those that reverse S-nitrosothiol formation). Microbial resistance to these stresses is generally inducible and many diverse transcriptional regulators are involved-some that are secondary sensors (such as Fnr) and those that are "dedicated" (such as NorR, NsrR, NssR) in that their physiological function appears to be detecting primarily NO and then regulating expression of genes that encode enzymes with NO as a substrate. Although generally harmful, evidence is accumulating that NO may have beneficial effects, as in the case of the squid-Vibrio light-organ symbiosis, where NO serves as a signal, antioxidant, and specificity determinant. Progress in this area will require a thorough understanding not only of the biology but also of the underlying chemical principles.
Collapse
Affiliation(s)
- Lesley A H Bowman
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, UK
| | | | | | | |
Collapse
|
11
|
Shepherd M, Bernhardt PV, Poole RK. Globin-mediated nitric oxide detoxification in the foodborne pathogenic bacterium Campylobacter jejuni proceeds via a dioxygenase or denitrosylase mechanism. Nitric Oxide 2011; 25:229-33. [DOI: 10.1016/j.niox.2010.12.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Revised: 12/14/2010] [Accepted: 12/15/2010] [Indexed: 11/30/2022]
|
12
|
The NO-responsive hemoglobins of Campylobacter jejuni: Concerted responses of two globins to NO and evidence in vitro for globin regulation by the transcription factor NssR. Nitric Oxide 2011; 25:234-41. [DOI: 10.1016/j.niox.2010.12.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Revised: 12/23/2010] [Accepted: 12/29/2010] [Indexed: 01/10/2023]
|
13
|
Smith H, Mann BE, Motterlini R, Poole RK. The carbon monoxide-releasing molecule, corm-3 (ru(co)3cl(glycinate)), targets respiration and oxidases in campylobacter jejuni, generating hydrogen peroxide. IUBMB Life 2011; 63:363-71. [DOI: 10.1002/iub.476] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
14
|
Mañez PA, Lu C, Boechi L, Martí MA, Shepherd M, Wilson JL, Poole RK, Luque FJ, Yeh SR, Estrin DA. Role of the distal hydrogen-bonding network in regulating oxygen affinity in the truncated hemoglobin III from Campylobacter jejuni. Biochemistry 2011; 50:3946-56. [PMID: 21476539 PMCID: PMC4535342 DOI: 10.1021/bi101137n] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Oxygen affinity in heme-containing proteins is determined by a number of factors, such as the nature and conformation of the distal residues that stabilize the heme bound-oxygen via hydrogen-bonding interactions. The truncated hemoglobin III from Campylobacter jejuni (Ctb) contains three potential hydrogen-bond donors in the distal site: TyrB10, TrpG8, and HisE7. Previous studies suggested that Ctb exhibits an extremely slow oxygen dissociation rate due to an interlaced hydrogen-bonding network involving the three distal residues. Here we have studied the structural and kinetic properties of the G8(WF) mutant of Ctb and employed state-of-the-art computer simulation methods to investigate the properties of the O(2) adduct of the G8(WF) mutant, with respect to those of the wild-type protein and the previously studied E7(HL) and/or B10(YF) mutants. Our data indicate that the unique oxygen binding properties of Ctb are determined by the interplay of hydrogen-bonding interactions between the heme-bound ligand and the surrounding TyrB10, TrpG8, and HisE7 residues.
