1
|
Pereiro P, Tur R, García M, Figueras A, Novoa B. Unravelling turbot ( Scophthalmus maximus) resistance to Aeromonas salmonicida: transcriptomic insights from two full-sibling families with divergent susceptibility. Front Immunol 2024; 15:1522666. [PMID: 39712009 PMCID: PMC11659141 DOI: 10.3389/fimmu.2024.1522666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 11/22/2024] [Indexed: 12/24/2024] Open
Abstract
Introduction Furunculosis, caused by the gram-negative bacterium Aeromonas salmonicida subsp. salmonicida, remains a significant threat to turbot (Scophthalmus maximus) aquaculture. Identifying genetic backgrounds with enhanced disease resistance is critical for improving aquaculture health management, reducing antibiotic dependency, and mitigating economic losses. Methods In this study, five full-sibling turbot families were challenged with A. salmonicida, which revealed one family with significantly greater resistance. Transcriptomic analyses (RNA-Seq) were performed on resistant and susceptible families, examining both naïve and 24-h postinfection (hpi) samples from head kidney and liver tissues. Results In the absence of infection, differentially expressed genes (DEGs) were identified predominantly in the liver. Following infection, a marked increase in DEGs was observed in the head kidney, with many genes linked to immune functions. Interestingly, the resistant family displayed a more controlled inflammatory response and upregulation of genes related to antigen presentation and T-cell activity in the head kidney at early infection stages, which may have contributed to its increased survival rate. In the liver, transcriptomic differences between the families were associated mainly with cytoskeletal organization, cell cycle regulation, and metabolic processes, including insulin signalling and lipid metabolism, regardless of infection status. Additionally, many DEGs overlapped with previously identified quantitative trait loci (QTLs) associated with resistance to A. salmonicida, providing further insights into the genetic basis of disease resistance. Discussion This study represents the first RNA-Seq analysis comparing resistant and susceptible turbot families and contributes valuable knowledge for the development of selective breeding programs targeting disease resistance in turbot and other aquaculture species susceptible to A. salmonicida.
Collapse
Affiliation(s)
- Patricia Pereiro
- Instituto de Investigaciones Marinas (IIM), Consejo Superior de Investigaciones Científicas (CSIC), Vigo, Spain
| | - Ricardo Tur
- Nueva Pescanova Biomarine Center, S.L., O Grove, Spain
| | - Miguel García
- Nueva Pescanova Biomarine Center, S.L., O Grove, Spain
| | - Antonio Figueras
- Instituto de Investigaciones Marinas (IIM), Consejo Superior de Investigaciones Científicas (CSIC), Vigo, Spain
| | - Beatriz Novoa
- Instituto de Investigaciones Marinas (IIM), Consejo Superior de Investigaciones Científicas (CSIC), Vigo, Spain
| |
Collapse
|
2
|
Romero A, Rey-Campos M, Pereiro P, Librán-Pérez M, Figueras A, Novoa B. Transcriptomic analysis of turbot (Scophthalmus maximus) treated with zymosan a reveals that lncRNAs and inflammation-related genes mediate the protection conferred against Aeromonas salmonicida. FISH & SHELLFISH IMMUNOLOGY 2024; 147:109456. [PMID: 38369070 DOI: 10.1016/j.fsi.2024.109456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 02/20/2024]
Abstract
Aeromonas salmonicida is one of the most harmful pathogens in finfish aquaculture worldwide. Immunostimulants such as β-glucans are used to enhance the immunity of cultured fish. However, their effects on fish physiology are not completely understood. In the present work, we evaluated the effect of a single intraperitoneal (ip) injection of zymosan A on fish survival against A. salmonicida infection. A single administration of this compound protected fish against A. salmonicida challenge and reduce the bacterial load in the head kidney one week after its administration. Transcriptome analyses of head kidney samples revealed several molecular mechanisms involved in the protection conferred by zymosan A and their regulation by long noncoding RNAs. The transcriptome profile of turbot exposed only to zymosan A was practically unaltered one week after ip injection. However, the administration of this immunostimulant induced significant transcriptomic changes once the fish were in contact with the bacteria and increased the survival of the infected turbot. Our results suggest that the restraint of the infection-induced inflammatory response, the management of apoptotic cell death, cell plasticity and cellular processes involving cytoskeleton dynamics support the protective effects of zymosan A. All this information provides insights on the cellular and molecular mechanisms involved in the protective effects of this widely used immunostimulant.
Collapse
Affiliation(s)
- Alejandro Romero
- Instituto de Investigaciones Marinas (CSIC), Eduardo Cabello 6, 36208, Vigo, Spain
| | - Magalí Rey-Campos
- Instituto de Investigaciones Marinas (CSIC), Eduardo Cabello 6, 36208, Vigo, Spain
| | - Patricia Pereiro
- Instituto de Investigaciones Marinas (CSIC), Eduardo Cabello 6, 36208, Vigo, Spain
| | - Marta Librán-Pérez
- Instituto de Investigaciones Marinas (CSIC), Eduardo Cabello 6, 36208, Vigo, Spain
| | - Antonio Figueras
- Instituto de Investigaciones Marinas (CSIC), Eduardo Cabello 6, 36208, Vigo, Spain
| | - Beatriz Novoa
- Instituto de Investigaciones Marinas (CSIC), Eduardo Cabello 6, 36208, Vigo, Spain.
| |
Collapse
|
3
|
14-3-3 Activated Bacterial Exotoxins AexT and ExoT Share Actin and the SH2 Domains of CRK Proteins as Targets for ADP-Ribosylation. Pathogens 2022; 11:pathogens11121497. [PMID: 36558830 PMCID: PMC9787417 DOI: 10.3390/pathogens11121497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/01/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Bacterial exotoxins with ADP-ribosyltransferase activity can be divided into distinct clades based on their domain organization. Exotoxins from several clades are known to modify actin at Arg177; but of the 14-3-3 dependent exotoxins only Aeromonas salmonicida exoenzyme T (AexT) has been reported to ADP-ribosylate actin. Given the extensive similarity among the 14-3-3 dependent exotoxins, we initiated a structural and biochemical comparison of these proteins. Structural modeling of AexT indicated a target binding site that shared homology with Pseudomonas aeruginosa Exoenzyme T (ExoT) but not with Exoenzyme S (ExoS). Biochemical analyses confirmed that the catalytic activities of both exotoxins were stimulated by agmatine, indicating that they ADP-ribosylate arginine residues in their targets. Side-by-side comparison of target protein modification showed that AexT had activity toward the SH2 domain of the Crk-like protein (CRKL), a known target for ExoT. We found that both AexT and ExoT ADP-ribosylated actin and in both cases, the modification compromised actin polymerization. Our results indicate that AexT and ExoT are functional homologs that affect cytoskeletal integrity via actin and signaling pathways to the cytoskeleton.
