1
|
Nematollahi MH, Mehrabani M, Hozhabri Y, Mirtajaddini M, Iravani S. Antiviral and antimicrobial applications of chalcones and their derivatives: From nature to greener synthesis. Heliyon 2023; 9:e20428. [PMID: 37810815 PMCID: PMC10556610 DOI: 10.1016/j.heliyon.2023.e20428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/10/2023] Open
Abstract
Chalcones and their derivatives have been widely studied due to their versatile pharmacological and biological activities, such as anti-inflammatory, antibacterial, antiviral, and antitumor effects. These compounds have shown suitable antiviral effects through the selective targeting of a variety of viral enzymes, including lactate dehydrogenase, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), fumarate reductase, protein tyrosine phosphatase, topoisomerase-II, protein kinases, integrase/protease, and lactate/isocitrate dehydrogenase, among others. Chalcones and their derivatives have displayed excellent potential for combating pathogenic bacteria and fungi (especially, multidrug-resistant bacteria). However, relevant mechanisms should be further explored, focusing on inhibitory effects against DNA gyrase B, UDP-N-acetylglucosamine enolpyruvyl transferase (MurA), and efflux pumps (e.g., NorA), among others. In addition, the antifungal and antiparasitic activities of these compounds (e.g., antitrypanosomal and antileishmanial properties) have prompted additional explorations. Nonetheless, systematic analysis of the relevant mechanisms, biosafety issues, and pharmacological properties, as well as clinical translation studies, are vital for practical applications. Herein, recent advancements pertaining to the antibacterial, antiviral, antiparasitic, and antifungal activities of chalcones and their derivatives are deliberated, focusing on the relevant mechanisms of action, crucial challenges, and future prospects. Furthermore, due to the great importance of greener and more sustainable synthesis of these valuable compounds, especially on an industrial scale, the progress made in this field has been briefly discussed. Hopefully, this review can serve as a catalyst for researchers to delve deeper into the exploration and designing of novel chalcone compounds with medicinal properties, especially against pathogenic viruses and multidrug-resistant bacteria as major causes of concern for human health.
Collapse
Affiliation(s)
- Mohammad Hadi Nematollahi
- Herbal and Traditional Medicines Research Center, School of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Mehrnaz Mehrabani
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Yaser Hozhabri
- Applied Cellular and Molecular Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Maryamossadat Mirtajaddini
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Siavash Iravani
- Independent Researcher, W Nazar ST, Boostan Ave, Isfahan, Iran
| |
Collapse
|
2
|
Elkhalifa D, Al-Hashimi I, Al Moustafa AE, Khalil A. A comprehensive review on the antiviral activities of chalcones. J Drug Target 2020; 29:403-419. [PMID: 33232192 DOI: 10.1080/1061186x.2020.1853759] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Some viral outbreaks have plagued the world since antiquity, including the most recent COVID-19 pandemic. The continuous spread and emergence of new viral diseases have urged the discovery of novel treatment options that can overcome the limitations of currently marketed antiviral drugs. Chalcones are natural open chain flavonoids that are found in various plants and can be synthesised in labs. Several studies have shown that these small organic molecules exert a number of pharmacological activities, including antiviral, anti-inflammatory, antimicrobial and anticancer. The purpose of this review is to provide a summary of the antiviral activities of chalcones and their derivatives on a set of human viral infections and their potential for targeting the most recent COVID-19 disease. Accordingly, we herein review chalcones activities on the following human viruses: Middle East respiratory syndrome coronavirus, severe acute respiratory syndrome coronavirus, human immunodeficiency, influenza, human rhinovirus, herpes simplex, dengue, human cytomegalovirus, hepatitis B and C, Rift Valley fever and Venezuelan equine encephalitis. We hope that this review will pave the way for the design and development of potentially potent and broad-spectrum chalcone based antiviral drugs.
Collapse
Affiliation(s)
- Dana Elkhalifa
- College of Pharmacy, QU Health, Qatar University, Doha, Qatar.,Department of Pharmacy, Aspetar Orthopedic and Sports Medicine Hospital, Doha, Qatar
| | | | - Ala-Eddin Al Moustafa
- College of Medicine, QU Health, Qatar University, Doha, Qatar.,Biomedical Research Centre, Qatar University, Doha, Qatar.,Oncology Department, McGill University, Montreal, Quebec, Canada.,Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
| | - Ashraf Khalil
- College of Pharmacy, QU Health, Qatar University, Doha, Qatar.,Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
3
|
Kutle I, Szymańska-de Wijs KM, Bogdanow B, Cuvalo B, Steinbrück L, Jonjić S, Wagner K, Niedenthal R, Selbach M, Wiebusch L, Dezeljin M, Messerle M. Murine Cytomegalovirus M25 Proteins Sequester the Tumor Suppressor Protein p53 in Nuclear Accumulations. J Virol 2020; 94:e00574-20. [PMID: 32727874 PMCID: PMC7527045 DOI: 10.1128/jvi.00574-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 07/22/2020] [Indexed: 02/06/2023] Open
Abstract
To ensure productive infection, herpesviruses utilize tegument proteins and nonstructural regulatory proteins to counteract cellular defense mechanisms and to reprogram cellular pathways. The M25 proteins of mouse cytomegalovirus (MCMV) belong to the betaherpesvirus UL25 gene family that encodes viral proteins implicated with regulatory functions. Through affinity purification and mass spectrometric analysis, we discovered the tumor suppressor protein p53 as a host factor interacting with the M25 proteins. M25-p53 interaction in infected and transfected cells was confirmed by coimmunoprecipitation. Moreover, the proteins colocalized in nuclear dot-like structures upon both infection and inducible expression of the two M25 isoforms. p53 accumulated in wild-type MCMV-infected cells, while this did not occur upon infection with a mutant lacking the M25 gene. Both M25 proteins were able to mediate the effect, identifying them as the first CMV proteins responsible for p53 accumulation during infection. Interaction with M25 proteins led to substantial prolongation of the half-life of p53. In contrast to the higher abundance of the p53 protein in wild-type MCMV-infected cells, the transcript levels of the prominent p53 target genes Cdkn1a and Mdm2 were diminished compared to cells infected with the ΔM25 mutant, and this was associated with reduced binding of p53 to responsive elements within the respective promoters. Notably, the productivity of the M25 deletion mutant was partially rescued on p53-negative fibroblasts. We propose that the MCMV M25 proteins sequester p53 molecules in the nucleus of infected cells, reducing their availability for activating a subset of p53-regulated genes, thereby dampening the antiviral role of p53.IMPORTANCE Host cells use a number of factors to defend against viral infection. Viruses are, however, in an arms race with their host cells to overcome these defense mechanisms. The tumor suppressor protein p53 is an important sensor of cell stress induced by oncogenic insults or viral infections, which upon activation induces various pathways to ensure the integrity of cells. Viruses have to counteract many functions of p53, but complex DNA viruses such as cytomegaloviruses may also utilize some p53 functions for their own benefit. In this study, we discovered that the M25 proteins of mouse cytomegalovirus interact with p53 and mediate its accumulation during infection. Interaction with the M25 proteins sequesters p53 molecules in nuclear dot-like structures, limiting their availability for activation of a subset of p53-regulated target genes. Understanding the interaction between viral proteins and p53 may allow to develop new therapeutic strategies against cytomegalovirus and other viruses.
Collapse
Affiliation(s)
- Ivana Kutle
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | | | - Boris Bogdanow
- Proteome Dynamics lab, Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Department of Chemical Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Berislav Cuvalo
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Lars Steinbrück
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Stipan Jonjić
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Karen Wagner
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Rainer Niedenthal
- Institute of Cell Biochemistry, Hannover Medical School, Hannover, Germany
| | - Matthias Selbach
- Proteome Dynamics lab, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Lüder Wiebusch
- Laboratory of Pediatric Molecular Biology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Martina Dezeljin
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Martin Messerle
- Institute of Virology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
4
|
Altinoz MA, Topcu G, Elmaci İ. Boron's neurophysiological effects and tumoricidal activity on glioblastoma cells with implications for clinical treatment. Int J Neurosci 2019; 129:963-977. [PMID: 30885023 DOI: 10.1080/00207454.2019.1595618] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Purpose: To define the actions of boron on normal neurophysiology and glioblastoma growth. Materials and Methods: PubMed and other relevant databases were searched. Results: Discovery of novel boron compounds in treatment of glioblastoma is being actively investigated, but the majority of such studies is focused on the synthesis of boron compounds as sensitizers to Boron Neutron Capture Therapy (BNCT). Nonetheless, the translational functionality of boron compounds is not limited to BNCT as many boron compounds possess direct tumoricidal activity and there is substantial evidence that certain boron compounds can cross the blood-brain barrier. Moreover, boron-containing compounds interfere with several tumorigenic pathways including intratumoral IGF-I levels, molybdenum Fe-S containing flavin hydroxylases, glycolysis, Transient Receptor Potential (TRP) and Store Operated Calcium Entry (SOCE) channels. Conclusions: Boron compounds deserve to be studied further in treatment of systemic cancers and glioblastoma due to their versatile antineoplastic functions.