Collapse
Affiliation(s)
- Pau Arroyo Mañez
- Departamento de Química Inorgánica, Analítica, y Química Fisica, INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Ciudad Universitaria, Buenos Aires, Argentina
| | - Changyuan Lu
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Leonardo Boechi
- Departamento de Química Inorgánica, Analítica, y Química Fisica, INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Ciudad Universitaria, Buenos Aires, Argentina
| | - Marcelo A. Martí
- Departamento de Química Inorgánica, Analítica, y Química Fisica, INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Ciudad Universitaria, Buenos Aires, Argentina
| | - Mark Shepherd
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, United Kingdom
| | - Jayne Louise Wilson
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, United Kingdom
| | - Robert K. Poole
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, United Kingdom
| | - F. Javier Luque
- Department de Fisicoquimica and Institut de Biomedicina (IBUB), Facultat de Farmàcia, Universitat de Barcelona, Barcelona, Spain
| | - Syun-Ru Yeh
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Darío A. Estrin
- Departamento de Química Inorgánica, Analítica, y Química Fisica, INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Ciudad Universitaria, Buenos Aires, Argentina
| |
Collapse
|
15
|
Abstract
The critical role of the ferryl intermediate in catalyzing the oxygen chemistry of monooxygenases, oxidases, or peroxidases has been known for decades. In contrast, its involvement in heme-based dioxygenases, such as human indoleamine 2,3-dioxygenase (hIDO), was not recognized until recently. In this study, H(2)O(2) was used as a surrogate to generate the ferryl intermediate of hIDO. Spectroscopic data demonstrate that the ferryl species is capable of oxidizing azinobis(3-ethylbenzothiazoline-6-sulfonic acid) but not L-Trp. Kinetic studies reveal that the conversion of the ferric enzyme to the ferryl intermediate facilitates the L-Trp binding rate by >400-fold; conversely, L-Trp binding to the enzyme retards the peroxide reaction rate by ∼9-fold, because of the significant elevation of the entropic barrier. The unfavorable entropic factor for the peroxide reaction highlights the scenario that the structure of hIDO is not optimized for utilizing H(2)O(2) as a co-substrate for oxidizing L-Trp. Titration studies show that the ferryl intermediate possesses two substrate-binding sites with a K(d) of 0.3 and 440 μM and that the electronic properties of the ferryl moiety are sensitive to the occupancy of the two substrate-binding sites. The implications of the data are discussed in the context of the structural and functional relationships of the enzyme.
Collapse
Affiliation(s)
- Changyuan Lu
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | |
Collapse
|
16
|
Frey AD, Shepherd M, Jokipii-Lukkari S, Häggman H, Kallio PT. The single-domain globin of Vitreoscilla: augmentation of aerobic metabolism for biotechnological applications. Adv Microb Physiol 2011; 58:81-139. [PMID: 21722792 DOI: 10.1016/b978-0-12-381043-4.00003-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Extensive studies have revealed that large-scale, high-cell density bioreactor cultivations have significant impact on metabolic networks of oxygen-requiring production organisms. Oxygen transfer problems associated with fluid dynamics and inefficient mixing efficiencies result in oxygen gradients, which lead to reduced performance of the bioprocess, decreased product yields, and increased production costs. These problems can be partially alleviated by improving bioreactor configuration and setting, but significant improvements have been achieved by metabolic engineering methods, especially by heterologously expressing Vitreoscilla hemoglobin (VHb). Vast numbers of studies have been accumulating during the past 20 years showing the applicability of VHb to improve growth and product yields in a variety of industrially significant prokaryotic and eukaryotic hosts. The global view on the metabolism of globin-expressing Escherichia coli cells depicts increased energy generation, higher oxygen uptake rates, and a decrease in fermentative by-product excretion. Transcriptome and metabolic flux analysis clearly demonstrate the multidimensional influence of heterologous VHb on the expression of stationary phase-specific genes and on the regulation of cellular metabolic networks. The exact biochemical mechanisms by which VHb is able to improve the oxygen-limited growth remain poorly understood. The suggested mechanisms propose either the delivery of oxygen to the respiratory chain or the detoxification of reactive nitrogen species for the protection of cytochrome activity. The expression of VHb in E. coli bioreactor cultures is likely to assist bacterial growth through providing an increase in available intracellular oxygen, although to fully understand the exact role of VHb in vivo, further analysis will be required.