Collapse
|
4
|
Rahmatelahi H, El-Matbouli M, Menanteau-Ledouble S. Delivering the pain: an overview of the type III secretion system with special consideration for aquatic pathogens. Vet Res 2021; 52:146. [PMID: 34924019 PMCID: PMC8684695 DOI: 10.1186/s13567-021-01015-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/08/2021] [Indexed: 11/10/2022] Open
Abstract
Gram-negative bacteria are known to subvert eukaryotic cell physiological mechanisms using a wide array of virulence factors, among which the type three-secretion system (T3SS) is often one of the most important. The T3SS constitutes a needle-like apparatus that the bacterium uses to inject a diverse set of effector proteins directly into the cytoplasm of the host cells where they can hamper the host cellular machinery for a variety of purposes. While the structure of the T3SS is somewhat conserved and well described, effector proteins are much more diverse and specific for each pathogen. The T3SS can remodel the cytoskeleton integrity to promote intracellular invasion, as well as silence specific eukaryotic cell signals, notably to hinder or elude the immune response and cause apoptosis. This is also the case in aquatic bacterial pathogens where the T3SS can often play a central role in the establishment of disease, although it remains understudied in several species of important fish pathogens, notably in Yersinia ruckeri. In the present review, we summarise what is known of the T3SS, with a special focus on aquatic pathogens and suggest some possible avenues for research including the potential to target the T3SS for the development of new anti-virulence drugs.
Collapse
Affiliation(s)
- Hadis Rahmatelahi
- Clinical Division of Fish Medicine, University of Veterinary Medicine, 1210, Vienna, Austria
| | - Mansour El-Matbouli
- Clinical Division of Fish Medicine, University of Veterinary Medicine, 1210, Vienna, Austria
| | - Simon Menanteau-Ledouble
- Clinical Division of Fish Medicine, University of Veterinary Medicine, 1210, Vienna, Austria.
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220, Aalborg Ø, Denmark.
| |
Collapse
|
5
|
Simón O, Palma L, Fernández AB, Williams T, Caballero P. Baculovirus Expression and Functional Analysis of Vpa2 Proteins from Bacillus thuringiensis. Toxins (Basel) 2020; 12:toxins12090543. [PMID: 32842608 PMCID: PMC7551607 DOI: 10.3390/toxins12090543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 01/01/2023] Open
Abstract
The mode of action underlying the insecticidal activity of the Bacillus thuringiensis (Bt) binary pesticidal protein Vpa1/Vpa2 is uncertain. In this study, three recombinant baculoviruses were constructed using Bac-to-Bac technology to express Vpa2Ac1 and two novel Vpa2-like genes, Vpa2-like1 and Vpa2-like2, under the baculovirus p10 promoter in transfected Sf9 cells. Pairwise amino acid analyses revealed a higher percentage of identity and a lower number of gaps between Vpa2Ac1 and Vpa2-like2 than to Vpa2-like1. Moreover, Vpa2-like1 lacked the conserved Ser-Thr-Ser motif, involved in NAD binding, and the (F/Y)xx(Q/E)xE consensus sequence, characteristic of the ARTT toxin family involved in actin polymerization. Vpa2Ac1, Vpa2-like1 and Vpa2-like2 transcripts and proteins were detected in Sf9 culture cells, but the signals of Vpa2Ac1 and Vpa2-like2 were weak and decreased over time. Sf9 cells infected by a recombinant bacmid expressing Vpa2-like1 showed typical circular morphology and produced viral occlusion bodies (OBs) at the same level as the control virus. However, expression of Vpa2Ac1 and Vpa2-like2 induced cell polarization, similar to that produced by the microfilament-destabilizing agent cytochalasin D and OBs were not produced. The presence of filament disrupting agents, such as nicotinamide and nocodazole, during transfection prevented cell polarization and OB production was observed. We conclude that Vpa2Ac1 and Vpa2-like2 proteins likely possess ADP-ribosyltransferase activity that modulated actin polarization, whereas Vpa2-like1 is not a typical Vpa2 protein. Vpa2-like2 has now been designated Vpa2Ca1 (accession number AAO86513) by the Bacillus thuringiensis delta-endotoxin nomenclature committee.
Collapse
Affiliation(s)
- Oihane Simón
- Institute for Multidisciplinary Research in Applied Biology, Universidad Pública de Navarra, 31006 Pamplona, Navarra, Spain; (A.B.F.); (P.C.)
- Correspondence: ; Tel.: +34-948168012
| | - Leopoldo Palma
- Instituto Académico Pedagógico de Ciencias Básicas y Aplicadas, Centro de Investigaciones y Transferencia de Villa María (CITVM-CONICET), Universidad Nacional De Villa María, Villa María, Córdoba 5900, Argentina;
| | - Ana Beatriz Fernández
- Institute for Multidisciplinary Research in Applied Biology, Universidad Pública de Navarra, 31006 Pamplona, Navarra, Spain; (A.B.F.); (P.C.)
- Departamento de Investigación y Desarrollo, Bioinsectis SL, Polígono Industrial Mocholi Plaza Cein 5, Nave A14, 31110 Noain, Navarra, Spain
| | | | - Primitivo Caballero
- Institute for Multidisciplinary Research in Applied Biology, Universidad Pública de Navarra, 31006 Pamplona, Navarra, Spain; (A.B.F.); (P.C.)
- Departamento de Investigación y Desarrollo, Bioinsectis SL, Polígono Industrial Mocholi Plaza Cein 5, Nave A14, 31110 Noain, Navarra, Spain
| |
Collapse
|
6
|
Huber P. Targeting of the apical junctional complex by bacterial pathogens. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183237. [DOI: 10.1016/j.bbamem.2020.183237] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 02/06/2020] [Accepted: 02/10/2020] [Indexed: 12/17/2022]
|
7
|
A Mesophilic Aeromonas salmonicida Strain Isolated from an Unsuspected Host, the Migratory Bird Pied Avocet. Microorganisms 2019; 7:microorganisms7120592. [PMID: 31757113 PMCID: PMC6955901 DOI: 10.3390/microorganisms7120592] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 12/18/2022] Open
Abstract
Aeromonas salmonicida is a Gram-negative bacterium, known as a fish pathogen since its discovery. Although the species was initially considered psychrophilic, a mesophilic subspecies (pectinolytica) and many other mesophilic strains still not attributed to subspecies have been described in the last two decades. These mesophilic strains were sampled from various sources, including humans, and some of them are known to be pathogenic. In this study, we describe a strain, JF2480, which was isolated from the spleen, and also found the kidney and liver of a dead pied avocet (Recurvirostra avosetta), a type of migratory bird inhabiting aquatic environments. A core genome phylogenomic analysis suggests that JF2480 is taxonomically distant from other known A. salmonicida subspecies. The genome sequence confirms that the strain possesses key virulence genes that are present in the typical A. salmonicida psychrophilic subspecies, with the exception of the genes encoding the type three secretion system (T3SS). Bacterial virulence assays conducted on the surrogate host Dictyostelium discoideum amoeba confirmed that the strain is virulent despite the lack of T3SS. Bacterial growth curves showed that strain JF2480 grow well at 40 °C, the body temperature of the pied avocet, and even faster at 41 °C, compared to other mesophilic strains. Discovery of this strain further demonstrates the extent of the phylogenomic tree of this species. This study also suggests that A. salmonicida can infect a wider array of hosts than previously suspected and that we need to rethink the way we perceive A. salmonicida's natural environment.
