1
|
Cui W, Marcho C, Wang Y, Degani R, Golan M, Tremblay KD, Rivera-Pérez JA, Mager J. MED20 is essential for early embryogenesis and regulates NANOG expression. Reproduction 2020; 157:215-222. [PMID: 30571656 DOI: 10.1530/rep-18-0508] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 12/17/2018] [Indexed: 12/15/2022]
Abstract
Mediator is an evolutionarily conserved multi-subunit complex, bridging transcriptional activators and repressors to the general RNA polymerase II (Pol II) initiation machinery. Though the Mediator complex is crucial for the transcription of almost all Pol II promoters in eukaryotic organisms, the phenotypes of individual Mediator subunit mutants are each distinct. Here, we report for the first time, the essential role of subunit MED20 in early mammalian embryo development. Although Med20 mutant mouse embryos exhibit normal morphology at E3.5 blastocyst stage, they cannot be recovered at early post-gastrulation stages. Outgrowth assays show that mutant blastocysts cannot hatch from the zona pellucida, indicating impaired blastocyst function. Assessments of cell death and cell lineage specification reveal that apoptosis, inner cell mass, trophectoderm and primitive endoderm markers are normal in mutant blastocysts. However, the epiblast marker NANOG is ectopically expressed in the trophectoderm of Med20 mutants, indicative of defects in trophoblast specification. These results suggest that MED20 specifically, and the Mediator complex in general, are essential for the earliest steps of mammalian development and cell lineage specification.
Collapse
Affiliation(s)
- Wei Cui
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, Massachusetts, USA.,Animal Models Core Facility, Institute for Applied Life Sciences (IALS), University of Massachusetts, Amherst, Massachusetts, USA
| | - Chelsea Marcho
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, Massachusetts, USA
| | - Yongsheng Wang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Rinat Degani
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, Massachusetts, USA
| | - Morgane Golan
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, Massachusetts, USA
| | - Kimberly D Tremblay
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, Massachusetts, USA
| | - Jaime A Rivera-Pérez
- Division of Genes and Development, Department of Pediatrics, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Jesse Mager
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
2
|
Kostrouchová M, Kostrouch D, Chughtai AA, Kaššák F, Novotný JP, Kostrouchová V, Benda A, Krause MW, Saudek V, Kostrouchová M, Kostrouch Z. The nematode homologue of Mediator complex subunit 28, F28F8.5, is a critical regulator of C. elegans development. PeerJ 2017; 5:e3390. [PMID: 28603670 PMCID: PMC5464003 DOI: 10.7717/peerj.3390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 05/08/2017] [Indexed: 11/20/2022] Open
Abstract
The evolutionarily conserved Mediator complex is a critical player in regulating transcription. Comprised of approximately two dozen proteins, the Mediator integrates diverse regulatory signals through direct protein-protein interactions that, in turn, modulate the influence of Mediator on RNA Polymerase II activity. One Mediator subunit, MED28, is known to interact with cytoplasmic structural proteins, providing a potential direct link between cytoplasmic dynamics and the control of gene transcription. Although identified in many animals and plants, MED28 is not present in yeast; no bona fide MED28 has been described previously in Caenorhabditis elegans. Here, we identify bioinformatically F28F8.5, an uncharacterized predicted protein, as the nematode homologue of MED28. As in other Metazoa, F28F8.5 has dual nuclear and cytoplasmic localization and plays critical roles in the regulation of development. F28F8.5 is a vital gene and its null mutants have severely malformed gonads and do not reproduce. F28F8.5 interacts on the protein level with the Mediator subunits MDT-6 and MDT-30. Our results indicate that F28F8.5 is an orthologue of MED28 and suggest that the potential to link cytoplasmic and nuclear events is conserved between MED28 vertebrate and nematode orthologues.
