1
|
Wu X, Deng Y, Xu Y, Kang H, Hu JJ, Yoon J, Liang G. Activatable Fluorescence and Bio/Chemiluminescence Probes for Aminopeptidases: From Design to Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2409893. [PMID: 39235570 DOI: 10.1002/adma.202409893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/27/2024] [Indexed: 09/06/2024]
Abstract
Aminopeptidases are exopeptidases that catalyze the cleavage of amino acid residues from the N-terminal fragment of protein or peptide substrates. Owing to their function, they play important roles in protein maturation, signal transduction, cell-cycle control, and various disease mechanisms, notably in cancer pathology. To gain better insights into their function, molecular imaging assisted by fluorescence and bio/chemiluminescence probes has become an indispensable method to their superiorities, including excellent sensitivity, selectivity, and real-time and noninvasive imaging. Numerous efforts are made to develop activatable probes that can effectively enhance efficiency and accuracy as well as minimize the side effects. This review is classified according to the type of aminopeptidases, summarizing some recent works on the design, work mechanism, and sensing, imaging, and theranostic performance of their activatable probe. Finally, the current challenges are outlined in developing activatable probes for aminopeptidases and provide possible solutions for future advancements.
Collapse
Affiliation(s)
- Xiaofeng Wu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yu Deng
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Ying Xu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Heemin Kang
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, South Korea
| | - Jing-Jing Hu
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, South Korea
| | - Gaolin Liang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| |
Collapse
|
2
|
Jamdar SN, Yadav P, Kulkarni BS, Sudesh, Kumar A, Makde RD. Crystal structure of a newly identified M61 family aminopeptidase with broad substrate specificity that is solely responsible for recycling acidic amino acids. FEBS J 2024; 291:3211-3232. [PMID: 38646733 DOI: 10.1111/febs.17133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 02/10/2024] [Accepted: 03/25/2024] [Indexed: 04/23/2024]
Abstract
Aminopeptidases with varied substrate specificities are involved in different crucial physiological processes of cellular homeostasis. They also have wide applications in food and pharma industries. Within the bacterial cell, broad specificity aminopeptidases primarily participate in the recycling of amino acids by degrading oligopeptides generated via primary proteolysis mediated by cellular ATP-dependent proteases. However, in bacteria, a truly broad specificity enzyme, which can cleave off acidic, basic, Gly and hydrophobic amino acid residues, is extremely rare. Here, we report structure-function of a putative glycyl aminopeptidase (M61xc) from Xanthomonas campestris pv campestris (Xcc) belonging to the M61 peptidase family. The enzyme exhibits broad specificity and cleaves Ala, Leu, Asp, Glu, Met, Ser, Phe, Tyr, Gly, Arg, and Lys at the N terminus, optimally of peptides with a length of 3-7 amino acids. Further, we report the high-resolution crystal structure of M61xc in the apo form (2.1 Å) and bestatin-bound form (1.95 Å), detailing its catalytic and substrate preference mechanisms. Comparative analysis of enzyme activity in crude cell extracts from both wild-type and m61xc-knockout mutant strains of Xcc has elucidated the unique intracellular role of M61xc. This study suggests that M61xc is the exclusive enzyme in these bacteria that is responsible for liberating Asp/Glu residues from the N-termini of peptides. Also, in view of its broad specificity and peptide degradation ability, it could be considered equivalent to M1 or other oligomeric peptidases from families like M17, M18, M42 or S9, who have an important auxiliary role in post-proteasomal protein degradation in prokaryotes.
Collapse
Affiliation(s)
- Sahayog N Jamdar
- Food Technology Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Pooja Yadav
- Beamline Development and Application Section, Bhabha Atomic Research Centre, Mumbai, India
| | | | - Sudesh
- Food Technology Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Ashwani Kumar
- Beamline Development and Application Section, Bhabha Atomic Research Centre, Mumbai, India
| | - Ravindra D Makde
- Beamline Development and Application Section, Bhabha Atomic Research Centre, Mumbai, India
| |
Collapse
|
3
|
Mahanta PJ, Lhouvum K. Plasmodium falciparum proteases as new drug targets with special focus on metalloproteases. Mol Biochem Parasitol 2024; 258:111617. [PMID: 38554736 DOI: 10.1016/j.molbiopara.2024.111617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/15/2024] [Accepted: 03/10/2024] [Indexed: 04/02/2024]
Abstract
Malaria poses a significant global health threat particularly due to the prevalence of Plasmodium falciparum infection. With the emergence of parasite resistance to existing drugs including the recently discovered artemisinin, ongoing research seeks novel therapeutic avenues within the malaria parasite. Proteases are promising drug targets due to their essential roles in parasite biology, including hemoglobin digestion, merozoite invasion, and egress. While exploring the genomic landscape of Plasmodium falciparum, it has been revealed that there are 92 predicted proteases, with only approximately 14 of them having been characterized. These proteases are further distributed among 26 families grouped into five clans: aspartic proteases, cysteine proteases, metalloproteases, serine proteases, and threonine proteases. Focus on metalloprotease class shows further role in organelle processing for mitochondria and apicoplasts suggesting the potential of metalloproteases as viable drug targets. Holistic understanding of the parasite intricate life cycle and identification of potential drug targets are essential for developing effective therapeutic strategies against malaria and mitigating its devastating global impact.
Collapse
Affiliation(s)
| | - Kimjolly Lhouvum
- Department of Biotechnology, National Institute of Technology, Arunachal Pradesh, India.
| |
Collapse
|
4
|
Patra J, Rana D, Arora S, Pal M, Mahindroo N. Falcipains: Biochemistry, target validation and structure-activity relationship studies of inhibitors as antimalarials. Eur J Med Chem 2023; 252:115299. [PMID: 36996716 DOI: 10.1016/j.ejmech.2023.115299] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/04/2023] [Accepted: 03/17/2023] [Indexed: 03/29/2023]
Abstract
Malaria is a tropical disease with significant morbidity and mortality burden caused by Plasmodium species in Africa, the Middle East, Asia, and South America. Pathogenic Plasmodium species have lately become increasingly resistant to approved chemotherapeutics and combination therapies. Therefore, there is an emergent need for identifying new druggable targets and novel chemical classes against the parasite. Falcipains, cysteine proteases required for heme metabolism in the erythrocytic stage, have emerged as promising drug targets against Plasmodium species that infect humans. This perspective discusses the biology, biochemistry, structural features, and genetics of falcipains. The efforts to identify selective or dual inhibitors and their structure-activity relationships are reviewed to give a perspective on the design of novel compounds targeting falcipains for antimalarial activity evaluating reasons for hits and misses for this important target.
Collapse
Affiliation(s)
- Jeevan Patra
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Energy Acres, Bidholi, Via Prem Nagar, Uttarakhand, 248007, India
| | - Devika Rana
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Bajhol, Solan, Himachal Pradesh, 173229, India
| | - Smriti Arora
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Energy Acres, Bidholi, Via Prem Nagar, Uttarakhand, 248007, India
| | - Mintu Pal
- Department of Pharmacology, All India Institute of Medical Sciences (AIIMS), Bathinda, Punjab, 151001, India
| | - Neeraj Mahindroo
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Energy Acres, Bidholi, Via Prem Nagar, Uttarakhand, 248007, India; School of Health Sciences and Technology, Dr. Vishwanath Karad MIT World Peace University, 124 Paud Road, Kothrud, Pune, Maharashtra, 411038, India.
| |
Collapse
|
5
|
de Morais MC, Medeiros GA, Almeida FS, Rocha JDC, Perez-Castillo Y, Keesen TDSL, de Sousa DP. Antileishmanial Activity of Cinnamic Acid Derivatives against Leishmania infantum. Molecules 2023; 28:molecules28062844. [PMID: 36985814 PMCID: PMC10053546 DOI: 10.3390/molecules28062844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Leishmania infantum is the etiological agent of visceral leishmaniasis (VL) in South America, the Mediterranean basin, and West and Central Asia. The most affected country, Brazil, reported 4297 VL cases in 2017. L. infantum is transmitted by female phlebotomine sand flies during successive blood meals. There are no validated vaccines to prevent the infection and the treatment relies on drugs that often present severe side effects, which justify the efforts to find new antileishmanial drugs. Cinnamic acid derivatives have shown several pharmacological activities, including antiparasitic action. Therefore, in the present study, the biological evaluation of cinnamic acid and thirty-four derivatives against L. infantum is reported. The compounds were prepared by several synthesis methods and characterized by spectroscopic techniques and high-resolution mass spectrometry. The results revealed that compound 32 (N-(4-isopropylbenzyl)cinnamamide) was the most potent antileishmanial agent (IC50 = 33.71 μM) with the highest selectivity index (SI > 42.46), followed by compound 15 (piperonyl cinnamate) with an IC50 = 42.80 μM and SI > 32.86. Compound 32 was slightly less potent and nineteen times more selective for the parasite than amphotericin B (MIC = 3.14 uM; SI = 2.24). In the molecular docking study, the most likely target for the compound in L. infantum was aspartyl aminopeptidase, followed by aldehyde dehydrogenase, mitochondrial. The data obtained show the antileishmanial potential of this class of compounds and may be used in the search for new drug candidates against Leishmania species.