Collapse
|
8
|
Abstract
ADP-ribosylation (ADPr) is an ancient reversible modification of cellular macromolecules controlling major biological processes as diverse as DNA damage repair, transcriptional regulation, intracellular transport, immune and stress responses, cell survival and proliferation. Furthermore, enzymatic reactions of ADPr are central in the pathogenesis of many human diseases, including infectious conditions. By providing a review of ADPr signalling in bacterial systems, we highlight the relevance of this chemical modification in the pathogenesis of human diseases depending on host-pathogen interactions. The post-antibiotic era has raised the need to find alternative approaches to antibiotic administration, as major pathogens becoming resistant to antibiotics. An in-depth understanding of ADPr reactions provides the rationale for designing novel antimicrobial strategies for treatment of infectious diseases. In addition, the understanding of mechanisms of ADPr by bacterial virulence factors offers important hints to improve our knowledge on cellular processes regulated by eukaryotic homologous enzymes, which are often involved in the pathogenesis of human diseases.
Collapse
|
9
|
Rupp M, Pilo P, Müller B, Knüsel R, von Siebenthal B, Frey J, Sindilariu PD, Schmidt-Posthaus H. Systemic infection in European perch with thermoadapted virulent Aeromonas salmonicida (Perca fluviatilis). JOURNAL OF FISH DISEASES 2019; 42:685-691. [PMID: 30806486 DOI: 10.1111/jfd.12970] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/11/2019] [Accepted: 01/13/2019] [Indexed: 06/09/2023]
Abstract
In non-salmonid fish, Aeromonas salmonicidacan cause local infections with severe skin ulcerations, known as atypical furunculosis. In this study, we present a systemic infection by a virulent A. salmonicidain European perch (Perca fluviatilis).This infection was diagnosed in a Swiss warm water recirculation aquaculture system. The isolate of A. salmonicida encodes a type three secretion system (TTSS) most likely located on a plasmid similar to pAsa5/pASvirA, which is known to specify one of the main virulence attributes of the species A. salmonicida. However, the genes specifying the TTSS of the perch isolate show a higher temperature tolerance than strains isolated from cold-water fish. The function of the TTSS in virulence was verified in a cytotoxicity test using bluegill fry and epithelioma papulosum cyprinid cells.
Collapse
Affiliation(s)
- Melanie Rupp
- Centre for Fish and Wildlife Health, University of Bern, Bern, Switzerland
| | - Paola Pilo
- Institute of Veterinary Bacteriology, University of Bern, Bern, Switzerland
| | - Barbara Müller
- Centre for Fish and Wildlife Health, University of Bern, Bern, Switzerland
| | | | | | - Joachim Frey
- Institute of Veterinary Bacteriology, University of Bern, Bern, Switzerland
| | | | | |
Collapse
|
10
|
Braden LM, Whyte SK, Brown ABJ, Iderstine CV, Letendre C, Groman D, Lewis J, Purcell SL, Hori T, Fast MD. Vaccine-Induced Protection Against Furunculosis Involves Pre-emptive Priming of Humoral Immunity in Arctic Charr. Front Immunol 2019; 10:120. [PMID: 30778356 PMCID: PMC6369366 DOI: 10.3389/fimmu.2019.00120] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 01/15/2019] [Indexed: 11/20/2022] Open
Abstract
With respect to salmonid aquaculture, one of the most important bacterial pathogens due to high mortality and antibiotic usage is the causative agent of typical furunculosis, Aeromonas salmonicida spp. salmonicida (Asal). In Atlantic salmon, Salmo salar, the host response during infections with Asal is well-documented, with furunculosis outbreaks resulting in significant mortality in commercial settings. However, less is known about the host-pathogen interactions in the emerging aquaculture species, Arctic charr Salvelinus alpinus. Furthermore, there is no data on the efficacy or response of this species after vaccination with commonly administered vaccines against furunculosis. To this end, we examined the immunological response of S. alpinus during infection with Asal, with or without administration of vaccines (Forte Micro®, Forte Micro® + Renogen®, Elanco Animal Health). Artic charr (vaccinated or unvaccinated) were i.p.-injected with a virulent strain of Asal (106 CFUs/mL) and tissues were collected pre-infection/post-vaccination, 8, and 29 days post-infection. Unvaccinated Arctic charr were susceptible to Asal with 72% mortalities observed after 31 days. However, there was 72–82% protection in fish vaccinated with either the single or dual-vaccine, respectively. Protection in vaccinated fish was concordant with significantly higher serum IgM concentrations, and following RNA sequencing and transcriptome assembly, differential expression analysis revealed several patterns and pathways associated with the improved survival of vaccinated fish. Most striking was the dramatically higher basal expression of complement/coagulation factors, acute phase-proteins, and iron hemostasis proteins in pre-challenged, vaccinated fish. Remarkably, following Asal infection, this response was abrogated and instead the transcriptome was characterized by a lack of immune-stimulation compared to that of unvaccinated fish. Furthermore, where pathways of actin assembly and FcγR-mediated phagocytosis were significantly differentially regulated in unvaccinated fish, vaccinated fish showed either the opposite regulation (ForteMicro®), or no impact at all (ForteMicro®Renogen®). The present data indicates that vaccine-induced protection against Asal relies on the pre-activation and immediate control of humoral immune parameters that is coincident with reduced activation of apoptotic (e.g., NF-κB) and actin-associated pathways.
Collapse
Affiliation(s)
- Laura M Braden
- Hoplite Laboratory, Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, Canada
| | - Shona K Whyte
- Hoplite Laboratory, Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, Canada
| | - Alyson B J Brown
- Hoplite Laboratory, Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, Canada
| | - Carter Van Iderstine
- Hoplite Laboratory, Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, Canada
| | - Corinne Letendre
- Department of Veterinary Sciences, Universite de Montreal, Montreal, QC, Canada
| | - David Groman
- Hoplite Laboratory, Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, Canada
| | - Jeff Lewis
- Hoplite Laboratory, Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, Canada
| | - Sara L Purcell
- Hoplite Laboratory, Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, Canada
| | - Tiago Hori
- Centre for Aquaculture Technologies Canada, Souris, PE, Canada
| | - Mark D Fast
- Hoplite Laboratory, Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, Canada
| |
Collapse
|
11
|
Edwardsiella piscicida Type III Secretion System Effector EseK Inhibits Mitogen-Activated Protein Kinase Phosphorylation and Promotes Bacterial Colonization in Zebrafish Larvae. Infect Immun 2018; 86:IAI.00233-18. [PMID: 29986890 DOI: 10.1128/iai.00233-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 07/01/2018] [Indexed: 12/21/2022] Open
Abstract
Bacteria utilize type III secretion systems (T3SS) to deliver effectors directly into host cells. Hence, it is very important to identify the functions of bacterial (T3SS) effectors to understand host-pathogen interactions. Edwardsiella piscicida encodes a functional T3SS effector, EseK, which can be translocated into host cells and affect bacterial loads. Here, it was demonstrated that an eseK mutant (the ΔeseK mutant) significantly increased the phosphorylation levels of p38α, c-Jun NH2-terminal kinases (JNK), and extracellular signal-regulated protein kinases 1/2 (ERK1/2) in HeLa cells. Overexpression of EseK directly inhibited mitogen-activated protein kinase (MAPK) signaling pathways in HEK293T cells. The ΔeseK mutant consistently promoted the phosphorylation of MAPKs in zebrafish larva infection models. Further, it was shown that the ΔeseK mutant increased the expression of tumor necrosis factor alpha (TNF-α) in an MAPK-dependent manner. Importantly, the EseK-mediated inhibition of MAPKs in vivo attenuated bacterial clearance in larvae. Taken together, this work reveals that the E. piscicida T3SS effector EseK promotes bacterial infection by inhibiting MAPK activation, which provides insights into the molecular pathogenesis of E. piscicida in fish.