Collapse
Affiliation(s)
- Markéta Kostrouchová
- Biocev, First Faculty of Medicine, Charles University, Prague, Czech Republic.,Department of Pathology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - David Kostrouch
- Biocev, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Ahmed A Chughtai
- Biocev, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Filip Kaššák
- Biocev, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jan P Novotný
- Biocev, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | | | - Aleš Benda
- Imaging Methods Core Facility, BIOCEV, Faculty of Science, Charles University, Prague, Czech Republic
| | - Michael W Krause
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Vladimír Saudek
- Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Marta Kostrouchová
- Biocev, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Zdeněk Kostrouch
- Biocev, First Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
3
|
Chhun T, Chong SY, Park BS, Wong ECC, Yin JL, Kim M, Chua NH. HSI2 Repressor Recruits MED13 and HDA6 to Down-Regulate Seed Maturation Gene Expression Directly During Arabidopsis Early Seedling Growth. PLANT & CELL PHYSIOLOGY 2016; 57:1689-706. [PMID: 27335347 DOI: 10.1093/pcp/pcw095] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 05/01/2016] [Indexed: 05/25/2023]
Abstract
Arabidopsis HSI2 (HIGH-LEVEL EXPRESSION OF SUGAR-INDUCIBLE GENE 2) which carries a EAR (ERF-associated amphiphilic repression) motif acts as a repressor of seed maturation genes and lipid biosynthesis, whereas MEDIATOR (MED) is a conserved multiprotein complex linking DNA-bound transcription factors to RNA polymerase II transcription machinery. How HSI2 executes its repressive function through MED is hitherto unknown. Here, we show that HSI2 and its homolog, HSI2-lik (HSL1), are able to form homo- and heterocomplexes. Both factors bind to the TRAP240 domain of MED13, a subunit of the MED CDK8 module. Mutant alleles of the med13 mutant show elevated seed maturation gene expression and increased lipid accumulation in cotyledons; in contrast, HSI2- or MED13-overexpressing plants display the opposite phenotypes. The overexpression phenotypes of HSI2 and MED13 are abolished in med13 and hsi2 hsl1, respectively, indicating that HSI2 and MED13 together are required for these functions. The HSI2 C-terminal region interacts with HDA6, whose overexpression also reduces seed maturation gene expression and lipid accumulation. Moreover, HSI2, MED13 and HDA6 bind to the proximal promoter and 5'-coding regions of seed maturation genes. Taken together, our results suggest that HSI2 recruits MED13 and HDA6 to suppress directly a subset of seed maturation genes post-germination.
Collapse
Affiliation(s)
- Tory Chhun
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore 117604, Singapore
| | - Suet Yen Chong
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore 117604, Singapore
| | - Bong Soo Park
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore 117604, Singapore
| | - Eriko Chi Cheng Wong
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore 117604, Singapore
| | - Jun-Lin Yin
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore 117604, Singapore
| | - Mijung Kim
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore 117604, Singapore
| | - Nam-Hai Chua
- Laboratory of Plant Molecular Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065-6399, USA
| |
Collapse
|
4
|
Huang CH, Ciou JS, Chen ST, Kok VC, Chung Y, Tsai JJP, Kurubanjerdjit N, Huang CYF, Ng KL. Identify potential drugs for cardiovascular diseases caused by stress-induced genes in vascular smooth muscle cells. PeerJ 2016; 4:e2478. [PMID: 27703845 PMCID: PMC5045879 DOI: 10.7717/peerj.2478] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 08/23/2016] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Abnormal proliferation of vascular smooth muscle cells (VSMC) is a major cause of cardiovascular diseases (CVDs). Many studies suggest that vascular injury triggers VSMC dedifferentiation, which results in VSMC changes from a contractile to a synthetic phenotype; however, the underlying molecular mechanisms are still unclear. METHODS In this study, we examined how VSMC responds under mechanical stress by using time-course microarray data. A three-phase study was proposed to investigate the stress-induced differentially expressed genes (DEGs) in