Collapse
|
17
|
Lu C, Lin Y, Yeh SR. Spectroscopic studies of ligand and substrate binding to human indoleamine 2,3-dioxygenase. Biochemistry 2010; 49:5028-34. [PMID: 20476772 DOI: 10.1021/bi1005078] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Human indoleamine 2,3-dioxygenase (hIDO) is an intracellular heme-containing enzyme, which catalyzes the initial and rate-determining step of l-tryptophan (l-Trp) metabolism via the kynurenine pathway in nonhepatic tissues. Steady-state kinetic data showed that hIDO exhibits substrate inhibition behavior, implying the existence of a second substrate binding site in the enzyme, although so far there is no direct evidence supporting it. The kinetic data also revealed that the K(m) of l-Trp (15 microM) is approximately 27-fold lower than the K(d) of l-Trp (0.4 mM) for the ligand-free ferrous enzyme, suggesting that O(2) binding proceeds l-Trp binding during the catalytic cycle. With cyanide as a structural probe, we have investigated the thermodynamic and kinetic parameters associated with ligand and substrate binding to hIDO. Equilibrium titration studies show that the cyanide adduct is capable of binding two l-Trp molecules, with K(d) values of 18 microM and 26 mM. The data offer the first direct evidence of the second substrate binding site in hIDO. Kinetic studies demonstrate that prebinding of l-Trp to the enzyme retards cyanide binding by approximately 13-fold, while prebinding of cyanide to the enzyme facilitates l-Trp binding by approximately 22-fold. The data support the view that during the active turnover of the enzyme it is kinetically more favored to bind O(2) prior to l-Trp.
Collapse
Affiliation(s)
- Changyuan Lu
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, USA
| | | | | |
Collapse
|
18
|
Shepherd M, Barynin V, Lu C, Bernhardt PV, Wu G, Yeh SR, Egawa T, Sedelnikova SE, Rice DW, Wilson JL, Poole RK. The single-domain globin from the pathogenic bacterium Campylobacter jejuni: novel D-helix conformation, proximal hydrogen bonding that influences ligand binding, and peroxidase-like redox properties. J Biol Chem 2010; 285:12747-54. [PMID: 20164176 PMCID: PMC2857070 DOI: 10.1074/jbc.m109.084509] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Revised: 01/29/2010] [Indexed: 11/06/2022] Open
Abstract
The food-borne pathogen Campylobacter jejuni possesses a single-domain globin (Cgb) whose role in detoxifying nitric oxide has been unequivocally demonstrated through genetic and molecular approaches. The x-ray structure of cyanide-bound Cgb has been solved to a resolution of 1.35 A. The overall fold is a classic three-on-three alpha-helical globin fold, similar to that of myoglobin and Vgb from Vitreoscilla stercoraria. However, the D region (defined according to the standard globin fold nomenclature) of Cgb adopts a highly ordered alpha-helical conformation unlike any previously characterized members of this globin family, and the GlnE7 residue has an unexpected role in modulating the interaction between the ligand and the TyrB10 residue. The proximal hydrogen bonding network in Cgb demonstrates that the heme cofactor is ligated by an imidazolate, a characteristic of peroxidase-like proteins. Mutation of either proximal hydrogen-bonding residue (GluH23 or TyrG5) results in the loss of the high frequency nu(Fe-His) stretching mode (251 cm(-1)), indicating that both residues are important for maintaining the anionic character of the proximal histidine ligand. Cyanide binding kinetics for these proximal mutants demonstrate for the first time that proximal hydrogen bonding in globins can modulate ligand binding kinetics at the distal site. A low redox midpoint for the ferrous/ferric couple (-134 mV versus normal hydrogen electrode at pH 7) is consistent with the peroxidase-like character of the Cgb active site. These data provide a new insight into the mechanism via which Campylobacter may survive host-derived nitrosative stress.
