1
|
Comparative Transcriptome Analysis Unravels the Response Mechanisms of Fusarium oxysporum f.sp. cubense to a Biocontrol Agent, Pseudomonas aeruginosa Gxun-2. Int J Mol Sci 2022; 23:ijms232315432. [PMID: 36499750 PMCID: PMC9735772 DOI: 10.3390/ijms232315432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Banana Fusarium wilt, which is caused by Fusarium oxysporum f.sp. cubense Tropical Race 4 (FOC TR4), is one of the most serious fungal diseases in the banana-producing regions in east Asia. Pseudomonas aeruginosa Gxun-2 could significantly inhibit the growth of FOC TR4. Strain Gxun-2 strongly inhibited the mycelial growth of FOC TR4 on dual culture plates and caused hyphal wrinkles, ruptures, and deformities on in vitro cultures. Banana seedlings under pot experiment treatment with Gxun-2 in a greenhouse resulted in an 84.21% reduction in the disease. Comparative transcriptome analysis was applied to reveal the response and resistance of FOC TR4 to Gxun-2 stress. The RNA-seq analysis of FOC TR4 during dual-culture with P. aeruginosa Gxun-2 revealed 3075 differentially expressed genes (DEGs) compared with the control. Among the genes, 1158 genes were up-regulated, and 1917 genes were down-regulated. Further analysis of gene function and the pathway of DEGs revealed that genes related to the cell membrane, cell wall formation, peroxidase, ABC transporter, and autophagy were up-regulated, while down-regulated DEGs were enriched in the sphingolipid metabolism and chitinase. These results indicated that FOC TR4 upregulates a large number of genes in order to maintain cell functions. The results of qRT-PCR conducted on a subset of 13 genes were consistent with the results of RNA-seq data. Thus, this study serves as a valuable resource regarding the mechanisms of fungal pathogen resistance to biocontrol agents.
Collapse
|
2
|
Ma QZ, Wu HY, Xie SP, Zhao BS, Yin XM, Ding SL, Guo YS, Xu C, Zang R, Geng YH, Zhang M. BsTup1 is required for growth, conidiogenesis, stress response and pathogenicity of Bipolaris sorokiniana. Int J Biol Macromol 2022; 220:721-732. [PMID: 35981683 DOI: 10.1016/j.ijbiomac.2022.07.250] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 11/05/2022]
Abstract
Tup1, a conserved transcriptional repressor, plays a critical role in the growth and development of fungi. Here, we identified a BsTup1 gene from the plant pathogenic fungus Bipolaris sorokiniana. The expression of BsTup1 showed a more than three-fold increase during the conidial stage compared with mycelium stage. Deletion of BsTup1 led to decrease hyphal growth and defect in conidia formation. A significant difference was detected in osmotic, oxidative, or cell wall stress responses between the WT and ΔBsTup1 strains. Pathogenicity assays showed that virulence of the ΔBsTup1 mutant was dramatically decreased on wheat and barely leaves. Moreover, it was observed that hyphal tips of the mutants could not form appressorium-like structures on the inner epidermis of onion and barley coleoptile. Yeast two-hybrid assays indicated that BsTup1 could interact with the BsSsn6. RNAseq revealed significant transcriptional changes in the ΔBsTup1 mutant with 2369 genes down-regulated and 2962 genes up-regulated. In these genes, we found that a subset of genes involved in fungal growth, sporulation, cell wall integrity, osmotic stress, oxidation stress, and pathogenicity, which were misregulated in the ΔBsTup1 mutant. These data revealed that BsTup1 has multiple functions in fungal growth, development, stress response and pathogenesis in B. sorokiniana.
Collapse
Affiliation(s)
- Qing-Zhou Ma
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Hai-Yan Wu
- Analytical Instrument Center, Henan Agricultural University, Zhengzhou 450002, China
| | - Shun-Pei Xie
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Bing-Sen Zhao
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Xin-Ming Yin
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Sheng-Li Ding
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Ya-Shuang Guo
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Chao Xu
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Rui Zang
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Yue-Hua Geng
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China.
| | - Meng Zhang
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
3
|
Henning LM, Simon U, Abdullayev A, Schmidt B, Pohl C, Nunez Guitar T, Vakifahmetoglu C, Meyer V, Bekheet MF, Gurlo A. Effect of Fomes fomentarius Cultivation Conditions on Its Adsorption Performance for Anionic and Cationic Dyes. ACS OMEGA 2022; 7:4158-4169. [PMID: 35155910 PMCID: PMC8829953 DOI: 10.1021/acsomega.1c05748] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/24/2021] [Indexed: 06/14/2023]
Abstract
Lab-cultivated mycelia of Fomes fomentarius (FF), grown on a solid lignocellulose medium (FF-SM) and a liquid glucose medium (FF-LM), and naturally grown fruiting bodies (FF-FB) were studied as biosorbents for the removal of organic dyes methylene blue and Congo red (CR). Both the chemical and microstructural differences were revealed using X-ray photoelectron spectroscopy, Fourier-transform infrared spectroscopy, zeta potential analysis, and scanning electron microscopy, illuminating the superiority of FF-LM and FF-SM over FF-FB in dye adsorption. The adsorption process of CR on FF-LM and FF-SM is best described by the Redlich-Peterson model with β constants close to 1, that is, approaching the monolayer Langmuir model, which reach maximum adsorption capacities of 48.8 and 13.4 mg g-1, respectively, in neutral solutions. Adsorption kinetics follow the pseudo-second-order model where chemisorption is the rate-controlling step. While the desorption efficiencies were low, adsorption performances were preserved and even enhanced under simulated dye effluent conditions. The results suggest that F. fomentarius can be considered an attractive biosorbent in industrial wastewater treatment and that its cultivation conditions can be specifically tailored to tune its cell wall composition and adsorption performance.
Collapse
Affiliation(s)
- Laura M. Henning
- Chair
of Advanced Ceramic Materials, Institute of Material Science and Technology,
Faculty III Process Sciences, Technische
Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Ulla Simon
- Chair
of Advanced Ceramic Materials, Institute of Material Science and Technology,
Faculty III Process Sciences, Technische
Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Amanmyrat Abdullayev
- Chair
of Advanced Ceramic Materials, Institute of Material Science and Technology,
Faculty III Process Sciences, Technische
Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Bertram Schmidt
- Chair
of Applied and Molecular Microbiology, Institute of Biotechnology,
Faculty III Process Sciences, Technische
Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Carsten Pohl
- Chair
of Applied and Molecular Microbiology, Institute of Biotechnology,
Faculty III Process Sciences, Technische
Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Tamara Nunez Guitar
- Chair
of Applied and Molecular Microbiology, Institute of Biotechnology,
Faculty III Process Sciences, Technische
Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Cekdar Vakifahmetoglu
- Department
of Materials Science and Engineering, Izmir
Institute of Technology, Urla, 35430 Izmir, Turkey
| | - Vera Meyer
- Chair
of Applied and Molecular Microbiology, Institute of Biotechnology,
Faculty III Process Sciences, Technische
Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Maged F. Bekheet
- Chair
of Advanced Ceramic Materials, Institute of Material Science and Technology,
Faculty III Process Sciences, Technische
Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Aleksander Gurlo
- Chair
of Advanced Ceramic Materials, Institute of Material Science and Technology,
Faculty III Process Sciences, Technische
Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| |
Collapse
|
4
|
Tandem Affinity Purification (TAP) of Low-Abundance Protein Complexes in Filamentous Fungi Demonstrated Using Magnaporthe oryzae. Methods Mol Biol 2021. [PMID: 34236680 DOI: 10.1007/978-1-0716-1613-0_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Protein-protein interactions underlie cellular structure and function. In recent years, a number of methods have been developed for the identification of protein complexes and component proteins involved in the control of various biological pathways. Tandem affinity purification (TAP) coupled with mass spectrometry (MS) is a powerful method enabling the isolation of high-purity native protein complexes under mild conditions by performing two sequential purification steps using two different epitope tags. In this protocol, we describe a TAP-MS methodology for identifying protein-protein interactions present at very low levels in the fungal cell. Using the 6xHis-3xFLAG double tag, we start the affinity purification process for our protein of interest using high-capacity Ni2+ columns. This allows for greatly increased sample input compared to antibody-based first-step purification in conventional TAP protocols and provides a large amount of highly concentrated and preliminarily purified protein complexes to be used in a second purification step involving FLAG immunoprecipitation. The second step greatly facilitates the capture of low-level interacting partners under in vivo conditions. Our TAP-MS method has been proven to secure the characterization of low-abundance protein complexes under physiological conditions with high efficiency, specificity, and economy in the filamentous fungus Magnaporthe oryzae and might benefit gene function and proteomics studies in plants and other research fields.
Collapse
|
5
|
van Leeuwe TM, Arentshorst M, Forn-Cuní G, Geoffrion N, Tsang A, Delvigne F, Meijer AH, Ram AFJ, Punt PJ. Deletion of the Aspergillus niger Pro-Protein Processing Protease Gene kexB Results in a pH-Dependent Morphological Transition during Submerged Cultivations and Increases Cell Wall Chitin Content. Microorganisms 2020; 8:E1918. [PMID: 33276589 PMCID: PMC7761569 DOI: 10.3390/microorganisms8121918] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/30/2020] [Accepted: 11/30/2020] [Indexed: 11/23/2022] Open
Abstract
There is a growing interest in the use of post-fermentation mycelial waste to obtain cell wall chitin as an added-value product. In the pursuit to identify suitable production strains that can be used for post-fermentation cell wall harvesting, we turned to an Aspergillus niger strain in which the kexB gene was deleted. Previous work has shown that the deletion of kexB causes hyper-branching and thicker cell walls, traits that may be beneficial for the reduction in fermentation viscosity and lysis. Hyper-branching of ∆kexB was previously found to be pH-dependent on solid medium at pH 6.0, but was absent at pH 5.0. This phenotype was reported to be less pronounced during submerged growth. Here, we show a series of controlled batch cultivations at a pH range of 5, 5.5, and 6 to examine the pellet phenotype of ΔkexB in liquid medium. Morphological analysis showed that ΔkexB formed wild type-like pellets at pH 5.0, whereas the hyper-branching ΔkexB phenotype was found at pH 6.0. The transition of phenotypic plasticity was found in cultivations at pH 5.5, seen as an intermediate phenotype. Analyzing the cell walls of ΔkexB from these controlled pH-conditions showed an increase in chitin content compared to the wild type across all three pH values. Surprisingly, the increase in chitin content was found to be irrespective of the hyper-branching morphology. Evidence for alterations in cell wall make-up are corroborated by transcriptional analysis that showed a significant cell wall stress response in addition to the upregulation of genes encoding other unrelated cell wall biosynthetic genes.
Collapse
Affiliation(s)
- Tim M. van Leeuwe
- Institute of Biology Leiden, Microbial Sciences, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands; (T.M.v.L.); (M.A.); (P.J.P.)
| | - Mark Arentshorst
- Institute of Biology Leiden, Microbial Sciences, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands; (T.M.v.L.); (M.A.); (P.J.P.)
| | - Gabriel Forn-Cuní
- Institute of Biology Leiden, Animal Sciences, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands; (G.F.-C.); (A.H.M.)
| | - Nicholas Geoffrion
- Centre for Structural and Functional Genomics, Concordia University, Montreal, QC H4B1R6, Canada; (N.G.); (A.T.)
| | - Adrian Tsang
- Centre for Structural and Functional Genomics, Concordia University, Montreal, QC H4B1R6, Canada; (N.G.); (A.T.)
| | - Frank Delvigne
- TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, University of Liège, Avenue de la Faculté, 2B, 5030 Gembloux, Belgium;
| | - Annemarie H. Meijer
- Institute of Biology Leiden, Animal Sciences, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands; (G.F.-C.); (A.H.M.)
| | - Arthur F. J. Ram
- Institute of Biology Leiden, Microbial Sciences, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands; (T.M.v.L.); (M.A.); (P.J.P.)
| | - Peter J. Punt
- Institute of Biology Leiden, Microbial Sciences, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands; (T.M.v.L.); (M.A.); (P.J.P.)
- Dutch DNA Biotech, Hugo R Kruytgebouw 4-Noord, Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
6
|
van Leeuwe TM, Wattjes J, Niehues A, Forn-Cuní G, Geoffrion N, Mélida H, Arentshorst M, Molina A, Tsang A, Meijer AH, Moerschbacher BM, Punt PJ, Ram AF. A seven-membered cell wall related transglycosylase gene family in Aspergillus niger is relevant for cell wall integrity in cell wall mutants with reduced α-glucan or galactomannan. Cell Surf 2020; 6:100039. [PMID: 32743151 PMCID: PMC7389268 DOI: 10.1016/j.tcsw.2020.100039] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/12/2020] [Accepted: 03/17/2020] [Indexed: 11/05/2022] Open
Abstract
Chitin is an important fungal cell wall component that is cross-linked to β-glucan for structural integrity. Acquisition of chitin to glucan cross-links has previously been shown to be performed by transglycosylation enzymes in Saccharomyces cerevisiae, called Congo Red hypersensitive (Crh) enzymes. Here, we characterized the impact of deleting all seven members of the crh gene family (crhA-G) in Aspergillus niger on cell wall integrity, cell wall composition and genome-wide gene expression. In this study, we show that the seven-fold crh knockout strain shows slightly compact growth on plates, but no increased sensitivity to cell wall perturbing compounds. Additionally, we found that the cell wall composition of this knockout strain was virtually identical to that of the wild type. In congruence with these data, genome-wide expression analysis revealed very limited changes in gene expression and no signs of activation of the cell wall integrity response pathway. However, deleting the entire crh gene family in cell wall mutants that are deficient in either galactofuranose or α-glucan, mainly α-1,3-glucan, resulted in a synthetic growth defect and an increased sensitivity towards Congo Red compared to the parental strains, respectively. Altogether, these results indicate that loss of the crh gene family in A. niger does not trigger the cell wall integrity response, but does play an important role in ensuring cell wall integrity in mutant strains with reduced galactofuranose or α-glucan.