VSMC. First, DEGs were identified by using the moderated t-statistics test. Second, more DEGs were inferred by using the Gaussian Graphical Model (GGM). Finally, the topological parameters-based method and cluster analysis approach were employed to predict the last batch of DEGs. To identify the potential drugs for vascular diseases involve VSMC proliferation, the drug-gene interaction database, Connectivity Map (cMap) was employed. Success of the predictions were determined using in-vitro data, i.e. MTT and clonogenic assay. RESULTS Based on the differential expression calculation, at least 23 DEGs were found, and the findings were qualified by previous studies on VSMC. The results of gene set enrichment analysis indicated that the most often found enriched biological processes are cell-cycle-related processes. Furthermore, more stress-induced genes, well supported by literature, were found by applying graph theory to the gene association network (GAN). Finally, we showed that by processing the cMap input queries with a cluster algorithm, we achieved a substantial increase in the number of potential drugs with experimental IC50 measurements. With this novel approach, we have not only successfully identified the DEGs, but also improved the DEGs prediction by performing the topological and cluster analysis. Moreover, the findings are remarkably validated and in line with the literature. Furthermore, the cMap and DrugBank resources were used to identify potential drugs and targeted genes for vascular diseases involve VSMC proliferation. Our findings are supported by in-vitro experimental IC50, binding activity data and clinical trials. CONCLUSION This study provides a systematic strategy to discover potential drugs and target genes, by which we hope to shed light on the treatments of VSMC proliferation associated diseases.
Collapse
Affiliation(s)
- Chien-Hung Huang
- Department of Computer Science and Information Engineering, National Formosa University, Yun-Lin, Taiwan
| | - Jin-Shuei Ciou
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan
| | - Shun-Tsung Chen
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan
| | - Victor C. Kok
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan
- Division of Medical Oncology, Kuang Tien General Hospital Cancer Center, Taichung, Taiwan
| | - Yi Chung
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan
| | - Jeffrey J. P. Tsai
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan
| | | | - Chi-Ying F. Huang
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Ka-Lok Ng
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| |
Collapse
|
5
|
Nagulapalli M, Maji S, Dwivedi N, Dahiya P, Thakur JK. Evolution of disorder in Mediator complex and its functional relevance. Nucleic Acids Res 2015; 44:1591-612. [PMID: 26590257 PMCID: PMC4770211 DOI: 10.1093/nar/gkv1135] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 10/18/2015] [Indexed: 12/27/2022] Open
Abstract
Mediator, an important component of eukaryotic transcriptional machinery, is a huge multisubunit complex. Though the complex is known to be conserved across all the eukaryotic kingdoms, the evolutionary topology of its subunits has never been studied. In this study, we profiled disorder in the Mediator subunits of 146 eukaryotes belonging to three kingdoms viz., metazoans, plants and fungi, and attempted to find correlation between the evolution of Mediator complex and its disorder. Our analysis suggests that disorder in Mediator complex have played a crucial role in the evolutionary diversification of complexity of eukaryotic organisms. Conserved intrinsic disordered regions (IDRs) were identified in only six subunits in the three kingdoms whereas unique patterns of IDRs were identified in other Mediator subunits. Acquisition of novel molecular recognition features (MoRFs) through evolution of new subunits or through elongation of the existing subunits was evident in metazoans and plants. A new concept of ‘junction-MoRF’ has been introduced. Evolutionary link between CBP and Med15 has been provided which explain the evolution of extended-IDR in CBP from Med15 KIX-IDR junction-MoRF suggesting role of junction-MoRF in evolution and modulation of protein–protein interaction repertoire. This study can be informative and helpful in understanding the conserved and flexible nature of Mediator complex across eukaryotic kingdoms.