Collapse
Affiliation(s)
- Mark Shepherd
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Lu C, Zhao X, Lu Y, Rousseau DL, Yeh SR. Role of copper ion in regulating ligand binding in a myoglobin-based cytochrome C oxidase model. J Am Chem Soc 2010; 132:1598-605. [PMID: 20070118 DOI: 10.1021/ja907777f] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cytochrome c oxidase (CcO), the terminal enzyme in the mitochondrial respiratory chain, catalyzes the four-electron reduction of dioxygen to water in a binuclear center comprised of a high-spin heme (heme a(3)) and a copper atom (Cu(B)) coordinated by three histidine residues. As a minimum model for CcO, a mutant of sperm whale myoglobin, named Cu(B)Mb, has been engineered, in which a copper atom is held in the distal heme pocket by the native E7 histidine and two nonnative histidine residues. In this work, the role of the copper in regulating ligand binding in Cu(B)Mb was investigated. Resonance Raman studies show that the presence of copper in CO-bound Cu(B)Mb leads to a CcO-like distal heme pocket. Stopped-flow data show that, upon the initiation of the CO binding reaction, the ligand first binds to the Cu(+); it subsequently transfers from Cu(+) to Fe(2+) in an intramolecular process, similar to that reported for CcO. The high CO affinity toward Cu(+) and the slow intramolecular CO transfer rate between Cu(+) and Fe(2+) in the Cu(B)Mb/Cu(+) complex are analogous to those in Thermus thermophilus CcO (TtCcO) but distinct from those in bovine CcO (bCcO). Additional kinetic studies show that, upon photolysis of the NO-bound Cu(B)Mb/Cu(+) complex, the photolyzed ligand transiently binds to Cu(+) and subsequently rebinds to Fe(2+), accounting for the 100% geminate recombination yield, similar to that found in TtCcO. The data demonstrate that the Cu(B)Mb/Cu(+) complex reproduces essential structural and kinetic features of CcO and that the complex is more akin to TtCcO than to bCcO.
Collapse
Affiliation(s)
- Changyuan Lu
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | |
Collapse
|
20
|
Guallar V, Lu C, Borrelli K, Egawa T, Yeh SR. Ligand migration in the truncated hemoglobin-II from Mycobacterium tuberculosis: the role of G8 tryptophan. J Biol Chem 2008; 284:3106-3116. [PMID: 19019831 DOI: 10.1074/jbc.m806183200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Resonance Raman studies show that the heme-bound CO in trHbO, a truncated-II hemoglobin from Mycobacterium tuberculosis, is exposed to an environment with a positive electrostatic potential. The mutation of Trp(G8), an absolutely conserved residue in group II and III truncated hemoglobins, to Phe introduces two new Fe-CO conformers, both of which exhibit reduced electrostatic potentials. Computer simulations reveal that the structural perturbation is a result of the increased flexibility of the Tyr(CD1) and Leu(E11) side chains due to the reduction of the size of the G8 residue. Laser flash photolysis studies show that the G8 mutation induces 1) the presence of two new geminate recombination phases, one with a rate faster than the time resolution of our instrument and the other with a rate 13-fold slower than that of the wild type protein, and 2) the reduction of the total geminate recombination yield from 86 to 62% and the increase in the bimolecular recombination rate by a factor of 530. Computer simulations uncover that the photodissociated ligand migrates between three distal temporary docking sites before it subsequently rebinds to the heme iron or ultimately escapes into the solvent via a hydrophobic tunnel. The calculated energy profiles associated with the ligand migration processes are in good agreement with the experimental observations. The results highlight the importance of the Trp(G8) in regulating ligand migration in trHbO, underscoring its pivotal role in the structural and functional properties of the group II and III truncated hemoglobins.
Collapse
Affiliation(s)
- Victor Guallar
- Catalan Institution for Research and Advanced Studies, Life Science Program, Barcelona Supercomputing Center, Edificio Nexus II, Barcelona 08028, Spain.
| | - Changyuan Lu
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Kenneth Borrelli
- Catalan Institution for Research and Advanced Studies, Life Science Program, Barcelona Supercomputing Center, Edificio Nexus II, Barcelona 08028, Spain
| | - Tsuyoshi Egawa
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Syun-Ru Yeh
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, New York 10461.