Collapse
Affiliation(s)
- Mayara Castro de Morais
- Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa 58051-900, BP, Brazil
| | - Gisele Alves Medeiros
- Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa 58051-900, BP, Brazil
| | - Fernanda Silva Almeida
- Immunology of Infectious Diseases Laboratory, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa 58051-900, BP, Brazil
| | - Juliana da Câmara Rocha
- Immunology of Infectious Diseases Laboratory, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa 58051-900, BP, Brazil
| | - Yunierkis Perez-Castillo
- Bio-Cheminformatics Research Group and Area de Ciencias Aplicadas, Facultad de Ingeniería y Ciencias Aplicadas, Universidad de Las Americas, Quito 170503, Ecuador
| | - Tatjana de Souza Lima Keesen
- Immunology of Infectious Diseases Laboratory, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa 58051-900, BP, Brazil
| | - Damião Pergentino de Sousa
- Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa 58051-900, BP, Brazil
- Postgraduate Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa 58051-900, BP, Brazil
| |
Collapse
|
6
|
Aguado ME, Izquierdo M, González-Matos M, Varela AC, Méndez Y, Del Rivero MA, Rivera DG, González-Bacerio J. Parasite Metalo-aminopeptidases as Targets in Human Infectious Diseases. Curr Drug Targets 2023; 24:416-461. [PMID: 36825701 DOI: 10.2174/1389450124666230224140724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/25/2022] [Accepted: 01/02/2023] [Indexed: 02/25/2023]
Abstract
BACKGROUND Parasitic human infectious diseases are a worldwide health problem due to the increased resistance to conventional drugs. For this reason, the identification of novel molecular targets and the discovery of new chemotherapeutic agents are urgently required. Metalo- aminopeptidases are promising targets in parasitic infections. They participate in crucial processes for parasite growth and pathogenesis. OBJECTIVE In this review, we describe the structural, functional and kinetic properties, and inhibitors, of several parasite metalo-aminopeptidases, for their use as targets in parasitic diseases. CONCLUSION Plasmodium falciparum M1 and M17 aminopeptidases are essential enzymes for parasite development, and M18 aminopeptidase could be involved in hemoglobin digestion and erythrocyte invasion and egression. Trypanosoma cruzi, T. brucei and Leishmania major acidic M17 aminopeptidases can play a nutritional role. T. brucei basic M17 aminopeptidase down-regulation delays the cytokinesis. The inhibition of Leishmania basic M17 aminopeptidase could affect parasite viability. L. donovani methionyl aminopeptidase inhibition prevents apoptosis but not the parasite death. Decrease in Acanthamoeba castellanii M17 aminopeptidase activity produces cell wall structural modifications and encystation inhibition. Inhibition of Babesia bovis growth is probably related to the inhibition of the parasite M17 aminopeptidase, probably involved in host hemoglobin degradation. Schistosoma mansoni M17 aminopeptidases inhibition may affect parasite development, since they could participate in hemoglobin degradation, surface membrane remodeling and eggs hatching. Toxoplasma gondii M17 aminopeptidase inhibition could attenuate parasite virulence, since it is apparently involved in the hydrolysis of cathepsin Cs- or proteasome-produced dipeptides and/or cell attachment/invasion processes. These data are relevant to validate these enzymes as targets.
Collapse
Affiliation(s)
- Mirtha E Aguado
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, 10400, Vedado, La Habana, Cuba
| | - Maikel Izquierdo
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, 10400, Vedado, La Habana, Cuba
| | - Maikel González-Matos
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, 10400, Vedado, La Habana, Cuba
| | - Ana C Varela
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, 10400, Vedado, La Habana, Cuba
| | - Yanira Méndez
- Center for Natural Products Research, Faculty of Chemistry, University of Havana, Zapata y G, 10400, La Habana, Cuba
| | - Maday A Del Rivero
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, 10400, Vedado, La Habana, Cuba
| | - Daniel G Rivera
- Center for Natural Products Research, Faculty of Chemistry, University of Havana, Zapata y G, 10400, La Habana, Cuba
| | - Jorge González-Bacerio
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, 10400, Vedado, La Habana, Cuba
- Department of Biochemistry, Faculty of Biology, University of Havana, calle 25 #455 entre I y J, 10400, Vedado, La Habana, Cuba
| |
Collapse
|
7
|
Shang Z, Guo Q, Zhou X, Yue Y, Zhou K, Tang L, Zhang Z, Fu Z, Liu J, Lin J, Xu B, Zhang M, Hong Y. Characterization of aspartyl aminopeptidase from Schistosoma japonicum. Acta Trop 2022; 232:106519. [PMID: 35584779 DOI: 10.1016/j.actatropica.2022.106519] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 05/04/2022] [Accepted: 05/13/2022] [Indexed: 11/27/2022]
Abstract
The tegument of schistosomes is the interface between the worm and the host environment. Some molecules distributed on the tegument participate in host-parasite interactions. Aspartyl aminopeptidase (AAP), identified on the tegument of Schistosoma japonicum (S. japonicum), facilitate protein turnover by acting in concert with other aminopeptidases. In this study, the gene encoding S. japonicum aspartyl aminopeptidase (SjAAP) was cloned, expressed and characterized. Quantitative real-time PCR analysis showed that SjAAP was expressed in all studied developmental stages. The transcript level was higher in 8, 14, 21, and 28 days old worms than the other detected stages. Moreover, the level of expression in 42-day-old male worms was significantly higher than that in females. The recombinant SjAAP (rSjAAP) was expressed as both supernatant and inclusion bodies in Escherichia coli BL21 cells. The enzymatic activity of rSjAAP was 4.45 U/mg. The Km and Vmax values for H-Asp-pNA hydrolysis were discovered to be 5.93 mM and 0.018 mM·min-1. Immunofluorescence analysis revealed that SjAAP is primarily distributed on the tegument and parenchyma of schistosomes. Western blot showed that rSjAAP possessed good immunogenicity. Although specific antibodies were produced in BALB/c mice vaccinated with rSjAAP emulsified with ISA 206 adjuvant, no significant reduction of worm burden and number of eggs in the liver was observed. Therefore, rSjAAP may not be suitable to act as a potential vaccine candidate against schistosomiasis japonica in mice. However, this study provides some foundation for further exploration of the biological function of this molecule.
Collapse
|
8
|
Lebelt L, Głowacka IE, Piotrowska DG. Synthesis of Four Enantiomers of (1-Amino-3-Hydroxypropane-1,3-Diyl)Diphosphonic Acid as Diphosphonate Analogues of 4-Hydroxyglutamic Acid. Molecules 2022; 27:2699. [PMID: 35566049 PMCID: PMC9105571 DOI: 10.3390/molecules27092699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 02/04/2023] Open
Abstract
All the enantiomers of (1-amino-3-hydroxypropane-1,3-diyl)diphosphonic acid, newly design phosphonate analogues of 4-hydroxyglutamic acids, were obtained. The synthetic strategy involved Abramov reactions of diethyl (R)- and (S)-1-(N-Boc-amino)-3-oxopropylphosphonates with diethyl phosphite, separation of diastereoisomeric [1-(N-Boc-amino)-3-hydroxypropane-1,3-diyl]diphosphonates as O-protected esters, followed by their hydrolysis to the enantiomeric phosphonic acids. The absolute configuration of the enantiomeric phosphonates was established by comparing the 31P NMR chemical shifts of respective (S)-O-methylmandelic acid esters obtained from respective pairs of syn- and anti-[1-(N-Boc-amino)-3-hydroxypropane-1,3-diyl]diphosphonates according to the Spilling rule.
Collapse
Affiliation(s)
| | | | - Dorota G. Piotrowska
- Bioorganic Chemistry Laboratory, Faculty of Pharmacy, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland; (L.L.); (I.E.G.)
| |
Collapse
|
9
|
González-Bacerio J, Izquierdo M, Aguado ME, Varela AC, González-Matos M, Del Rivero MA. Using microbial metalo-aminopeptidases as targets in human infectious diseases. MICROBIAL CELL 2021; 8:239-246. [PMID: 34692819 PMCID: PMC8485470 DOI: 10.15698/mic2021.10.761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 07/22/2021] [Accepted: 07/28/2021] [Indexed: 11/13/2022]
Abstract
Several microbial metalo-aminopeptidases are emerging as novel targets for the treatment of human infectious diseases. Some of them are well validated as targets and some are not; some are essential enzymes and others are important for virulence and pathogenesis. For another group, it is not clear if their enzymatic activity is involved in the critical functions that they mediate. But one aspect has been established: they display relevant roles in bacteria and protozoa that could be targeted for therapeutic purposes. This work aims to describe these biological functions for several microbial metalo-aminopeptidases.
Collapse
Affiliation(s)
- Jorge González-Bacerio
- Center for Protein Studies, Faculty of Biology, University of Havana, calle 25 #455 entre I y J, 10400, Vedado, La Habana, Cuba.,Department of Biochemistry, Faculty of Biology, University of Havana, calle 25 #455 entre I y J, 10400, Vedado, La Habana, Cuba
| | - Maikel Izquierdo
- Center for Protein Studies, Faculty of Biology, University of Havana, calle 25 #455 entre I y J, 10400, Vedado, La Habana, Cuba
| | - Mirtha Elisa Aguado
- Center for Protein Studies, Faculty of Biology, University of Havana, calle 25 #455 entre I y J, 10400, Vedado, La Habana, Cuba
| | - Ana C Varela
- Center for Protein Studies, Faculty of Biology, University of Havana, calle 25 #455 entre I y J, 10400, Vedado, La Habana, Cuba
| | - Maikel González-Matos
- Center for Protein Studies, Faculty of Biology, University of Havana, calle 25 #455 entre I y J, 10400, Vedado, La Habana, Cuba
| | - Maday Alonso Del Rivero
- Center for Protein Studies, Faculty of Biology, University of Havana, calle 25 #455 entre I y J, 10400, Vedado, La Habana, Cuba
| |
Collapse
|
10
|
Mills B, Isaac RE, Foster R. Metalloaminopeptidases of the Protozoan Parasite Plasmodium falciparum as Targets for the Discovery of Novel Antimalarial Drugs. J Med Chem 2021; 64:1763-1785. [PMID: 33534577 DOI: 10.1021/acs.jmedchem.0c01721] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Malaria poses a significant threat to approximately half of the world's population with an annual death toll close to half a million. The emergence of resistance to front-line antimalarials in the most lethal human parasite species, Plasmodium falciparum (Pf), threatens progress made in malaria control. The prospect of losing the efficacy of antimalarial drugs is driving the search for small molecules with new modes of action. Asexual reproduction of the parasite is critically dependent on the recycling of amino acids through catabolism of hemoglobin (Hb), which makes metalloaminopeptidases (MAPs) attractive targets for the development of new drugs. The Pf genome encodes eight MAPs, some of which have been found to be essential for parasite survival. In this article, we discuss the biological structure and function of each MAP within the Pf genome, along with the drug discovery efforts that have been undertaken to identify novel antimalarial candidates of therapeutic value.