Collapse
Affiliation(s)
- Malini Nagulapalli
- Plant Mediator Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Sourobh Maji
- Plant Mediator Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Nidhi Dwivedi
- Plant Mediator Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Pradeep Dahiya
- Plant Mediator Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Jitendra K Thakur
- Plant Mediator Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| |
Collapse
|
6
|
Yu MA, Cho JG, Kim KI, Jo YJ, Sung JH, Yang HB, Park SG. Generation of med28 specific monoclonal antibodies. Monoclon Antib Immunodiagn Immunother 2015; 34:30-5. [PMID: 25723281 DOI: 10.1089/mab.2014.0068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Med28 plays a role in transcription, signal transduction, and cell proliferation. The overexpression of med28 is associated with tumor progression in in vitro and in vivo models. Recently it has been reported that the elevated expression of med28 is associated with poor outcome in women with breast cancer. The expression level of med28 in in vitro and in vivo was examined by using anti-rabbit polyclonal antibody in previous reports. In this study, we report for the first time the generation and characterization of four monoclonal antibodies against med28 through immunoblotting, immunofluorescence microscopy, immunoprecipitation, and immunohistochemical analyses. These antibodies will be useful in detecting med28 in in vitro and in vivo.
Collapse
Affiliation(s)
- Min A Yu
- 1 Laboratory for Tracing of Gene Function, College of Pharmacy, Ajou University , Suwon, Gyunggi-do, Korea
| | | | | | | | | | | | | |
Collapse
|
7
|
Mediator Subunit Med28 Is Essential for Mouse Peri-Implantation Development and Pluripotency. PLoS One 2015; 10:e0140192. [PMID: 26445504 PMCID: PMC4596692 DOI: 10.1371/journal.pone.0140192] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 09/22/2015] [Indexed: 11/19/2022] Open
Abstract
The multi-subunit mammalian Mediator complex acts as an integrator of transcriptional regulation by RNA Polymerase II, and has emerged as a master coordinator of development and cell fate determination. We previously identified the Mediator subunit, MED28, as a cytosolic binding partner of merlin, the Neurofibromatosis 2 (NF2) tumor suppressor, and thus MED28 is distinct in having a cytosolic role as an NF2 interacting protein as well as a nuclear role as a Mediator complex subunit. Although limited in vitro studies have been performed on MED28, its in vivo function remains unknown. Employing a knockout mouse model, we describe for the first time the requirement for Med28 in the developing mouse embryo. Med28-deficiency causes peri-implantation lethality resulting from the loss of pluripotency of the inner cell mass accompanied by reduced expression of key pluripotency transcription factors Oct4 and Nanog. Further, overexpression of Med28 in mouse embryonic fibroblasts enhances the efficiency of their reprogramming to pluripotency. Cre-mediated inactivation of Med28 in induced pluripotent stem cells shows that Med28 is required for their survival. Intriguingly, heterozygous loss of Med28 results in differentiation of induced pluripotent stem cells into extraembryonic trophectoderm and primitive endoderm lineages. Our findings document the essential role of Med28 in the developing embryo as well as in acquisition and maintenance of pluripotency during reprogramming.
Collapse
|
8
|
Yin JW, Wang G. The Mediator complex: a master coordinator of transcription and cell lineage development. Development 2014; 141:977-87. [PMID: 24550107 DOI: 10.1242/dev.098392] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mediator is a multiprotein complex that is required for gene transcription by RNA polymerase II. Multiple subunits of the complex show specificity in relaying information from signals and transcription factors to the RNA polymerase II machinery, thus enabling control of the expression of specific genes. Recent studies have also provided novel mechanistic insights into the roles of Mediator in epigenetic regulation, transcriptional elongation, termination, mRNA processing, noncoding RNA activation and super enhancer formation. Based on these specific roles in gene regulation, Mediator has emerged as a master coordinator of development and cell lineage determination. Here, we describe the most recent advances in understanding the mechanisms of Mediator function, with an emphasis on its role during development and disease.