Collapse
|
12
|
Aktories K, Schwan C, Lang AE. ADP-Ribosylation and Cross-Linking of Actin by Bacterial Protein Toxins. Handb Exp Pharmacol 2017; 235:179-206. [PMID: 27316913 DOI: 10.1007/164_2016_26] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Actin and the actin cytoskeleton play fundamental roles in host-pathogen interactions. Proper function of the actin cytoskeleton is crucial for innate and acquired immune defense. Bacterial toxins attack the actin cytoskeleton by targeting regulators of actin. Moreover, actin is directly modified by various bacterial protein toxins and effectors, which cause ADP-ribosylation or cross-linking of actin. Modification of actin can result in inhibition or stimulation of actin polymerization. Toxins, acting directly on actin, are reviewed.
Collapse
Affiliation(s)
- Klaus Aktories
- Institute for Experimental and Clinical Pharmacology and Toxicology, Albert-Ludwigs-Universität Freiburg, Freiburg, 79104, Germany. .,Freiburg Institute of Advanced Studies (FRIAS), Albert-Ludwigs-Universität Freiburg, Freiburg, 79104, Germany.
| | - Carsten Schwan
- Institute for Experimental and Clinical Pharmacology and Toxicology, Albert-Ludwigs-Universität Freiburg, Freiburg, 79104, Germany
| | - Alexander E Lang
- Institute for Experimental and Clinical Pharmacology and Toxicology, Albert-Ludwigs-Universität Freiburg, Freiburg, 79104, Germany
| |
Collapse
|
13
|
Origgi FC, Benedicenti O, Segner H, Sattler U, Wahli T, Frey J. Aeromonas salmonicida type III secretion system-effectors-mediated immune suppression in rainbow trout (Oncorhynchus mykiss). FISH & SHELLFISH IMMUNOLOGY 2017; 60:334-345. [PMID: 27923746 DOI: 10.1016/j.fsi.2016.12.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 11/28/2016] [Accepted: 12/02/2016] [Indexed: 06/06/2023]
Abstract
Aeromonas salmonicida subsp. salmonicida, the etiologic agent of furunculosis, is a major pathogen in aquaculture. Together with other pathogens, it is characterized by the presence of a type 3 secretion system (T3SS). The T3SS is the main virulence mechanism of A. salmonicida. It is used by the bacterium to secrete and translocate several toxins and effector proteins into the host cell. Some of these factors have a detrimental impact on the integrity of the cell cytoskeleton, likely contributing to impair phagocytosis. Furthermore, it has been suggested that effectors of the T3SS are able to modulate the host's immune response. Here we present the first partial characterization of the immune response in rainbow trout (Oncorhynchus mykiss) infected with distinct strains of A. salmonicida either carrying (i) a fully functional T3SS or (ii) a functionally impaired T3SS or (iii) devoid of T3SS ("cured" strain). Infection with an A. salmonicida strain either carrying a fully functional or a secretion-impaired T3SS was associated with a strong and persistent immune suppression. However, the infection appeared to be fatal only in the presence of a fully functional T3SS. In contrast, the absence of T3SS was neither associated with immune suppression nor fish death. These findings suggest that the T3SS and T3SS-delivered effector molecules and toxins of A. salmonicida do not only impair the host cells' cytoskeleton thus damaging cell physiology and phagocytosis, but also heavily affect the transcription of critical immune mediators including the shut-down of important warning signals to recognize infection and induce immune defense.
Collapse
Affiliation(s)
- F C Origgi
- Institute of Veterinary Bacteriology, University of Bern, Bern-CH, Switzerland; Centre for Fish and Wildlife Health (FIWI), University of Bern, Bern-CH, Switzerland.
| | - O Benedicenti
- Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, UK
| | - H Segner
- Centre for Fish and Wildlife Health (FIWI), University of Bern, Bern-CH, Switzerland
| | - U Sattler
- Centre for Fish and Wildlife Health (FIWI), University of Bern, Bern-CH, Switzerland
| | - T Wahli
- Centre for Fish and Wildlife Health (FIWI), University of Bern, Bern-CH, Switzerland
| | - J Frey
- Institute of Veterinary Bacteriology, University of Bern, Bern-CH, Switzerland
| |
Collapse
|
14
|
Kühn S, Mannherz HG. Actin: Structure, Function, Dynamics, and Interactions with Bacterial Toxins. Curr Top Microbiol Immunol 2016; 399:1-34. [PMID: 27848038 DOI: 10.1007/82_2016_45] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
Actin is one of the most abundant proteins in any eukaryotic cell and an indispensable component of the cytoskeleton. In mammalian organisms, six highly conserved actin isoforms can be distinguished, which differ by only a few amino acids. In non-muscle cells, actin polymerizes into actin filaments that form actin structures essential for cell shape stabilization, and participates in a number of motile activities like intracellular vesicle transport, cytokinesis, and also cell locomotion. Here, we describe the structure of monomeric and polymeric actin, the polymerization kinetics, and its regulation by actin-binding proteins. Probably due to its conserved nature and abundance, actin and its regulating factors have emerged as prefered targets of bacterial toxins and effectors, which subvert the host actin cytoskeleton to serve bacterial needs.
Collapse
Affiliation(s)
- Sonja Kühn
- Department of Cell Biology and Infection, Institut Pasteur, Paris, France
| | - Hans Georg Mannherz
- Department of Anatomy and Molecular Embryology, Ruhr-University, Bochum, Germany.
| |
Collapse
|
15
|
Schwan C, Aktories K. Formation of Nanotube-Like Protrusions, Regulation of Septin Organization and Re-guidance of Vesicle Traffic by Depolymerization of the Actin Cytoskeleton Induced by Binary Bacterial Protein Toxins. Curr Top Microbiol Immunol 2016; 399:35-51. [PMID: 27726005 DOI: 10.1007/82_2016_25] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A large group of bacterial protein toxins, including binary ADP-ribosylating toxins, modify actin at arginine-177, thereby actin polymerization is blocked and the actin cytoskeleton is redistributed. Modulation of actin functions largely affects other components of the cytoskeleton, especially microtubules and septins. Here, recent findings about the functional interconnections of the actin cytoskeleton with microtubules and septins, affected by bacterial toxins, are reviewed.