Collapse
Affiliation(s)
- Tim M. van Leeuwe
- Leiden University, Institute of Biology Leiden, Molecular Microbiology and Biotechnology, Sylviusweg 72, 2333 BE Leiden, the Netherlands
| | - Jasper Wattjes
- Institute for Biology and Biotechnology of Plants, University of Muenster, Schlossplatz 8, 48143 Münster, Germany
| | - Anna Niehues
- Institute for Biology and Biotechnology of Plants, University of Muenster, Schlossplatz 8, 48143 Münster, Germany
| | - Gabriel Forn-Cuní
- Leiden University, Institute of Biology Leiden, Animal Science and Health, Einsteinweg 55, 2333CC Leiden, the Netherlands
| | - Nicholas Geoffrion
- Centre for Structural and Functional Genomics, Concordia University, Quebec H4B1R6, Canada
| | - Hugo Mélida
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo-UPM, 28223 Pozuelo de Alarcón (Madrid), Spain
| | - Mark Arentshorst
- Leiden University, Institute of Biology Leiden, Molecular Microbiology and Biotechnology, Sylviusweg 72, 2333 BE Leiden, the Netherlands
| | - Antonio Molina
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo-UPM, 28223 Pozuelo de Alarcón (Madrid), Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Adrian Tsang
- Centre for Structural and Functional Genomics, Concordia University, Quebec H4B1R6, Canada
| | - Annemarie H. Meijer
- Leiden University, Institute of Biology Leiden, Animal Science and Health, Einsteinweg 55, 2333CC Leiden, the Netherlands
| | - Bruno M. Moerschbacher
- Institute for Biology and Biotechnology of Plants, University of Muenster, Schlossplatz 8, 48143 Münster, Germany
| | - Peter J. Punt
- Leiden University, Institute of Biology Leiden, Molecular Microbiology and Biotechnology, Sylviusweg 72, 2333 BE Leiden, the Netherlands
- Dutch DNA Biotech, Hugo R Kruytgebouw 4-Noord, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Arthur F.J. Ram
- Leiden University, Institute of Biology Leiden, Molecular Microbiology and Biotechnology, Sylviusweg 72, 2333 BE Leiden, the Netherlands
| |
Collapse
|
7
|
Yang X, Zhang L, Xiang Y, Du L, Huang X, Liu Y. Comparative transcriptome analysis of Sclerotinia sclerotiorum revealed its response mechanisms to the biological control agent, Bacillus amyloliquefaciens. Sci Rep 2020; 10:12576. [PMID: 32724140 PMCID: PMC7387486 DOI: 10.1038/s41598-020-69434-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 07/12/2020] [Indexed: 11/08/2022] Open
Abstract
Biological control mechanisms of plant diseases have been intensively studied. However, how plant pathogens respond to and resist or alleviate biocontrol agents remains largely unknown. In this study, a comparative transcriptome analysis was performed to elucidate how the pathogen of sclerotinia stem rot, Sclerotinia sclerotiorum, responds and resists to the biocontrol agent, Bacillus amyloliquefaciens. Results revealed that a total of 2,373 genes were differentially expressed in S. sclerotiorum samples treated with B. amyloliquefaciens fermentation broth (TS) when compared to control samples (CS). Among these genes, 2,017 were upregulated and 356 were downregulated. Further analyses indicated that various genes related to fungal cell wall and cell membrane synthesis, antioxidants, and the autophagy pathway were significantly upregulated, including glucan synthesis, ergosterol biosynthesis pathway, fatty acid synthase, heme-binding peroxidase related to oxidative stress, glutathione S-transferase, ABC transporter, and autophagy-related genes. These results suggest that S. sclerotiorum recruits numerous genes to respond to or resist the biocontrol of B. amyloliquefaciens. Thus, this study serves as a valuable resource regarding the mechanisms of fungal pathogen resistance to biocontrol agents.
Collapse
Affiliation(s)
- Xiaoxiang Yang
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, Sichuan, People's Republic of China
- Key Laboratory of Integrated Pest Management on Crops in Southwest, Ministry of Agriculture and Rural Affairs, Chengdu, 610066, Sichuan, People's Republic of China
| | - Lei Zhang
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, Sichuan, People's Republic of China
- Key Laboratory of Integrated Pest Management on Crops in Southwest, Ministry of Agriculture and Rural Affairs, Chengdu, 610066, Sichuan, People's Republic of China
| | - Yunjia Xiang
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, Sichuan, People's Republic of China
| | - Lei Du
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, Sichuan, People's Republic of China
| | - Xiaoqin Huang
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, Sichuan, People's Republic of China.
- Key Laboratory of Integrated Pest Management on Crops in Southwest, Ministry of Agriculture and Rural Affairs, Chengdu, 610066, Sichuan, People's Republic of China.
| | - Yong Liu
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, Sichuan, People's Republic of China.
- Key Laboratory of Integrated Pest Management on Crops in Southwest, Ministry of Agriculture and Rural Affairs, Chengdu, 610066, Sichuan, People's Republic of China.
| |
Collapse
|
8
|
Kutty G, Davis AS, Schuck K, Masterson M, Wang H, Liu Y, Kovacs JA. Characterization of Pneumocystis murina Bgl2, an Endo-β-1,3-Glucanase and Glucanosyltransferase. J Infect Dis 2020; 220:657-665. [PMID: 31100118 DOI: 10.1093/infdis/jiz172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 04/13/2019] [Indexed: 11/13/2022] Open
Abstract
Glucan is the major cell wall component of Pneumocystis cysts. In the current study, we have characterized Pneumocystis Bgl2 (EC 3.2.1.58), an enzyme with glucanosyltransferase and β-1,3 endoglucanase activity in other fungi. Pneumocystis murina, Pneumocystis carinii, and Pneumocystis jirovecii bgl2 complementary DNA sequences encode proteins of 437, 447, and 408 amino acids, respectively. Recombinant P. murina Bgl2 expressed in COS-1 cells demonstrated β-glucanase activity, as shown by degradation of the cell wall of Pneumocystis cysts. It also cleaved reduced laminaripentaose and transferred oligosaccharides, resulting in polymers of 6 and 7 glucan residues, demonstrating glucanosyltransferase activity. Surprisingly, confocal immunofluorescence analysis of P. murina-infected mouse lung sections using an antibody against recombinant Bgl2 showed that the native protein is localized primarily to the trophic form of Pneumocystis in both untreated mice and mice treated with caspofungin, an antifungal drug that inhibits β-1,3-glucan synthase. Thus, like other fungi, Bgl2 of Pneumocystis has both endoglucanase and glucanosyltransferase activities. Given that it is expressed primarily in trophic forms, further studies are needed to better understand its role in the biology of Pneumocystis.
Collapse
Affiliation(s)
- Geetha Kutty
- Critical Care Medicine Department, National Institutes of Health Clinical Center, Bethesda, Maryland
| | - A Sally Davis
- Diagnostic Medicine/Pathobiology, Kansas State University College of Veterinary Medicine, Manhattan
| | - Kaitlynn Schuck
- Diagnostic Medicine/Pathobiology, Kansas State University College of Veterinary Medicine, Manhattan
| | - Mya Masterson
- Diagnostic Medicine/Pathobiology, Kansas State University College of Veterinary Medicine, Manhattan
| | - Honghui Wang
- Critical Care Medicine Department, National Institutes of Health Clinical Center, Bethesda, Maryland
| | - Yueqin Liu
- Critical Care Medicine Department, National Institutes of Health Clinical Center, Bethesda, Maryland
| | - Joseph A Kovacs
- Critical Care Medicine Department, National Institutes of Health Clinical Center, Bethesda, Maryland
| |
Collapse
|
9
|
Wagener J, Striegler K, Wagener N. α- and β-1,3-Glucan Synthesis and Remodeling. Curr Top Microbiol Immunol 2020; 425:53-82. [PMID: 32193600 DOI: 10.1007/82_2020_200] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Glucans are characteristic and major constituents of fungal cell walls. Depending on the species, different glucan polysaccharides can be found. These differ in the linkage of the D-glucose monomers which can be either in α- or β-conformation and form 1,3, 1,4 or 1,6 O-glycosidic bonds. The linkages and polymer lengths define the physical properties of the glucan macromolecules, which may form a scaffold for other cell wall structures and influence the rigidity and elasticity of the wall. β-1,3-glucan is essential for the viability of many fungal pathogens. Therefore, the β-1,3-glucan synthase complex represents an excellent and primary target structure for antifungal drugs. Fungal cell wall β-glucan is also an important pathogen-associated molecular pattern (PAMP). To hide from innate immunity, many fungal pathogens depend on the synthesis of cell wall α-glucan, which functions as a stealth molecule to mask the β-glucans itself or links other masking structures to the cell wall. Here, we review the current knowledge about the biosynthetic machineries that synthesize β-1,3-glucan, β-1,6-glucan, and α-1,3-glucan. We summarize the discovery of the synthases, major regulatory traits, and the impact of glucan synthesis deficiencies on the fungal organisms. Despite all efforts, many aspects of glucan synthesis remain yet unresolved, keeping research directed toward cell wall biogenesis an exciting and continuously challenging topic.
Collapse
Affiliation(s)
- Johannes Wagener
- Institut Für Hygiene Und Mikrobiologie, University of Würzburg, Würzburg, Germany. .,National Reference Center for Invasive Fungal Infections (NRZMyk), Jena, Germany.
| | - Kristina Striegler
- Institut Für Hygiene Und Mikrobiologie, University of Würzburg, Würzburg, Germany
| | - Nikola Wagener
- Department of Cell Biology, Medical Faculty, University of Munich, Martinsried, Germany
| |
Collapse
|
10
|
Bitencourt TA, Macedo C, Franco ME, Rocha MC, Moreli IS, Cantelli BAM, Sanches PR, Beleboni RO, Malavazi I, Passos GA, Marins M, Fachin AL. Trans-chalcone activity against Trichophyton rubrum relies on an interplay between signaling pathways related to cell wall integrity and fatty acid metabolism. BMC Genomics 2019; 20:411. [PMID: 31117938 PMCID: PMC6532161 DOI: 10.1186/s12864-019-5792-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 05/10/2019] [Indexed: 11/10/2022] Open
Abstract
Background Trichophyton rubrum is the main etiological agent of skin and nail infections worldwide. Because of its keratinolytic activity and anthropophilic nature, infection models based on the addition of protein substrates have been employed to assess transcriptional profiles and to elucidate aspects related to host-pathogen interactions. Chalcones are widespread compounds with pronounced activity against dermatophytes. The toxicity of trans-chalcone towards T. rubrum is not fully understood but seems to rely on diverse cellular targets. Within this context, a better understanding of the mode of action of trans-chalcone may help identify new strategies of antifungal therapy and reveal new chemotherapeutic targets. This work aimed to assess the transcriptional profile of T. rubrum grown on different protein sources (keratin or elastin) to mimic natural infection sites and exposed to trans-chalcone in order to elucidate the mechanisms underlying the antifungal activity of trans-chalcone. Results Overall, the use of different protein sources caused only slight differences in the transcriptional profile of T. rubrum. The main differences were the modulation of proteases and lipases in gene categories when T. rubrum was grown on keratin and elastin, respectively. In addition, some genes encoding heat shock proteins were up-regulated during the growth of T. rubrum on keratin. The transcriptional profile of T. rubrum exposed to trans-chalcone included four main categories: fatty acid and lipid metabolism, overall stress response, cell wall integrity pathway, and alternative energy metabolism. Consistently, T. rubrum Mapk was strongly activated during the first hours of trans-chalcone exposure. Noteworthy, trans-chalcone inhibited genes involved in keratin degradation. The results also showed effects of trans-chalcone on fatty acid synthesis and metabolic pathways involved in acetyl-CoA supply. Conclusion Our results suggest that the mode of action of trans-chalcone is related to pronounced changes in fungal metabolism, including an imbalance between fatty acid synthesis and degradation that interferes with cell membrane and cell wall integrity. In addition, this compound exerts activity against important virulence factors. Taken together, trans-chalcone acts on targets related to dermatophyte physiology and the infection process. Electronic supplementary material The online version of this article (10.1186/s12864-019-5792-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tamires Aparecida Bitencourt
- Unidade de Biotecnologia, Universidade de Ribeirão Preto, Av: Costábile Romano 2201, Ribeirão Preto, SP, 14096-900, Brazil.,Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Claudia Macedo
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Matheus Eloy Franco
- Unidade de Biotecnologia, Universidade de Ribeirão Preto, Av: Costábile Romano 2201, Ribeirão Preto, SP, 14096-900, Brazil.,Instituto Federal do Sul de Minas - Campus Machado, Machado, Brazil
| | - Marina Campos Rocha
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde (CCBS), Universidade Federal de São Carlos, São Carlos, Brazil
| | - Igor Sawasaki Moreli
- Unidade de Biotecnologia, Universidade de Ribeirão Preto, Av: Costábile Romano 2201, Ribeirão Preto, SP, 14096-900, Brazil
| | - Bruna Aline Micheloto Cantelli
- Unidade de Biotecnologia, Universidade de Ribeirão Preto, Av: Costábile Romano 2201, Ribeirão Preto, SP, 14096-900, Brazil
| | - Pablo Rodrigo Sanches
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Rene Oliveira Beleboni
- Unidade de Biotecnologia, Universidade de Ribeirão Preto, Av: Costábile Romano 2201, Ribeirão Preto, SP, 14096-900, Brazil
| | - Iran Malavazi
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde (CCBS), Universidade Federal de São Carlos, São Carlos, Brazil
| | - Geraldo Aleixo Passos
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Mozart Marins
- Unidade de Biotecnologia, Universidade de Ribeirão Preto, Av: Costábile Romano 2201, Ribeirão Preto, SP, 14096-900, Brazil
| | - Ana Lúcia Fachin
- Unidade de Biotecnologia, Universidade de Ribeirão Preto, Av: Costábile Romano 2201, Ribeirão Preto, SP, 14096-900, Brazil.