Collapse
Affiliation(s)
- Meric A Altinoz
- Department of Medical Biochemistry, Acibadem University , Istanbul , Turkey.,Department of Psychiatry, Maastricht University , Holland , Turkey
| | - Gulacti Topcu
- Department of Pharmacognosy & Phytochemistry Faculty of Pharmacy, Bezmialem Vakif University , Istanbul , Turkey
| | - İlhan Elmaci
- Department of Neurosurgery, Acibadem Hospital , Istanbul , Turkey
| |
Collapse
|
5
|
Chen Z, Boor PJ, Finnerty CC, Herndon DN, Albrecht T. Calpain-mediated cleavage of p53 in human cytomegalovirus-infected lung fibroblasts. FASEB Bioadv 2019; 1:151-166. [PMID: 32123827 PMCID: PMC6996331 DOI: 10.1096/fba.1028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/23/2018] [Accepted: 10/26/2018] [Indexed: 12/14/2022] Open
Abstract
Endogenous fragments of p53 protein were identified in human cytomegalovirus (HCMV)-infected human lung fibroblasts, particularly a 44-kDa N-terminal fragment [hereafter referred to as p53(ΔCp44)], generated via calpain cleavage. The fragment abundance increased in a biphasic manner, peaking at 6-9 hours and 48 hours post infection. Treatment of LU cells with calpain inhibitors eliminated most detectable p53 fragments. In cell-free experiments, exogenous m-calpain cleavage generated p53(ΔCp44). Attempts to preserve p53 proteins by treating cells with the calpain inhibitor E64d for 6 hours before harvesting increased the sensitivity of p53 to calpain cleavage. p53 in mock-infected cell lysates was much more sensitive to cleavage and degradation by exogenous calpain than that in HCMV-infected cells. The proteasome inhibitor MG132 stabilized p53(ΔCp44), particularly in mock-infected cells. p53(ΔCp44) appeared to be tightly associated with a chromatin-rich fraction. The abundance of p53β was unchanged over a 96-h time course and very similar in mock- and HCMV-infected cells, making it unlikely that p53(ΔCp44) was p53β. The biological activities of this and other fragments lacking C-terminal sequences are unknown, but deserve further investigation, given the association of p53(ΔCp44) with the chromatin-rich (or buffer C insoluble) fraction in HCMV-infected cells.
Collapse
Affiliation(s)
- Zhenping Chen
- Department of Microbiology and ImmunologyUniversity of Texas Medical BranchGalvestonTexas
- Department of PathologyUniversity of Texas Medical BranchGalvestonTexas
- Department of SurgeryUniversity of Texas Medical BranchGalvestonTexas
| | - Paul J. Boor
- Department of PathologyUniversity of Texas Medical BranchGalvestonTexas
- Shriners Hospitals for Children—GalvestonGalvestonTexas
| | - Celeste C. Finnerty
- Department of SurgeryUniversity of Texas Medical BranchGalvestonTexas
- Shriners Hospitals for Children—GalvestonGalvestonTexas
| | - David N. Herndon
- Department of SurgeryUniversity of Texas Medical BranchGalvestonTexas
- Shriners Hospitals for Children—GalvestonGalvestonTexas
| | - Thomas Albrecht
- Department of Microbiology and ImmunologyUniversity of Texas Medical BranchGalvestonTexas
- Infectious Disease and Toxicology Optical Imaging CoreUniversity of Texas Medical BranchGalvestonTexas
| |
Collapse
|
6
|
Silva G, Marins M, Chaichanasak N, Yoon Y, Fachin AL, Pinhanelli VC, Regasini LO, dos Santos MB, Ayusso GM, Marques BDC, Wu WW, Phue JN, Shen RF, Baek SJ. Trans-chalcone increases p53 activity via DNAJB1/HSP40 induction and CRM1 inhibition. PLoS One 2018; 13:e0202263. [PMID: 30118500 PMCID: PMC6097677 DOI: 10.1371/journal.pone.0202263] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 07/31/2018] [Indexed: 11/19/2022] Open
Abstract
Naturally-occurring chalcones and synthetic chalcone analogues have been demonstrated to have many biological effects, including anti-inflammatory, anti-malarial, anti-fungal, and anti-oxidant/anti-cancerous activities. Compared to other chalcones, trans-chalcone exhibits superior inhibitory activity in cancer cell growth as shown via in vitro assays, and exerts anti-cancerous effects via the activation of the p53 tumor suppressor protein. Thus, characterization of the specific mechanisms, by which trans-chalcone activates p53, can aid development of new chemotherapeutic drugs that can be used individually or synergistically with other drugs. In this report, we found that trans-chalcone modulates many p53 target genes, HSP40 being the most induced gene in the RNA-Seq data using trans-chalcone-treated cells. CRM1 is also inhibited by trans-chalcone, resulting in the accumulation of p53 and other tumor suppressor proteins in the nucleus. Similar effects were seen using trans-chalcone derivatives. Overall, trans-chalcone could provide a strong foundation for the development of chalcone-based anti-cancer drugs.
Collapse
Affiliation(s)
- Gabriel Silva
- Biotechnology Unit, University of Ribeirão Preto, Ribeirão Preto, São Paulo, Brazil
| | - Mozart Marins
- Biotechnology Unit, University of Ribeirão Preto, Ribeirão Preto, São Paulo, Brazil
- Medicine School, University of Ribeirão Preto, Ribeirão Preto, São Paulo, Brazil
| | - Nadda Chaichanasak
- Laboratory of Signal Transduction, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea
| | - Yongdae Yoon
- Laboratory of Signal Transduction, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea
| | - Ana Lúcia Fachin
- Biotechnology Unit, University of Ribeirão Preto, Ribeirão Preto, São Paulo, Brazil
- Medicine School, University of Ribeirão Preto, Ribeirão Preto, São Paulo, Brazil
| | | | - Luis Octávio Regasini
- Department of Chemistry and Environmental Chemistry, São Paulo State University (UNESP), São Paulo, Brazil
| | - Mariana Bastos dos Santos
- Department of Chemistry and Environmental Chemistry, São Paulo State University (UNESP), São Paulo, Brazil
| | - Gabriela Miranda Ayusso
- Department of Chemistry and Environmental Chemistry, São Paulo State University (UNESP), São Paulo, Brazil
| | | | - Wells W. Wu
- Facility for Biotechnology Resources, CBER, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Je-Nie Phue
- Facility for Biotechnology Resources, CBER, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Rong-Fong Shen
- Facility for Biotechnology Resources, CBER, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Seung Joon Baek
- Laboratory of Signal Transduction, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
7
|
A Abdullah A, Abdullah R, A Nazariah Z, N Balakrishnan K, Firdaus J Abdullah F, A Bala J, Mohd-Lila MA. Cyclophilin A as a target in the treatment of cytomegalovirus infections. Antivir Chem Chemother 2018; 26:2040206618811413. [PMID: 30449131 PMCID: PMC6243413 DOI: 10.1177/2040206618811413] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 10/12/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Viruses are obligate parasites that depend on the cellular machinery of the host to regenerate and manufacture their proteins. Most antiviral drugs on the market today target viral proteins. However, the more recent strategies involve targeting the host cell proteins or pathways that mediate viral replication. This new approach would be effective for most viruses while minimizing drug resistance and toxicity. METHODS Cytomegalovirus replication, latency, and immune response are mediated by the intermediate early protein 2, the main protein that determines the effectiveness of drugs in cytomegalovirus inhibition. This review explains how intermediate early protein 2 can modify the action of cyclosporin A, an immunosuppressive, and antiviral drug. It also links all the pathways mediated by cyclosporin A, cytomegalovirus replication, and its encoded proteins. RESULTS Intermediate early protein 2 can influence the cellular cyclophilin A pathway, affecting cyclosporin A as a mediator of viral replication or anti-cytomegalovirus drug. CONCLUSION Cyclosporin A has a dual function in cytomegalovirus pathogenesis. It has the immunosuppressive effect that establishes virus replication through the inhibition of T-cell function. It also has an anti-cytomegalovirus effect mediated by intermediate early protein 2. Both of these functions involve cyclophilin A pathway.