Collapse
Affiliation(s)
- Carsten Schwan
- Institute for Experimental and Clinical Pharmacology and Toxicology, Albert-Ludwigs University of Freiburg, Albertstr. 25, 79104, Freiburg, Germany
| | - Klaus Aktories
- Institute for Experimental and Clinical Pharmacology and Toxicology, Albert-Ludwigs University of Freiburg, Albertstr. 25, 79104, Freiburg, Germany.
| |
Collapse
|
16
|
Simon NC, Aktories K, Barbieri JT. Novel bacterial ADP-ribosylating toxins: structure and function. Nat Rev Microbiol 2014; 12:599-611. [PMID: 25023120 PMCID: PMC5846498 DOI: 10.1038/nrmicro3310] [Citation(s) in RCA: 148] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Bacterial ADP-ribosyltransferase toxins (bARTTs) transfer ADP-ribose to eukaryotic proteins to promote bacterial pathogenesis. In this Review, we use prototype bARTTs, such as diphtheria toxin and pertussis toxin, as references for the characterization of several new bARTTs from human, insect and plant pathogens, which were recently identified by bioinformatic analyses. Several of these toxins, including cholix toxin (ChxA) from Vibrio cholerae, SpyA from Streptococcus pyogenes, HopU1 from Pseudomonas syringae and the Tcc toxins from Photorhabdus luminescens, ADP-ribosylate novel substrates and have unique organizations, which distinguish them from the reference toxins. The characterization of these toxins increases our appreciation of the range of structural and functional properties that are possessed by bARTTs and their roles in bacterial pathogenesis.
Collapse
Affiliation(s)
- Nathan C. Simon
- Medical College of Wisconsin, Microbiology and Molecular Genetics, Milwaukee, WI, USA
| | - Klaus Aktories
- Institute of Experimental and Clinical Pharmacology and Toxicology; Albert-Ludwigs-University Freiburg; Freiburg, Germany
| | - Joseph T. Barbieri
- Medical College of Wisconsin, Microbiology and Molecular Genetics, Milwaukee, WI, USA
| |
Collapse
|
17
|
Popoff MR. Bacterial factors exploit eukaryotic Rho GTPase signaling cascades to promote invasion and proliferation within their host. Small GTPases 2014; 5:28209. [PMID: 25203748 DOI: 10.4161/sgtp.28209] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Actin cytoskeleton is a main target of many bacterial pathogens. Among the multiple regulation steps of the actin cytoskeleton, bacterial factors interact preferentially with RhoGTPases. Pathogens secrete either toxins which diffuse in the surrounding environment, or directly inject virulence factors into target cells. Bacterial toxins, which interfere with RhoGTPases, and to some extent with RasGTPases, catalyze a covalent modification (ADPribosylation, glucosylation, deamidation, adenylation, proteolysis) blocking these molecules in their active or inactive state, resulting in alteration of epithelial and/or endothelial barriers, which contributes to dissemination of bacteria in the host. Injected bacterial virulence factors preferentially manipulate the RhoGTPase signaling cascade by mimicry of eukaryotic regulatory proteins leading to local actin cytoskeleton rearrangement, which mediates bacterial entry into host cells or in contrast escape to phagocytosis and immune defense. Invasive bacteria can also manipulate RhoGTPase signaling through recognition and stimulation of cell surface receptor(s). Changes in RhoGTPase activation state is sensed by the innate immunity pathways and allows the host cell to adapt an appropriate defense response.
Collapse
Affiliation(s)
- Michel R Popoff
- Unité des Bactéries anaérobies et Toxines; Institut Pasteur; Paris, France
| |
Collapse
|
18
|
Vanden Bergh P, Frey J. Aeromonas salmonicida subsp. salmonicida in the light of its type-three secretion system. Microb Biotechnol 2013; 7:381-400. [PMID: 24119189 PMCID: PMC4229320 DOI: 10.1111/1751-7915.12091] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 08/27/2013] [Accepted: 08/28/2013] [Indexed: 11/30/2022] Open
Abstract
Aeromonas salmonicida subsp. salmonicida is an important pathogen in salmonid aquaculture and is responsible for the typical furunculosis. The type-three secretion system (T3SS) is a major virulence system. In this work, we review structure and function of this highly sophisticated nanosyringe in A. salmonicida. Based on the literature as well as personal experimental observations, we document the genetic (re)organization, expression regulation, anatomy, putative functional origin and roles in the infectious process of this T3SS. We propose a model of pathogenesis where A. salmonicida induces a temporary immunosuppression state in fish in order to acquire free access to host tissues. Finally, we highlight putative important therapeutic and vaccine strategies to prevent furunculosis of salmonid fish.
Collapse
Affiliation(s)
- Philippe Vanden Bergh
- Institute of Veterinary Bacteriology, University of Bern, Länggassstrasse 122, Bern, Switzerland
| | | |
Collapse
|
19
|
The Aeromonas salmonicida subsp. salmonicida exoproteome: determination of the complete repertoire of Type-Three Secretion System effectors and identification of other virulence factors. Proteome Sci 2013; 11:42. [PMID: 24073886 PMCID: PMC3852671 DOI: 10.1186/1477-5956-11-42] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 09/23/2013] [Indexed: 01/24/2023] Open
Abstract
Background Aeromonas salmonicida subsp. salmonicida, the etiologic agent of furunculosis, is a major pathogen of fisheries worldwide. Several virulence factors have been described, but the type-three secretion system (T3SS) is recognized as having a major effect on virulence by injecting effectors directly into fish cells. In this study we used high-throughput proteomics to display the differences between in vitro secretome of A. salmonicida wild-type (wt, hypervirulent, JF2267) and T3SS-deficient (isogenic ΔascV, extremely low-virulent, JF2747) strains in exponential and stationary phases of growth. Results Results confirmed the secretion of effectors AopH, AexT, AopP and AopO via T3SS, and for the first time demonstrated the impact of T3SS in secretion of Ati2, AopN and ExsE that are known as effectors in other pathogens. Translocators, needle subunits, Ati1, and AscX were also secreted in supernatants (SNs) dependent on T3SS. AopH, Ati2, AexT, AopB and AopD were in the top seven most abundant excreted proteins. EF-G, EF-Tu, DnaK, HtpG, PNPase, PepN and MdeA were moderately secreted in wt SNs and predicted to be putative T3 effectors by bioinformatics. Pta and ASA_P5G088 were increased in wt SNs and T3-associated in other bacteria. Ten conserved cytoplasmic proteins were more abundant in wt SNs than in the ΔascV mutant, but without any clear association to a secretion system. T1-secreted proteins were predominantly found in wt SNs: OmpAI, OmpK40, DegQ, insulinase ASA_0716, hypothetical ASA_0852 and ASA_3619. Presence of T3SS components in pellets was clearly decreased by ascV deletion, while no impact was observed on T1- and T2SS. Our results demonstrated that the ΔascV mutant strain excreted well-described (VapA, AerA, AerB, GCAT, Pla1, PlaC, TagA, Ahe2, GbpA and enolase) and yet uncharacterized potential toxins, adhesins and enzymes as much as or even more than the wt strain. Other putative important virulence factors were not detected. Conclusions We demonstrated the whole in vitro secretome and T3SS repertoire of hypervirulent A. salmonicida. Several toxins, adhesins and enzymes that are not part of the T3SS secretome were secreted to a higher extent in the extremely low-virulent ΔascV mutant. All together, our results show the high importance of an intact T3SS to initiate the furunculosis and offer new information about the pathogenesis.