Collapse
Affiliation(s)
- Belinda Mills
- School of Chemistry, University of Leeds, Leeds, U.K., LS2 9JT
| | - R Elwyn Isaac
- School of Biology, University of Leeds, Leeds, U.K., LS2 9JT
| | - Richard Foster
- School of Chemistry, University of Leeds, Leeds, U.K., LS2 9JT
| |
Collapse
|
11
|
Pascual Alonso I, Rivera Méndez L, Valdés-Tresanco ME, Bounaadja L, Schmitt M, Arrebola Sánchez Y, Alvarez Lajonchere L, Charli JL, Florent I. Biochemical evidences for M1-, M17- and M18-like aminopeptidases in marine invertebrates from Cuban coastline. Z NATURFORSCH C 2020; 75:397-407. [PMID: 32609656 DOI: 10.1515/znc-2019-0169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 06/01/2020] [Indexed: 11/15/2022]
Abstract
Metallo-aminopeptidases (mAPs) control many physiological processes. They are classified in different families according to structural similarities. Neutral mAPs catalyze the cleavage of neutral amino acids from the N-terminus of proteins or peptide substrates; they need one or two metallic cofactors in their active site. Information about marine invertebrate's neutral mAPs properties is scarce; available data are mainly derived from genomics and cDNA studies. The goal of this work was to characterize the biochemical properties of the neutral APs activities in eight Cuban marine invertebrate species from the Phyla Mollusca, Porifera, Echinodermata, and Cnidaria. Determination of substrate specificity, optimal pH and effects of inhibitors (1,10-phenanthroline, amastatin, and bestatin) and cobalt on activity led to the identification of distinct neutral AP-like activities, whose biochemical behaviors were similar to those of the M1 and M17 families of mAPs. Additionally, M18-like glutamyl AP activities were detected. Thus, marine invertebrates express biochemical activities likely belonging to various families of metallo-aminopeptidases.
Collapse
Affiliation(s)
- Isel Pascual Alonso
- Center for Protein Studies, Faculty of Biology, University of Havana, Havana, Cuba
| | - Laura Rivera Méndez
- Center for Protein Studies, Faculty of Biology, University of Havana, Havana, Cuba
| | - Mario E Valdés-Tresanco
- Center for Protein Studies, Faculty of Biology, University of Havana, Havana, Cuba.,Department of Biological Sciences, University of Calgary, Calgary, Canada
| | - Lotfi Bounaadja
- Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR 7245), Muséum National d'Histoire Naturelle, CNRS, Paris, France
| | - Marjorie Schmitt
- Laboratoire d'Innovation Moléculaire et Applications - Université de Haute-Alsace, Université de Strasbourg, CNRS, LIMA UMR7042, Mulhouse, France
| | | | - Luis Alvarez Lajonchere
- Museum of Natural History Felipe Poey, Faculty of Biology, University of Havana, Havana, Cuba
| | - Jean-Louis Charli
- Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Mexico
| | - Isabelle Florent
- Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR 7245), Muséum National d'Histoire Naturelle, CNRS, Paris, France
| |
Collapse
|
12
|
Rebello KM, Borges JN, Teixeira A, Perales J, Santos CP. Proteomic analysis of Ascocotyle longa (Trematoda: Heterophyidae) metacercariae. Mol Biochem Parasitol 2020; 239:111311. [PMID: 32745491 DOI: 10.1016/j.molbiopara.2020.111311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 11/16/2022]
Abstract
Ascocotyle longa is parasitic trematode with wide distribution throughout America, Europe, Africa, and Middle East. Despite the fact that this fish-borne pathogen has been considered an agent of human heterophyiasis in Brazil, the molecules involved in the host-parasite interaction remain unknown. The present study reports the proteome profile of A. longa metacercariae collected from the fish Mugil liza from Brazil. This infective stage for humans, mammals and birds was analyzed using nLC-MS/MS approach. We identified a large repertoire of proteins, which are mainly involved in energy metabolism and cell structure. Peptidases and immunogenic proteins were also identified, which might play roles in host-parasite interface. Our data provided unprecedented insights into the biology of A. longa and represent a first step to understand the natural host-parasite interaction. Moreover, as the first proteome characterized in this trematode, it will provide an important resource for future studies.
Collapse
Affiliation(s)
- Karina M Rebello
- Laboratório de Estudos Integrados em Protozoologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil; Laboratório de Toxinologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil.
| | - Juliana N Borges
- Laboratório de Avaliação e Promoção da Saúde Ambiental, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - André Teixeira
- Laboratório de Toxinologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Jonas Perales
- Laboratório de Toxinologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Cláudia P Santos
- Laboratório de Avaliação e Promoção da Saúde Ambiental, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil.
| |
Collapse
|
13
|
Rout S, Mahapatra RK. In silico study of M18 aspartyl amino peptidase (M18AAP) of Plasmodium vivax as an antimalarial drug target. Bioorg Med Chem 2019; 27:2553-2571. [DOI: 10.1016/j.bmc.2019.03.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/16/2019] [Accepted: 03/19/2019] [Indexed: 12/20/2022]
|
14
|
Mishra M, Singh V, Singh S. Structural Insights Into Key Plasmodium Proteases as Therapeutic Drug Targets. Front Microbiol 2019; 10:394. [PMID: 30891019 PMCID: PMC6411711 DOI: 10.3389/fmicb.2019.00394] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 02/14/2019] [Indexed: 11/13/2022] Open
Abstract
Malaria, caused by protozoan of genus Plasmodium, remains one of the highest mortality infectious diseases. Malaria parasites have a complex life cycle, easily adapt to their host’s immune system and have evolved with an arsenal of unique proteases which play crucial roles in proliferation and survival within the host cells. Owing to the existing knowledge of enzymatic mechanisms, 3D structures and active sites of proteases, they have been proven to be opportune for target based drug development. Here, we discuss in depth the crucial roles of essential proteases in Plasmodium life cycle and particularly focus on highlighting the atypical “structural signatures” of key parasite proteases which have been exploited for drug development. These features, on one hand aid parasites pathogenicity while on the other hand could be effective in designing targeted and very specific inhibitors for counteracting them. We conclude that Plasmodium proteases are suitable as multistage targets for designing novel drugs with new modes of action to combat malaria.
Collapse
Affiliation(s)
- Manasi Mishra
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Dadri, India
| | - Vigyasa Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Shailja Singh
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Dadri, India.,Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
15
|
Rout S, Mahapatra RK. Plasmodium falciparum: Multidrug resistance. Chem Biol Drug Des 2019; 93:737-759. [DOI: 10.1111/cbdd.13484] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 01/05/2019] [Accepted: 01/09/2019] [Indexed: 12/25/2022]
Affiliation(s)
- Subhashree Rout
- School of BiotechnologyKIIT University Bhubaneswar Odisha India
| | | |
Collapse
|
16
|
Escotte-Binet S, Huguenin A, Aubert D, Martin AP, Kaltenbach M, Florent I, Villena I. Metallopeptidases of Toxoplasma gondii: in silico identification and gene expression. ACTA ACUST UNITED AC 2018; 25:26. [PMID: 29737275 PMCID: PMC5939537 DOI: 10.1051/parasite/2018025] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 04/16/2018] [Indexed: 12/17/2022]
Abstract
Metallopeptidases are a family of proteins with domains that remain highly conserved throughout evolution. These hydrolases require divalent metal cation(s) to activate the water molecule in order to carry out their catalytic action on peptide bonds by nucleophilic attack. Metallopeptidases from parasitic protozoa, including Toxoplasma, are investigated because of their crucial role in parasite biology. In the present study, we screened the T. gondii database using PFAM motifs specific for metallopeptidases in association with the MEROPS peptidase Database (release 10.0). In all, 49 genes encoding proteins with metallopeptidase signatures were identified in the Toxoplasma genome. An Interpro Search enabled us to uncover their domain/motif organization, and orthologs with the highest similarity by BLAST were used for annotation. These 49 Toxoplasma metallopeptidases clustered into 15 families described in the MEROPS database. Experimental expression analysis of their genes in the tachyzoite stage revealed transcription for all genes studied. Further research on the role of these peptidases should increase our knowledge of basic Toxoplasma biology and provide opportunities to identify novel therapeutic targets. This type of study would also open a path towards the comparative biology of apicomplexans.