Collapse
Affiliation(s)
- Ashwaq A Abdullah
- 1 Institute of Bioscience, University Putra Malaysia, Serdang, Selangor D.E, Malaysia
- 2 Department of Microbiology, Faculty of Applied Science, Taiz University, Taiz, Yemen
| | - Rasedee Abdullah
- 1 Institute of Bioscience, University Putra Malaysia, Serdang, Selangor D.E, Malaysia
- 3 Department of Veterinary Laboratory Diagnosis, Universiti Putra Malaysia, Serdang, Selangor D.E, Malaysia
| | - Zeenathul A Nazariah
- 1 Institute of Bioscience, University Putra Malaysia, Serdang, Selangor D.E, Malaysia
- 4 Department of Pathology and Microbiology, Universiti Putra Malaysia, Serdang, Selangor D.E, Malaysia
| | - Krishnan N Balakrishnan
- 4 Department of Pathology and Microbiology, Universiti Putra Malaysia, Serdang, Selangor D.E, Malaysia
| | - Faez Firdaus J Abdullah
- 5 Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor D.E, Malaysia
| | - Jamilu A Bala
- 4 Department of Pathology and Microbiology, Universiti Putra Malaysia, Serdang, Selangor D.E, Malaysia
- 6 Department of Medical Laboratory Science, Faculty of Allied Health Sciences, Bayero University Kano, Kano, Nigeria
| | - Mohd-Azmi Mohd-Lila
- 1 Institute of Bioscience, University Putra Malaysia, Serdang, Selangor D.E, Malaysia
- 4 Department of Pathology and Microbiology, Universiti Putra Malaysia, Serdang, Selangor D.E, Malaysia
| |
Collapse
|
8
|
Efficacy and Mechanism of Action of Low Dose Emetine against Human Cytomegalovirus. PLoS Pathog 2016; 12:e1005717. [PMID: 27336364 PMCID: PMC4919066 DOI: 10.1371/journal.ppat.1005717] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 06/02/2016] [Indexed: 12/21/2022] Open
Abstract
Infection with human cytomegalovirus (HCMV) is a threat for pregnant women and immunocompromised hosts. Although limited drugs are available, development of new agents against HCMV is desired. Through screening of the LOPAC library, we identified emetine as HCMV inhibitor. Additional studies confirmed its anti-HCMV activities in human foreskin fibroblasts: EC50−40±1.72 nM, CC50−8±0.56 μM, and selectivity index of 200. HCMV inhibition occurred after virus entry, but before DNA replication, and resulted in decreased expression of viral proteins. Synergistic virus inhibition was achieved when emetine was combined with ganciclovir. In a mouse CMV (MCMV) model, emetine was well-tolerated, displayed long half-life, preferential distribution to tissues over plasma, and effectively suppressed MCMV. Since the in vitro anti-HCMV activity of emetine decreased significantly in low-density cells, a mechanism involving cell cycle regulation was suspected. HCMV inhibition by emetine depended on ribosomal processing S14 (RPS14) binding to MDM2, leading to disruption of HCMV-induced MDM2-p53 and MDM2-IE2 interactions. Irrespective of cell density, emetine induced RPS14 translocation into the nucleus during infection. In infected high-density cells, MDM2 was available for interaction with RPS14, resulting in disruption of MDM2-p53 interaction. However, in low-density cells the pre-existing interaction of MDM2-p53 could not be disrupted, and RPS14 could not interact with MDM2. In high-density cells the interaction of MDM2-RPS14 resulted in ubiquitination and degradation of RPS14, which was not observed in low-density cells. In infected-only or in non-infected emetine-treated cells, RPS14 failed to translocate into the nucleus, hence could not interact with MDM2, and was not ubiquitinated. HCMV replicated similarly in RPS14 knockdown or control cells, but emetine did not inhibit virus replication in the former cell line. The interaction of MDM2-p53 was maintained in infected RPS14 knockdown cells despite emetine treatment, confirming a unique mechanism by which emetine exploits RPS14 to disrupt MDM2-p53 interaction. Summarized, emetine may represent a promising candidate for HCMV therapy alone or in combination with ganciclovir through a novel host-dependent mechanism. Infection with human Cytomegalovirus (HCMV) is a growing and pressing problem, creating ongoing management and therapeutic challenges. Despite the availability of DNA polymerase inhibitors, development of new strategies for HCMV therapy is needed. We report for the first time on the efficacy of an old drug (emetine) against HCMV in vitro and mouse CMV in vivo, using exceedingly low drug doses. We also provide evidence for a specific host-dependent anti-CMV mechanism of emetine in vitro, thus uncovering a cellular function that can be further studied for drug development. Our work provides a novel direction for HCMV therapeutics through repurposing of an old agent, at substantially lower doses, and inhibiting HCMV indirectly through host activities critical for virus replication.
Collapse
|
9
|
Miciak J, Bunz F. Long story short: p53 mediates innate immunity. Biochim Biophys Acta Rev Cancer 2016; 1865:220-7. [PMID: 26951863 DOI: 10.1016/j.bbcan.2016.03.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 02/09/2016] [Accepted: 03/02/2016] [Indexed: 12/22/2022]
Abstract
The story of p53 and how we came to understand it is punctuated by fundamental insights into the essence of cancer. In the decades since its discovery, p53 has been shown to be centrally involved in most, if not all, of the cellular processes that maintain tissue homeostasis. Extensive functional analyses of p53 and its tumor-associated mutants have illuminated many of the common defects shared by most cancer cells. As the central character in a tale that continues to unfold, p53 has become increasingly familiar and yet remains surprisingly inscrutable. New relationships periodically come to light, and surprising, novel activities continue to emerge, thereby revealing new dimensions and aspects of its function. What lies at the very core of this complex protagonist? What is its prime motivation? As every avid reader knows, the elements of character are profoundly shaped by adversity--originating from within and without. And so it is with p53. This review will briefly recap the coordinated responses of p53 to viral infection, and outline a hypothetical model that would explain how an abundance of seemingly unrelated phenotypic attributes may in the end reflect a singular function. All stories eventually draw to a conclusion. This epic tale may eventually leave us with the realization that p53, most simply described, is a protein that evolved to mediate immune surveillance.
Collapse
Affiliation(s)
- Jessica Miciak
- Graduate Program in Cellular and Molecular Medicine, Department of Radiation Oncology and Molecular Radiation Sciences, The Kimmel Cancer Center at Johns Hopkins, Baltimore, MD 21287, USA.
| | - Fred Bunz
- Graduate Program in Cellular and Molecular Medicine, Department of Radiation Oncology and Molecular Radiation Sciences, The Kimmel Cancer Center at Johns Hopkins, Baltimore, MD 21287, USA.
| |
Collapse
|
10
|
Jandial DD, Blair CA, Zhang S, Krill LS, Zhang YB, Zi X. Molecular targeted approaches to cancer therapy and prevention using chalcones. Curr Cancer Drug Targets 2015; 14:181-200. [PMID: 24467530 DOI: 10.2174/1568009614666140122160515] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Revised: 01/16/2014] [Accepted: 01/22/2014] [Indexed: 01/09/2023]
Abstract
There is an emerging paradigm shift in oncology that seeks to emphasize molecularly targeted approaches for cancer prevention and therapy. Chalcones (1,3-diphenyl-2-propen-1-ones), naturally-occurring compounds with widespread distribution in spices, tea, beer, fruits and vegetables, consist of open-chain flavonoids in which the two aromatic rings are joined by a three-carbon α, β-unsaturated carbonyl system. Due to their structural diversity, relative ease of chemical manipulation and reaction of α, β-unsaturated carbonyl moiety with cysteine residues in proteins, some lead chalcones from both natural products and synthesis have been identified in a variety of screening assays for modulating important pathways or molecular targets in cancers. These pathways and targets that are affected by chalcones include MDM2/p53, tubulin, proteasome, NF-kappa B, TRIAL/death receptors and mitochondria mediated apoptotic pathways, cell cycle, STAT3, AP-1, NRF2, AR, ER, PPAR-γ and β-catenin/Wnt. Compared to current cancer targeted therapeutic drugs, chalcones have the advantages of being inexpensive, easily available and less toxic; the ease of synthesis of chalcones from substituted benzaldehydes and acetophenones also makes them an attractive drug scaffold. Therefore, this review is focused on molecular targets of chalcones and their potential implications in cancer prevention and therapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiaolin Zi
- Department of Urology, University of California, Irvine, 101 The City Drive South, Rt.81 Bldg.55 Rm.302, Orange CA 92868, USA.