| |
Collapse
|
11
|
Zalepkina SA, Smirnov VF, Borisov AV, Matsulevich ZV. Genomic Profiling of the Response of Aspergillus oryzae to the Treatment with Bis(2-Pyridine-1-Oxide) Diselenide. RUSS J GENET+ 2019. [DOI: 10.1134/s1022795419030177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Cairns TC, Zheng X, Zheng P, Sun J, Meyer V. Moulding the mould: understanding and reprogramming filamentous fungal growth and morphogenesis for next generation cell factories. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:77. [PMID: 30988699 PMCID: PMC6446404 DOI: 10.1186/s13068-019-1400-4] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/09/2019] [Indexed: 05/21/2023]
Abstract
Filamentous fungi are harnessed as cell factories for the production of a diverse range of organic acids, proteins, and secondary metabolites. Growth and morphology have critical implications for product titres in both submerged and solid-state fermentations. Recent advances in systems-level understanding of the filamentous lifestyle and development of sophisticated synthetic biological tools for controlled manipulation of fungal genomes now allow rational strain development programs based on data-driven decision making. In this review, we focus on Aspergillus spp. and other industrially utilised fungi to summarise recent insights into the multifaceted and dynamic relationship between filamentous growth and product titres from genetic, metabolic, modelling, subcellular, macromorphological and process engineering perspectives. Current progress and knowledge gaps with regard to mechanistic understanding of product secretion and export from the fungal cell are discussed. We highlight possible strategies for unlocking lead genes for rational strain optimizations based on omics data, and discuss how targeted genetic manipulation of these candidates can be used to optimise fungal morphology for improved performance. Additionally, fungal signalling cascades are introduced as critical processes that can be genetically targeted to control growth and morphology during biotechnological applications. Finally, we review progress in the field of synthetic biology towards chassis cells and minimal genomes, which will eventually enable highly programmable filamentous growth and diversified production capabilities. Ultimately, these advances will not only expand the fungal biotechnology portfolio but will also significantly contribute to a sustainable bio-economy.
Collapse
Affiliation(s)
- Timothy C. Cairns
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 People’s Republic of China
| | - Xiaomei Zheng
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 People’s Republic of China
| | - Ping Zheng
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 People’s Republic of China
| | - Jibin Sun
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 People’s Republic of China
| | - Vera Meyer
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
- Department of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany
| |
Collapse
|
13
|
Conrad T, Kniemeyer O, Henkel SG, Krüger T, Mattern DJ, Valiante V, Guthke R, Jacobsen ID, Brakhage AA, Vlaic S, Linde J. Module-detection approaches for the integration of multilevel omics data highlight the comprehensive response of Aspergillus fumigatus to caspofungin. BMC SYSTEMS BIOLOGY 2018; 12:88. [PMID: 30342519 PMCID: PMC6195963 DOI: 10.1186/s12918-018-0620-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 10/08/2018] [Indexed: 12/20/2022]
Abstract
Background Omics data provide deep insights into overall biological processes of organisms. However, integration of data from different molecular levels such as transcriptomics and proteomics, still remains challenging. Analyzing lists of differentially abundant molecules from diverse molecular levels often results in a small overlap mainly due to different regulatory mechanisms, temporal scales, and/or inherent properties of measurement methods. Module-detecting algorithms identifying sets of closely related proteins from protein-protein interaction networks (PPINs) are promising approaches for a better data integration. Results Here, we made use of transcriptome, proteome and secretome data from the human pathogenic fungus Aspergillus fumigatus challenged with the antifungal drug caspofungin. Caspofungin targets the fungal cell wall which leads to a compensatory stress response. We analyzed the omics data using two different approaches: First, we applied a simple, classical approach by comparing lists of differentially expressed genes (DEGs), differentially synthesized proteins (DSyPs) and differentially secreted proteins (DSePs); second, we used a recently published module-detecting approach, ModuleDiscoverer, to identify regulatory modules from PPINs in conjunction with the experimental data. Our results demonstrate that regulatory modules show a notably higher overlap between the different molecular levels and time points than the classical approach. The additional structural information provided by regulatory modules allows for topological analyses. As a result, we detected a significant association of omics data with distinct biological processes such as regulation of kinase activity, transport mechanisms or amino acid metabolism. We also found a previously unreported increased production of the secondary metabolite fumagillin by A. fumigatus upon exposure to caspofungin. Furthermore, a topology-based analysis of potential key factors contributing to drug-caused side effects identified the highly conserved protein polyubiquitin as a central regulator. Interestingly, polyubiquitin UbiD neither belonged to the groups of DEGs, DSyPs nor DSePs but most likely strongly influenced their levels. Conclusion Module-detecting approaches support the effective integration of multilevel omics data and provide a deep insight into complex biological relationships connecting these levels. They facilitate the identification of potential key players in the organism’s stress response which cannot be detected by commonly used approaches comparing lists of differentially abundant molecules. Electronic supplementary material The online version of this article (10.1186/s12918-018-0620-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- T Conrad
- Systems Biology/Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Jena, Germany.
| | - O Kniemeyer
- Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Jena, Germany
| | | | - T Krüger
- Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Jena, Germany
| | - D J Mattern
- Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Jena, Germany.,Present address: PerkinElmer Inc., Rodgau, Germany
| | - V Valiante
- Biobricks of Microbial Natural Product Syntheses, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Jena, Germany
| | - R Guthke
- Systems Biology/Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Jena, Germany
| | - I D Jacobsen
- Microbial Immunology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Jena, Germany.,Institute for Microbiology, Friedrich Schiller University, Jena, Germany
| | - A A Brakhage
- Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Jena, Germany.,Institute for Microbiology, Friedrich Schiller University, Jena, Germany
| | - S Vlaic
- Systems Biology/Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Jena, Germany
| | - J Linde
- Research Group PiDOMICs, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Jena, Germany.,Institute for Bacterial Infections and Zoonoses, Federal Research Institute for Animal Health - Friedrich Loeffler Institute, Jena, Germany
| |
Collapse
|
14
|
Liu C, Fan D, Li Y, Chen Y, Huang L, Yan X. Transcriptome analysis of Valsa mali reveals its response mechanism to the biocontrol actinomycete Saccharothrix yanglingensis Hhs.015. BMC Microbiol 2018; 18:90. [PMID: 30134836 PMCID: PMC6106759 DOI: 10.1186/s12866-018-1225-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 08/03/2018] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Apple canker is a devastating branch disease caused by Valsa mali (Vm). The endophytic actinomycete Saccharothrix yanglingensis Hhs.015 (Sy Hhs.015) can effectively inhibit the growth of Vm. To reveal the mechanism, by which Vm respond to Sy Hhs.015, the transcriptome of Vm was analyzed using RNA-seq technology. RESULTS Compared with normal growing Vm in the control group, 1476 genes were significantly differentially expressed in the Sy Hhs.015's treatment group, of which 851 genes were up-regulated and 625 genes were down-regulated. Combined gene function and pathway analysis of differentially expressed genes (DEGs) revealed that Sy Hhs.015 affected the carbohydrate metabolic pathway, which is utilized by Vm for energy production. Approximately 82% of the glycoside hydrolase genes were down-regulated, including three pectinase genes (PGs), which are key pathogenic factors. The cell wall structure of Vm was disrupted by Sy Hhs.015 and cell wall-related genes were found to be down-regulated. Of the peroxisome associated genes, those encoding catalase (CAT) and superoxide dismutase (SOD) which scavenge reactive oxygen species (ROS), as well as those encoding AMACR and ACAA1 which are related to the β-oxidation of fatty acids, were down-regulated. MS and ICL, key genes in glyoxylate cycle, were also down-regulated. In response to the stress of Sy Hhs.015 exposure, Vm increased amino acid metabolism to synthesize the required nitrogenous compounds, while alpha-keto acids, which involved in the TCA cycle, could be used to produce energy by deamination or transamination. Retinol dehydrogenase, associated with cell wall dextran synthesis, and sterol 24-C-methyltransferase, related to cell membrane ergosterol synthesis, were up-regulated. The genes encoding glutathione S-transferase, (GST), which has antioxidant activity and ABC transporters which have an efflux function, were also up-regulated. CONCLUSION These results show that the response of Vm to Sy Hhs.015 exposure is a complicated and highly regulated process, and provide a theoretical basis for both clarifying the biocontrol mechanism of Sy Hhs.015 and the response of Vm to stress.
Collapse
Affiliation(s)
- Cong Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi China
- College of Life Science, Northwest A&F University, Yangling, Shaanxi China
| | - Dongying Fan
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi China
- College of Life Science, Northwest A&F University, Yangling, Shaanxi China
| | - Yanfang Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi China
- College of Life Science, Northwest A&F University, Yangling, Shaanxi China
| | - Yue Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi China
- College of Life Science, Northwest A&F University, Yangling, Shaanxi China
| | - Lili Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi China
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi China
| | - Xia Yan
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi China
- College of Life Science, Northwest A&F University, Yangling, Shaanxi China
| |
Collapse
|
15
|
Meyer V, Jung S. Antifungal Peptides of the AFP Family Revisited: Are These Cannibal Toxins? Microorganisms 2018; 6:microorganisms6020050. [PMID: 29865265 PMCID: PMC6027536 DOI: 10.3390/microorganisms6020050] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 05/24/2018] [Accepted: 05/28/2018] [Indexed: 11/17/2022] Open
Abstract
The emergence and spread of pathogenic fungi resistant to currently used antifungal drugs represents a serious challenge for medicine and agriculture. The use of smart antimicrobials, so-called “dirty drugs” which affect multiple cellular targets, is one strategy to prevent resistance. Of special interest is the exploitation of the AFP family of antimicrobial peptides, which include its founding member AFP from Aspergillus giganteus. This latter is a highly potent inhibitor of chitin synthesis and affects plasma membrane integrity in many human and plant pathogenic fungi. A transcriptomic meta-analysis of the afp-encoding genes in A. giganteus and A. niger predicts a role for these proteins during asexual sporulation, autophagy, and nutrient recycling, suggesting that AFPs are molecules important for the survival of A. niger and A. giganteus under nutrient limitation. In this review, we discuss parallels which exist between AFPs and bacterial cannibal toxins and provide arguments that the primary function of AFPs could be to kill genetically identical siblings. We hope that this review inspires computational and experimental biologists studying alternative explanations for the nature and function of antimicrobial peptides beyond the general assumption that they are mere defense molecules to fight competitors.