Collapse
|
20
|
Li C, Wang R, Su B, Luo Y, Terhune J, Beck B, Peatman E. Evasion of mucosal defenses during Aeromonas hydrophila infection of channel catfish (Ictalurus punctatus) skin. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 39:447-455. [PMID: 23219904 DOI: 10.1016/j.dci.2012.11.009] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 11/20/2012] [Accepted: 11/20/2012] [Indexed: 06/01/2023]
Abstract
The mucosal surfaces of fish serve as the first line of defense against the myriad of aquatic pathogens present in the aquatic environment. The immune repertoire functioning at these interfaces is still poorly understood. The skin, in particular, must process signals from several fronts, sensing and integrating environmental, nutritional, social, and health cues. Pathogen invasion can disrupt this delicate homeostasis with profound impacts on signaling throughout the organism. Here, we investigated the transcriptional effects of virulent Aeromonas hydrophila infection in channel catfish skin, Ictalurus punctatus. We utilized a new 8 × 60 K Agilent microarray for catfish to examine gene expression profiles at critical early timepoints following challenge--2 h, 8 h, and 12 h. Expression of a total of 2,168 unique genes was significantly perturbed during at least one timepoint. We observed dysregulation of genes involved in antioxidant, cytoskeletal, immune, junctional, and nervous system pathways. In particular, A. hydrophila infection rapidly altered a number of potentially critical lectins, chemokines, interleukins, and other mucosal factors in a manner predicted to enhance its ability to adhere to and invade the catfish host.
Collapse
Affiliation(s)
- Chao Li
- Department of Fisheries and Allied Aquacultures, Auburn University, Auburn, AL 36849, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Shniffer A, Visschedyk DD, Ravulapalli R, Suarez G, Turgeon ZJ, Petrie AA, Chopra AK, Merrill AR. Characterization of an actin-targeting ADP-ribosyltransferase from Aeromonas hydrophila. J Biol Chem 2012; 287:37030-41. [PMID: 22969084 DOI: 10.1074/jbc.m112.397612] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The mono-ADP-ribosyltransferase (mART) toxins are contributing factors to a number of human diseases, including cholera, diphtheria, traveler's diarrhea, and whooping cough. VahC is a cytotoxic, actin-targeting mART from Aeromonas hydrophila PPD134/91. This bacterium is implicated primarily in diseases among freshwater fish species but also contributes to gastrointestinal and extraintestinal infections in humans. VahC was shown to ADP-ribosylate Arg-177 of actin, and the kinetic parameters were K(m)(NAD(+)) = 6 μM, K(m)(actin) = 24 μM, and k(cat) = 22 s(-1). VahC activity caused depolymerization of actin filaments, which induced caspase-mediated apoptosis in HeLa Tet-Off cells. Alanine-scanning mutagenesis of predicted catalytic residues showed the predicted loss of in vitro mART activity and cytotoxicity. Bioinformatic and kinetic analysis also identified three residues in the active site loop that were critical for the catalytic mechanism. A 1.9 Å crystal structure supported the proposed roles of these residues and their conserved nature among toxin homologues. Several small molecules were characterized as inhibitors of in vitro VahC mART activity and suramin was the best inhibitor (IC(50) = 20 μM). Inhibitor activity was also characterized against two other actin-targeting mART toxins. Notably, these inhibitors represent the first report of broad spectrum inhibition of actin-targeting mART toxins.
Collapse
Affiliation(s)
- Adin Shniffer
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Tomás JM. The main Aeromonas pathogenic factors. ISRN MICROBIOLOGY 2012; 2012:256261. [PMID: 23724321 PMCID: PMC3658858 DOI: 10.5402/2012/256261] [Citation(s) in RCA: 195] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 07/19/2012] [Indexed: 12/27/2022]
Abstract
The members of the Aeromonas genus are ubiquitous, water-borne bacteria. They have been isolated from marine waters, rivers, lakes, swamps, sediments, chlorine water, water distribution systems, drinking water and residual waters; different types of food, such as meat, fish, seafood, vegetables, and processed foods. Aeromonas strains are predominantly pathogenic to poikilothermic animals, and the mesophilic strains are emerging as important pathogens in humans, causing a variety of extraintestinal and systemic infections as well as gastrointestinal infections. The most commonly described disease caused by Aeromonas is the gastroenteritis; however, no adequate animal model is available to reproduce this illness caused by Aeromonas. The main pathogenic factors associated with Aeromonas are: surface polysaccharides (capsule, lipopolysaccharide, and glucan), S-layers, iron-binding systems, exotoxins and extracellular enzymes, secretion systems, fimbriae and other nonfilamentous adhesins, motility and flagella.
Collapse
Affiliation(s)
- J M Tomás
- Departamento Microbiología, Universidad de Barcelona, Diagonal 643, 08071 Barcelona, Spain
| |
Collapse
|
23
|
Characterization and virulence potential of phenotypically diverse Aeromonas veronii isolates recovered from moribund freshwater ornamental fishes of Kerala, India. Antonie van Leeuwenhoek 2012; 103:53-67. [DOI: 10.1007/s10482-012-9786-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 07/27/2012] [Indexed: 12/19/2022]
|
24
|
Recombinant AexU effector protein of Aeromonas veronii bv. sobria disrupts the actin cytoskeleton by downregulation of Rac1 and induces direct cytotoxicity to β4-integrin expressing cell lines. Microb Pathog 2011; 51:454-65. [DOI: 10.1016/j.micpath.2011.09.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 09/08/2011] [Accepted: 09/15/2011] [Indexed: 12/27/2022]
|
25
|
Abstract
Many bacterial pathogens produce protein toxins to outmanoeuvre the immune system of the host. Some of these proteins target regulatory GTPases such as those belonging to the RHO family, which control the actin cytoskeleton of the host cell. In this Review, I discuss a diversity of mechanisms that are used by bacterial effectors and toxins to modulate the activity of host GTPases, with a focus on covalent modifications such as ADP-ribosylation, glucosylation, adenylylation, proteolysis, deamidation and transglutamination.
Collapse
Affiliation(s)
- Klaus Aktories
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Albert-Ludwigs-Universität Freiburg, Albertstr. 25, 79104 Freiburg, Germany.
| |
Collapse
|
26
|
Dean P. Functional domains and motifs of bacterial type III effector proteins and their roles in infection. FEMS Microbiol Rev 2011; 35:1100-25. [PMID: 21517912 DOI: 10.1111/j.1574-6976.2011.00271.x] [Citation(s) in RCA: 208] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A key feature of the virulence of many bacterial pathogens is the ability to deliver effector proteins into eukaryotic cells via a dedicated type three secretion system (T3SS). Many bacterial pathogens, including species of Chlamydia, Xanthomonas, Pseudomonas, Ralstonia, Shigella, Salmonella, Escherichia and Yersinia, depend on the T3SS to cause disease. T3SS effectors constitute a large and diverse group of virulence proteins that mimic eukaryotic proteins in structure and function. A salient feature of bacterial effectors is their modular architecture, comprising domains or motifs that confer an array of subversive functions within the eukaryotic cell. These domains/motifs therefore represent a fascinating repertoire of molecular determinants with important roles during infection. This review provides a snapshot of our current understanding of bacterial effector domains and motifs where a defined role in infection has been demonstrated.