| |
Collapse
|
11
|
Morris G, Berk M, Walder K, Maes M. The Putative Role of Viruses, Bacteria, and Chronic Fungal Biotoxin Exposure in the Genesis of Intractable Fatigue Accompanied by Cognitive and Physical Disability. Mol Neurobiol 2015; 53:2550-71. [PMID: 26081141 DOI: 10.1007/s12035-015-9262-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 05/28/2015] [Indexed: 01/08/2023]
Abstract
Patients who present with severe intractable apparently idiopathic fatigue accompanied by profound physical and or cognitive disability present a significant therapeutic challenge. The effect of psychological counseling is limited, with significant but very slight improvements in psychometric measures of fatigue and disability but no improvement on scientific measures of physical impairment compared to controls. Similarly, exercise regimes either produce significant, but practically unimportant, benefit or provoke symptom exacerbation. Many such patients are afforded the exclusionary, non-specific diagnosis of chronic fatigue syndrome if rudimentary testing fails to discover the cause of their symptoms. More sophisticated investigations often reveal the presence of a range of pathogens capable of establishing life-long infections with sophisticated immune evasion strategies, including Parvoviruses, HHV6, variants of Epstein-Barr, Cytomegalovirus, Mycoplasma, and Borrelia burgdorferi. Other patients have a history of chronic fungal or other biotoxin exposure. Herein, we explain the epigenetic factors that may render such individuals susceptible to the chronic pathology induced by such agents, how such agents induce pathology, and, indeed, how such pathology can persist and even amplify even when infections have cleared or when biotoxin exposure has ceased. The presence of active, reactivated, or even latent Herpes virus could be a potential source of intractable fatigue accompanied by profound physical and or cognitive disability in some patients, and the same may be true of persistent Parvovirus B12 and mycoplasma infection. A history of chronic mold exposure is a feasible explanation for such symptoms, as is the presence of B. burgdorferi. The complex tropism, life cycles, genetic variability, and low titer of many of these pathogens makes their detection in blood a challenge. Examination of lymphoid tissue or CSF in such circumstances may be warranted.
Collapse
Affiliation(s)
- Gerwyn Morris
- Tir Na Nog, Bryn Road seaside 87, Llanelli, SA15 2LW, Wales, UK
| | - Michael Berk
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Geelong, Australia.,Orygen, The National Centre of Excellence in Youth Mental Health, Department of Psychiatry and The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
| | - Ken Walder
- Centre for Molecular and Medical Research, School of Medicine, Deakin University, Geelong, Australia
| | - Michael Maes
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Geelong, Australia. .,Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
12
|
Kumazawa T, Nishimura K, Katagiri N, Hashimoto S, Hayashi Y, Kimura K. Gradual reduction in rRNA transcription triggers p53 acetylation and apoptosis via MYBBP1A. Sci Rep 2015; 5:10854. [PMID: 26044764 PMCID: PMC4456663 DOI: 10.1038/srep10854] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 05/05/2015] [Indexed: 12/19/2022] Open
Abstract
The nucleolus, whose primary function is ribosome biogenesis, plays an essential role in p53 activation. Ribosome biogenesis is inhibited in response to cellular stress and several nucleolar proteins translocate from the nucleolus to the nucleoplasm, where they activate p53. In this study, we analysed precisely how impaired ribosome biogenesis regulates the activation of p53 by depleting nucleolar factors involved in rRNA transcription or rRNA processing. Nucleolar RNA content decreased when rRNA transcription was inhibited. In parallel with the reduced levels of nucleolar RNA content, the nucleolar protein Myb-binding protein 1 A (MYBBP1A) translocated to the nucleoplasm and increased p53 acetylation. The acetylated p53 enhanced p21 and BAX expression and induced apoptosis. In contrast, when rRNA processing was inhibited, MYBBP1A remained in the nucleolus and nonacetylated p53 accumulated, causing cell cycle arrest at the G1 phase by inducing p21 but not BAX. We propose that the nucleolus functions as a stress sensor to modulate p53 protein levels and its acetylation status, determining cell fate between cell cycle arrest and apoptosis by regulating MYBBP1A translocation.
Collapse
Affiliation(s)
- Takuya Kumazawa
- 1] Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennnoudai, Tsukuba 305-8577, Japan [2] First Department of Internal Medicine, Nara Medical University, 840 Shijo-cho Kashihara, Nara 634-8522, Japan
| | - Kazuho Nishimura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennnoudai, Tsukuba 305-8577, Japan
| | - Naohiro Katagiri
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennnoudai, Tsukuba 305-8577, Japan
| | - Sayaka Hashimoto
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennnoudai, Tsukuba 305-8577, Japan
| | - Yuki Hayashi
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennnoudai, Tsukuba 305-8577, Japan
| | - Keiji Kimura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennnoudai, Tsukuba 305-8577, Japan
| |
Collapse
|
13
|
Weekes MP, Tomasec P, Huttlin EL, Fielding CA, Nusinow D, Stanton RJ, Wang ECY, Aicheler R, Murrell I, Wilkinson GWG, Lehner PJ, Gygi SP. Quantitative temporal viromics: an approach to investigate host-pathogen interaction. Cell 2014; 157:1460-1472. [PMID: 24906157 PMCID: PMC4048463 DOI: 10.1016/j.cell.2014.04.028] [Citation(s) in RCA: 328] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 02/18/2014] [Accepted: 04/03/2014] [Indexed: 12/11/2022]
Abstract
A systematic quantitative analysis of temporal changes in host and viral proteins throughout the course of a productive infection could provide dynamic insights into virus-host interaction. We developed a proteomic technique called “quantitative temporal viromics” (QTV), which employs multiplexed tandem-mass-tag-based mass spectrometry. Human cytomegalovirus (HCMV) is not only an important pathogen but a paradigm of viral immune evasion. QTV detailed how HCMV orchestrates the expression of >8,000 cellular proteins, including 1,200 cell-surface proteins to manipulate signaling pathways and counterintrinsic, innate, and adaptive immune defenses. QTV predicted natural killer and T cell ligands, as well as 29 viral proteins present at the cell surface, potential therapeutic targets. Temporal profiles of >80% of HCMV canonical genes and 14 noncanonical HCMV open reading frames were defined. QTV is a powerful method that can yield important insights into viral infection and is applicable to any virus with a robust in vitro model. PaperClip
>8,000 proteins quantified over eight time points, including 1,200 cell-surface proteins Temporal profiles of 139/171 canonical HCMV proteins and 14 noncanonical HCMV ORFs Multiple families of cell-surface receptors selectively modulated by HCMV Multiple signaling pathways modulated during HCMV infection
Collapse
Affiliation(s)
- Michael P Weekes
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA; Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK.