Collapse
Affiliation(s)
- Sandie Escotte-Binet
- EA 7510, ESCAPE, Laboratory of Parasitology-Mycology, University of Reims Champagne-Ardenne, 51100 Reims, France - Laboratory of Parasitology-Mycology, Toxoplasmosis National Reference Center, Toxoplasma Biological Resource Center, Maison Blanche Hospital, 51100 Reims, France
| | - Antoine Huguenin
- EA 7510, ESCAPE, Laboratory of Parasitology-Mycology, University of Reims Champagne-Ardenne, 51100 Reims, France - Laboratory of Parasitology-Mycology, Toxoplasmosis National Reference Center, Toxoplasma Biological Resource Center, Maison Blanche Hospital, 51100 Reims, France
| | - Dominique Aubert
- EA 7510, ESCAPE, Laboratory of Parasitology-Mycology, University of Reims Champagne-Ardenne, 51100 Reims, France - Laboratory of Parasitology-Mycology, Toxoplasmosis National Reference Center, Toxoplasma Biological Resource Center, Maison Blanche Hospital, 51100 Reims, France
| | - Anne-Pascaline Martin
- EA 7510, ESCAPE, Laboratory of Parasitology-Mycology, University of Reims Champagne-Ardenne, 51100 Reims, France
| | - Matthieu Kaltenbach
- EA 7510, ESCAPE, Laboratory of Parasitology-Mycology, University of Reims Champagne-Ardenne, 51100 Reims, France
| | - Isabelle Florent
- UMR7245 CNRS-MNHN, National Museum of Natural History, Department Adaptations of the Living, 75005 Paris, France
| | - Isabelle Villena
- EA 7510, ESCAPE, Laboratory of Parasitology-Mycology, University of Reims Champagne-Ardenne, 51100 Reims, France - Laboratory of Parasitology-Mycology, Toxoplasmosis National Reference Center, Toxoplasma Biological Resource Center, Maison Blanche Hospital, 51100 Reims, France
| |
Collapse
|
17
|
Park SY, Scranton MA, Stajich JE, Yee A, Walling LL. Chlorophyte aspartyl aminopeptidases: Ancient origins, expanded families, new locations, and secondary functions. PLoS One 2017; 12:e0185492. [PMID: 29023459 PMCID: PMC5638241 DOI: 10.1371/journal.pone.0185492] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 09/13/2017] [Indexed: 11/19/2022] Open
Abstract
M18 aspartyl aminopeptidases (DAPs) are well characterized in microbes and animals with likely functions in peptide processing and vesicle trafficking. In contrast, there is a dearth of knowledge on plant aminopeptidases with a preference for proteins and peptides with N-terminal acidic residues. During evolution of the Plantae, there was an expansion and diversification of the M18 DAPs. After divergence of the ancestral green algae from red and glaucophyte algae, a duplication yielded the DAP1 and DAP2 lineages. Subsequently DAP1 genes were lost in chlorophyte algae. A duplication of DAP2-related genes occurred early in green plant evolution. DAP2 genes were retained in land plants and picoeukaryotic algae and lost in green algae. In contrast, DAP2-like genes persisted in picoeukaryotic and green algae, while this lineage was lost in land plants. Consistent with this evolutionary path, Arabidopsis thaliana has two DAP gene lineages (AtDAP1 and AtDAP2). Similar to animal and yeast DAPs, AtDAP1 is localized to the cytosol or vacuole; while AtDAP2 harbors an N-terminal transit peptide and is chloroplast localized. His6-DAP1 and His6-DAP2 expressed in Escherichia coli were enzymatically active and dodecameric with masses exceeding 600 kDa. His6-DAP1 and His6-DAP2 preferentially hydrolyzed Asp-p-nitroanilide and Glu-p-nitroanilide. AtDAPs are highly conserved metallopeptidases activated by MnCl2 and inhibited by ZnCl2 and divalent ion chelators. The protease inhibitor PMSF inhibited and DTT stimulated both His6-DAP1 and His6-DAP2 activities suggesting a role for thiols in the AtDAP catalytic mechanism. The enzymes had distinct pH and temperature optima, as well as distinct kinetic parameters. Both enzymes had high catalytic efficiencies (kcat/Km) exceeding 1.0 x 107 M-1 sec-1. Using established molecular chaperone assays, AtDAP1 and AtDAP2 prevented thermal denaturation. AtDAP1 also prevented protein aggregation and promoted protein refolding. Collectively, these data indicate that plant DAPs have a complex evolutionary history and have evolved new biochemical features that may enable their role in vivo.
Collapse
Affiliation(s)
- Sang-Youl Park
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, California, United States of America
| | - Melissa A. Scranton
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, California, United States of America
| | - Jason E. Stajich
- Department of Plant Pathology and Microbiology, Center for Plant Cell Biology, University of California, Riverside, California, United States of America
| | - Ashley Yee
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, California, United States of America
| | - Linda L. Walling
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, California, United States of America
- * E-mail:
| |
Collapse
|
18
|
Deu E. Proteases as antimalarial targets: strategies for genetic, chemical, and therapeutic validation. FEBS J 2017; 284:2604-2628. [PMID: 28599096 PMCID: PMC5575534 DOI: 10.1111/febs.14130] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 04/29/2017] [Accepted: 06/06/2017] [Indexed: 01/17/2023]
Abstract
Malaria is a devastating parasitic disease affecting half of the world's population. The rapid emergence of resistance against new antimalarial drugs, including artemisinin-based therapies, has made the development of drugs with novel mechanisms of action extremely urgent. Proteases are enzymes proven to be well suited for target-based drug development due to our knowledge of their enzymatic mechanisms and active site structures. More importantly, Plasmodium proteases have been shown to be involved in a variety of pathways that are essential for parasite survival. However, pharmacological rather than target-based approaches have dominated the field of antimalarial drug development, in part due to the challenge of robustly validating Plasmodium targets at the genetic level. Fortunately, over the last few years there has been significant progress in the development of efficient genetic methods to modify the parasite, including several conditional approaches. This progress is finally allowing us not only to validate essential genes genetically, but also to study their molecular functions. In this review, I present our current understanding of the biological role proteases play in the malaria parasite life cycle. I also discuss how the recent advances in Plasmodium genetics, the improvement of protease-oriented chemical biology approaches, and the development of malaria-focused pharmacological assays, can be combined to achieve a robust biological, chemical and therapeutic validation of Plasmodium proteases as viable drug targets.
Collapse
Affiliation(s)
- Edgar Deu
- Chemical Biology Approaches to Malaria LaboratoryThe Francis Crick InstituteLondonUK
| |
Collapse
|
19
|
Characterization of aspartyl aminopeptidase from Toxoplasma gondii. Sci Rep 2016; 6:34448. [PMID: 27678060 PMCID: PMC5039622 DOI: 10.1038/srep34448] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 09/13/2016] [Indexed: 12/14/2022] Open
Abstract
Aminopeptidases have emerged as new promising drug targets for the development of novel anti-parasitic drugs. An aspartyl aminopeptidase-like gene has been identified in the Toxoplasma gondii genome (TgAAP), although its function remains unknown. In this study, we characterized TgAAP and performed functional analysis of the gene product. Firstly, we expressed a functional recombinant TgAAP (rTgAAP) protein in Escherichia coli, and found that it required metal ions for activity and showed a substrate preference for N-terminal acidic amino acids Glu and Asp. Then, we evaluated the function and drug target potential of TgAAP using the CRISPR/Cas9 knockout system. Western blotting demonstrated the deletion of TgAAP in the knockout strain. Indirect immunofluorescence analysis showed that TgAAP was localized in the cytoplasm of the wild-type parasite, but was not expressed in the knockout strain. Phenotype analysis revealed that TgAAP knockout inhibited the attachment/invasion, replication, and substrate-specific activity in T. gondii. Finally, the activity of drug CID 23724194, previously described as targeting Plasmodium and malarial parasite AAP, was tested against rTgAAP and the parasite. Overall, TgAAP knockout affected the growth of T. gondii but did not completely abolish parasite replication and growth. Therefore, TgAAP may comprise a useful adjunct drug target of T. gondii.
Collapse
|
20
|
Structure and substrate fingerprint of aminopeptidase P from Plasmodium falciparum. Biochem J 2016; 473:3189-204. [DOI: 10.1042/bcj20160550] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Accepted: 07/26/2016] [Indexed: 12/18/2022]
Abstract
Malaria is one of the world's most prevalent parasitic diseases, with over 200 million cases annually. Alarmingly, the spread of drug-resistant parasites threatens the effectiveness of current antimalarials and has made the development of novel therapeutic strategies a global health priority. Malaria parasites have a complicated lifecycle, involving an asymptomatic ‘liver stage’ and a symptomatic ‘blood stage’. During the blood stage, the parasites utilise a proteolytic cascade to digest host hemoglobin, which produces free amino acids absolutely necessary for parasite growth and reproduction. The enzymes required for hemoglobin digestion are therefore attractive therapeutic targets. The final step of the cascade is catalyzed by several metalloaminopeptidases, including aminopeptidase P (APP). We developed a novel platform to examine the substrate fingerprint of APP from Plasmodium falciparum (PfAPP) and to show that it can catalyze the removal of any residue immediately prior to a proline. Further, we have determined the crystal structure of PfAPP and present the first examination of the 3D structure of this essential malarial enzyme. Together, these analyses provide insights into potential mechanisms of inhibition that could be used to develop novel antimalarial therapeutics.