Collapse
Affiliation(s)
- Vera Meyer
- Department Applied and Molecular Microbiology, Technische Universität Berlin, Institute of Biotechnology, Gustav-Meyer-Allee 25, D-13355 Berlin, Germany.
| | - Sascha Jung
- Department Applied and Molecular Microbiology, Technische Universität Berlin, Institute of Biotechnology, Gustav-Meyer-Allee 25, D-13355 Berlin, Germany.
| |
Collapse
|
16
|
Gene Expression of Pneumocystis murina after Treatment with Anidulafungin Results in Strong Signals for Sexual Reproduction, Cell Wall Integrity, and Cell Cycle Arrest, Indicating a Requirement for Ascus Formation for Proliferation. Antimicrob Agents Chemother 2018; 62:AAC.02513-17. [PMID: 29463544 PMCID: PMC5923105 DOI: 10.1128/aac.02513-17] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 02/10/2018] [Indexed: 01/03/2023] Open
Abstract
The echinocandins are a class of antifungal agents that target β-1,3-d-glucan (BG) biosynthesis. In the ascigerous Pneumocystis species, treatment with these drugs depletes the ascus life cycle stage, which contains BG, but large numbers of forms which do not express BG remain in the infected lungs. In the present study, the gene expression profiles of Pneumocystis murina were compared between infected, untreated mice and mice treated with anidulafungin for 2 weeks to understand the metabolism of the persisting forms. Almost 80 genes were significantly up- or downregulated. Like other fungi exposed to echinocandins, genes associated with sexual replication, cell wall integrity, cell cycle arrest, and stress comprised the strongest upregulated signals in P. murina from the treated mice. The upregulation of the P. murina β-1,3-d-glucan endohydrolase and endo-1,3-glucanase was notable and may explain the disappearance of the existing asci in the lungs of treated mice since both enzymes can degrade BG. The biochemical measurement of BG in the lungs of treated mice and fluorescence microscopy with an anti-BG antibody supported the loss of BG. Downregulated signals included genes involved in cell replication, genome stability, and ribosomal biogenesis and function and the Pneumocystis-specific genes encoding the major surface glycoproteins (Msg). These studies suggest that P. murina attempted to undergo sexual replication in response to a stressed environment and was halted in any type of proliferative cycle, likely due to a lack of BG. Asci appear to be a required part of the life cycle stage of Pneumocystis, and BG may be needed to facilitate progression through the life cycle via sexual replication.
Collapse
|
17
|
The CWI Pathway: Regulation of the Transcriptional Adaptive Response to Cell Wall Stress in Yeast. J Fungi (Basel) 2017; 4:jof4010001. [PMID: 29371494 PMCID: PMC5872304 DOI: 10.3390/jof4010001] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 12/11/2017] [Accepted: 12/19/2017] [Indexed: 12/14/2022] Open
Abstract
Fungi are surrounded by an essential structure, the cell wall, which not only confers cell shape but also protects cells from environmental stress. As a consequence, yeast cells growing under cell wall damage conditions elicit rescue mechanisms to provide maintenance of cellular integrity and fungal survival. Through transcriptional reprogramming, yeast modulate the expression of genes important for cell wall biogenesis and remodeling, metabolism and energy generation, morphogenesis, signal transduction and stress. The yeast cell wall integrity (CWI) pathway, which is very well conserved in other fungi, is the key pathway for the regulation of this adaptive response. In this review, we summarize the current knowledge of the yeast transcriptional program elicited to counterbalance cell wall stress situations, the role of the CWI pathway in the regulation of this program and the importance of the transcriptional input received by other pathways. Modulation of this adaptive response through the CWI pathway by positive and negative transcriptional feedbacks is also discussed. Since all these regulatory mechanisms are well conserved in pathogenic fungi, improving our knowledge about them will have an impact in the developing of new antifungal therapies.
Collapse
|
18
|
Martínez-Cruz J, Romero D, de Vicente A, Pérez-García A. Transformation of the cucurbit powdery mildew pathogen Podosphaera xanthii by Agrobacterium tumefaciens. THE NEW PHYTOLOGIST 2017; 213:1961-1973. [PMID: 27864969 DOI: 10.1111/nph.14297] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 09/21/2016] [Indexed: 06/06/2023]
Abstract
The obligate biotrophic fungal pathogen Podosphaera xanthii is the main causal agent of powdery mildew in cucurbit crops all over the world. A major limitation of molecular studies of powdery mildew fungi (Erysiphales) is their genetic intractability. In this work, we describe a robust method based on the promiscuous transformation ability of Agrobacterium tumefaciens for reliable transformation of P. xanthii. The A. tumefaciens-mediated transformation (ATMT) system yielded transformants of P. xanthii with diverse transferred DNA (T-DNA) constructs. Analysis of the resultant transformants showed the random integration of T-DNA into the P. xanthii genome. The integrations were maintained in successive generations in the presence of selection pressure. Transformation was found to be transient, because in the absence of selection agent, the introduced genetic markers were lost due to excision of T-DNA from the genome. The ATMT system represents a potent tool for genetic manipulation of P. xanthii and will likely be useful for studying other biotrophic fungi. We hope that this method will contribute to the development of detailed molecular studies of the intimate interaction established between powdery mildew fungi and their host plants.
Collapse
Affiliation(s)
- Jesús Martínez-Cruz
- Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora' - Universidad de Málaga - Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Málaga, 29071, Spain
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga. Bulevar Louis Pasteur 31, Málaga, 29071, Spain
| | - Diego Romero
- Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora' - Universidad de Málaga - Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Málaga, 29071, Spain
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga. Bulevar Louis Pasteur 31, Málaga, 29071, Spain
| | - Antonio de Vicente
- Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora' - Universidad de Málaga - Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Málaga, 29071, Spain
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga. Bulevar Louis Pasteur 31, Málaga, 29071, Spain
| | - Alejandro Pérez-García
- Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora' - Universidad de Málaga - Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Málaga, 29071, Spain
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga. Bulevar Louis Pasteur 31, Málaga, 29071, Spain
| |
Collapse
|
19
|
A Transcriptome Meta-Analysis Proposes Novel Biological Roles for the Antifungal Protein AnAFP in Aspergillus niger. PLoS One 2016; 11:e0165755. [PMID: 27835655 PMCID: PMC5106034 DOI: 10.1371/journal.pone.0165755] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 10/17/2016] [Indexed: 02/06/2023] Open
Abstract
Understanding the genetic, molecular and evolutionary basis of cysteine-stabilized antifungal proteins (AFPs) from fungi is important for understanding whether their function is mainly defensive or associated with fungal growth and development. In the current study, a transcriptome meta-analysis of the Aspergillus niger γ-core protein AnAFP was performed to explore co-expressed genes and pathways, based on independent expression profiling microarrays covering 155 distinct cultivation conditions. This analysis uncovered that anafp displays a highly coordinated temporal and spatial transcriptional profile which is concomitant with key nutritional and developmental processes. Its expression profile coincides with early starvation response and parallels with genes involved in nutrient mobilization and autophagy. Using fluorescence- and luciferase reporter strains we demonstrated that the anafp promoter is active in highly vacuolated compartments and foraging hyphal cells during carbon starvation with CreA and FlbA, but not BrlA, as most likely regulators of anafp. A co-expression network analysis supported by luciferase-based reporter assays uncovered that anafp expression is embedded in several cellular processes including allorecognition, osmotic and oxidative stress survival, development, secondary metabolism and autophagy, and predicted StuA and VelC as additional regulators. The transcriptomic resources available for A. niger provide unparalleled resources to investigate the function of proteins. Our work illustrates how transcriptomic meta-analyses can lead to hypotheses regarding protein function and predict a role for AnAFP during slow growth, allorecognition, asexual development and nutrient recycling of A. niger and propose that it interacts with the autophagic machinery to enable these processes.
Collapse
|
20
|
Park J, Hulsman M, Arentshorst M, Breeman M, Alazi E, Lagendijk EL, Rocha MC, Malavazi I, Nitsche BM, van den Hondel CAMJJ, Meyer V, Ram AFJ. Transcriptomic and molecular genetic analysis of the cell wall salvage response of Aspergillus niger to the absence of galactofuranose synthesis. Cell Microbiol 2016; 18:1268-84. [PMID: 27264789 PMCID: PMC5129474 DOI: 10.1111/cmi.12624] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 05/16/2016] [Accepted: 05/30/2016] [Indexed: 12/11/2022]
Abstract
The biosynthesis of cell surface-located galactofuranose (Galf)-containing glycostructures such as galactomannan, N-glycans and O-glycans in filamentous fungi is important to secure the integrity of the cell wall. UgmA encodes an UDP-galactopyranose mutase, which is essential for the formation of Galf. Consequently, the ΔugmA mutant lacks Galf-containing molecules. Our previous work in Aspergillus niger work suggested that loss of function of ugmA results in activation of the cell wall integrity (CWI) pathway which is characterized by increased expression of the agsA gene, encoding an α-glucan synthase. In this study, the transcriptional response of the ΔugmA mutant was further linked to the CWI pathway by showing the induced and constitutive phosphorylation of the CWI-MAP kinase in the ΔugmA mutant. To identify genes involved in cell wall remodelling in response to the absence of galactofuranose biosynthesis, a genome-wide expression analysis was performed using RNAseq. Over 400 genes were higher expressed in the ΔugmA mutant compared to the wild-type. These include genes that encode enzymes involved in chitin (gfaB, gnsA, chsA) and α-glucan synthesis (agsA), and in β-glucan remodelling (bgxA, gelF and dfgC), and also include several glycosylphosphatidylinositol (GPI)-anchored cell wall protein-encoding genes. In silico analysis of the 1-kb promoter regions of the up-regulated genes in the ΔugmA mutant indicated overrepresentation of genes with RlmA, MsnA, PacC and SteA-binding sites. The importance of these transcription factors for survival of the ΔugmA mutant was analysed by constructing the respective double mutants. The ΔugmA/ΔrlmA and ΔugmA/ΔmsnA double mutants showed strong synthetic growth defects, indicating the importance of these transcription factors to maintain cell wall integrity in the absence of Galf biosynthesis.
Collapse
Affiliation(s)
- Joohae Park
- Leiden University, Institute of Biology Leiden, Molecular Microbiology and Biotechnology, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | - Mark Hulsman
- Delft Bioinformatics Lab, Department of Intelligent Systems, Faculty Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Mekelweg 4, 2628 CD, Delft, The Netherlands
| | - Mark Arentshorst
- Leiden University, Institute of Biology Leiden, Molecular Microbiology and Biotechnology, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | - Matthijs Breeman
- Leiden University, Institute of Biology Leiden, Molecular Microbiology and Biotechnology, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | - Ebru Alazi
- Leiden University, Institute of Biology Leiden, Molecular Microbiology and Biotechnology, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | - Ellen L Lagendijk
- Leiden University, Institute of Biology Leiden, Molecular Microbiology and Biotechnology, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | - Marina C Rocha
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Paulo, Brazil
| | - Iran Malavazi
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Paulo, Brazil
| | - Benjamin M Nitsche
- Applied and Molecular Microbiology, Institute of Biotechnology, Berlin University of Technology, Gustav-Meyer-Allee 25, 13355, Berlin, Germany
| | - Cees A M J J van den Hondel
- Leiden University, Institute of Biology Leiden, Molecular Microbiology and Biotechnology, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | - Vera Meyer
- Applied and Molecular Microbiology, Institute of Biotechnology, Berlin University of Technology, Gustav-Meyer-Allee 25, 13355, Berlin, Germany
| | - Arthur F J Ram
- Leiden University, Institute of Biology Leiden, Molecular Microbiology and Biotechnology, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| |
Collapse
|
21
|
Degani G, Ragni E, Botias P, Ravasio D, Calderon J, Pianezzola E, Rodriguez-Peña JM, Vanoni MA, Arroyo J, Fonzi WA, Popolo L. Genomic and functional analyses unveil the response to hyphal wall stress in Candida albicans cells lacking β(1,3)-glucan remodeling. BMC Genomics 2016; 17:482. [PMID: 27411447 PMCID: PMC4942948 DOI: 10.1186/s12864-016-2853-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 06/21/2016] [Indexed: 11/17/2022] Open
Abstract
Background The cell wall is essential for the yeast to hypha (Y-H) transition that enables Candida albicans to invade human tissues and evade the immune system. The main constituent, β(1,3)-glucan, is remodeled by glucanosyltransferases of the GH72 family. Phr1p is responsible of glucan remodeling at neutral-alkaline pH and is essential for morphogenesis and virulence. Due to the pH-regulated expression of PHR1, the phr1Δ phenotype is manifested at pH > 6 and its severity increases with the rise in pH. We exploited the pH-conditional nature of a PHR1 null mutant to analyze the impact of glucan remodeling on the hyphal transcriptional program and the role of chitin synthases in the hyphal wall stress (HWS) response. Results In hyphal growth inducing conditions, phr1Δ germ tubes are defective in elongation, accumulate chitin, and constitutively activate the signaling pathways mediated by the MAP kinases Mkc1p, Cek1p and Hog1p. The transcriptional profiles revealed an increase of transcript levels for genes involved in cell wall formation (CHS2 and CHS8, CRH11, PGA23, orf19.750, RBR1, RBT4, ECM331, PGA6, PGA13), protein N-glycosylation and sorting in the ER (CWH8 and CHS7), signaling (CPP1, SSK2), ion transport (FLC2, YVC1), stress response and metabolism and a reduced expression of adhesins. A transient up-regulation of DNA replication genes associated with entry into S-phase occurred whereas cell-cycle regulating genes (PCL1, PCL2, CCN1, GIN4, DUN1, CDC28) were persistently up-regulated. To test the physiological relevance of altered CHS gene expression, phr1Δ chsxΔ (x = 2,3,8) mutant phenotypes were analyzed during the Y-H transition. PHR1 deletion was synthetic lethal with CHS3 loss on solid M199 medium-pH 7.5 and with CHS8 deletion on solid M199-pH 8. On Spider medium, PHR1 was synthetic lethal with CHS3 or CHS8 at pH 8. Conclusions The absence of Phr1p triggers an adaptive response aimed to reinforce the hyphal cell wall and restore homeostasis. Chs3p is essential in preserving phr1Δ cell integrity during the Y-H transition. Our findings also unveiled an unanticipated essential role of Chs8p during filamentation on solid media. These results highlight the flexibility of fungal cells in maintaining cell wall integrity and contribute to assessments of glucan remodeling as a target for therapy. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2853-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Genny Degani
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133, Milano, Italy
| | - Enrico Ragni
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133, Milano, Italy.,Present address: Unit of Cell therapy and Cryobiology, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milano, Italy
| | - Pedro Botias
- Unidad de Genómica, CAI de Genómica y Proteómica, UCM, Madrid, Spain
| | - Davide Ravasio
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133, Milano, Italy.,Present address: Evolva, Basel, Switzerland
| | - Julia Calderon
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133, Milano, Italy.,Present address: Instituto de Biología Funcional y Genómica, Salamanca, Spain
| | - Elena Pianezzola
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133, Milano, Italy
| | - Jose Manuel Rodriguez-Peña
- Departamento de Microbiologia II, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Maria Antonietta Vanoni
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133, Milano, Italy
| | - Javier Arroyo
- Departamento de Microbiologia II, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - William A Fonzi
- Department of Microbiology and Immunology, Georgetown University, Washington, D.C, USA
| | - Laura Popolo
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133, Milano, Italy.