Collapse
Affiliation(s)
- Jing-wen Yin
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | |
Collapse
|
9
|
Steimel A, Suh J, Hussainkhel A, Deheshi S, Grants JM, Zapf R, Moerman DG, Taubert S, Hutter H. The C. elegans CDK8 Mediator module regulates axon guidance decisions in the ventral nerve cord and during dorsal axon navigation. Dev Biol 2013; 377:385-98. [PMID: 23458898 DOI: 10.1016/j.ydbio.2013.02.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 01/21/2013] [Accepted: 02/14/2013] [Indexed: 11/30/2022]
Abstract
Receptors expressed on the growth cone of outgrowing axons detect cues required for proper navigation. The pathway choices available to an axon are in part defined by the set of guidance receptors present on the growth cone. Regulated expression of receptors and genes controlling the localization and activity of receptors ensures that axons respond only to guidance cues relevant for reaching their targets. In genetic screens for axon guidance mutants, we isolated an allele of let-19/mdt-13, a component of the Mediator, a large ~30 subunit protein complex essential for gene transcription by RNA polymerase II. LET-19/MDT-13 is part of the CDK8 module of the Mediator. By testing other Mediator components, we found that all subunits of the CDK8 module as well as some other Mediator components are required for specific axon navigation decisions in a subset of neurons. Expression profiling demonstrated that let-19/mdt-13 regulates the expression of a large number of genes in interneurons. A mutation in the sax-3 gene, encoding a receptor for the repulsive guidance cue SLT-1, suppresses the commissure navigation defects found in cdk-8 mutants. This suggests that the CDK8 module specifically represses the SAX-3/ROBO pathway to ensure proper commissure navigation.
Collapse
Affiliation(s)
- Andreas Steimel
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Huang CY, Chou YH, Hsieh NT, Chen HH, Lee MF. MED28 regulates MEK1-dependent cellular migration in human breast cancer cells. J Cell Physiol 2012; 227:3820-7. [DOI: 10.1002/jcp.24093] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
11
|
Lee MF, Pan MH, Chiou YS, Cheng AC, Huang H. Resveratrol modulates MED28 (Magicin/EG-1) expression and inhibits epidermal growth factor (EGF)-induced migration in MDA-MB-231 human breast cancer cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:11853-11861. [PMID: 21942447 DOI: 10.1021/jf202426k] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Resveratrol and pterostilbene exhibit diverse biological activities. MED28, a subunit of the mammalian Mediator complex for transcription, was also identified as magicin, an actin cytoskeleton Grb2-associated protein, and as endothelial-derived gene (EG-1). Several tumors exhibit aberrant MED28 expression, whereas the underlying mechanism is unclear. Triple-negative breast cancers, often expressing epidermal growth factor (EGF) receptor (EGFR), are associated with metastasis and poor survival. The objective of this study is to compare the effect of resveratrol and pterostilbene and to investigate the role of MED28 in EGFR-overexpressing MDA-MB-231 breast cancer cells. Pretreatment of resveratrol, but not pterostlbene, suppressed EGF-mediated migration and expression of MED28 and matrix metalloproteinase (MMP)-9 in MDA-MB-231 cells. Moreover, overexpression of MED28 increased migration, and the addition of EGF further enhanced migration. Our data indicate that resveratrol modulates the effect of MED28 on cellular migration, presumably through the EGFR/phosphatidylinositol 3-kinase (PI3K) signaling pathway, in breast cancer cells.