| | - Peter Tomasec
- School of Medicine, Cardiff University, Tenovus Building, Heath Park, Cardiff CF14 4XX, UK
| | - Edward L Huttlin
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Ceri A Fielding
- School of Medicine, Cardiff University, Tenovus Building, Heath Park, Cardiff CF14 4XX, UK
| | - David Nusinow
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Richard J Stanton
- School of Medicine, Cardiff University, Tenovus Building, Heath Park, Cardiff CF14 4XX, UK
| | - Eddie C Y Wang
- School of Medicine, Cardiff University, Tenovus Building, Heath Park, Cardiff CF14 4XX, UK
| | - Rebecca Aicheler
- School of Medicine, Cardiff University, Tenovus Building, Heath Park, Cardiff CF14 4XX, UK
| | - Isa Murrell
- School of Medicine, Cardiff University, Tenovus Building, Heath Park, Cardiff CF14 4XX, UK
| | - Gavin W G Wilkinson
- School of Medicine, Cardiff University, Tenovus Building, Heath Park, Cardiff CF14 4XX, UK
| | - Paul J Lehner
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
14
|
Kofod-Olsen E, Pettersson S, Wallace M, Abduljabar AB, Oster B, Hupp T, Höllsberg P. Human herpesvirus-6B protein U19 contains a p53 BOX I homology motif for HDM2 binding and p53 stabilization. Virology 2013; 448:33-42. [PMID: 24314634 DOI: 10.1016/j.virol.2013.10.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Revised: 07/29/2013] [Accepted: 10/01/2013] [Indexed: 11/30/2022]
Abstract
In order to establish a successful infection, it is of crucial importance for invading viruses to alter the activities of the regulatory protein p53. Beta-herpesviruses stabilize p53 and likely direct its activities towards generation of a replication-friendly environment. We here study the mechanisms behind HHV-6B-induced stabilization and inactivation of p53. Stable transgene expression of the HHV-6B protein U19 was sufficient to achieve upregulation of p53. U19 bound directly to the p53-regulating protein HDM2 in vitro, co-precipitated together with HDM2 in lysates, and co-localized with HDM2 in the nucleus when overexpressed. U19 contained a sequence with a putative p53 BOX I-motif for HDM2 binding. Mutation of the two key amino acids within this motif was sufficient to inhibit all the described U19 functions. Our study provides further insight into p53-modulating strategies used by herpesviruses and elucidates a mechanism used by HHV-6B to circumvent the antiviral response.
Collapse
Affiliation(s)
- Emil Kofod-Olsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Department of Infectious Diseases, Aarhus University Hospital, Denmark
| | | | | | | | | | | | | |
Collapse
|
15
|
Juranic Lisnic V, Babic Cac M, Lisnic B, Trsan T, Mefferd A, Das Mukhopadhyay C, Cook CH, Jonjic S, Trgovcich J. Dual analysis of the murine cytomegalovirus and host cell transcriptomes reveal new aspects of the virus-host cell interface. PLoS Pathog 2013; 9:e1003611. [PMID: 24086132 PMCID: PMC3784481 DOI: 10.1371/journal.ppat.1003611] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 07/26/2013] [Indexed: 11/19/2022] Open
Abstract
Major gaps in our knowledge of pathogen genes and how these gene products interact with host gene products to cause disease represent a major obstacle to progress in vaccine and antiviral drug development for the herpesviruses. To begin to bridge these gaps, we conducted a dual analysis of Murine Cytomegalovirus (MCMV) and host cell transcriptomes during lytic infection. We analyzed the MCMV transcriptome during lytic infection using both classical cDNA cloning and sequencing of viral transcripts and next generation sequencing of transcripts (RNA-Seq). We also investigated the host transcriptome using RNA-Seq combined with differential gene expression analysis, biological pathway analysis, and gene ontology analysis. We identify numerous novel spliced and unspliced transcripts of MCMV. Unexpectedly, the most abundantly transcribed viral genes are of unknown function. We found that the most abundant viral transcript, recently identified as a noncoding RNA regulating cellular microRNAs, also codes for a novel protein. To our knowledge, this is the first viral transcript that functions both as a noncoding RNA and an mRNA. We also report that lytic infection elicits a profound cellular response in fibroblasts. Highly upregulated and induced host genes included those involved in inflammation and immunity, but also many unexpected transcription factors and host genes related to development and differentiation. Many top downregulated and repressed genes are associated with functions whose roles in infection are obscure, including host long intergenic noncoding RNAs, antisense RNAs or small nucleolar RNAs. Correspondingly, many differentially expressed genes cluster in biological pathways that may shed new light on cytomegalovirus pathogenesis. Together, these findings provide new insights into the molecular warfare at the virus-host interface and suggest new areas of research to advance the understanding and treatment of cytomegalovirus-associated diseases.
Collapse
Affiliation(s)
- Vanda Juranic Lisnic
- Department of Histology and Embryology and the Center for Proteomics, University of Rijeka School of Medicine, Rijeka, Croatia
| | - Marina Babic Cac
- Department of Histology and Embryology and the Center for Proteomics, University of Rijeka School of Medicine, Rijeka, Croatia
| | - Berislav Lisnic
- Laboratory of Biology and Microbial Genetics, Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| | - Tihana Trsan
- Department of Histology and Embryology and the Center for Proteomics, University of Rijeka School of Medicine, Rijeka, Croatia
| | - Adam Mefferd
- The Department of Surgery, The Ohio State University, Columbus, Ohio, United States of America
| | | | - Charles H. Cook
- The Department of Surgery, The Ohio State University, Columbus, Ohio, United States of America
| | - Stipan Jonjic
- Department of Histology and Embryology and the Center for Proteomics, University of Rijeka School of Medicine, Rijeka, Croatia
| | - Joanne Trgovcich
- The Department of Surgery, The Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
16
|
Lepiller Q, Abbas W, Kumar A, Tripathy MK, Herbein G. HCMV activates the IL-6-JAK-STAT3 axis in HepG2 cells and primary human hepatocytes. PLoS One 2013; 8:e59591. [PMID: 23555719 PMCID: PMC3608661 DOI: 10.1371/journal.pone.0059591] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 02/15/2013] [Indexed: 12/14/2022] Open
Abstract
Objectives There has been increased interest in the possible role of human cytomegalovirus (HCMV) in carcinogenesis during the last decade. HCMV seroprevalence was enhanced in patients with hepatocellular carcinoma (HCC) but a possible relationship between HCC and HCMV infection remained to be assessed. The aim of this work was to investigate the pro-tumor influence of HCMV on primary human hepatocytes (PHH) and HepG2 cells. Methods Following infection of PHH and HepG2 cells by two different strains of HCMV, we measured the production of IL-6 in culture supernatants by ELISA and the protein levels of STAT3, pSTAT3, JAK, cyclin D1, survivin, p53, p21, and Mdm2 by western Blotting in infected and uninfected cells. Cell proliferation and transformation were investigated using Ki67Ag expression measurement and soft-agar colony formation assay respectively. Results Infection of HepG2 cells and PHH by HCMV resulted in the production of IL-6 and the subsequent activation of the IL-6R-JAK-STAT3 pathway. HCMV increased the expression of cyclin D1 and survivin. Cell proliferation was enhanced in HepG2 and PHH infected with HCMV, despite a paradoxical overexpression of p53 and p21. More importantly, we observed the formation of colonies in soft agar seeded with PHH infected with HCMV and when we challenged the HepG2 cultures to form tumorspheres, we found that the HCMV-infected cultures formed 2.5-fold more tumorspheres than uninfected cultures. Conclusion HCMV activated the IL-6-JAK-STAT3 pathway in PHH and HepG2 cells, favored cellular proliferation, induced PHH transformation and enhanced HepG2 tumorsphere formation. Our observations raise the possibility that HCMV infection might be involved in the genesis of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Quentin Lepiller
- Department of Virology, University of Franche-Comté, EA 4266 “Pathogens & Inflammation”, SFR FED4234, CHU Besançon, Besançon, France
| | - Wasim Abbas
- Department of Virology, University of Franche-Comté, EA 4266 “Pathogens & Inflammation”, SFR FED4234, CHU Besançon, Besançon, France
| | - Amit Kumar
- Department of Virology, University of Franche-Comté, EA 4266 “Pathogens & Inflammation”, SFR FED4234, CHU Besançon, Besançon, France
| | - Manoj K. Tripathy
- Department of Virology, University of Franche-Comté, EA 4266 “Pathogens & Inflammation”, SFR FED4234, CHU Besançon, Besançon, France
| | - Georges Herbein
- Department of Virology, University of Franche-Comté, EA 4266 “Pathogens & Inflammation”, SFR FED4234, CHU Besançon, Besançon, France
- * E-mail:
| |
Collapse
|
17
|
Kofod-Olsen E, Møller JML, Schleimann MH, Bundgaard B, Bak RO, Øster B, Mikkelsen JG, Hupp T, Höllsberg P. Inhibition of p53-dependent, but not p53-independent, cell death by U19 protein from human herpesvirus 6B. PLoS One 2013; 8:e59223. [PMID: 23555634 PMCID: PMC3608612 DOI: 10.1371/journal.pone.0059223] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 02/12/2013] [Indexed: 01/20/2023] Open
Abstract
Infection with human herpesvirus (HHV)-6B alters cell cycle progression and stabilizes tumor suppressor protein p53. In this study, we have analyzed the activity of p53 after stimulation with p53-dependent and -independent DNA damaging agents during HHV-6B infection. Microarray analysis, Western blotting and confocal microscopy demonstrated that HHV-6B-infected cells were resistant to p53-dependent arrest and cell death after γ irradiation in both permissive and non-permissive cell lines. In contrast, HHV-6B-infected cells died normally through p53-independet DNA damage induced by UV radiation. Moreover, we identified a viral protein involved in inhibition of p53 during HHV-6B-infection. The protein product from the U19 ORF was able to inhibit p53-dependent signaling following γ irradiation in a manner similar to that observed during infection. Similar to HHV-6B infection, overexpression of U19 failed to rescue the cells from p53-independent death induced by UV radiation. Hence, infection with HHV-6B specifically blocks DNA damage-induced cell death associated with p53 without inhibiting the p53-independent cell death response. This block in p53 function can in part be ascribed to the activities of the viral U19 protein.