| |
Collapse
|
21
|
Monk CE, Pearson BM, Mulholland F, Smith HK, Poole RK. Oxygen- and NssR-dependent globin expression and enhanced iron acquisition in the response of campylobacter to nitrosative stress. J Biol Chem 2008; 283:28413-25. [PMID: 18682395 DOI: 10.1074/jbc.m801016200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Pathogenic bacteria experience nitrosative stress from NO generated in the host and from nitrosating species such as S-nitrosoglutathione. The food-borne pathogen Campylobacter jejuni responds by activating gene expression from a small regulon under the control of the NO-sensitive regulator, NssR. Here, we describe the full extent of the S-nitrosoglutathione response using transcriptomic and proteomic analysis of batch- and chemostat-cultured C. jejuni. In addition to the NssR regulon, which includes two hemoglobins (Cgb and Ctb), we identify more than 90 other up-regulated genes, notably those encoding heat shock proteins and proteins involved in oxidative stress tolerance and iron metabolism/transport. Up-regulation of a subset of these genes, including cgb, is also elicited by NO-releasing compounds. Mutation of the iron-responsive regulator Fur results in insensitivity of growth to NO, suggesting that derepression of iron-regulated genes and augmentation of iron acquisition is a physiological response to nitrosative damage. We describe the effect of oxygen availability on nitrosative stress tolerance; cells cultured at higher rates of oxygen diffusion have elevated levels of hemoglobins, are more resistant to inhibition by NO of both growth and respiration, and consume NO more rapidly. The oxygen response is mediated by NssR. Thus, in addition to NO detoxification catalyzed by the hemoglobins Cgb and possibly Ctb, C. jejuni mounts an extensive stress response. We suggest that inhibition of respiration by NO may increase availability of oxygen for Cgb synthesis and function.
Collapse
Affiliation(s)
- Claire E Monk
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield S10 2TN, United Kingdom
| | | | | | | | | |
Collapse
|
22
|
Goodwin JA, Coor JL, Kavanagh DF, Sabbagh M, Howard JW, Adamec JR, Parmley DJ, Tarsis EM, Kurtikyan TS, Hovhannisyan AA, Desrochers PJ, Standard JM. Catalytic dioxygen activation by (nitro)(meso-tetrakis(2-n-methylpyridyl)porphyrinato)cobalt(III) cation derivatives electrostatically immobilized in nafion films: an experimental and DFT investigation. Inorg Chem 2008; 47:7852-62. [PMID: 18665590 DOI: 10.1021/ic8000762] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Complexes of the (nitro)( meso-tetrakis(2- N-methylpyridyl)porphyinato)cobalt(III) cation, [LCoTMpyP(2)(NO 2)] (4+), in which L = water or ethanol have been immobilized through ionic attraction within Nafion films (Naf). These immobilized six-coordinate species, [LCoTMPyP(2)(NO 2)/Naf], have been found to catalyze the oxidation of triphenylphosphine in ethanol solution by dioxygen, therefore retaining the capacity to activate dioxygen catalytically without an additional reducing agent as was previously observed in nonaqueous solution for the non-ionic (nitro)cobalt porphyrin analogs. Heating these immobilized six-coordinate species under vacuum conditions results in the formation of the five-coordinate nitro derivatives, [CoTMPyP(2)(NO 2)/Naf] at 85 degrees C and [CoTMPyP(2)/Naf] at 110 degrees C. The catalytic oxidation of gas-phase cyclohexene with O 2 is supported only by the resulting immobilized five-coordinate nitro complex as was previously seen with the corresponding solution-phase catalyst in dichloromethane solution. The simultaneous catalytic oxidation of triphenylphosphine and cyclohexene with O 2 in the presence of the Nafion-bound six-coordinate ethanol nitro complex is also observed; however, this process is not seen for the CoTPP derivative in dichloromethane solution. The oxidation reactions do not occur with unmodified Nafion film or with Nafion-supported [BrCo(III)TmpyP]/Naf or [Co(II)TmpyP]/Naf, indicating the necessity for the nitro/nitrosyl ligand in the oxidation mechanism. The existence of a second reactive intermediate is indicated because the two simultaneous oxidation reactions depend on two distinct oxygen atom-transfer steps having different reactivity. The absence of homogeneous cyclohexene oxidation by the six-coordinate (H 2O)CoTPP(NO 2) derivatives in the presence of Ph 3P and O 2 in dichloromethane solution indicates that the second reactive intermediate is lost by an unidentified route only in solution, implying that the immobilization of it in Nafion allows it to react with cyclohexene. Although direct observation of this species has not been achieved, a comparitive DFT study of likely intermediates in several catalytic oxidation mechanisms at the BP 6-31G* level supports the possibility that this intermediate is a peroxynitro species on the basis of relative thermodynamic accessibility. The alternate intermediates evaluated include the reduced cobalt(II) porphyrin, the dioxygen adduct cobalt(III)-O 2 (-), the oxidized cobalt(II) pi-cation radical, and the nitrito complex, cobalt(III)-ONO.