Collapse
Affiliation(s)
- Ming-Fen Lee
- Department of Nutrition and Health Sciences, Chang Jung Christian University, Tainan, Taiwan, ROC.
| | | | | | | | | |
Collapse
|
12
|
Unraveling framework of the ancestral Mediator complex in human diseases. Biochimie 2011; 94:579-87. [PMID: 21983542 DOI: 10.1016/j.biochi.2011.09.016] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 09/15/2011] [Indexed: 01/13/2023]
Abstract
Mediator (MED) is a fundamental component of the RNA polymerase II-mediated transcription machinery. This multiprotein complex plays a pivotal role in the regulation of eukaryotic mRNA synthesis. The yeast Mediator complex consists of 26 different subunits. Recent studies indicate additional pathogenic roles for Mediator, for example during transcription elongation and non-coding RNA production. Mediator subunits have been emerging also to have pathophysiological roles suggesting MED-dependent therapeutic targets involving in several diseases, such as cancer, cardiovascular disease (CVD), metabolic and neurological disorders.
Collapse
|
13
|
Hentges KE. Mediator complex proteins are required for diverse developmental processes. Semin Cell Dev Biol 2011; 22:769-75. [PMID: 21854862 DOI: 10.1016/j.semcdb.2011.07.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 07/19/2011] [Accepted: 07/20/2011] [Indexed: 12/14/2022]
Abstract
The Mediator complex serves a crucial function in gene regulation, forming a link between gene-specific transcription factors and RNA polymerase II. Most protein-coding genes therefore require Mediator complex activity for transcriptional regulation. Given the essential functions performed by Mediator complex proteins in gene regulation, it is not surprising that mutations in Mediator complex genes disrupt animal and plant development. What is more intriguing is that the phenotypes of individual Mediator complex mutants are distinct from each other, demonstrating that certain developmental processes have a greater requirement for specific Mediator complex genes. Additionally, the range of developmental processes that are altered in Mediator complex mutants is broad, affecting a variety of cell types and physiological systems. Gene expression defects in Mediator complex mutants reveal distinct roles for individual Mediator proteins in transcriptional regulation, suggesting that the deletion of one Mediator complex protein does not interfere with transcription in general, but instead alters the expression of specific target genes. Mediator complex proteins may have diverse roles in different organisms as well, as mutants in the same Mediator gene in different species can display dissimilar phenotypes.
Collapse
Affiliation(s)
- Kathryn E Hentges
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK.
| |
Collapse
|
14
|
Conaway RC, Conaway JW. Origins and activity of the Mediator complex. Semin Cell Dev Biol 2011; 22:729-34. [PMID: 21821140 DOI: 10.1016/j.semcdb.2011.07.021] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 07/19/2011] [Accepted: 07/20/2011] [Indexed: 11/16/2022]
Abstract
The Mediator is a large, multisubunit RNA polymerase II transcriptional regulator that was first identified in Saccharomyces cerevisiae as a factor required for responsiveness of Pol II and the general initiation factors to DNA binding transactivators. Since its discovery in yeast, Mediator has been shown to be an integral and highly evolutionarily conserved component of the Pol II transcriptional machinery with critical roles in multiple stages of transcription, from regulation of assembly of the Pol II initiation complex to regulation of Pol II elongation. Here we provide a brief overview of the evolutionary origins of Mediator, its subunit composition, and its remarkably diverse collection of activities in Pol II transcription.
Collapse
Affiliation(s)
- Ronald C Conaway
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, MO 64110, USA.
| | | |
Collapse
|
15
|
Sharabi AB, Lee SH, Goodell MA, Huang XF, Chen SY. Enhanced generation of myeloid lineages in hematopoietic differentiation from embryonic stem cells by silencing transcriptional repressor Twist-2. CLONING AND STEM CELLS 2010; 11:523-33. [PMID: 20025523 DOI: 10.1089/clo.2009.0020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The self-renewal and multilineage differentiation of embryonic stem cells (ESC) is largely governed by transcription factors or repressors. Extensive efforts have focused on elucidating critical factors that control the differentiation of specific cell lineages, for instance, myeloid lineages in hematopoietic development. In this study, we found that Twist-2, a basic helix-loop-helix (bHLH) transcription factor, plays a critical role in inhibiting the differentiation of ESC. Murine ES cells, in which Twist-2 expression is silenced by lentivirally delivered shRNA, exhibit an enhanced formation of primary embryoid bodies (EB) and enhanced differentiation into mesodermally derived hematopoietic colonies. Furthermore, Twist-2 silenced (LV-siTwist-2) ESC display significantly increased generation of myeloid lineages (Gr-1(+) and F4/80(+) cells) during in vitro hematopoietic differentiation. Treatment with the Toll-like receptor (TLR) 4 ligand synergistically stimulates the generation of primary EB formation as well as of hematopoietic progenitors differentiated from LV-siTwist-2 ES cells. Thus, this study reveals the critical role of the transcriptional repressor Twist-2 in regulating the development of myeloid lineage in hematopoietic differentiation from ESC. This study also suggests a potential strategy for directional differentiation of ESC by inhibiting a transcriptional repressor.