Collapse
|
21
|
Independent amino acid residues in the S2 pocket of falcipain-3 determine its specificity for P2 residues in substrates. Mol Biochem Parasitol 2015; 202:11-22. [DOI: 10.1016/j.molbiopara.2015.09.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 09/24/2015] [Accepted: 09/28/2015] [Indexed: 12/23/2022]
|
22
|
Paiardini A, Bamert RS, Kannan-Sivaraman K, Drinkwater N, Mistry SN, Scammells PJ, McGowan S. Screening the Medicines for Malaria Venture "Malaria Box" against the Plasmodium falciparum aminopeptidases, M1, M17 and M18. PLoS One 2015; 10:e0115859. [PMID: 25700165 PMCID: PMC4336144 DOI: 10.1371/journal.pone.0115859] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 12/02/2014] [Indexed: 12/12/2022] Open
Abstract
Malaria is a parasitic disease that remains a global health burden. The ability of the parasite to rapidly develop resistance to therapeutics drives an urgent need for the delivery of new drugs. The Medicines for Malaria Venture have compounds known for their antimalarial activity, but not necessarily the molecular targets. In this study, we assess the ability of the “MMV 400” compounds to inhibit the activity of three metalloaminopeptidases from Plasmodium falciparum, PfA-M1, PfA-M17 and PfM18 AAP. We have developed a multiplex assay system to allow rapid primary screening of compounds against all three metalloaminopeptidases, followed by detailed analysis of promising compounds. Our results show that there were no PfM18AAP inhibitors, whereas two moderate inhibitors of the neutral aminopeptidases PfA-M1 and PfA-M17 were identified. Further investigation through structure-activity relationship studies and molecular docking suggest that these compounds are competitive inhibitors with novel binding mechanisms, acting through either non-classical zinc coordination or independently of zinc binding altogether. Although it is unlikely that inhibition of PfA-M1 and/or PfA-M17 is the primary mechanism responsible for the antiplasmodial activity reported for these compounds, their detailed characterization, as presented in this work, pave the way for their further optimization as a novel class of dual PfA-M1/PfA-M17 inhibitors utilising non-classical zinc binding groups.
Collapse
Affiliation(s)
- Alessandro Paiardini
- Dipartmento di Scienze biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Roma, Italy
| | - Rebecca S. Bamert
- Department of Biochemistry and Molecular Biology, Monash University, Clayton Campus, Melbourne, Victoria, Australia
| | - Komagal Kannan-Sivaraman
- Department of Biochemistry and Molecular Biology, Monash University, Clayton Campus, Melbourne, Victoria, Australia
| | - Nyssa Drinkwater
- Department of Biochemistry and Molecular Biology, Monash University, Clayton Campus, Melbourne, Victoria, Australia
| | - Shailesh N. Mistry
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville Campus, Melbourne, Victoria, Australia
| | - Peter J. Scammells
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville Campus, Melbourne, Victoria, Australia
| | - Sheena McGowan
- Department of Biochemistry and Molecular Biology, Monash University, Clayton Campus, Melbourne, Victoria, Australia
- * E-mail:
| |
Collapse
|
23
|
Abstract
Despite a century of control and eradication campaigns, malaria remains one of the world's most devastating diseases. Our once-powerful therapeutic weapons are losing the war against the Plasmodium parasite, whose ability to rapidly develop and spread drug resistance hamper past and present malaria-control efforts. Finding new and effective treatments for malaria is now a top global health priority, fuelling an increase in funding and promoting open-source collaborations between researchers and pharmaceutical consortia around the world. The result of this is rapid advances in drug discovery approaches and technologies, with three major methods for antimalarial drug development emerging: (i) chemistry-based, (ii) target-based, and (iii) cell-based. Common to all three of these approaches is the unique ability of structural biology to inform and accelerate drug development. Where possible, SBDD (structure-based drug discovery) is a foundation for antimalarial drug development programmes, and has been invaluable to the development of a number of current pre-clinical and clinical candidates. However, as we expand our understanding of the malarial life cycle and mechanisms of resistance development, SBDD as a field must continue to evolve in order to develop compounds that adhere to the ideal characteristics for novel antimalarial therapeutics and to avoid high attrition rates pre- and post-clinic. In the present review, we aim to examine the contribution that SBDD has made to current antimalarial drug development efforts, covering hit discovery to lead optimization and prevention of parasite resistance. Finally, the potential for structural biology, particularly high-throughput structural genomics programmes, to identify future targets for drug discovery are discussed.
Collapse
|
24
|
Chen Y, Tang H, Seibel W, Papoian R, Oh K, Li X, Zhang J, Golczak M, Palczewski K, Kiser PD. Identification and characterization of novel inhibitors of Mammalian aspartyl aminopeptidase. Mol Pharmacol 2014; 86:231-42. [PMID: 24913940 DOI: 10.1124/mol.114.093070] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Aspartyl aminopeptidase (DNPEP) has been implicated in the control of angiotensin signaling and endosome trafficking, but its precise biologic roles remain incompletely defined. We performed a high-throughput screen of ∼25,000 small molecules to identify inhibitors of DNPEP for use as tools to study its biologic functions. Twenty-three confirmed hits inhibited DNPEP-catalyzed hydrolysis of angiotensin II with micromolar potency. A counter screen against glutamyl aminopeptidase (ENPEP), an enzyme with substrate specificity similar to that of DNPEP, identified eight DNPEP-selective inhibitors. Structure-activity relationships and modeling studies revealed structural features common to the identified inhibitors, including a metal-chelating group and a charged or polar moiety that could interact with portions of the enzyme active site. The compounds identified in this study should be valuable tools for elucidating DNPEP physiology.
Collapse
Affiliation(s)
- Yuanyuan Chen
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio (Y.C., K.O., X.L., J.Z., M.G., K.P., P.D.K.); and Drug Discovery Center, College of Medicine, University of Cincinnati, Cincinnati, Ohio (H.T., W.S., R.P.)
| | - Hong Tang
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio (Y.C., K.O., X.L., J.Z., M.G., K.P., P.D.K.); and Drug Discovery Center, College of Medicine, University of Cincinnati, Cincinnati, Ohio (H.T., W.S., R.P.)
| | - William Seibel
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio (Y.C., K.O., X.L., J.Z., M.G., K.P., P.D.K.); and Drug Discovery Center, College of Medicine, University of Cincinnati, Cincinnati, Ohio (H.T., W.S., R.P.)
| | - Ruben Papoian
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio (Y.C., K.O., X.L., J.Z., M.G., K.P., P.D.K.); and Drug Discovery Center, College of Medicine, University of Cincinnati, Cincinnati, Ohio (H.T., W.S., R.P.)
| | - Ki Oh
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio (Y.C., K.O., X.L., J.Z., M.G., K.P., P.D.K.); and Drug Discovery Center, College of Medicine, University of Cincinnati, Cincinnati, Ohio (H.T., W.S., R.P.)
| | - Xiaoyu Li
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio (Y.C., K.O., X.L., J.Z., M.G., K.P., P.D.K.); and Drug Discovery Center, College of Medicine, University of Cincinnati, Cincinnati, Ohio (H.T., W.S., R.P.)
| | - Jianye Zhang
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio (Y.C., K.O., X.L., J.Z., M.G., K.P., P.D.K.); and Drug Discovery Center, College of Medicine, University of Cincinnati, Cincinnati, Ohio (H.T., W.S., R.P.)
| | - Marcin Golczak
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio (Y.C., K.O., X.L., J.Z., M.G., K.P., P.D.K.); and Drug Discovery Center, College of Medicine, University of Cincinnati, Cincinnati, Ohio (H.T., W.S., R.P.)
| | - Krzysztof Palczewski
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio (Y.C., K.O., X.L., J.Z., M.G., K.P., P.D.K.); and Drug Discovery Center, College of Medicine, University of Cincinnati, Cincinnati, Ohio (H.T., W.S., R.P.)
| | - Philip D Kiser
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio (Y.C., K.O., X.L., J.Z., M.G., K.P., P.D.K.); and Drug Discovery Center, College of Medicine, University of Cincinnati, Cincinnati, Ohio (H.T., W.S., R.P.)
| |
Collapse
|
25
|
Liu D, Li J, Cao L, Wang S, Han H, Wu Y, Tao J. Analysis of differentially expressed genes in two immunologically distinct strains of Eimeria maxima using suppression subtractive hybridization and dot-blot hybridization. Parasit Vectors 2014; 7:259. [PMID: 24894832 PMCID: PMC4049472 DOI: 10.1186/1756-3305-7-259] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 05/29/2014] [Indexed: 11/25/2022] Open
Abstract
Background It is well known that different Eimeria maxima strains exhibit significant antigenic variation. However, the genetic basis of these phenotypes remains unclear. Methods Total RNA and mRNA were isolated from unsporulated oocysts of E. maxima strains SH and NT, which were found to have significant differences in immunogenicity in our previous research. Two subtractive cDNA libraries were constructed using suppression subtractive hybridization (SSH) and specific genes were further analyzed by dot-blot hybridization and qRT-PCR analysis. Results A total of 561 clones were selected from both cDNA libraries and the length of the inserted fragments was 0.25–1.0 kb. Dot-blot hybridization revealed a total of 86 differentially expressed clones (63 from strain SH and 23 from strain NT). Nucleotide sequencing analysis of these clones revealed ten specific contigs (six from strain SH and four from strain NT). Further analysis found that six contigs from strain SH and three from strain NT shared significant identities with previously reported proteins, and one contig was presumed to be novel. The specific differentially expressed genes were finally verified by RT-PCR and qRT-PCR analyses. Conclusions The data presented here suggest that specific genes identified between the two strains may be important molecules in the immunogenicity of E. maxima that may present potential new drug targets or vaccine candidates for coccidiosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jianping Tao
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Ministry of Education Key Lab for Avian Preventive Medicine, Key Lab of Jiangsu Preventive Veterinary Medicine, College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou, Jiangsu 225009, PR China.