Collapse
Affiliation(s)
- John A Goodwin
- Department of Chemistry and Physics, Coastal Carolina University, P.O. Box 261954, Conway, South Carolina 29526-6054, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Kubo M, Gruia F, Benabbas A, Barabanschikov A, Montfort WR, Maes EM, Champion PM. Low-frequency mode activity of heme: femtosecond coherence spectroscopy of iron porphine halides and nitrophorin. J Am Chem Soc 2008; 130:9800-11. [PMID: 18597456 PMCID: PMC2765994 DOI: 10.1021/ja800916d] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The low-frequency mode activity of metalloporphyrins has been studied for iron porphine-halides (Fe(P)(X), X = Cl, Br) and nitrophorin 4 (NP4) using femtosecond coherence spectroscopy (FCS) in combination with polarized resonance Raman spectroscopy and density functional theory (DFT). It is confirmed that the mode symmetry selection rules for FCS are the same as for Raman scattering and that both Franck-Condon and Jahn-Teller mode activities are observed for Fe(P)(X) under Soret resonance conditions. The DFT-calculated low-frequency (20-400 cm (-1)) modes, and their frequency shifts upon halide substitution, are in good agreement with experimental Raman and coherence data, so that mode assignments can be made. The doming mode is located at approximately 80 cm (-1) for Fe(P)(Cl) and at approximately 60 cm (-1) for Fe(P)(Br). NP4 is also studied with coherence techniques, and the NO-bound species of ferric and ferrous NP4 display a mode at approximately 30-40 cm (-1) that is associated with transient heme doming motion following NO photolysis. The coherence spectra of three ferric derivatives of NP4 with different degrees of heme ruffling distortion are also investigated. We find a mode at approximately 60 cm (-1) whose relative intensity in the coherence spectra depends quadratically on the magnitude of the ruffling distortion. To quantitatively account for this correlation, a new "distortion-induced" Raman enhancement mechanism is presented. This mechanism is unique to low-frequency "soft modes" of the molecular framework that can be distorted by environmental forces. These results demonstrate the potential of FCS as a sensitive probe of dynamic and functionally important nonplanar heme vibrational excitations that are induced by the protein environmental forces or by the chemical reactions in the aqueous phase.