Collapse
Affiliation(s)
- Andrew B Sharabi
- Department of Immunology, Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, USA
| | | | | | | | | |
Collapse
|
16
|
Elevated MED28 expression predicts poor outcome in women with breast cancer. BMC Cancer 2010; 10:335. [PMID: 20584319 PMCID: PMC2907343 DOI: 10.1186/1471-2407-10-335] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Accepted: 06/28/2010] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND MED28 (also known as EG-1 and magicin) has been implicated in transcriptional control, signal regulation, and cell proliferation. MED28 has also been associated with tumor progression in in vitro and in vivo models. Here we examined the association of MED28 expression with human breast cancer progression. METHODS Expression of MED28 protein was determined on a population basis using a high-density tissue microarray consisting of 210 breast cancer patients. The association and validation of MED28 expression with histopathological subtypes, clinicopathological variables, and disease outcome was assessed. RESULTS MED28 protein expression levels were increased in ductal carcinoma in situ and invasive ductal carcinoma of the breast compared to non-malignant glandular and ductal epithelium. Moreover, MED28 was a predictor of disease outcome in both univariate and multivariate analyses with higher expression predicting a greater risk of disease-related death. CONCLUSIONS We have demonstrated that MED28 expression is increased in breast cancer. In addition, although the patient size was limited (88 individuals with survival information) MED28 is a novel and strong independent prognostic indicator of survival for breast cancer.
Collapse
|
17
|
Risley MD, Clowes C, Yu M, Mitchell K, Hentges KE. The Mediator complex protein Med31 is required for embryonic growth and cell proliferation during mammalian development. Dev Biol 2010; 342:146-56. [PMID: 20347762 DOI: 10.1016/j.ydbio.2010.03.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Revised: 03/18/2010] [Accepted: 03/19/2010] [Indexed: 11/19/2022]
Abstract
During development, the mammalian embryo must integrate signals to control growth and proliferation. A failure in the ability to respond to mitogenic stimuli can cause embryonic growth restriction. We have identified a mouse mutant, l11Jus15, from a mutagenesis screen that exhibits growth defects and late-gestation lethality. Here we demonstrate that this phenotype results from a mutation in the Mediator complex gene Med31, which causes degradation of Med31 protein. The Med31 mutant phenotype is not similar to other Mediator complex mouse mutants, and target genes of other Mediator proteins are expressed normally in Med31 mutants, suggesting that Med31 has distinct target genes required for mammalian development. Med31 mutant embryos have fewer proliferating cells than controls, especially in regions that expand rapidly during development such as the forelimb buds. Likewise, embryonic fibroblast cells cultured from mutant embryos have a severe proliferation defect, as well as reduced levels of the cell cycle protein Cdc2. Med31 mutants have normal limb bud patterning but defective or delayed chondrogenesis due to a lack of Sox9 and Col2a1 expression. As the Mediator complex is a transcriptional co-activator, our results suggest that Med31 functions to promote the transcription of genes required for embryonic growth and cell proliferation.