Collapse
Affiliation(s)
| | | | | | | | - Rasmus O. Bak
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Bodil Øster
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Institute of Genetics and Molecular Medicine, Cancer Research UK p53 Signal Transduction Laboratories, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | | | - Ted Hupp
- Institute of Genetics and Molecular Medicine, Cancer Research UK p53 Signal Transduction Laboratories, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Per Höllsberg
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- * E-mail:
| |
Collapse
|
18
|
Human cytomegalovirus pUL29/28 and pUL38 repression of p53-regulated p21CIP1 and caspase 1 promoters during infection. J Virol 2012; 87:2463-74. [PMID: 23236067 DOI: 10.1128/jvi.01926-12] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
During infection by human cytomegalovirus (HCMV), the tumor suppressor protein p53, which promotes efficient viral gene expression, is stabilized. However, the expression of numerous p53-responsive cellular genes is not upregulated. The molecular mechanism used to manipulate the transcriptional activity of p53 during infection remains unclear. The HCMV proteins IE1, IE2, pUL44, and pUL84 likely contribute to the regulation of p53. In this study, we used a discovery-based approach to identify the protein targets of the HCMV protein pUL29/28 during infection. Previous studies have demonstrated that pUL29/28 regulates viral gene expression by interacting with the chromatin remodeling complex NuRD. Here, we observed that pUL29/28 also associates with p53, an additional deacetylase complex, and several HCMV proteins, including pUL38. We confirmed the interaction between p53 and pUL29/28 in both the presence and absence of infection. HCMV pUL29/28 with pUL38 altered the activity of the 53-regulatable p21CIP1 promoter. During infection, pUL29/28 and pUL38 contributed to the inhibition of p21CIP1 as well as caspase 1 expression. The expression of several other p53-regulating genes was not altered. Infection using a UL29-deficient virus resulted in increased p53 binding and histone H3 acetylation at the responsive promoters. Furthermore, expression of pUL29/28 and its interacting partner pUL38 contributed to an increase in the steady-state protein levels of p53. This study identified two additional HCMV proteins, pUL29/28 and pUL38, which participate in the complex regulation of p53 transcriptional activity during infection.
Collapse
|
19
|
U20 is responsible for human herpesvirus 6B inhibition of tumor necrosis factor receptor-dependent signaling and apoptosis. J Virol 2012; 86:11483-92. [PMID: 22896603 DOI: 10.1128/jvi.00847-12] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The immune system targets virus-infected cells by different means. One of the essential antiviral mechanisms is apoptosis induced by ligation of tumor necrosis factor receptor 1 (TNFR1). This receptor can be activated by tumor necrosis factor alpha (TNF-α), which upon binding to TNFR1 induces the assembly of first an inflammatory and later a proapoptotic signaling complex. Here, we report that infection by human herpesvirus 6B (HHV-6B) inhibited poly(ADP-ribose) polymerase (PARP) cleavage, caspase 3 and 8 activation, and IκBα Ser-32 phosphorylation downstream of TNFR1, indicating inhibition of both the inflammatory and apoptotic signaling pathways. We identified a hitherto uncharacterized viral protein, U20, as sufficient for mediating this inhibition. U20 was shown to locate to the cell membrane, and overexpression inhibited PARP cleavage, caspase 3 and 8 activation, IκBα Ser-32 phosphorylation, and NF-κB transcriptional activity. Moreover, small interfering RNA (siRNA) knockdown of U20 demonstrated that the protein is necessary for HHV-6B-mediated inhibition of TNFR signaling during infection. These results suggest an important novel function of U20 as a viral immune evasion protein during HHV-6B infection.
Collapse
|
20
|
The effect of physico-chemically immobilized methylene blue and neutral red on the anode of microbial fuel cell. BIOTECHNOL BIOPROC E 2012. [DOI: 10.1007/s12257-011-0493-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
21
|
Wang X, Deng X, Yan W, Zhu Z, Shen Y, Qiu Y, Shi Z, Shao D, Wei J, Xia X, Ma Z. Stabilization of p53 in influenza A virus-infected cells is associated with compromised MDM2-mediated ubiquitination of p53. J Biol Chem 2012; 287:18366-75. [PMID: 22474335 DOI: 10.1074/jbc.m111.335422] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Influenza A virus (IAV) induces apoptosis of infected cells. In response to IAV infection, p53, a tumor suppressor involved in regulating apoptosis and host antiviral defense, accumulates and becomes activated. This study was undertaken to examine the mechanism of p53 accumulation in IAV-infected cells. Here we show that p53 accumulation in IAV-infected cells results from protein stabilization, which was associated with compromised Mdm2-mediated ubiquitination of p53. In IAV-infected cells, p53 was stabilized and its half-life was remarkably extended. The ladders of polyubiquitinated p53 were not detectable in the presence of the proteasome inhibitor MG132 and were less sensitive to proteasome-mediated degradation. IAV infection did not affect the abundance of Mdm2, a major ubiquitin E3 ligase responsible for regulating p53 ubiquitination and degradation, but weakened the interaction between p53 and Mdm2. Viral nucleoprotein (NP) was able to increase the transcriptional activity and stability of p53. Furthermore, NP was found to associate with p53 and to impair the p53-Mdm2 interaction and Mdm2-mediated p53 ubiquitination, demonstrating its role in inhibiting Mdm2-mediated p53 ubiquitination and degradation.
Collapse
Affiliation(s)
- Xiaodu Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Fliss PM, Jowers TP, Brinkmann MM, Holstermann B, Mack C, Dickinson P, Hohenberg H, Ghazal P, Brune W. Viral mediated redirection of NEMO/IKKγ to autophagosomes curtails the inflammatory cascade. PLoS Pathog 2012; 8:e1002517. [PMID: 22319449 PMCID: PMC3271075 DOI: 10.1371/journal.ppat.1002517] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 12/16/2011] [Indexed: 01/06/2023] Open
Abstract
The early host response to viral infections involves transient activation of pattern recognition receptors leading to an induction of inflammatory cytokines such as interleukin-1β (IL-1β) and tumor necrosis factor α (TNFα). Subsequent activation of cytokine receptors in an autocrine and paracrine manner results in an inflammatory cascade. The precise mechanisms by which viruses avert an inflammatory cascade are incompletely understood. Nuclear factor (NF)-κB is a central regulator of the inflammatory signaling cascade that is controlled by inhibitor of NF-κB (IκB) proteins and the IκB kinase (IKK) complex. In this study we show that murine cytomegalovirus inhibits the inflammatory cascade by blocking Toll-like receptor (TLR) and IL-1 receptor-dependent NF-κB activation. Inhibition occurs through an interaction of the viral M45 protein with the NF-κB essential modulator (NEMO), the regulatory subunit of the IKK complex. M45 induces proteasome-independent degradation of NEMO by targeting NEMO to autophagosomes for subsequent degradation in lysosomes. We propose that the selective and irreversible degradation of a central regulatory protein by autophagy represents a new viral strategy to dampen the inflammatory response. Upon viral infection cells immediately induce an innate immune response which involves the production of inflammatory cytokines. These cytokines activate specific receptors on infected and surrounding cells leading to local signal amplification as well as signal broadcasting beyond the original site of infection. Inflammatory cytokine production depends on transcription factor NF-κB, whose activity is controlled by a kinase complex that includes the NF-κB essential modulator (NEMO). In order to replicate and spread in their hosts, viruses have evolved numerous strategies to counteract innate immune defenses. In this study we identify a highly effective viral strategy to blunt the host inflammatory response: The murine cytomegalovirus M45 protein binds to NEMO and redirects it to autophagosomes, vesicular structures that deliver cytoplasmic constituents to lysosomes for degradation and recycling. By this means, the virus installs a sustained block to all classical NF-κB activation pathways, which include signaling cascades originating from pattern recognition receptors and inflammatory cytokine receptors. Redirection of an essential component of the host cell defense machinery to the autophagic degradation pathway is a previously unrecognized viral immune evasion strategy whose principle is likely shared by other pathogens.