| |
Collapse
|
26
|
Lysine acetylation in sexual stage malaria parasites is a target for antimalarial small molecules. Antimicrob Agents Chemother 2014; 58:3666-78. [PMID: 24733477 DOI: 10.1128/aac.02721-13] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Therapies to prevent transmission of malaria parasites to the mosquito vector are a vital part of the global malaria elimination agenda. Primaquine is currently the only drug with such activity; however, its use is limited by side effects. The development of transmission-blocking strategies requires an understanding of sexual stage malaria parasite (gametocyte) biology and the identification of new drug leads. Lysine acetylation is an important posttranslational modification involved in regulating eukaryotic gene expression and other essential processes. Interfering with this process with histone deacetylase (HDAC) inhibitors is a validated strategy for cancer and other diseases, including asexual stage malaria parasites. Here we confirm the expression of at least one HDAC protein in Plasmodium falciparum gametocytes and show that histone and nonhistone protein acetylation occurs in this life cycle stage. The activity of the canonical HDAC inhibitors trichostatin A (TSA) and suberoylanilide hydroxamic acid (SAHA; Vorinostat) and a panel of novel HDAC inhibitors on early/late-stage gametocytes and on gamete formation was examined. Several compounds displayed early/late-stage gametocytocidal activity, with TSA being the most potent (50% inhibitory concentration, 70 to 90 nM). In contrast, no inhibitory activity was observed in P. falciparum gametocyte exflagellation experiments. Gametocytocidal HDAC inhibitors caused hyperacetylation of gametocyte histones, consistent with a mode of action targeting HDAC activity. Our data identify HDAC inhibitors as being among a limited number of compounds that target both asexual and sexual stage malaria parasites, making them a potential new starting point for gametocytocidal drug leads and valuable tools for dissecting gametocyte biology.
Collapse
|
27
|
Nguyen DD, Pandian R, Kim D, Ha SC, Yoon HJ, Kim KS, Yun KH, Kim JH, Kim KK. Structural and kinetic bases for the metal preference of the M18 aminopeptidase from Pseudomonas aeruginosa. Biochem Biophys Res Commun 2014; 447:101-7. [PMID: 24704201 DOI: 10.1016/j.bbrc.2014.03.109] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 03/22/2014] [Indexed: 11/15/2022]
Abstract
The peptidases in clan MH are known as cocatalytic zinc peptidases that have two zinc ions in the active site, but their metal preference has not been rigorously investigated. In this study, the molecular basis for metal preference is provided from the structural and biochemical analyses. Kinetic studies of Pseudomonas aeruginosa aspartyl aminopeptidase (PaAP) which belongs to peptidase family M18 in clan MH revealed that its peptidase activity is dependent on Co(2+) rather than Zn(2+): the kcat (s(-1)) values of PaAP were 0.006, 5.10 and 0.43 in no-metal, Co(2+), and Zn(2+)conditions, respectively. Consistently, addition of low concentrations of Co(2+) to PaAP previously saturated with Zn(2+) greatly enhanced the enzymatic activity, suggesting that Co(2+)may be the physiologically relevant cocatalytic metal ion of PaAP. The crystal structures of PaAP complexes with Co(2+) or Zn(2+) commonly showed two metal ions in the active site coordinated with three conserved residues and a bicarbonate ion in a tetragonal geometry. However, Co(2+)- and Zn(2+)-bound structures showed no noticeable alterations relevant to differential effects of metal species, except the relative orientation of Glu-265, a general base in the active site. The characterization of mutant PaAP revealed that the first metal binding site is primarily responsible for metal preference. Similar to PaAP, Streptococcus pneumonia glutamyl aminopeptidase (SpGP), belonging to aminopeptidase family M42 in clan MH, also showed requirement for Co(2+) for maximum activity. These results proposed that clan MH peptidases might be a cocatalytic cobalt peptidase rather than a zinc-dependent peptidase.
Collapse
Affiliation(s)
- Duy Duc Nguyen
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746, Republic of Korea
| | - Ramesh Pandian
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746, Republic of Korea
| | - Doyoun Kim
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746, Republic of Korea
| | - Sung Chul Ha
- Pohang Acceleratory Laboratory, Pohang University of Science and Technology, Pohang, Kyungbuk 790-784, Republic of Korea
| | - Hye-Jin Yoon
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 157-747, Republic of Korea
| | - Kap Sun Kim
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746, Republic of Korea
| | - Kyung Hee Yun
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746, Republic of Korea
| | - Jin-Hahn Kim
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746, Republic of Korea.
| | - Kyeong Kyu Kim
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746, Republic of Korea.
| |
Collapse
|
28
|
Spicer T, Fernandez-Vega V, Chase P, Scampavia L, To J, Dalton JP, Da Silva FL, Skinner-Adams TS, Gardiner DL, Trenholme KR, Brown CL, Ghosh P, Porubsky P, Wang JL, Whipple DA, Schoenen FJ, Hodder P. Identification of Potent and Selective Inhibitors of the Plasmodium falciparum M18 Aspartyl Aminopeptidase (PfM18AAP) of Human Malaria via High-Throughput Screening. ACTA ACUST UNITED AC 2014; 19:1107-15. [PMID: 24619116 DOI: 10.1177/1087057114525852] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 02/04/2014] [Indexed: 11/16/2022]
Abstract
The target of this study, the PfM18 aspartyl aminopeptidase (PfM18AAP), is the only AAP present in the genome of the malaria parasite Plasmodium falciparum. PfM18AAP is a metallo-exopeptidase that exclusively cleaves N-terminal acidic amino acids glutamate and aspartate. It is expressed in parasite cytoplasm and may function in concert with other aminopeptidases in protein degradation, of, for example, hemoglobin. Previous antisense knockdown experiments identified a lethal phenotype associated with PfM18AAP, suggesting that it is a valid target for new antimalaria therapies. To identify inhibitors of PfM18AAP function, a fluorescence enzymatic assay was developed using recombinant PfM18AAP enzyme and a fluorogenic peptide substrate (H-Glu-NHMec). This was screened against the Molecular Libraries Probe Production Centers Network collection of ~292,000 compounds (the Molecular Libraries Small Molecule Repository). A cathepsin L1 (CTSL1) enzyme-based assay was developed and used as a counter screen to identify compounds with nonspecific activity. Enzymology and phenotypic assays were used to determine mechanism of action and efficacy of selective and potent compounds identified from high-throughput screening. Two structurally related compounds, CID 6852389 and CID 23724194, yielded micromolar potency and were inactive in CTSL1 titration experiments (IC50>59.6 µM). As measured by the K(i) assay, both compounds demonstrated micromolar noncompetitive inhibition in the PfM18AAP enzyme assay. Both CID 6852389 and CID 23724194 demonstrated potency in malaria growth assays (IC504 µM and 1.3 µM, respectively).
Collapse
Affiliation(s)
- Timothy Spicer
- The Scripps Research Institute Molecular Screening Center, Scripps Florida, Jupiter, FL, USA
| | - Virneliz Fernandez-Vega
- The Scripps Research Institute Molecular Screening Center, Scripps Florida, Jupiter, FL, USA
| | - Peter Chase
- The Scripps Research Institute Molecular Screening Center, Scripps Florida, Jupiter, FL, USA
| | - Louis Scampavia
- The Scripps Research Institute Molecular Screening Center, Scripps Florida, Jupiter, FL, USA
| | - Joyce To
- Institute for Biotechnology of Infectious Diseases, University of Technology Sydney, Sydney, Australia
| | - John P Dalton
- Institute for Biotechnology of Infectious Diseases, University of Technology Sydney, Sydney, Australia Institute of Parasitology, McGill University, Quebec, Canada
| | - Fabio L Da Silva
- Malaria Biology Laboratory, The Queensland Institute of Medical Research, Brisbane, Australia
| | - Tina S Skinner-Adams
- Malaria Biology Laboratory, The Queensland Institute of Medical Research, Brisbane, Australia
| | - Donald L Gardiner
- Malaria Biology Laboratory, The Queensland Institute of Medical Research, Brisbane, Australia
| | - Katharine R Trenholme
- Malaria Biology Laboratory, The Queensland Institute of Medical Research, Brisbane, Australia
| | - Christopher L Brown
- School of Biomolecular and Physical Sciences, Griffith University, Brisbane, Australia
| | - Partha Ghosh
- The University of Kansas Specialized Chemistry Center, Lawrence, KS, USA
| | - Patrick Porubsky
- The University of Kansas Specialized Chemistry Center, Lawrence, KS, USA
| | - Jenna L Wang
- The University of Kansas Specialized Chemistry Center, Lawrence, KS, USA
| | - David A Whipple
- The University of Kansas Specialized Chemistry Center, Lawrence, KS, USA
| | - Frank J Schoenen
- The University of Kansas Specialized Chemistry Center, Lawrence, KS, USA
| | - Peter Hodder
- The Scripps Research Institute Molecular Screening Center, Scripps Florida, Jupiter, FL, USA
| |
Collapse
|
29
|
McGowan S. Working in concert: the metalloaminopeptidases from Plasmodium falciparum. Curr Opin Struct Biol 2013; 23:828-35. [PMID: 23948130 DOI: 10.1016/j.sbi.2013.07.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 07/24/2013] [Accepted: 07/24/2013] [Indexed: 01/05/2023]
Abstract
Malaria remains the world's most prevalent human parasitic disease. Because of the rapid spread of drug resistance in parasites, there is an urgent need to identify diverse new drug targets. One group of proteases that are emerging as targets for novel antimalarials are the metalloaminopeptidases. These enzymes catalyze the removal of the N-terminal amino acids from proteins and peptides. Given the restricted specificities of each of these enzymes for different N-terminal amino acids, it is thought that they act in concert to facilitate protein turnover. Here we review recent structure and functional data relating to the development of the Plasmodium falciparum metalloaminopeptidases as drug targets.