Collapse
Affiliation(s)
- Paul Dean
- Institute of Cell and Molecular Bioscience, Medical School, University of Newcastle, Newcastle Upon Tyne, UK.
| |
Collapse
|
27
|
Aktories K, Lang AE, Schwan C, Mannherz HG. Actin as target for modification by bacterial protein toxins. FEBS J 2011; 278:4526-43. [PMID: 21466657 DOI: 10.1111/j.1742-4658.2011.08113.x] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Various bacterial protein toxins and effectors target the actin cytoskeleton. At least three groups of toxins/effectors can be identified, which directly modify actin molecules. One group of toxins/effectors causes ADP-ribosylation of actin at arginine-177, thereby inhibiting actin polymerization. Members of this group are numerous binary actin-ADP-ribosylating exotoxins (e.g. Clostridium botulinum C2 toxin) as well as several bacterial ADP-ribosyltransferases (e.g. Salmonella enterica SpvB) which are not binary in structure. The second group includes toxins that modify actin to promote actin polymerization and the formation of actin aggregates. To this group belongs a toxin from the Photorhabdus luminescens Tc toxin complex that ADP-ribosylates actin at threonine-148. A third group of bacterial toxins/effectors (e.g. Vibrio cholerae multifunctional, autoprocessing RTX toxin) catalyses a chemical crosslinking reaction of actin thereby forming oligomers, while blocking the polymerization of actin to functional filaments. Novel findings about members of these toxin groups are discussed in detail.
Collapse
Affiliation(s)
- Klaus Aktories
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Albert-Ludwigs-Universität Freiburg, Germany.
| | | | | | | |
Collapse
|
28
|
Sreedharan K, Philip R, Singh ISB. Isolation and characterization of virulent Aeromonas veronii from ascitic fluid of oscar Astronotus ocellatus showing signs of infectious dropsy. DISEASES OF AQUATIC ORGANISMS 2011; 94:29-39. [PMID: 21553566 DOI: 10.3354/dao02304] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The cichlid oscar Astronotus ocellatus has worldwide commercial value in the pet fish industry because of its early maturation, relatively high fecundity, ability to identify its caretaker and also to alter colouration amongst conspecifics. Pathogenic strains of Aeromonas veronii resistant to multiple antibiotics were isolated from A. ocellatus individuals showing signs of infectious abdominal dropsy. The moribund fish showed haemorrhage in all internal organs, and pure cultures could be obtained from the abdominal fluid. The isolates recovered were biochemically identified as A. veronii biovar sobria and genetically confirmed as A. veronii based on 16S rRNA gene sequence analysis (GenBank accession no. FJ573179). The RAPD profile using 3 primers (OPA-3, OPA-4 and OPD-20) generated similar banding patterns for all isolates. They displayed cytotoxic and haemolytic activity and produced several exoenzymes which were responsible for the pathogenic potential of the isolates. In the representative isolate MCCB 137, virulence genes such as enterotoxin act, haemolytic toxin aerA, type 3 secretion genes such as aexT, ascVand ascF-ascG, and gcat (glycerophospholipid-cholesterol acyltransferase) could be amplified. MCCB 137 exhibited a 50% lethal dose (LD50) of 10(5.071) colony-forming units ml(-1) in goldfish and could be subsequently recovered from lesions as well as from the internal organs. This is the first description of a virulent A. veronii from oscar.
Collapse
Affiliation(s)
- K Sreedharan
- National Centre for Aquatic Animal Health, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Cochin 682 016, Kerala, India
| | | | | |
Collapse
|
29
|
Unraveling the mechanism of action of a new type III secretion system effector AexU from Aeromonas hydrophila. Microb Pathog 2010; 49:122-34. [PMID: 20553837 DOI: 10.1016/j.micpath.2010.05.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2010] [Revised: 05/18/2010] [Accepted: 05/20/2010] [Indexed: 11/23/2022]
Abstract
We recently characterized a T3SS effector, AexU, from a diarrheal isolate SSU of Aeromonas hydrophila, which exhibited ADP-ribosyltransferase (ADPRT) activity. Here we provided evidence that AexU also possessed GTPase-activating protein (GAP) activity, which was mainly responsible for host cell apoptosis and disruption of actin filaments. Earlier, we showed that the DeltaaexU null mutant was attenuated in a mouse model, and we now demonstrated that while the parental A. hydrophila strain could be detected in the lung, liver, and spleen of infected mice, the DeltaaexU mutant was rapidly cleared from these organs resulting in increased survivability of animals. Further, AexU prevented phosphorylation of c-Jun, JNK and IkappaBalpha and inhibited IL-6 and IL-8 secretion from HeLa cells. Our data indicated that AexU operated by inhibiting NF-kappaB and inactivating Rho GTPases. Importantly, however, when the DeltaaexU null mutant was complemented with the mutated aexU gene devoid of ADPRT and GAP activities, a higher mortality rate in mice with concomitant increase in the production of pro-inflammatory cytokines/chemokines was noted. These data indicated that either such a mutated AexU is a potent inducer of them or that AexU possesses yet another unknown activity that is modulated by ADPRT and GAP activities and results in this aberrant cytokine/chemokine production responsible for increased animal death.
Collapse
|
30
|
Visschedyk DD, Perieteanu AA, Turgeon ZJ, Fieldhouse RJ, Dawson JF, Merrill AR. Photox, a novel actin-targeting mono-ADP-ribosyltransferase from Photorhabdus luminescens. J Biol Chem 2010; 285:13525-34. [PMID: 20181945 DOI: 10.1074/jbc.m109.077339] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Photorhabdus luminescens is a pathogenic bacterium that produces many toxic proteins. The mono-ADP-ribosyltransferases (mARTs) are an enzyme class produced by numerous pathogenic bacteria and participate in disease in plants and animals, including humans. Herein we report a novel mART from P. luminescens called Photox. This 46-kDa toxin shows high homology to other actin-targeting mARTs in hallmark catalytic regions and a similar core catalytic fold. Furthermore, Photox shows in vivo cytotoxic activity against yeast, with protection occurring when catalytic residues are substituted with alanine. In vitro, enzymatic activity (k(cat), 1680 +/- 75 min(-1)) is higher than that of the related iota toxin, and diminishes by nearly 14,000-fold following substitution of the catalytic Glu (E355A). This toxin specifically ADP-ribosylates monomeric alpha-skeletal actin and nonmuscle beta- and gamma-actin at Arg(177), inhibiting regular polymerization of actin filaments. These results indicate that Photox is indeed an ADP-ribosyltransferase, making it the newest member of the actin-targeting mART family.
Collapse
Affiliation(s)
- Danielle D Visschedyk
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | | | | | | | | | | |
Collapse
|
31
|
Tipping the balance by manipulating post-translational modifications. Curr Opin Microbiol 2010; 13:34-40. [PMID: 20071215 DOI: 10.1016/j.mib.2009.12.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Revised: 12/01/2009] [Accepted: 12/02/2009] [Indexed: 11/23/2022]
Abstract
Bacteria use a variety of mechanisms during infection to ensure their survival including the delivery of virulence factors via a type III secretion system into the infected cell. The factors exhibit diverse activities that in many cases mimic eukaryotic mechanisms used by the host to defend against infection. Herein we describe a class of effectors that use post-translational modifications, some reversible and others irreversible, to manipulate host signaling systems to subvert the host response.