Collapse
Affiliation(s)
- Patricia M. Fliss
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
- Division of Viral Infections, Robert Koch Institute, Berlin, Germany
| | - Tali Pechenick Jowers
- Division of Pathway Medicine, Centre for Infectious Diseases, University of Edinburgh Medical School, Edinburgh, United Kingdom
| | | | - Barbara Holstermann
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Claudia Mack
- Division of Viral Infections, Robert Koch Institute, Berlin, Germany
| | - Paul Dickinson
- Division of Pathway Medicine, Centre for Infectious Diseases, University of Edinburgh Medical School, Edinburgh, United Kingdom
| | - Heinrich Hohenberg
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Peter Ghazal
- Division of Pathway Medicine, Centre for Infectious Diseases, University of Edinburgh Medical School, Edinburgh, United Kingdom
| | - Wolfram Brune
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
- Division of Viral Infections, Robert Koch Institute, Berlin, Germany
- * E-mail:
| |
Collapse
|
23
|
Yang H, Zheng Z, Zhao LY, Li Q, Liao D. Downregulation of Mdm2 and Mdm4 enhances viral gene expression during adenovirus infection. Cell Cycle 2012; 11:582-93. [PMID: 22262167 DOI: 10.4161/cc.11.3.19052] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Successful viral replication entails elimination or bypass of host antiviral mechanisms. Here, we show that shRNA-mediated knockdown of murine double minute (Mdm2) and its paralog Mdm4 enhanced the expression of early and late viral gene products during adenovirus (HAdV) infection. Remarkably, whereas the expression of HAdV genes was low in p53-deficient mouse embryonic fibroblasts (p53KO MEFs), the HAdV early gene products were efficiently expressed in Mdm2/p53 double-knockout (DKO) and Mdm4/p53 DKO MEFs, and viral capsid proteins were produced in Mdm2/p53 DKO MEFs. Thus, Mdm2 and Mdm4 seem to have potent antiviral property. In cells infected with wt HAdV or a mutant virus lacking the E1B-55K gene (dl 1520), both Mdm2 and Mdm4 were rapidly depleted, whereas replication-deficient mutant viruses (Ad-GFP) or ΔpTP with deletions within the coding sequence of preterminal binding protein failed to induce their downregulation. Reduced expression of Mdm2 and Mdm4 was not due to general shutoff of host protein synthesis. Additionally, expression of a dominant-negative mutant of Cul5 did not affect Mdm2/Mdm4 downregulation. Thus, viral replication but not the presence of E1B-55K is required for Mdm2/Mdm4 degradation. Surprisingly, treatment of HAdV-infected cells with proteasome inhibitor MG132 only partially restored the protein levels of Mdm2 and Mdm4, suggesting that they may also be downregulated through an additional mechanism independent of proteasome. Interestingly, cyclin D1 and p21 appear to be downregulated similarly during HAdV infection. Collectively, our work provides the first biochemical evidence for antiviral function of Mdm2 and Mdm4 and that viruses employ efficient countermeasure to ensure viral replication.
Collapse
Affiliation(s)
- Heng Yang
- Department of Anatomy and Cell Biology, University of Florida Shands Cancer Center, University of Florida College of Medicine, Gainesville, FL, USA
| | | | | | | | | |
Collapse
|
24
|
Hakki M, Drummond C, Houser B, Marousek G, Chou S. Resistance to maribavir is associated with the exclusion of pUL27 from nucleoli during human cytomegalovirus infection. Antiviral Res 2011; 92:313-8. [PMID: 21906628 DOI: 10.1016/j.antiviral.2011.08.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 08/18/2011] [Accepted: 08/22/2011] [Indexed: 01/13/2023]
Abstract
Select mutations in the human cytomegalovirus (HCMV) gene UL27 confer low-grade resistance to the HCMV UL97 kinase inhibitor maribavir (MBV). It has been reported that the 608-amino acid UL27 gene product (pUL27) normally localizes to cell nuclei and nucleoli, whereas its truncation at codon 415, as found in a MBV-resistant mutant, results in cytoplasmic localization. We now show that in the context of full-length pUL27, diverse single amino acid substitutions associated with MBV resistance result in loss of its nucleolar localization when visualized after transient transfection, whereas substitutions representing normal interstrain polymorphism had no such effect. The same differences in localization were observed during a complete infection cycle with recombinant HCMV strains over-expressing full-length fluorescent pUL27 variants. Nested UL27 C-terminal truncation expression plasmids showed that amino acids 596-599 were required for the nucleolar localization of pUL27. These results indicate that the loss of a nucleolar function of pUL27 may contribute to MBV resistance, and that the nucleolar localization of pUL27 during HCMV infection depends not only on a carboxy-terminal domain but also on a property of pUL27 that is affected by MBV-resistant mutations, such as an interaction with component(s) of the nucleolus.
Collapse
Affiliation(s)
- Morgan Hakki
- Division of Infectious Diseases, Oregon Health & Science University, Portland, OR 97239, USA.
| | | | | | | | | |
Collapse
|
25
|
Lazo PA, Santos CR. Interference with p53 functions in human viral infections, a target for novel antiviral strategies? Rev Med Virol 2011; 21:285-300. [PMID: 21726011 DOI: 10.1002/rmv.696] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 05/02/2011] [Accepted: 05/06/2011] [Indexed: 12/11/2022]
Abstract
Viral infections cause a major stress in host cells. The cellular responses to stress are mediated by p53, which by deregulation of cell cycle and apoptosis, may also be part of the host cell reaction to fight infections. Therefore, during evolutionary viral adaptation to host organisms, viruses have developed strategies to manipulate host cell p53 dependent pathways to facilitate their viral life cycles. Thus, interference with p53 function is an important component in viral pathogenesis. Many viruses have proteins that directly affect p53, whereas others alter the regulation of p53 in an indirect manner, mediated by Hdm2 or Akt, or induction of interferon. Rescue of p53 activity is becoming an area of therapeutic development in oncology. It might be feasible that manipulation of p53 mediated responses can become a therapeutic option to limit viral replication or dissemination. In this report, the mechanisms by which viral proteins manipulate p53 responses are reviewed, and it is proposed that a pharmacological rescue of p53 functions might help to control viral infections.
Collapse
Affiliation(s)
- Pedro A Lazo
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Salamanca, Salamanca, Spain.
| | | |
Collapse
|
26
|
Matsushima S, Okita N, Oku M, Nagai W, Kobayashi M, Higami Y. An Mdm2 antagonist, Nutlin-3a, induces p53-dependent and proteasome-mediated poly(ADP-ribose) polymerase1 degradation in mouse fibroblasts. Biochem Biophys Res Commun 2011; 407:557-61. [PMID: 21419099 DOI: 10.1016/j.bbrc.2011.03.061] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Accepted: 03/12/2011] [Indexed: 11/25/2022]
Abstract
Nutlin-3a (Nutlin) is an Mdm2 inhibitor and is potent to stabilize p53, which is a tumor-suppressor involved in various biological processes such as cell cycle regulation, DNA repair, and apoptosis. Here we demonstrate that Nutlin treatment in mouse fibroblast cell lines reduces the protein levels of poly(ADP-ribose) polymerase1 (Parp1). Parp1 functions in DNA repair, replication, and transcription and has been regarded as a target molecule for anti-cancer therapy and protection from ischemia/reperfusion injury. In this study, first we found that Nutlin, but not DNA damaging agents such as camptothecin (Cpt), induced a decrease in the Parp1 protein levels. This reduction was not associated with cell death and not observed in p53 deficient cells. Next, because Nutlin treatment did not alter Parp1 mRNA levels, we expected that a protein degradation pathway might contribute to this phenomenon. Predictably, a proteasome inhibitor, MG132, inhibited the Nutlin-induced decrease in the levels of Parp1 protein. These results show that Nutlin induces the proteasomal degradation of Parp1 in a p53-dependent manner. Thus, this study demonstrates characterization of a novel regulatory mechanism of Parp1 protein. This novel regulatory mechanism of Parp1 protein level could contribute to development of inhibitors of the Parp1 signaling pathway.