Collapse
Affiliation(s)
- Minoru Kubo
- Department of Physics and Center for Interdisciplinary Research on Complex Systems, Northeastern University, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Gruia F, Ionascu D, Kubo M, Ye X, Dawson J, Osborne RL, Sligar SG, Denisov I, Das A, Poulos TL, Terner J, Champion PM. Low-frequency dynamics of Caldariomyces fumago chloroperoxidase probed by femtosecond coherence spectroscopy. Biochemistry 2008; 47:5156-67. [PMID: 18407660 DOI: 10.1021/bi7025485] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ultrafast laser spectroscopy techniques are used to measure the low-frequency vibrational coherence spectra and nitric oxide rebinding kinetics of Caldariomyces fumago chloroperoxidase (CPO). Comparisons of the CPO coherence spectra with those of other heme species are made to gauge the protein-specific nature of the low-frequency spectra. The coherence spectrum of native CPO is dominated by a mode that appears near 32-33 cm(-1) at all excitation wavelengths, with a phase that is consistent with a ground-state Raman-excited vibrational wavepacket. On the basis of a normal coordinate structural decomposition (NSD) analysis, we assign this feature to the thiolate-bound heme doming mode. Spectral resolution of the probe pulse ("detuned" detection) reveals a mode at 349 cm(-1), which has been previously assigned using Raman spectroscopy to the Fe-S stretching mode of native CPO. The ferrous species displays a larger degree of spectral inhomogeneity than the ferric species, as reflected by multiple shoulders in the optical absorption spectra. The inhomogeneities are revealed by changes in the coherence spectra at different excitation wavelengths. The appearance of a mode close to 220 cm(-1) in the coherence spectrum of reduced CPO excited at 440 nm suggests that a subpopulation of five coordinated histidine-ligated hemes is present in the ferrous state at a physiologically relevant pH. A significant increase in the amplitude of the coherence signal is observed for the resonance with the 440 nm subpopulation. Kinetics measurements reveal that nitric oxide binding to ferric and ferrous CPO can be described as a single-exponential process, with rebinding time constants of 29.4 +/- 1 and 9.3 +/- 1 ps, respectively. This is very similar to results previously reported for nitric oxide binding to horseradish peroxidase.
Collapse
Affiliation(s)
- Flaviu Gruia
- Department of Physics and Center for Interdisciplinary Research on Complex Systems, Northeastern University, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Gruia F, Kubo M, Ye X, Ionascu D, Lu C, Poole RK, Yeh SR, Champion PM. Coherence spectroscopy investigations of the low-frequency vibrations of heme: effects of protein-specific perturbations. J Am Chem Soc 2008; 130:5231-44. [PMID: 18355013 DOI: 10.1021/ja7104027] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Femtosecond coherence spectroscopy is used to probe the low-frequency (20-200 cm(-1)) vibrational modes of heme proteins in solution. Horseradish peroxidase (HRP), myoglobin (Mb), and Campylobacter jejuni globin (Cgb) are compared and significant differences in the coherence spectra are revealed. It is concluded that hydrogen bonding and ligand charge do not strongly affect the low-frequency coherence spectra and that protein-specific deformations of the heme group lower its symmetry and control the relative spectral intensities. Such deformations potentially provide a means for proteins to tune heme reaction coordinates, so that they can perform a broad array of specific functions. Native HRP displays complex spectral behavior above approximately 50 cm(-1) and very weak activity below approximately 50 cm(-1). Binding of the substrate analog, benzhydroxamic acid, leads to distinct changes in the coherence and Raman spectra of HRP that are consistent with the stabilization of a heme water ligand. The CN derivatives of the three proteins are studied to make comparisons under conditions of uniform heme coordination and spin-state. MbCN is dominated by a doming mode near 40 cm(-1), while HRPCN displays a strong oscillation at higher frequency (96 cm(-1)) that can be correlated with the saddling distortion observed in the X-ray structure. In contrast, CgbCN displays low-frequency coherence spectra that contain strong modes near 30 and 80 cm(-1), probably associated with a combination of heme doming and ruffling. HRPNO displays a strong doming mode near 40 cm(-1) that is activated by photolysis. The damping of the coherent motions is significantly reduced when the heme is shielded from solvent fluctuations by the protein material and reduced still further when T approximately < 50 K, as pure dephasing processes due to the protein-solvent phonon bath are frozen out.
Collapse
Affiliation(s)
- Flaviu Gruia
- Department of Physics and Center for Interdisciplinary Research on Complex Systems, Northeastern University, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Bolli A, Ciaccio C, Coletta M, Nardini M, Bolognesi M, Pesce A, Guertin M, Visca P, Ascenzi P. Ferrous Campylobacter jejuni truncated hemoglobin P displays an extremely high reactivity for cyanide - a comparative study. FEBS J 2008; 275:633-45. [DOI: 10.1111/j.1742-4658.2007.06223.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|