Collapse
|
32
|
Silver AC, Graf J. Prevalence of genes encoding the type three secretion system and the effectors AexT and AexU in the Aeromonas veronii group. DNA Cell Biol 2009; 28:383-8. [PMID: 19534604 DOI: 10.1089/dna.2009.0867] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The prevalence of important virulence factors, the type III secretion system (T3SS) and two T3SS-dependent toxins, AexT and AexU, was evaluated in the Aeromonas veronii group (AVG). Members of the AVG have a broad host range, including vertebrates and invertebrates, and form a variety of associations, spanning from pathogenic to mutualistic. Our AVG strain collection consists of human, duck, eel, and leech isolates. These isolates were examined for the presence of the T3SS, AexT, and AexU through PCR analysis. Two loci of the T3SS, ascV and ascF-ascG, and aexT and aexU were PCR amplified and sequenced from these isolates. All 20 environmental and clinical isolates possessed the T3SS and both effectors, which indicates a much greater prevalence than reported by previous studies. Sequence analysis of the C-terminal domains of aexT and aexU revealed a much higher nucleotide substitution rate for aexU (19.7%) when compared to aexT (4%). The lack of sequence variability among aexT homologs suggests that it has a conserved function among the AVG. The increased variation of the aexU sequence suggests the presence of different alleles, which indicates that it may serve different functions.
Collapse
Affiliation(s)
- Adam C Silver
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, 06269, USA
| | | |
Collapse
|
33
|
Fieldhouse RJ, Merrill AR. Needle in the haystack: structure-based toxin discovery. Trends Biochem Sci 2008; 33:546-56. [PMID: 18815047 DOI: 10.1016/j.tibs.2008.08.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Revised: 07/25/2008] [Accepted: 08/13/2008] [Indexed: 12/26/2022]
Abstract
In the current data-rich era, making the leap from sequence data to knowledge is a task that requires an elegant bioinformatics toolset to pinpoint pressing research questions. Therefore, a strategy to expand important protein-family knowledge is required, particularly in cases in which primary sequence identity is low but structural conservation is high. For example, the mono-ADP-ribosylating toxins fit these criteria and several approaches have been used to accelerate the discovery of new family members. The strategy evolved from conduction of PSI-BLAST searches through to the combination of secondary-structure prediction with pattern-based searches. However, a newly developed tactic, in which fold recognition dominates, reduces reliance on sequence similarity and advances scientists toward a true structure-based protein-family expansion methodology.
Collapse
Affiliation(s)
- Robert J Fieldhouse
- Department of Molecular and Cellular Biology, University of Guelph, ON, Canada
| | | |
Collapse
|
34
|
The genome of Aeromonas salmonicida subsp. salmonicida A449: insights into the evolution of a fish pathogen. BMC Genomics 2008; 9:427. [PMID: 18801193 PMCID: PMC2556355 DOI: 10.1186/1471-2164-9-427] [Citation(s) in RCA: 217] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Accepted: 09/18/2008] [Indexed: 12/04/2022] Open
Abstract
Background Aeromonas salmonicida subsp. salmonicida is a Gram-negative bacterium that is the causative agent of furunculosis, a bacterial septicaemia of salmonid fish. While other species of Aeromonas are opportunistic pathogens or are found in commensal or symbiotic relationships with animal hosts, A. salmonicida subsp. salmonicida causes disease in healthy fish. The genome sequence of A. salmonicida was determined to provide a better understanding of the virulence factors used by this pathogen to infect fish. Results The nucleotide sequences of the A. salmonicida subsp. salmonicida A449 chromosome and two large plasmids are characterized. The chromosome is 4,702,402 bp and encodes 4388 genes, while the two large plasmids are 166,749 and 155,098 bp with 178 and 164 genes, respectively. Notable features are a large inversion in the chromosome and, in one of the large plasmids, the presence of a Tn21 composite transposon containing mercury resistance genes and an In2 integron encoding genes for resistance to streptomycin/spectinomycin, quaternary ammonia compounds, sulphonamides and chloramphenicol. A large number of genes encoding potential virulence factors were identified; however, many appear to be pseudogenes since they contain insertion sequences, frameshifts or in-frame stop codons. A total of 170 pseudogenes and 88 insertion sequences (of ten different types) are found in the A. salmonicida genome. Comparison with the A. hydrophila ATCC 7966T genome reveals multiple large inversions in the chromosome as well as an approximately 9% difference in gene content indicating instances of single gene or operon loss or gain. A limited number of the pseudogenes found in A. salmonicida A449 were investigated in other Aeromonas strains and species. While nearly all the pseudogenes tested are present in A. salmonicida subsp. salmonicida strains, only about 25% were found in other A. salmonicida subspecies and none were detected in other Aeromonas species. Conclusion Relative to the A. hydrophila ATCC 7966T genome, the A. salmonicida subsp. salmonicida genome has acquired multiple mobile genetic elements, undergone substantial rearrangement and developed a significant number of pseudogenes. These changes appear to be a consequence of adaptation to a specific host, salmonid fish, and provide insights into the mechanisms used by the bacterium for infection and avoidance of host defence systems.
Collapse
|
35
|
Vibrio parahaemolyticus inhibition of Rho family GTPase activation requires a functional chromosome I type III secretion system. Infect Immun 2008; 76:2202-11. [PMID: 18347050 DOI: 10.1128/iai.01704-07] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Vibrio parahaemolyticus is a leading cause of seafood-borne gastroenteritis; however, its virulence mechanisms are not well understood. The identification of type III secreted proteins has provided candidate virulence factors whose functions are still being elucidated. Genotypic strain variability contributes a level of complexity to understanding the role of different virulence factors. The ability of V. parahaemolyticus to inhibit Rho family GTPases and cause cytoskeletal disruption was examined with HeLa cells. After HeLa cells were infected, intracellular Rho activation was inhibited in response to external stimuli. In vitro activation of Rho, Rac, and Cdc42 isolated from infected HeLa cell lysates was also inhibited, indicating that the bacteria were specifically targeting GTPase activation. The inhibition of Rho family GTPase activation was retained for clinical and environmental isolates of V. parahaemolyticus and was dependent on a functional chromosome I type III secretion system (CI-T3SS). GTPase inhibition was independent of hemolytic toxin genotype and the chromasome II (CII)-T3SS. Rho inhibition was accompanied by a shift in the total actin pool to its monomeric form. These phenotypes were abrogated in a mutant strain lacking the CI-T3S effector Vp1686, suggesting that the inhibiting actin polymerization may be a downstream effect of Vp1686-dependent GTPase inhibition. Although Vp1686 has been previously characterized as a potential virulence factor in macrophages, our findings reveal an effect on cultured HeLa cells. The ability to inhibit Rho family GTPases independently of the CII-T3SS and the hemolytic toxins may provide insight into the mechanisms of virulence used by strains lacking these virulence factors.
Collapse
|