| |
Collapse
|
22
|
Arroyo J, Farkaš V, Sanz AB, Cabib E. ‘Strengthening the fungal cell wall through chitin-glucan cross-links: effects on morphogenesis and cell integrity’. Cell Microbiol 2016; 18:1239-50. [DOI: 10.1111/cmi.12615] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 05/09/2016] [Accepted: 05/12/2016] [Indexed: 12/21/2022]
Affiliation(s)
- Javier Arroyo
- Departamento de Microbiología II, Facultad de Farmacia; Universidad Complutense de Madrid, IRYCIS; 28040 Madrid Spain
| | - Vladimír Farkaš
- Institute of Chemistry, Center for Glycomics; Department of Glycobiology, Slovak Academy of Sciences; 84538 Bratislava Slovakia
| | - Ana Belén Sanz
- Departamento de Microbiología II, Facultad de Farmacia; Universidad Complutense de Madrid, IRYCIS; 28040 Madrid Spain
| | - Enrico Cabib
- Laboratory of Biochemistry and Genetics, NIDDK, National Institutes of Health; Department of Health and Human Services; Bethesda MD USA
| |
Collapse
|
23
|
Bolton MD, Ebert MK, Faino L, Rivera-Varas V, de Jonge R, Van de Peer Y, Thomma BPHJ, Secor GA. RNA-sequencing of Cercospora beticola DMI-sensitive and -resistant isolates after treatment with tetraconazole identifies common and contrasting pathway induction. Fungal Genet Biol 2016; 92:1-13. [PMID: 27112724 DOI: 10.1016/j.fgb.2016.04.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 04/18/2016] [Accepted: 04/21/2016] [Indexed: 11/25/2022]
Abstract
Cercospora beticola causes Cercospora leaf spot of sugar beet. Cercospora leaf spot management measures often include application of the sterol demethylation inhibitor (DMI) class of fungicides. The reliance on DMIs and the consequent selection pressures imposed by their widespread use has led to the emergence of resistance in C. beticola populations. Insight into the molecular basis of tetraconazole resistance may lead to molecular tools to identify DMI-resistant strains for fungicide resistance management programs. Previous work has shown that expression of the gene encoding the DMI target enzyme (CYP51) is generally higher and inducible in DMI-resistant C. beticola field strains. In this study, we extended the molecular basis of DMI resistance in this pathosystem by profiling the transcriptional response of two C. beticola strains contrasting for resistance to tetraconazole. A majority of the genes in the ergosterol biosynthesis pathway were induced to similar levels in both strains with the exception of CbCyp51, which was induced several-fold higher in the DMI-resistant strain. In contrast, a secondary metabolite gene cluster was induced in the resistance strain, but repressed in the sensitive strain. Genes encoding proteins with various cell membrane fortification processes were induced in the resistance strain. Site-directed and ectopic mutants of candidate DMI-resistance genes all resulted in significantly higher EC50 values than the wild-type strain, suggesting that the cell wall and/or membrane modified as a result of the transformation process increased resistance to tetraconazole. Taken together, this study identifies important cell membrane components and provides insight into the molecular events underlying DMI resistance in C. beticola.
Collapse
Affiliation(s)
- Melvin D Bolton
- USDA - ARS, Northern Crop Science Laboratory, Fargo, ND, USA; North Dakota State University, Department of Plant Pathology, Fargo, ND, USA.
| | - Malaika K Ebert
- USDA - ARS, Northern Crop Science Laboratory, Fargo, ND, USA; North Dakota State University, Department of Plant Pathology, Fargo, ND, USA; Wageningen University, Laboratory of Phytopathology, Wageningen, The Netherlands
| | - Luigi Faino
- Wageningen University, Laboratory of Phytopathology, Wageningen, The Netherlands
| | | | - Ronnie de Jonge
- Department of Plant Systems Biology, VIB, Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent Belgium
| | - Yves Van de Peer
- Department of Plant Systems Biology, VIB, Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent Belgium
| | - Bart P H J Thomma
- Wageningen University, Laboratory of Phytopathology, Wageningen, The Netherlands
| | - Gary A Secor
- North Dakota State University, Department of Plant Pathology, Fargo, ND, USA
| |
Collapse
|
24
|
Puig M, Moragrega C, Ruz L, Calderón CE, Cazorla FM, Montesinos E, Llorente I. Interaction of antifungal peptide BP15 with Stemphylium vesicarium , the causal agent of brown spot of pear. Fungal Biol 2016; 120:61-71. [DOI: 10.1016/j.funbio.2015.10.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 10/13/2015] [Accepted: 10/23/2015] [Indexed: 02/08/2023]
|
25
|
Copper-induced adaptation, oxidative stress and its tolerance in Aspergillus niger UCP1261. ELECTRON J BIOTECHN 2015. [DOI: 10.1016/j.ejbt.2015.09.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
26
|
Increased chitin biosynthesis contributes to the resistance of Penicillium polonicum against the antifungal protein PgAFP. Appl Microbiol Biotechnol 2015; 100:371-83. [DOI: 10.1007/s00253-015-7020-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 08/23/2015] [Accepted: 09/05/2015] [Indexed: 10/23/2022]
|
27
|
Altwasser R, Baldin C, Weber J, Guthke R, Kniemeyer O, Brakhage AA, Linde J, Valiante V. Network Modeling Reveals Cross Talk of MAP Kinases during Adaptation to Caspofungin Stress in Aspergillus fumigatus. PLoS One 2015; 10:e0136932. [PMID: 26356475 PMCID: PMC4565559 DOI: 10.1371/journal.pone.0136932] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 08/11/2015] [Indexed: 12/14/2022] Open
Abstract
Mitogen activated protein kinases (MAPKs) are highly conserved in eukaryotic organisms. In pathogenic fungi, their activities were assigned to different physiological functions including drug adaptation and resistance. Aspergillus fumigatus is a human pathogenic fungus, which causes life-threatening invasive infections. Therapeutic options against invasive mycoses are still limited. One of the clinically used drugs is caspofungin, which specifically targets the fungal cell wall biosynthesis. A systems biology approach, based on comprehensive transcriptome data sets and mathematical modeling, was employed to infer a regulatory network and identify key interactions during adaptation to caspofungin stress in A. fumigatus. Mathematical modeling and experimental validations confirmed an intimate cross talk occurring between the cell wall-integrity and the high osmolarity-glycerol signaling pathways. Specifically, increased concentrations of caspofungin promoted activation of these signalings. Moreover, caspofungin affected the intracellular transport, which caused an additional osmotic stress that is independent of glucan inhibition. High concentrations of caspofungin reduced this osmotic stress, and thus decreased its toxic activity. Our results demonstrated that MAPK signaling pathways play a key role during caspofungin adaptation and are contributing to the paradoxical effect exerted by this drug.
Collapse
Affiliation(s)
- Robert Altwasser
- Department of Systems Biology/Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute, Adolf-Reichwein-Str. 23, 07745, Jena, Germany
| | - Clara Baldin
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute, Adolf-Reichwein-Str. 23, 07745, Jena, Germany
- Department of Microbiology and Molecular Biology, Institute of Microbiology, Friedrich Schiller University Jena, Adolf-Reichwein-Str. 23, 07745, Jena, Germany
| | - Jakob Weber
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute, Adolf-Reichwein-Str. 23, 07745, Jena, Germany
- Department of Microbiology and Molecular Biology, Institute of Microbiology, Friedrich Schiller University Jena, Adolf-Reichwein-Str. 23, 07745, Jena, Germany
| | - Reinhard Guthke
- Department of Systems Biology/Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute, Adolf-Reichwein-Str. 23, 07745, Jena, Germany
| | - Olaf Kniemeyer
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute, Adolf-Reichwein-Str. 23, 07745, Jena, Germany
- Department of Microbiology and Molecular Biology, Institute of Microbiology, Friedrich Schiller University Jena, Adolf-Reichwein-Str. 23, 07745, Jena, Germany
- Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, 07747, Jena, Germany
| | - Axel A. Brakhage
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute, Adolf-Reichwein-Str. 23, 07745, Jena, Germany
- Department of Microbiology and Molecular Biology, Institute of Microbiology, Friedrich Schiller University Jena, Adolf-Reichwein-Str. 23, 07745, Jena, Germany
| | - Jörg Linde
- Department of Systems Biology/Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute, Adolf-Reichwein-Str. 23, 07745, Jena, Germany
- * E-mail: (JL); (VV)
| | - Vito Valiante
- Leibniz Junior Research Group—Biobricks of Microbial Natural Product Syntheses, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute, Adolf-Reichwein-Str. 23, 07745, Jena, Germany
- * E-mail: (JL); (VV)
| |
Collapse
|
28
|
Hernández A, Serrano-Bueno G, Perez-Castiñeira JR, Serrano A. 8-Dehydrosterols induce membrane traffic and autophagy defects through V-ATPase dysfunction in Saccharomyces cerevisae. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:2945-56. [PMID: 26344037 DOI: 10.1016/j.bbamcr.2015.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 09/01/2015] [Indexed: 12/11/2022]
Abstract
8-Dehydrosterols are present in a wide range of biologically relevant situations, from human rare diseases to amine fungicide-treated fungi and crops. However, the molecular bases of their toxicity are still obscure. We show here that 8-dehydrosterols, but not other sterols, affect yeast vacuole acidification through V-ATPases. Moreover, erg2Δ cells display reductions in proton pumping rates consistent with ion-transport uncoupling in vitro. Concomitantly, subunit Vph1p shows conformational changes in the presence of 8-dehydrosterols. Expression of a plant vacuolar H(+)-pumping pyrophosphatase as an alternative H(+)-pump relieves Vma(-)-like phenotypes in erg2Δ-derived mutant cells. As a consequence of these acidification defects, endo- and exo-cytic traffic deficiencies that can be alleviated with a H(+)-pumping pyrophosphatase are also observed. Despite their effect on membrane traffic, 8-dehydrosterols do not induce endoplasmic reticulum stress or assembly defects on the V-ATPase. Autophagy is a V-ATPase dependent process and erg2Δ mutants accumulate autophagic bodies under nitrogen starvation similar to Vma(-) mutants. In contrast to classical Atg(-) mutants, this defect is not accompanied by impairment of traffic through the CVT pathway, processing of Pho8Δ60p, GFP-Atg8p localisation or difficulties to survive under nitrogen starvation conditions, but it is concomitant to reduced vacuolar protease activity. All in all, erg2Δ cells are autophagy mutants albeit some of their phenotypic features differ from classical Atg(-) defective cells. These results may pave the way to understand the aetiology of sterol-related diseases, the cytotoxic effect of amine fungicides, and may explain the tolerance to these compounds observed in plants.