Collapse
Affiliation(s)
- Sheena McGowan
- Department of Biochemistry and Molecular Biology, Monash University, Clayton Campus, Melbourne, Victoria 3800, Australia.
| |
Collapse
|
30
|
Sojka D, Franta Z, Horn M, Caffrey CR, Mareš M, Kopáček P. New insights into the machinery of blood digestion by ticks. Trends Parasitol 2013; 29:276-85. [PMID: 23664173 DOI: 10.1016/j.pt.2013.04.002] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 04/06/2013] [Accepted: 04/07/2013] [Indexed: 12/26/2022]
Abstract
Blood-protein digestion is a key physiological process providing essential nutrients for ticks and is a prerequisite for the transmission of tick-borne pathogens. Recently, substantial progress has been made in determining the proteolytic machinery in tick gut tissue, which is based on a dynamic multienzyme network capable of processing a vast amount of host blood. In this article we summarize our current knowledge of the molecular mechanisms of tick hematophagy and their similarities to those of Platyhelminthes, nematodes, and Plasmodium. Future research perspectives, including the potential for rational control of ticks and transmitted diseases, are also discussed.
Collapse
Affiliation(s)
- Daniel Sojka
- Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic, České Budějovice, CZ 370 05, Czech Republic
| | | | | | | | | | | |
Collapse
|
31
|
Synthesis and modifications of phosphinic dipeptide analogues. Molecules 2012; 17:13530-68. [PMID: 23154272 PMCID: PMC6268094 DOI: 10.3390/molecules171113530] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 11/09/2012] [Accepted: 11/12/2012] [Indexed: 01/01/2023] Open
Abstract
Pseudopeptides containing the phosphinate moiety (-P(O)(OH)CH2-) have been studied extensively, mainly as transition state analogue inhibitors of metalloproteases. The key synthetic aspect of their chemistry is construction of phosphinic dipeptide derivatives bearing appropriate side-chain substituents. Typically, this synthesis involves a multistep preparation of two individual building blocks, which are combined in the final step. As this methodology does not allow simple variation of the side-chain structure, many efforts have been dedicated to the development of alternative approaches. Recent achievements in this field are summarized in this review. Improved methods for the formation of the phosphinic peptide backbone, including stereoselective and multicomponent reactions, are presented. Parallel modifications leading to the structurally diversified substituents are also described. Finally, selected examples of the biomedical applications of the title compounds are given.
Collapse
|
32
|
X-ray Crystal Structure and Specificity of the Plasmodium falciparum Malaria Aminopeptidase PfM18AAP. J Mol Biol 2012; 422:495-507. [DOI: 10.1016/j.jmb.2012.06.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 06/02/2012] [Accepted: 06/05/2012] [Indexed: 11/19/2022]
|
33
|
Chen Y, Farquhar ER, Chance MR, Palczewski K, Kiser PD. Insights into substrate specificity and metal activation of mammalian tetrahedral aspartyl aminopeptidase. J Biol Chem 2012; 287:13356-70. [PMID: 22356908 DOI: 10.1074/jbc.m112.347518] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aminopeptidases are key enzymes involved in the regulation of signaling peptide activity. Here, we present a detailed biochemical and structural analysis of an evolutionary highly conserved aspartyl aminopeptidase called DNPEP. We show that this peptidase can cleave multiple physiologically relevant substrates, including angiotensins, and thus may play a key role in regulating neuron function. Using a combination of x-ray crystallography, x-ray absorption spectroscopy, and single particle electron microscopy analysis, we provide the first detailed structural analysis of DNPEP. We show that this enzyme possesses a binuclear zinc-active site in which one of the zinc ions is readily exchangeable with other divalent cations such as manganese, which strongly stimulates the enzymatic activity of the protein. The plasticity of this metal-binding site suggests a mechanism for regulation of DNPEP activity. We also demonstrate that DNPEP assembles into a functionally relevant tetrahedral complex that restricts access of peptide substrates to the active site. These structural data allow rationalization of the enzyme's preference for short peptide substrates with N-terminal acidic residues. This study provides a structural basis for understanding the physiology and bioinorganic chemistry of DNPEP and other M18 family aminopeptidases.
Collapse
Affiliation(s)
- Yuanyuan Chen
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4965, USA
| | | | | | | | | |
Collapse
|
34
|
Bestatin-based chemical biology strategy reveals distinct roles for malaria M1- and M17-family aminopeptidases. Proc Natl Acad Sci U S A 2011; 108:E526-34. [PMID: 21844374 DOI: 10.1073/pnas.1105601108] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Malaria causes worldwide morbidity and mortality, and while chemotherapy remains an excellent means of malaria control, drug-resistant parasites necessitate the discovery of new antimalarials. Peptidases are a promising class of drug targets and perform several important roles during the Plasmodium falciparum erythrocytic life cycle. Herein, we report a multidisciplinary effort combining activity-based protein profiling, biochemical, and peptidomic approaches to functionally analyze two genetically essential P. falciparum metallo-aminopeptidases (MAPs), PfA-M1 and Pf-LAP. Through the synthesis of a suite of activity-based probes (ABPs) based on the general MAP inhibitor scaffold, bestatin, we generated specific ABPs for these two enzymes. Specific inhibition of PfA-M1 caused swelling of the parasite digestive vacuole and prevented proteolysis of hemoglobin (Hb)-derived oligopeptides, likely starving the parasite resulting in death. In contrast, inhibition of Pf-LAP was lethal to parasites early in the life cycle, prior to the onset of Hb degradation suggesting that Pf-LAP has an essential role outside of Hb digestion.
Collapse
|
35
|
In Vitro and In Vivo Antimalarial Activity Assays of Seeds from Balanites aegyptiaca: Compounds of the Extract Show Growth Inhibition and Activity against Plasmodial Aminopeptidase. J Parasitol Res 2011; 2011:368692. [PMID: 21687598 PMCID: PMC3112518 DOI: 10.1155/2011/368692] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2010] [Revised: 01/25/2011] [Accepted: 03/20/2011] [Indexed: 11/17/2022] Open
Abstract
Balanites aegyptiaca (Balanitaceae) is a widely grown desert plant with multiuse potential. In the present paper, a crude extract from B. aegyptiaca seeds equivalent to a ratio of 1 : 2000 seeds to the extract was screened for antiplasmodial activity. The determined IC(50) value for the chloroquine-susceptible Plasmodium falciparum NF54 strain was 68.26 μg/μL ± 3.5. Analysis of the extract by gas chromatography-mass spectrometry detected 6-phenyl-2(H)-1,2,4-triazin-5-one oxime, an inhibitor of the parasitic M18 Aspartyl Aminopeptidase as one of the compounds which is responsible for the in vitro antiplasmodial activity. The crude plant extract had a K(i) of 2.35 μg/μL and showed a dose-dependent response. After depletion of the compound, a significantly lower inhibition was determined with a K(i) of 4.8 μg/μL. Moreover, two phenolic compounds, that is, 2,6-di-tert-butyl-phenol and 2,4-di-tert-butyl-phenol, with determined IC(50) values of 50.29 μM ± 3 and 47.82 μM ± 2.5, respectively, were detected. These compounds may contribute to the in vitro antimalarial activity due to their antioxidative properties. In an in vivo experiment, treatment of BALB/c mice with the aqueous Balanite extract did not lead to eradication of the parasites, although a reduced parasitemia at day 12 p.i. was observed.
Collapse
|
36
|
Downstream effects of haemoglobinase inhibition in Plasmodium falciparum-infected erythrocytes. Mol Biochem Parasitol 2010; 173:81-7. [PMID: 20478341 DOI: 10.1016/j.molbiopara.2010.05.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Revised: 04/28/2010] [Accepted: 05/08/2010] [Indexed: 12/22/2022]
Abstract
Blood-stage malarial parasites (Plasmodium falciparum) digest large quantities of host haemoglobin during their asexual development in erythrocytes. The haemoglobin digestion pathway, involving a succession of cleavages by various peptidases, appears to be essential for parasite development and has received much attention as an antimalarial drug target. A variety of peptidase inhibitors that have potent antimalarial activity are believed to inhibit and/or kill parasites by blocking haemoglobin digestion. It has not however been established how such a blockage might lead to parasite death. The answer to this question should lie in identifying the affected physiological function, but the purpose of excess haemoglobin digestion by P. falciparum has for many years been the subject of debate. The process was traditionally believed to be nutritional until Lew et al. [Blood 2003;101:4189-94] suggested that it is linked to volume control of the infected erythrocyte and is necessary to prevent premature osmotic lysis of the host cell. Their model predicts that sufficient inhibition of haemoglobin degradation should result in premature haemolysis. In this study we examined the downstream effects of reduced haemoglobin digestion on osmoprotection and nutrition. We found that inhibitors of haemoglobinases (plasmepsins, falcipains and aminopeptidases) did not cause premature haemolysis. The inhibitors did however block parasite development and this effect corresponded to a strong inhibition of protein synthesis. The effect on protein synthesis (i) occurred at inhibitor concentrations and times of exposure that were relevant to parasite growth inhibition, (ii) was observed with different chemical classes of inhibitor, and (iii) was synergistic when a plasmepsin and a falcipain inhibitor were combined, reflecting the well-established antimalarial synergism of the combination. Taken together, the results suggest that the likely primary downstream effect of inhibition of haemoglobin degradation is amino acid depletion, leading to blockade of protein synthesis, and that the parasite probably degrades globin for nutritional purposes.