Collapse
Affiliation(s)
- Shingo Matsushima
- Department of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Yamazaki 2641, Noda, Chiba 278-0022, Japan
| | | | | | | | | | | |
Collapse
|
27
|
HIV-1 viral infectivity factor interacts with TP53 to induce G2 cell cycle arrest and positively regulate viral replication. Proc Natl Acad Sci U S A 2010; 107:20798-803. [PMID: 21071676 DOI: 10.1073/pnas.1008076107] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Viral infectivity factor, an accessory protein encoded in the HIV-1 genome, induces G2 cell cycle arrest; however, the biological significance and mechanism(s) remain totally unclear. Here we demonstrate that the TP53 pathway is involved in Vif-mediated G2 cell cycle arrest. Vif enhances the stability and transcriptional activity of TP53 by blocking the MDM2-mediated ubiquitination and nuclear export of TP53. Furthermore, Vif causes G2 cell cycle arrest in a TP53-dependent manner. HXB2 Vif lacks these activities toward TP53 and cannot induce G2 cell cycle arrest. Using mutagenesis, we demonstrate that the critical residues for this function are located in the N-terminal region of Vif. Finally, we construct a mutant NL4-3 virus with an NL4-3/HXB2 chimeric Vif defective for the ability to induce cell cycle arrest and show that the mutant virus replicates less effectively than the wild-type NL4-3 virus in T cells expressing TP53. These data imply that Vif induces G2 cell cycle arrest through functional interaction with the TP53/MDM2 axis and that the G2 cell cycle arrest induced by Vif has a positive effect on HIV-1 replication. This report demonstrates the molecular mechanisms and the biological significance of Vif-mediated G2 cell cycle arrest for HIV-1 infection.
Collapse
|
28
|
NF-kappaB inhibits T-cell activation-induced, p73-dependent cell death by induction of MDM2. Proc Natl Acad Sci U S A 2010; 107:18061-6. [PMID: 20921405 DOI: 10.1073/pnas.1006163107] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
NF-κB is a key transcription factor involved in the regulation of T-cell activation and proliferation upon engagement of the T-cell receptor (TCR). T cells that lack the IκB kinase (IKKβ) are unable to activate NF-κB, and rapidly undergo apoptosis upon activation. NF-κB activation following T-cell receptor engagement induces the expression of Mdm2 through interaction with NF-κB sites in its P1 promoter, and enforced expression of Mdm2 protected T cells deficient for NF-κB activation from activation-induced cell death. In T cells with intact NF-κB signaling, ablation or pharmacologic inhibition of Mdm2 resulted in activation-induced apoptosis. Mdm2 coprecipitates with p73 in activated T cells, and apoptosis induced by inhibition of Mdm2 was p73-dependent. Further, Bim was identified as a p73 target gene required for cell death induced by Mdm2 inhibition, and a p73-responsive element in intron 1 of Bim was characterized. Our results demonstrate a pathway for survival of activated T cells through NF-κB-induced Mdm2, which blocks Bim-dependent apoptosis through binding and inhibition of p73.
Collapse
|
29
|
Sgk1 activates MDM2-dependent p53 degradation and affects cell proliferation, survival, and differentiation. J Mol Med (Berl) 2009; 87:1221-39. [PMID: 19756449 DOI: 10.1007/s00109-009-0525-5] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Revised: 08/05/2009] [Accepted: 08/20/2009] [Indexed: 12/11/2022]
Abstract
Serum and glucocorticoid regulated kinase 1 (Sgk1) is a serine-threonine kinase that is activated by serum, steroids, insulin, vasopressin, and interleukin 2 at the transcriptional and post-translational levels. Sgk1 is also important in transduction of growth factors and steroid-dependent survival signals and may have a role in the development of resistance to cancer chemotherapy. In the present paper, we demonstrate that Sgk1 activates MDM2-dependent p53 ubiquitylation. The results were obtained in RKO cells and other cell lines by Sgk1-specific RNA silencing and were corroborated in an original mouse model as well as in transiently and in stably transfected HeLa cells expressing wild-type or dominant negative Sgk1 mutant. Sgk1 contributes to cell survival, cell-cycle progression, and epithelial de-differentiation. We also show that the effects of Sgk1 on the clonogenic potential of different cancer cells depend on the expression of wild-type p53. Since transcription of Sgk1 is activated by p53, we propose a finely tuned feedback model where Sgk1 down-regulates the expression of p53 by enhancing its mono- and polyubiquitylation.
Collapse
|
30
|
Tsuda M, Toyomitsu E, Kometani M, Tozaki-Saitoh H, Inoue K. Mechanisms underlying fibronectin-induced up-regulation of P2X4R expression in microglia: distinct roles of PI3K-Akt and MEK-ERK signalling pathways. J Cell Mol Med 2009; 13:3251-9. [PMID: 19298529 PMCID: PMC4516482 DOI: 10.1111/j.1582-4934.2009.00719.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Abstract Microglia are resident immune cells in the central nervous system that become activated and produce pro-inflammatory and neurotrophic factors upon activation of various cell-surface receptors. The P2X4 receptor (P2X4R) is a sub-type of the purinergic ion-channel receptors expressed in microglia. P2X4R expression is up-regulated under inflammatory or neurodegenerative conditions, and this up-regulation is implicated in disease pathology. However, the molecular mechanism underlying up-regulation of P2X4R in microglia remains unknown. In the present study, we investigated the intracellular signal transduction pathway that promotes P2X4R expression in microglia in response to fibronectin, an extracellular matrix protein that has previously been shown to stimulate P2X4R expression. We found that in fibronectin-stimulated microglia, activation of phosphatidylinositol 3-kinase (PI3K)–Akt and mitogen-activated protein kinase kinase (MAPK kinase, MEK)–extracellular signal-regulated kinase (ERK) signalling cascades occurred divergently downstream of Src-family kinases (SFKs). Pharmacological interference of PI3K–Akt signalling inhibited fibronectin-induced P2X4R gene expression. Activation of PI3K–Akt signalling resulted in a decrease in the protein level of the transcription factor p53 via mouse double minute 2 (MDM2), an effect that was prevented by MG-132, an inhibitor of the proteasome. In microglia pre-treated with MG-132, fibronectin failed to up-regulate P2X4R expression. Conversely, an inhibitor of p53 caused increased expression of P2X4R, implying a negative regulatory role of p53. On the other hand, inhibiting MEK–ERK signalling activated by fibronectin suppressed an increase in P2X4R protein but interestingly did not affect the level of P2X4R mRNA. We also found that fibronectin stimulation resulted in the activation of the translational factor eIF4E via MAPK-interacting protein kinase-1 (MNK1) in an MEK–ERK signalling-dependent manner, and an MNK1 inhibitor attenuated the increase in P2X4R protein. Together, these results suggest that the PI3K–Akt and MEK–ERK signalling cascades have distinct roles in the up-regulation of P2X4R expression in microglia at transcriptional and post-transcriptional levels, respectively.
Collapse
Affiliation(s)
- Makoto Tsuda
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | | | | | | | | |
Collapse
|
31
|
Is there an alternative to the proteasome in cytosolic protein degradation? Biochem Soc Trans 2008; 36:839-42. [DOI: 10.1042/bst0360839] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
While it is clear that the proteasome is the major player in degradative proteolysis in the nucleus and cytosol, there is a lack of complete agreement on whether there are alternative proteolytic pathways or activities responsible for a significant degradation of cytosolic/nuclear substrates. Particularly relevant is the case of the aminopeptidase TPPII (tripeptidyl peptidase II), which has been suggested to be able to perform some of the proteasome functions. However, the current evidence seems to support only a limited role for these cytosolic alternatives. On the other hand, there is evidence of an alternative, autophagy, a pathway involving the delivery of cytosolic substrates to the lysosome for degradation.
Collapse
|
32
|
Danilova N, Sakamoto KM, Lin S. Role of p53 family in birth defects: Lessons from zebrafish. ACTA ACUST UNITED AC 2008; 84:215-27. [DOI: 10.1002/bdrc.20129] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|