Collapse
Affiliation(s)
- Agustín Hernández
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla-CSIC, Avda Américo Vespucio 48, 41092 Sevilla, Spain.
| | - Gloria Serrano-Bueno
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla-CSIC, Avda Américo Vespucio 48, 41092 Sevilla, Spain
| | - José Román Perez-Castiñeira
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla-CSIC, Avda Américo Vespucio 48, 41092 Sevilla, Spain
| | - Aurelio Serrano
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla-CSIC, Avda Américo Vespucio 48, 41092 Sevilla, Spain.
| |
Collapse
|
29
|
Systems approaches to predict the functions of glycoside hydrolases during the life cycle of Aspergillus niger using developmental mutants ∆brlA and ∆flbA. PLoS One 2015; 10:e0116269. [PMID: 25629352 PMCID: PMC4309609 DOI: 10.1371/journal.pone.0116269] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Accepted: 12/05/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The filamentous fungus Aspergillus niger encounters carbon starvation in nature as well as during industrial fermentations. In response, regulatory networks initiate and control autolysis and sporulation. Carbohydrate-active enzymes play an important role in these processes, for example by modifying cell walls during spore cell wall biogenesis or in cell wall degradation connected to autolysis. RESULTS In this study, we used developmental mutants (ΔflbA and ΔbrlA) which are characterized by an aconidial phenotype when grown on a plate, but also in bioreactor-controlled submerged cultivations during carbon starvation. By comparing the transcriptomes, proteomes, enzyme activities and the fungal cell wall compositions of a wild type A. niger strain and these developmental mutants during carbon starvation, a global overview of the function of carbohydrate-active enzymes is provided. Seven genes encoding carbohydrate-active enzymes, including cfcA, were expressed during starvation in all strains; they may encode enzymes involved in cell wall recycling. Genes expressed in the wild-type during starvation, but not in the developmental mutants are likely involved in conidiogenesis. Eighteen of such genes were identified, including characterized sporulation-specific chitinases and An15g02350, member of the recently identified carbohydrate-active enzyme family AA11. Eight of the eighteen genes were also expressed, independent of FlbA or BrlA, in vegetative mycelium, indicating that they also have a role during vegetative growth. The ΔflbA strain had a reduced specific growth rate, an increased chitin content of the cell wall and specific expression of genes that are induced in response to cell wall stress, indicating that integrity of the cell wall of strain ΔflbA is reduced. CONCLUSION The combination of the developmental mutants ΔflbA and ΔbrlA resulted in the identification of enzymes involved in cell wall recycling and sporulation-specific cell wall modification, which contributes to understanding cell wall remodeling mechanisms during development.
Collapse
|
30
|
Fiedler MR, Lorenz A, Nitsche BM, van den Hondel CA, Ram AF, Meyer V. The capacity of Aspergillus niger to sense and respond to cell wall stress requires at least three transcription factors: RlmA, MsnA and CrzA. Fungal Biol Biotechnol 2014; 1:5. [PMID: 28955447 PMCID: PMC5598236 DOI: 10.1186/s40694-014-0005-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 08/18/2014] [Indexed: 12/29/2022] Open
Abstract
Background Cell wall integrity, vesicle transport and protein secretion are key factors contributing to the vitality and productivity of filamentous fungal cell factories such as Aspergillus niger. In order to pioneer rational strain improvement programs, fundamental knowledge on the genetic basis of these processes is required. The aim of the present study was thus to unravel survival strategies of A. niger when challenged with compounds interfering directly or indirectly with its cell wall integrity: calcofluor white, caspofungin, aureobasidin A, FK506 and fenpropimorph. Results Transcriptomics signatures of A. niger and phenotypic analyses of selected null mutant strains were used to predict regulator proteins mediating the survival responses against these stressors. This integrated approach allowed us to reconstruct a model for the cell wall salvage gene network of A. niger that ensures survival of the fungus upon cell surface stress. The model predicts that (i) caspofungin and aureobasidin A induce the cell wall integrity pathway as a main compensatory response via induction of RhoB and RhoD, respectively, eventually activating the mitogen-activated protein kinase kinase MkkA and the transcription factor RlmA. (ii) RlmA is the main transcription factor required for the protection against calcofluor white but it cooperates with MsnA and CrzA to ensure survival of A. niger when challenged with caspofungin and aureobasidin A. (iii) Membrane stress provoked by aureobasidin A via disturbance of sphingolipid synthesis induces cell wall stress, whereas fenpropimorph-induced disturbance of ergosterol synthesis does not. Conclusion The present work uncovered a sophisticated defence system of A. niger which employs at least three transcription factors - RlmA, MsnA and CrzA – to protect itself against cell wall stress. The transcriptomic data furthermore predicts a fourth transfactor, SrbA, which seems to be specifically important to survive fenpropimorph-induced cell membrane stress. Future studies will disclose how these regulators are interlocked in different signaling pathways to secure survival of A. niger under different cell wall stress conditions. Electronic supplementary material The online version of this article (doi:10.1186/s40694-014-0005-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Markus Rm Fiedler
- Institute of Biotechnology, Department Applied and Molecular Microbiology Berlin University of Technology, Gustav-Meyer-Allee 25, Berlin, D-13355 Germany
| | - Annett Lorenz
- Institute of Biology Leiden, Leiden University, Molecular Microbiology and Biotechnology, Sylviusweg 72, Leiden, 2333 BE The Netherlands
| | - Benjamin M Nitsche
- Institute of Biotechnology, Department Applied and Molecular Microbiology Berlin University of Technology, Gustav-Meyer-Allee 25, Berlin, D-13355 Germany.,Institute of Biology Leiden, Leiden University, Molecular Microbiology and Biotechnology, Sylviusweg 72, Leiden, 2333 BE The Netherlands
| | | | - Arthur Fj Ram
- Institute of Biology Leiden, Leiden University, Molecular Microbiology and Biotechnology, Sylviusweg 72, Leiden, 2333 BE The Netherlands.,Kluyver Centre for Genomics of Industrial Fermentation, Delft, 2600 GA The Netherlands
| | - Vera Meyer
- Institute of Biotechnology, Department Applied and Molecular Microbiology Berlin University of Technology, Gustav-Meyer-Allee 25, Berlin, D-13355 Germany.,Institute of Biology Leiden, Leiden University, Molecular Microbiology and Biotechnology, Sylviusweg 72, Leiden, 2333 BE The Netherlands.,Kluyver Centre for Genomics of Industrial Fermentation, Delft, 2600 GA The Netherlands
| |
Collapse
|
31
|
Franken ACW, Lechner BE, Werner ER, Haas H, Lokman BC, Ram AFJ, van den Hondel CAMJJ, de Weert S, Punt PJ. Genome mining and functional genomics for siderophore production in Aspergillus niger. Brief Funct Genomics 2014; 13:482-92. [DOI: 10.1093/bfgp/elu026] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
32
|
Kwon MJ, Arentshorst M, Fiedler M, de Groen FLM, Punt PJ, Meyer V, Ram AFJ. Molecular genetic analysis of vesicular transport in Aspergillus niger reveals partial conservation of the molecular mechanism of exocytosis in fungi. Microbiology (Reading) 2014; 160:316-329. [DOI: 10.1099/mic.0.074252-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The filamentous fungus Aspergillus niger is an industrially exploited protein expression platform, well known for its capacity to secrete high levels of proteins. To study the process of protein secretion in A. niger, we established a GFP-v-SNARE reporter strain in which the trafficking and dynamics of secretory vesicles can be followed in vivo. The biological role of putative A. niger orthologues of seven secretion-specific genes, known to function in key aspects of the protein secretion machinery in Saccharomyces cerevisiae, was analysed by constructing respective gene deletion mutants in the GFP-v-SNARE reporter strain. Comparison of the deletion phenotype of conserved proteins functioning in the secretory pathway revealed common features but also interesting differences between S. cerevisiae and A. niger. Deletion of the S. cerevisiae Sec2p orthologue in A. niger (SecB), encoding a guanine exchange factor for the GTPase Sec4p (SrgA in A. niger), did not have an obvious phenotype, while SEC2 deletion in S. cerevisiae is lethal. Similarly, deletion of the A. niger orthologue of the S. cerevisiae exocyst subunit Sec3p (SecC) did not result in a lethal phenotype as in S. cerevisiae, although severe growth reduction of A. niger was observed. Deletion of secA, secH and ssoA (encoding SecA, SecH and SsoA the A. niger orthologues of S. cerevisiae Sec1p, Sec8p and Sso1/2p, respectively) showed that these genes are essential for A. niger, similar to the situation in S. cerevisiae. These data demonstrate that the orchestration of exocyst-mediated vesicle transport is only partially conserved in S. cerevisiae and A. niger.
Collapse
Affiliation(s)
- Min Jin Kwon
- Kluyver Centre for Genomics of Industrial Fermentation, P.O. Box 5057, 2600 GA Delft, The Netherlands
- Department Molecular Microbiology and Biotechnology, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Mark Arentshorst
- Department Molecular Microbiology and Biotechnology, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Markus Fiedler
- Department Applied and Molecular Microbiology, Institute of Biotechnology, Berlin University of Technology, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Florence L. M. de Groen
- Department Molecular Microbiology and Biotechnology, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Peter J. Punt
- Department Molecular Microbiology and Biotechnology, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Vera Meyer
- Department Applied and Molecular Microbiology, Institute of Biotechnology, Berlin University of Technology, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
- Kluyver Centre for Genomics of Industrial Fermentation, P.O. Box 5057, 2600 GA Delft, The Netherlands
- Department Molecular Microbiology and Biotechnology, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Arthur F. J. Ram
- Kluyver Centre for Genomics of Industrial Fermentation, P.O. Box 5057, 2600 GA Delft, The Netherlands
- Department Molecular Microbiology and Biotechnology, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| |
Collapse
|
33
|
Schachtschabel D, Arentshorst M, Nitsche BM, Morris S, Nielsen KF, van den Hondel CAMJJ, Klis FM, Ram AFJ. The transcriptional repressor TupA in Aspergillus niger is involved in controlling gene expression related to cell wall biosynthesis, development, and nitrogen source availability. PLoS One 2013; 8:e78102. [PMID: 24205111 PMCID: PMC3812127 DOI: 10.1371/journal.pone.0078102] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 09/08/2013] [Indexed: 12/20/2022] Open
Abstract
The Tup1-Cyc8 (Ssn6) complex is a well characterized and conserved general transcriptional repressor complex in eukaryotic cells. Here, we report the identification of the Tup1 (TupA) homolog in the filamentous fungus Aspergillus niger in a genetic screen for mutants with a constitutive expression of the agsA gene. The agsA gene encodes a putative alpha-glucan synthase, which is induced in response to cell wall stress in A. niger. Apart from the constitutive expression of agsA, the selected mutant was also found to produce an unknown pigment at high temperatures. Complementation analysis with a genomic library showed that the tupA gene could complement the phenotypes of the mutant. Screening of a collection of 240 mutants with constitutive expression of agsA identified sixteen additional pigment-secreting mutants, which were all mutated in the tupA gene. The phenotypes of the tupA mutants were very similar to the phenotypes of a tupA deletion strain. Further analysis of the tupA-17 mutant and the ΔtupA mutant revealed that TupA is also required for normal growth and morphogenesis. The production of the pigment at 37°C is nitrogen source-dependent and repressed by ammonium. Genome-wide expression analysis of the tupA mutant during exponential growth revealed derepression of a large group of diverse genes, including genes related to development and cell wall biosynthesis, and also protease-encoding genes that are normally repressed by ammonium. Comparison of the transcriptome of up-regulated genes in the tupA mutant showed limited overlap with the transcriptome of caspofungin-induced cell wall stress-related genes, suggesting that TupA is not a general suppressor of cell wall stress-induced genes. We propose that TupA is an important repressor of genes related to development and nitrogen metabolism.
Collapse
Affiliation(s)
- Doreen Schachtschabel
- Institute of Biology Leiden, Leiden University, Molecular Microbiology and Biotechnology, Leiden, The Netherlands
| | - Mark Arentshorst
- Institute of Biology Leiden, Leiden University, Molecular Microbiology and Biotechnology, Leiden, The Netherlands
| | - Benjamin M. Nitsche
- Applied and Molecular Microbiology, Institute of Biotechnology, Berlin University of Technology, Berlin, German
| | - Sam Morris
- Institute of Biology Leiden, Leiden University, Molecular Microbiology and Biotechnology, Leiden, The Netherlands
| | - Kristian F. Nielsen
- Department for Systems Biology, Technical University of Denmark, Lyngby, Denmark
| | | | - Frans M. Klis
- Swammerdam Institute for Life Sciences, Amsterdam of University, Amsterdam, The Netherlands
| | - Arthur F. J. Ram
- Institute of Biology Leiden, Leiden University, Molecular Microbiology and Biotechnology, Leiden, The Netherlands
- Kluyver Centre for Genomics of Industrial Fermentation, Delft, The Netherlands
- * E-mail:
| |
Collapse
|
34
|
Kwon MJ, Nitsche BM, Arentshorst M, Jørgensen TR, Ram AFJ, Meyer V. The transcriptomic signature of RacA activation and inactivation provides new insights into the morphogenetic network of Aspergillus niger. PLoS One 2013; 8:e68946. [PMID: 23894378 PMCID: PMC3722221 DOI: 10.1371/journal.pone.0068946] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 06/04/2013] [Indexed: 12/23/2022] Open
Abstract
RacA is the main Rho GTPase in Aspergillus niger regulating polarity maintenance via controlling actin dynamics. Both deletion and dominant activation of RacA (Rac(G18V)) provoke an actin localization defect and thereby loss of polarized tip extension, resulting in frequent dichotomous branching in the ΔracA strain and an apolar growing phenotype for Rac(G18V). In the current study the transcriptomics and physiological consequences of these morphological changes were investigated and compared with the data of the morphogenetic network model for the dichotomous branching mutant ramosa-1. This integrated approach revealed that polar tip growth is most likely orchestrated by the concerted activities of phospholipid signaling, sphingolipid signaling, TORC2 signaling, calcium signaling and CWI signaling pathways. The transcriptomic signatures and the reconstructed network model for all three morphology mutants (ΔracA, Rac(G18V), ramosa-1) imply that these pathways become integrated to bring about different physiological adaptations including changes in sterol, zinc and amino acid metabolism and changes in ion transport and protein trafficking. Finally, the fate of exocytotic (SncA) and endocytotic (AbpA, SlaB) markers in the dichotomous branching mutant ΔracA was followed, demonstrating that hyperbranching does not per se result in increased protein secretion.