Collapse
|
37
|
Mucha A, Drag M, Dalton JP, Kafarski P. Metallo-aminopeptidase inhibitors. Biochimie 2010; 92:1509-29. [PMID: 20457213 PMCID: PMC7117057 DOI: 10.1016/j.biochi.2010.04.026] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Accepted: 04/29/2010] [Indexed: 01/05/2023]
Abstract
Aminopeptidases are enzymes that selectively hydrolyze an amino acid residue from the N-terminus of proteins and peptides. They are important for the proper functioning of prokaryotic and eukaryotic cells, but very often are central players in the devastating human diseases like cancer, malaria and diabetes. The largest aminopeptidase group include enzymes containing metal ion(s) in their active centers, which often determines the type of inhibitors that are the most suitable for them. Effective ligands mostly bind in a non-covalent mode by forming complexes with the metal ion(s). Here, we present several approaches for the design of inhibitors for metallo-aminopeptidases. The optimized structures should be considered as potential leads in the drug discovery process against endogenous and infectious diseases.
Collapse
Affiliation(s)
- Artur Mucha
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
| | | | | | | |
Collapse
|
38
|
Gardiner DL, Skinner-Adams TS, Brown CL, Andrews KT, Stack CM, McCarthy JS, Dalton JP, Trenholme KR. Plasmodium falciparum: new molecular targets with potential for antimalarial drug development. Expert Rev Anti Infect Ther 2010; 7:1087-98. [PMID: 19883329 DOI: 10.1586/eri.09.93] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Malaria remains one of the world's most devastating infectious diseases. Drug resistance to all classes of antimalarial agents has now been observed, highlighting the need for new agents that act against novel parasite targets. The complete sequencing of the Plasmodium falciparum genome has allowed the identification of new molecular targets within the parasite that may be amenable to chemotherapeutic intervention. In this review, we investigate four possible targets for the future development of new classes of antimalarial agents. These targets include histone deacetylase, the aspartic proteases or plasmepsins, aminopeptidases and the purine salvage enzyme hypoxanthine-xanthine-guanine phosphoribosyltransferase.
Collapse
Affiliation(s)
- Donald L Gardiner
- Malaria Biology Laboratory, Queensland Institute of Medical Research, 300 Herston Road, Herston, QLD 4006, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Ragheb D, Bompiani K, Dalal S, Klemba M. Evidence for catalytic roles for Plasmodium falciparum aminopeptidase P in the food vacuole and cytosol. J Biol Chem 2009; 284:24806-15. [PMID: 19574214 DOI: 10.1074/jbc.m109.018424] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The metalloenzyme aminopeptidase P catalyzes the hydrolysis of amino acids from the amino termini of peptides with a prolyl residue in the second position. The human malaria parasite Plasmodium falciparum expresses a homolog of aminopeptidase P during its asexual intraerythrocytic cycle. P. falciparum aminopeptidase P (PfAPP) shares with mammalian cytosolic aminopeptidase P a three-domain, homodimeric organization and is most active with Mn(II) as the cofactor. A distinguishing feature of PfAPP is a 120-amino acid amino-terminal extension that appears to be removed from the mature protein. PfAPP is present in the food vacuole and cytosol of the parasite, a distribution that suggests roles in vacuolar hemoglobin catabolism and cytosolic peptide turnover. To evaluate the plausibility of these putative functions, the stability and kinetic properties of recombinant PfAPP were evaluated at the acidic pH of the food vacuole and at the near-neutral pH of the cytosol. PfAPP exhibited high stability at 37 degrees C in the pH range 5.0-7.5. In contrast, recombinant human cytosolic APP1 was unstable and formed a high molecular weight aggregate at acidic pH. At both acidic and slightly basic pH values, PfAPP efficiently hydrolyzed the amino-terminal X-Pro bond of the nonapeptide bradykinin and of two globin pentapeptides that are potential in vivo substrates. These results provide support for roles for PfAPP in peptide catabolism in both the food vacuole and the cytosol and suggest that PfAPP has evolved a dual distribution in response to the metabolic needs of the intraerythrocytic parasite.
Collapse
Affiliation(s)
- Daniel Ragheb
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
| | | | | | | |
Collapse
|
40
|
Structural basis for the inhibition of the essential Plasmodium falciparum M1 neutral aminopeptidase. Proc Natl Acad Sci U S A 2009; 106:2537-42. [PMID: 19196988 DOI: 10.1073/pnas.0807398106] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Plasmodium falciparum parasites are responsible for the major global disease malaria, which results in >2 million deaths each year. With the rise of drug-resistant malarial parasites, novel drug targets and lead compounds are urgently required for the development of new therapeutic strategies. Here, we address this important problem by targeting the malarial neutral aminopeptidases that are involved in the terminal stages of hemoglobin digestion and essential for the provision of amino acids used for parasite growth and development within the erythrocyte. We characterize the structure and substrate specificity of one such aminopeptidase, PfA-M1, a validated drug target. The X-ray crystal structure of PfA-M1 alone and in complex with the generic inhibitor, bestatin, and a phosphinate dipeptide analogue with potent in vitro and in vivo antimalarial activity, hPheP[CH(2)]Phe, reveals features within the protease active site that are critical to its function as an aminopeptidase and can be exploited for drug development. These results set the groundwork for the development of antimalarial therapeutics that target the neutral aminopeptidases of the parasite.
Collapse
|
41
|
Biological Activity of Aminophosphonic Acids and Their Short Peptides. TOPICS IN HETEROCYCLIC CHEMISTRY 2009. [DOI: 10.1007/7081_2008_14] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
42
|
Heterologous expression of plasmodial proteins for structural studies and functional annotation. Malar J 2008; 7:197. [PMID: 18828893 PMCID: PMC2567985 DOI: 10.1186/1475-2875-7-197] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Accepted: 10/01/2008] [Indexed: 11/10/2022] Open
Abstract
Malaria remains the world's most devastating tropical infectious disease with as many as 40% of the world population living in risk areas. The widespread resistance of Plasmodium parasites to the cost-effective chloroquine and antifolates has forced the introduction of more costly drug combinations, such as Coartem®. In the absence of a vaccine in the foreseeable future, one strategy to address the growing malaria problem is to identify and characterize new and durable antimalarial drug targets, the majority of which are parasite proteins. Biochemical and structure-activity analysis of these proteins is ultimately essential in the characterization of such targets but requires large amounts of functional protein. Even though heterologous protein production has now become a relatively routine endeavour for most proteins of diverse origins, the functional expression of soluble plasmodial proteins is highly problematic and slows the progress of antimalarial drug target discovery. Here the status quo of heterologous production of plasmodial proteins is presented, constraints are highlighted and alternative strategies and hosts for functional expression and annotation of plasmodial proteins are reviewed.
Collapse
|
43
|
Lauterbach SB, Coetzer TL. The M18 aspartyl aminopeptidase of Plasmodium falciparum binds to human erythrocyte spectrin in vitro. Malar J 2008; 7:161. [PMID: 18721457 PMCID: PMC2543045 DOI: 10.1186/1475-2875-7-161] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Accepted: 08/22/2008] [Indexed: 11/10/2022] Open
Abstract
Background During erythrocytic schizogony, Plasmodium falciparum interacts with the human erythrocyte membrane when it enters into, grows within and escapes from the erythrocyte. An interaction between the P. falciparum M18 aspartyl aminopeptidase (PfM18AAP) and the human erythrocyte membrane protein spectrin was recently identified using phage display technology. In this study, recombinant (r) PfM18AAP was characterized and the interaction between the enzyme and spectrin, as well as other erythrocyte membrane proteins, analyzed. Methods rPfM18AAP was produced as a hexahistidine-fusion protein in Escherichia coli and purified using magnetic bead technology. The pI of the enzyme was determined by two-dimensional gel electrophoresis and the number of subunits in the native enzyme was estimated from Ferguson plots. The enzymatic activity over a pH and temperature range was tested by a coupled enzyme assay. Blot overlays were performed to validate the spectrin-PfM18AAP interaction, as well as identify additional interactions between the enzyme and other erythrocyte membrane proteins. Sequence analysis identified conserved amino acids that are expected to be involved in cofactor binding, substrate cleavage and quaternary structure stabilization. Results rPfM18AAP has a molecular weight of ~67 kDa and the enzyme separated as three entities with pI 6.6, 6.7 and 6.9. Non-denaturing gel electrophoresis indicated that rPfM18AAP aggregated into oligomers. An in vitro coupled enzyme assay showed that rPfM18AAP cleaved an N-terminal aspartate from a tripeptide substrate with maximum enzymatic activity at pH 7.5 and 37°C. The spectrin-binding region of PfM18AAP is not found in Homo sapiens, Saccharomyces cerevisiae and otherPlasmodium species homologues. Amino acids expected to be involved in cofactor binding, substrate cleavage and quaternary structure stabilization, are conserved. Blot overlays with rPfM18AAP against spectrin and erythrocyte membrane proteins indicated that rPfM18AAP binds to spectrin, as well as to protein 4.1, protein 4.2, actin and glyceraldehyde 3-phosphate dehydrogenase. Conclusion Studies characterizing rPfM18AAP showed that this enzyme interacts with erythrocyte spectrin and other membrane proteins. This suggests that, in addition to its proposed role in hemoglobin digestion, PfM18AAP performs other functions in the erythrocyte host and can utilize several substrates, which highlights the multifunctional role of malaria enzymes.
Collapse
Affiliation(s)
- Sonja B Lauterbach
- Department of Molecular Medicine and Haematology, National Health Laboratory Service, School of Pathology, University of the Witwatersrand, Parktown, Johannesburg 2193, Republic of South Africa
| | | |
Collapse
|