Collapse
Affiliation(s)
- Michael D Risley
- University of Manchester, Faculty of Life Sciences, Manchester, UK
| | | | | | | | | |
Collapse
|
18
|
Miura N, Sato R, Tsukamoto T, Shimizu M, Kabashima H, Takeda M, Takahashi S, Harada T, West JE, Drabkin H, Mejia JE, Shiota G, Murawaki Y, Virmani A, Gazdar AF, Oshimura M, Hasegawa J. A noncoding RNA gene on chromosome 10p15.3 may function upstream of hTERT. BMC Mol Biol 2009; 10:5. [PMID: 19187532 PMCID: PMC2661890 DOI: 10.1186/1471-2199-10-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Accepted: 02/02/2009] [Indexed: 01/05/2023] Open
Abstract
Background We attempted to clone candidate genes on 10p14–15 which may regulate hTERT expression, through exon trapping using 3 BAC clones covering the region. After obtaining 20 exons, we examined the function of RGM249 (RGM: RNA gene for miRNAs) we cloned from primary cultured human hepatocytes and hepatoma cell lines. We confirmed approximately 20 bp products digested by Dicer, and investigated the function of this cloned gene and its involvement in hTERT expression by transfecting the hepatoma cell lines with full-length dsRNA, gene-specific designed siRNA, and shRNA-generating plasmid. Results RGM249 showed cancer-dominant intense expression similar to hTERT in cancer cell lines, whereas very weak expression was evident in human primary hepatocytes without telomerase activity. This gene was predicted to be a noncoding precursor RNA gene. Interestingly, RGM249 dsRNA, siRNA, and shRNA inhibited more than 80% of hTERT mRNA expression. In contrast, primary cultured cells overexpressing the gene showed no significant change in hTERT mRNA expression; the overexpression of the gene strongly suppressed hTERT mRNA in poorly differentiated cells. Conclusion These findings indicate that RGM249 might be a microRNA precursor gene involved in the differentiation and function upstream of hTERT.
Collapse
Affiliation(s)
- Norimasa Miura
- Division of Pharmacotherapeutics, Department of Pathophysiological and Therapeutic Science, Faculty of Medicine, Tottori University, Yonago, Tottori 683-8503, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Tsutsui T, Umemura H, Tanaka A, Mizuki F, Hirose Y, Ohkuma Y. Human mediator kinase subunit CDK11 plays a negative role in viral activator VP16-dependent transcriptional regulation. Genes Cells 2008; 13:817-26. [PMID: 18651850 DOI: 10.1111/j.1365-2443.2008.01208.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mediator is an essential transcriptional cofactor of RNA polymerase II (Pol II) in eukaryotes. This cofactor is a large complex containing up to 30 subunits and consisting of four modules: head, middle, tail, and CDK/Cyclin. Generally, Mediator connects transcriptional regulators, cofactors, chromatin regulators, and chromatin remodellers, with the pre-initiation complex to provide a platform for the assembly of these factors. Many previous studies have revealed that CDK8, a subunit of the CDK/Cyclin module, is one of the key subunits mediating the pivotal roles of Mediator in transcriptional regulation. In addition to CDK8, CDK11 is conserved among vertebrates as a Mediator subunit and closely resembles CDK8. While the role of CDK8 has been studied extensively, little is known of the role of CDK11 in Mediator. We purified human CDK11 (hCDK11)-containing protein complexes from an epitope-tagged hCDK11-expressing HeLa cell line and found that hCDK11 could independently form Mediator complexes devoid of human CDK8 (hCDK8). To investigate the in vivo transcriptional activity of the complex, we employed a luciferase assay. Although hCDK11 has nearly 80% amino acid sequence identity to hCDK8, siRNA-knockdown study revealed that hCDK8 and hCDK11 possess opposing functions in viral activator VP16-dependent transcriptional regulation.
Collapse
Affiliation(s)
- Taiki Tsutsui
- Laboratory of Gene Regulation, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | | | | | | | | | | |
Collapse
|