Collapse
Affiliation(s)
- Min Jin Kwon
- Leiden University, Institute of Biology Leiden, Department Molecular Microbiology and Biotechnology, Leiden, The Netherlands
- Kluyver Centre for Genomics of Industrial Fermentation, Delft, The Netherlands
| | - Benjamin M. Nitsche
- Leiden University, Institute of Biology Leiden, Department Molecular Microbiology and Biotechnology, Leiden, The Netherlands
- Institute of Biotechnology, Department Applied and Molecular Microbiology, Berlin University of Technology, Berlin, Germany
| | - Mark Arentshorst
- Leiden University, Institute of Biology Leiden, Department Molecular Microbiology and Biotechnology, Leiden, The Netherlands
- Kluyver Centre for Genomics of Industrial Fermentation, Delft, The Netherlands
| | - Thomas R. Jørgensen
- Leiden University, Institute of Biology Leiden, Department Molecular Microbiology and Biotechnology, Leiden, The Netherlands
| | - Arthur F. J. Ram
- Leiden University, Institute of Biology Leiden, Department Molecular Microbiology and Biotechnology, Leiden, The Netherlands
- Kluyver Centre for Genomics of Industrial Fermentation, Delft, The Netherlands
- * E-mail: (AR); (VM)
| | - Vera Meyer
- Leiden University, Institute of Biology Leiden, Department Molecular Microbiology and Biotechnology, Leiden, The Netherlands
- Kluyver Centre for Genomics of Industrial Fermentation, Delft, The Netherlands
- Institute of Biotechnology, Department Applied and Molecular Microbiology, Berlin University of Technology, Berlin, Germany
- * E-mail: (AR); (VM)
| |
Collapse
|
35
|
Cools HJ, Hammond-Kosack KE. Exploitation of genomics in fungicide research: current status and future perspectives. MOLECULAR PLANT PATHOLOGY 2013; 14:197-210. [PMID: 23157348 PMCID: PMC6638899 DOI: 10.1111/mpp.12001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Every year, fungicide use to control plant disease caused by pathogenic fungi increases. The global fungicide market is now worth more than £5.3 billion, second only to the herbicide market in importance. In the UK, over 5500 tonnes of fungicide were applied to crops in 2010 (The Food and Environment Research Agency, Pesticide Usage Statistics), with 95.5% of the wheat-growing area receiving three fungicide sprays. Although dependence on fungicides to produce food securely, reliably and cheaply may be moderated in the future by further developments in crop biotechnology, modern crop protection will continue to require a diversity of solutions, including effective and safe chemical control. Therefore, investment in exploiting the increasingly available genome sequences of the most devastating fungal and oomycete phytopathogenic species should bring an array of new opportunities for chemical intervention. To date, the impact of whole genome research on the development, introduction and stewardship of fungicides has been limited, but ongoing improvements in computational analysis, molecular biology, chemical genetics, genome sequencing and transcriptomics will facilitate the development and registration of the future suite of crop protection chemicals.
Collapse
Affiliation(s)
- Hans J Cools
- Department of Biological Chemistry and Crop Protection, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK.
| | | |
Collapse
|
36
|
Functional analysis of the α-1,3-glucan synthase genes agsA and agsB in Aspergillus nidulans: agsB is the major α-1,3-glucan synthase in this fungus. PLoS One 2013; 8:e54893. [PMID: 23365684 PMCID: PMC3554689 DOI: 10.1371/journal.pone.0054893] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 12/17/2012] [Indexed: 11/24/2022] Open
Abstract
Although α-1,3-glucan is one of the major cell wall polysaccharides in filamentous fungi, the physiological roles of α-1,3-glucan remain unclear. The model fungus Aspergillus nidulans possesses two α-1,3-glucan synthase (AGS) genes, agsA and agsB. For functional analysis of these genes, we constructed several mutant strains in A. nidulans: agsA disruption, agsB disruption, and double-disruption strains. We also constructed several CagsB strains in which agsB expression was controlled by the inducible alcA promoter, with or without the agsA-disrupting mutation. The agsA disruption strains did not show markedly different phenotypes from those of the wild-type strain. The agsB disruption strains formed dispersed hyphal cells under liquid culture conditions, regardless of the agsA genetic background. Dispersed hyphal cells were also observed in liquid culture of the CagsB strains when agsB expression was repressed, whereas these strains grew normally in plate culture even under the agsB-repressed conditions. Fractionation of the cell wall based on the alkali solubility of its components, quantification of sugars, and 13C-NMR spectroscopic analysis revealed that α-1,3-glucan was the main component of the alkali-soluble fraction in the wild-type and agsA disruption strains, but almost no α-1,3-glucan was found in the alkali-soluble fraction derived from either the agsB disruption strain or the CagsB strain under the agsB-repressed conditions, regardless of the agsA genetic background. Taken together, our data demonstrate that the two AGS genes are dispensable in A. nidulans, but that AgsB is required for normal growth characteristics under liquid culture conditions and is the major AGS in this species.
Collapse
|
37
|
Vacuolar H+-ATPase plays a key role in cell wall biosynthesis of Aspergillus niger. Fungal Genet Biol 2012; 49:284-93. [DOI: 10.1016/j.fgb.2011.12.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 12/15/2011] [Accepted: 12/16/2011] [Indexed: 11/21/2022]
|
38
|
Binder U, Bencina M, Eigentler A, Meyer V, Marx F. The Aspergillus giganteus antifungal protein AFPNN5353 activates the cell wall integrity pathway and perturbs calcium homeostasis. BMC Microbiol 2011; 11:209. [PMID: 21943024 PMCID: PMC3197501 DOI: 10.1186/1471-2180-11-209] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Accepted: 09/23/2011] [Indexed: 01/25/2023] Open
Abstract
Background The antifungal protein AFPNN5353 is a defensin-like protein of Aspergillus giganteus. It belongs to a group of secretory proteins with low molecular mass, cationic character and a high content of cysteine residues. The protein inhibits the germination and growth of filamentous ascomycetes, including important human and plant pathogens and the model organsims Aspergillus nidulans and Aspergillus niger. Results We determined an AFPNN5353 hypersensitive phenotype of non-functional A. nidulans mutants in the protein kinase C (Pkc)/mitogen-activated protein kinase (Mpk) signalling pathway and the induction of the α-glucan synthase A (agsA) promoter in a transgenic A. niger strain which point at the activation of the cell wall integrity pathway (CWIP) and the remodelling of the cell wall in response to AFPNN5353. The activation of the CWIP by AFPNN5353, however, operates independently from RhoA which is the central regulator of CWIP signal transduction in fungi. Furthermore, we provide evidence that calcium (Ca2+) signalling plays an important role in the mechanistic function of this antifungal protein. AFPNN5353 increased about 2-fold the cytosolic free Ca2+ ([Ca2+]c) of a transgenic A. niger strain expressing codon optimized aequorin. Supplementation of the growth medium with CaCl2 counteracted AFPNN5353 toxicity, ameliorated the perturbation of the [Ca2+]c resting level and prevented protein uptake into Aspergillus sp. cells. Conclusions The present study contributes new insights into the molecular mechanisms of action of the A. giganteus antifungal protein AFPNN5353. We identified its antifungal activity, initiated the investigation of pathways that determine protein toxicity, namely the CWIP and the Ca2+ signalling cascade, and studied in detail the cellular uptake mechanism in sensitive target fungi. This knowledge contributes to define new potential targets for the development of novel antifungal strategies to prevent and combat infections of filamentous fungi which have severe negative impact in medicine and agriculture.
Collapse
Affiliation(s)
- Ulrike Binder
- Biocenter, Division of Molecular Biology, Innsbruck Medical University, Fritz-Pregl Strasse 3, Innsbruck, A-6020, Austria
| | | | | | | | | |
Collapse
|
39
|
Debiane D, Calonne M, Fontaine J, Laruelle F, Grandmougin-Ferjani A, Lounes-Hadj Sahraoui A. Lipid content disturbance in the arbuscular mycorrhizal, Glomus irregulare grown in monoxenic conditions under PAHs pollution. Fungal Biol 2011; 115:782-92. [DOI: 10.1016/j.funbio.2011.06.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2011] [Revised: 05/13/2011] [Accepted: 06/07/2011] [Indexed: 11/27/2022]
|
40
|
Mela F, Fritsche K, de Boer W, van Veen JA, de Graaff LH, van den Berg M, Leveau JHJ. Dual transcriptional profiling of a bacterial/fungal confrontation: Collimonas fungivorans versus Aspergillus niger. ISME JOURNAL 2011; 5:1494-504. [PMID: 21614084 DOI: 10.1038/ismej.2011.29] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Interactions between bacteria and fungi cover a wide range of incentives, mechanisms and outcomes. The genus Collimonas consists of soil bacteria that are known for their antifungal activity and ability to grow at the expense of living fungi. In non-contact confrontation assays with the fungus Aspergillus niger, Collimonas fungivorans showed accumulation of biomass concomitant with inhibition of hyphal spread. Through microarray analysis of bacterial and fungal mRNA from the confrontation arena, we gained new insights into the mechanisms underlying the fungistatic effect and mycophagous phenotype of collimonads. Collimonas responded to the fungus by activating genes for the utilization of fungal-derived compounds and for production of a putative antifungal compound. In A. niger, differentially expressed genes included those involved in lipid and cell wall metabolism and cell defense, which correlated well with the hyphal deformations that were observed microscopically. Transcriptional profiles revealed distress in both partners: downregulation of ribosomal proteins and upregulation of mobile genetic elements in the bacteria and expression of endoplasmic reticulum stress and conidia-related genes in the fungus. Both partners experienced nitrogen shortage in each other's presence. Overall, our results indicate that the Collimonas/Aspergillus interaction is a complex interplay between trophism, antibiosis and competition for nutrients.
Collapse
Affiliation(s)
- Francesca Mela
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Filamentous fungi have a high-capacity secretory system and are therefore widely exploited for the industrial production of native and heterologous proteins. However, in most cases, the yields of nonfungal proteins are significantly lower than those obtained for fungal proteins. One well-studied bottleneck appears to be the result of slow or aberrant folding of heterologous proteins in the ER during the early stages of secretion within the endoplasmic reticulum, leading to stress responses in the host, including the unfolded protein response (UPR). Most of the key elements constituting the signal transduction pathway of the UPR in Saccharomyces cerevisiae have been identified in filamentous fungi, including the central activation mechanism of the pathway, that is, the stress-induced splicing of an unconventional (nonspliceosomal) intron in orthologs of the HAC1 mRNA. This splicing event relieves a translational block in the HAC1 mRNA, allowing for the translation of the bZIP transcription factor Hac1p that regulates the expression of UPR target genes. The UPR is involved in regulating the folding, yield, and delivery of secretory proteins and that has consequences for fungal lifestyles, including virulence and biotechnology. The recent releases of genome sequences of several species of filamentous fungi and the availability of DNA arrays, GeneChips, and deep sequencing methodologies have provided an unprecedented resource for exploring expression profiles in response to secretion stresses. Furthermore, genome-wide investigation of translation profiles through polysome analyses is possible, and here, we outline methods for the use of such techniques with filamentous fungi and, principally, Aspergillus niger. We also describe methods for the batch and controlled cultivation of A. niger and for the replacement and study of its hacA gene, which provides either a UPR-deficient strain or a constitutively activated UPR strain for comparative analysis with its wild type. Although we focus on A. niger, the utility of the hacA-deletion strategy is also described for use in investigating the virulence of the plant pathogen Alternaria brassicicola.
Collapse
|
42
|
Keeping AJ, Collins RA. Evidence for the phenotypic neutrality of the Neurospora Varkud (V) and Varkud satellite (VS) plasmids. Fungal Genet Biol 2011; 48:741-6. [PMID: 21397711 DOI: 10.1016/j.fgb.2011.02.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 02/10/2011] [Accepted: 02/28/2011] [Indexed: 10/18/2022]
Abstract
The Varkud satellite (VS) plasmid, which requires the Varkud (V) plasmid for replication, is found in the mitochondria of several natural isolates of Neurospora. The VS transcript is sufficiently abundant that it might be expected to alter the function of mitochondria; however, previous limited characterization revealed no effect. In this work we have used genetic, biochemical and proteomic approaches to search for effects of the V and VS plasmids. We observed differences in the relative abundance of several mitochondrial proteins between plasmid-containing and plasmid-lacking natural isolates, but subsequently found these not to be due to the plasmids. We constructed a pair of iso-nuclear and iso-mitochondrial strains that differed only by the presence or absence of V and VS, and observed only subtle differences in the abundance of several mitochondrial proteins. We further attempted to detect a cryptic plasmid-related phenotype by growing this pair of strains in the presence of a variety of inhibitors of mitochondrial function or other stress conditions: this also revealed no effect of the plasmids. These observations suggest that, despite the high concentration of VS RNA in the mitochondrion, the V and VS plasmids do not cause substantial changes in the host.
Collapse
Affiliation(s)
- Andrew J Keeping
- Department of Molecular Genetics, University of Toronto, Ontario, Canada
| | | |
Collapse
|
43
|
Fungal gene expression on demand: an inducible, tunable, and metabolism-independent expression system for Aspergillus niger. Appl Environ Microbiol 2011; 77:2975-83. [PMID: 21378046 DOI: 10.1128/aem.02740-10] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Filamentous fungi are the cause of serious human and plant diseases but are also exploited in biotechnology as production platforms. Comparative genomics has documented their genetic diversity, and functional genomics and systems biology approaches are under way to understand the functions and interaction of fungal genes and proteins. In these approaches, gene functions are usually inferred from deletion or overexpression mutants. However, studies at these extreme points give only limited information. Moreover, many overexpression studies use metabolism-dependent promoters, often causing pleiotropic effects and thus limitations in their significance. We therefore established and systematically evaluated a tunable expression system for Aspergillus niger that is independent of carbon and nitrogen metabolism and silent under noninduced conditions. The system consists of two expression modules jointly targeted to a defined genomic locus. One module ensures constitutive expression of the tetracycline-dependent transactivator rtTA2(S)-M2, and one module harbors the rtTA2(S)-M2-dependent promoter that controls expression of the gene of interest (the Tet-on system). We show here that the system is tight, responds within minutes after inducer addition, and allows fine-tuning based on the inducer concentration or gene copy number up to expression levels higher than the expression levels of the gpdA promoter. We also validate the Tet-on system for the generation of conditional overexpression mutants and demonstrate its power when combined with a gene deletion approach. Finally, we show that the system is especially suitable when the functions of essential genes must be examined.
Collapse
|
44
|
Ouedraogo JP, Hagen S, Spielvogel A, Engelhardt S, Meyer V. Survival strategies of yeast and filamentous fungi against the antifungal protein AFP. J Biol Chem 2011; 286:13859-68. [PMID: 21343301 DOI: 10.1074/jbc.m110.203588] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The activities of signaling pathways are critical for fungi to survive antifungal attack and to maintain cell integrity. However, little is known about how fungi respond to antifungals, particularly if these interact with multiple cellular targets. The antifungal protein AFP is a very potent inhibitor of chitin synthesis and membrane integrity in filamentous fungi and has so far not been reported to interfere with the viability of yeast strains. With the hypothesis that the susceptibility of fungi toward AFP is not merely dependent on the presence of an AFP-specific target at the cell surface but relies also on the cell's capacity to counteract AFP, we used a genetic approach to decipher defense strategies of the naturally AFP-resistant strain Saccharomyces cerevisiae. The screening of selected strains from the yeast genomic deletion collection for AFP-sensitive phenotypes revealed that a concerted action of calcium signaling, TOR signaling, cAMP-protein kinase A signaling, and cell wall integrity signaling is likely to safeguard S. cerevisiae against AFP. Our studies uncovered that the yeast cell wall gets fortified with chitin to defend against AFP and that this response is largely dependent on calcium/Crz1p signaling. Most importantly, we observed that stimulation of chitin synthesis is characteristic for AFP-resistant fungi but not for AFP-sensitive fungi, suggesting that this response is a successful strategy to protect against AFP. We finally propose the adoption of the damage-response framework of microbial pathogenesis for the interactions of antimicrobial proteins and microorganisms in order to comprehensively understand the outcome of an antifungal attack.
Collapse
Affiliation(s)
- Jean Paul Ouedraogo
- Institute of Biotechnology, Department of Applied and Molecular Microbiology, Berlin University of Technology, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | | | | | | | | |
Collapse
|
45
|
Kwon MJ, Arentshorst M, Roos ED, van den Hondel CAMJJ, Meyer V, Ram AFJ. Functional characterization of Rho GTPases in Aspergillus niger uncovers conserved and diverged roles of Rho proteins within filamentous fungi. Mol Microbiol 2011; 79:1151-67. [DOI: 10.1111/j.1365-2958.2010.07524.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
46
|
Cobos R, Barreiro C, Mateos RM, Coque JJR. Cytoplasmic- and extracellular-proteome analysis of Diplodia seriata: a phytopathogenic fungus involved in grapevine decline. Proteome Sci 2010; 8:46. [PMID: 20828386 PMCID: PMC2944164 DOI: 10.1186/1477-5956-8-46] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Accepted: 09/09/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The phytopathogenic fungus Diplodia seriata, whose genome remains unsequenced, produces severe infections in fruit trees (fruit blight) and grapevines. In this crop is recognized as one of the most prominent pathogens involved in grapevine trunk disease (or grapevine decline). This pathology can result in the death of adult plants and therefore it produces severe economical losses all around the world. To date no genes or proteins have been characterized in D. seriata that are involved in the pathogenicity process. In an effort to help identify potential gene products associated with pathogenicity and to gain a better understanding of the biology of D. seriata, we initiated a proteome-level study of the fungal mycelia and secretome. RESULTS Intracellular and secreted proteins from D. seriata collected from liquid cultures were separated using two-dimensional gel electrophoresis. About 550 cytoplasmic proteins were reproducibly present in 3 independent extractions, being 53 identified by peptide mass fingerprinting and tandem mass spectrometry. The secretome analysis showed 75 secreted proteins reproducibly present in 3 biological replicates, being 16 identified. Several of the proteins had been previously identified as virulence factors in other fungal strains, although their contribution to pathogenicity in D. seriata remained to be analyzed. When D. seriata was grown in a medium supplemented with carboxymethylcellulose, 3 proteins were up-regulated and 30 down-regulated. Within the up-regulated proteins, two were identified as alcohol dehydrogenase and mitochondrial peroxyrredoxin-1, suggesting that they could play a significant role in the pathogenicity process. As for the 30 down-regulated proteins, 9 were identified being several of them involved in carbohydrate metabolism. CONCLUSIONS This study is the first report on proteomics on D. seriata. The proteomic data obtained will be important to understand the pathogenicity process. In fact, several of the identified proteins have been reported as pathogenicity factors in other phytopathogenic fungi. Moreover, this proteomic analysis supposes a useful basis for deepening into D. seriata knowledge and will contribute to the development of the molecular biology of this fungal strain as it has been demonstrated by cloning the gene Prx1 encoding mitochondrial peroxiredoxin-1 of D. seriata (the first gene to be cloned in this microorganism; data not shown).
Collapse
Affiliation(s)
- Rebeca Cobos
- Área de Microbiología, Departamento de Biología Molecular, Universidad de León, 24071-León, Spain
- Instituto de Investigación de la Viña y el Vino, Campus de Ponferrada, Universidad de León, 24400-Ponferrada, Spain
| | - Carlos Barreiro
- Instituto de Biotecnología de León (INBIOTEC), Parque Científico de León, Avenida Real 1, 24006-León, Spain
| | - Rosa María Mateos
- Área de Microbiología, Departamento de Biología Molecular, Universidad de León, 24071-León, Spain
- Instituto de Investigación de la Viña y el Vino, Campus de Ponferrada, Universidad de León, 24400-Ponferrada, Spain
| | - Juan-José R Coque
- Área de Microbiología, Departamento de Biología Molecular, Universidad de León, 24071-León, Spain
- Instituto de Investigación de la Viña y el Vino, Campus de Ponferrada, Universidad de León, 24400-Ponferrada, Spain
| |
Collapse
|
47
|
Yu L, Guo N, Meng R, Liu B, Tang X, Jin J, Cui Y, Deng X. Allicin-induced global gene expression profile of Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2010; 88:219-29. [PMID: 20617313 DOI: 10.1007/s00253-010-2709-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Revised: 05/21/2010] [Accepted: 05/24/2010] [Indexed: 01/26/2023]
Abstract
To understand the response mechanisms of fungus cells upon exposure to the natural fungicide allicin, we performed commercial oligonucleotide microarrays to determine the overall transcriptional response of allicin-treated Saccharomyces cerevisiae strain L1190. Compared with the transcriptional profiles of untreated cultures, 147 genes were significantly upregulated, and 145 genes were significantly downregulated in the allicin-treated cells. We interpreted the microarray data with the hierarchical clustering tool, T-profiler. Major transcriptional responses were induced by allicin and included the following: first, Rpn4p-mediated responses involved in proteasome gene expression; second, the Rsc1p-mediated response involved in iron ion transporter activity; third, the Gcn4p-mediated response, also known as general amino acid control; finally, the Yap1p-, Msn2/4p-, Crz1p-, and Cin5p-mediated multiple stress response. Interestingly, allicin treatment, similar to mycotoxin patulin and artificial fungicide thiuram treatment, was found to induce genes involved in sulfur amino acid metabolism and the defense system for oxidative stress, especially DNA repair, which suggests a potential mutagenicity for allicin. Quantitative real-time reverse transcription-polymerase chain reaction was performed for selected genes to verify the microarray results. To our knowledge, this is the first report of the global transcriptional profiling of allicin-treated S. cerevisiae by microarray.
Collapse
Affiliation(s)
- Lu Yu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Animal Science and Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, 130062, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Transcriptomic insights into the physiology of Aspergillus niger approaching a specific growth rate of zero. Appl Environ Microbiol 2010; 76:5344-55. [PMID: 20562270 DOI: 10.1128/aem.00450-10] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The physiology of filamentous fungi at growth rates approaching zero has been subject to limited study and exploitation. With the aim of uncoupling product formation from growth, we have revisited and improved the retentostat cultivation method for Aspergillus niger. A new retention device was designed allowing reliable and nearly complete cell retention even at high flow rates. Transcriptomic analysis was used to explore the potential for product formation at very low specific growth rates. The carbon- and energy-limited retentostat cultures were highly reproducible. While the specific growth rate approached zero (<0.005 h(-1)), the growth yield stabilized at a minimum (0.20 g of dry weight per g of maltose). The severe limitation led to asexual differentiation, and the supplied substrate was used for spore formation and secondary metabolism. Three physiologically distinct phases of the retentostat cultures were subjected to genome-wide transcriptomic analysis. The severe substrate limitation and sporulation were clearly reflected in the transcriptome. The transition from vegetative to reproductive growth was characterized by downregulation of genes encoding secreted substrate hydrolases and cell cycle genes and upregulation of many genes encoding secreted small cysteine-rich proteins and secondary metabolism genes. Transcription of known secretory pathway genes suggests that A. niger becomes adapted to secretion of small cysteine-rich proteins. The perspective is that A. niger cultures as they approach a zero growth rate can be used as a cell factory for production of secondary metabolites and cysteine-rich proteins. We propose that the improved retentostat method can be used in fundamental studies of differentiation and is applicable to filamentous fungi in general.
Collapse
|
49
|
Marui J, Yoshimi A, Hagiwara D, Fujii-Watanabe Y, Oda K, Koike H, Tamano K, Ishii T, Sano M, Machida M, Abe K. Use of the Aspergillus oryzae actin gene promoter in a novel reporter system for exploring antifungal compounds and their target genes. Appl Microbiol Biotechnol 2010; 87:1829-40. [DOI: 10.1007/s00253-010-2627-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Revised: 04/13/2010] [Accepted: 04/14/2010] [Indexed: 12/11/2022]
|
50
|
Characterization of a CuZn superoxide dismutase gene in the arbuscular mycorrhizal fungus Glomus intraradices. Curr Genet 2010; 56:265-74. [PMID: 20379721 DOI: 10.1007/s00294-010-0298-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2009] [Revised: 03/23/2010] [Accepted: 03/24/2010] [Indexed: 10/19/2022]
Abstract
To gain further insights into the mechanisms of redox homeostasis in arbuscular mycorrhizal fungi, we characterized a Glomus intraradices gene (GintSOD1) showing high similarity to previously described genes encoding CuZn superoxide dismutases (SODs). The GintSOD1 gene consists of an open reading frame of 471 bp, predicted to encode a protein of 157 amino acids with an estimated molecular mass of 16.3 kDa. Functional complementation assays in a CuZnSOD-defective yeast mutant showed that GintSOD1 protects the yeast cells from oxygen toxicity and that it, therefore, encodes a protein that scavenges reactive oxygen species (ROS). GintSOD1 transcripts differentially accumulate during the fungal life cycle, reaching the highest expression levels in the intraradical mycelium. GintSOD1 expression is induced by the well known ROS-inducing agents paraquat and copper, and also by fenpropimorph, a sterol biosynthesis inhibitor (SBI) fungicide. These results suggest that GintSOD1 is involved in the detoxification of ROS generated from metabolic processes and by external agents. In particular, our data indicate that the antifungal effects of fenpropimorph might not be only due to the interference with sterol metabolism but also to the perturbation of other biological processes and that ROS production and scavenging systems are involved in the response to SBI fungicides.
Collapse
|