1
|
Yin X, Chen Z, Li T, Liu Q, Jiang X, Han X, Wang C, Wei Y, Yuan L. The Arrestin-like Protein palF Contributes to Growth, Sporulation, Spore Germination, Osmolarity, and Pathogenicity of Coniella vitis. J Fungi (Basel) 2024; 10:508. [PMID: 39057393 PMCID: PMC11277687 DOI: 10.3390/jof10070508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/19/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Coniella vitis is a dominant phytopathogen of grape white rot in China, significantly impacting grape yield and quality. Previous studies showed that the growth and pathogenicity of C. vitis were affected by the environmental pH. Arrestin-like protein PalF plays a key role in mediating the activation of an intracellular-signaling cascade in response to alkaline ambient. However, it remains unclear whether palF affects the growth, development, and virulence of C. vitis during the sensing of environmental pH changes. In this study, we identified a homologous gene of PalF/Rim8 in C. vitis and constructed CvpalF-silenced strains via RNA interference. CvpalF-silenced strains exhibited impaired fungal growth at neutral/alkaline pH, accompanied by reduced pathogenicity compared to the wild-type (WT) and empty vector control (CK) strains. The distance between the hyphal branches was significantly increased in the CvpalF-silenced strains. Additionally, CvpalF-silenced strains showed increased sensitivity to NaCl, H2O2, and Congo red, and decreased sensitive to CaSO4. RT-qPCR analysis demonstrated that the expression level of genes related to pectinase and cellulase were significantly down-regulated in CvpalF-silenced strains compared to WT and CK strains. Moreover, the expression of PacC, PalA/B/C/F/H/I was directly or indirectly affected by silencing CvpalF. Additionally, the expression of genes related to plant cell wall-degrading enzymes, which are key virulence factors for plant pathogenic fungi, was regulated by CvpalF. Our results indicate the important roles of CvpalF in growth, osmotolerance, and pathogenicity in C. vitis.
Collapse
Affiliation(s)
- Xiangtian Yin
- Shandong Academy of Grape, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (X.Y.); (T.L.); (Q.L.); (X.J.); (X.H.); (C.W.); (Y.W.)
| | - Zihe Chen
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan 056038, China;
| | - Tinggang Li
- Shandong Academy of Grape, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (X.Y.); (T.L.); (Q.L.); (X.J.); (X.H.); (C.W.); (Y.W.)
| | - Qibao Liu
- Shandong Academy of Grape, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (X.Y.); (T.L.); (Q.L.); (X.J.); (X.H.); (C.W.); (Y.W.)
| | - Xilong Jiang
- Shandong Academy of Grape, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (X.Y.); (T.L.); (Q.L.); (X.J.); (X.H.); (C.W.); (Y.W.)
| | - Xing Han
- Shandong Academy of Grape, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (X.Y.); (T.L.); (Q.L.); (X.J.); (X.H.); (C.W.); (Y.W.)
| | - Chundong Wang
- Shandong Academy of Grape, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (X.Y.); (T.L.); (Q.L.); (X.J.); (X.H.); (C.W.); (Y.W.)
| | - Yanfeng Wei
- Shandong Academy of Grape, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (X.Y.); (T.L.); (Q.L.); (X.J.); (X.H.); (C.W.); (Y.W.)
| | - Lifang Yuan
- Shandong Academy of Grape, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (X.Y.); (T.L.); (Q.L.); (X.J.); (X.H.); (C.W.); (Y.W.)
| |
Collapse
|
2
|
Wang Y, Liu X, Yuan B, Chen X, Zhao H, Ali Q, Zheng M, Tan Z, Yao H, Zheng S, Wu J, Xu J, Shi J, Wu H, Gao X, Gu Q. Fusarium graminearum rapid alkalinization factor peptide negatively regulates plant immunity and cell growth via the FERONIA receptor kinase. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1800-1811. [PMID: 38344883 PMCID: PMC11182587 DOI: 10.1111/pbi.14303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/12/2024] [Accepted: 01/18/2024] [Indexed: 06/19/2024]
Abstract
The plant rapid alkalinization factor (RALF) peptides function as key regulators in cell growth and immune responses through the receptor kinase FERONIA (FER). In this study, we report that the transcription factor FgPacC binds directly to the promoter of FgRALF gene, which encodes a functional homologue of the plant RALF peptides from the wheat head blight fungus Fusarium graminearum (FgRALF). More importantly, FgPacC promotes fungal infection via host immune suppression by activating the expression of FgRALF. The FgRALF peptide also exhibited typical activities of plant RALF functions, such as inducing plant alkalinization and inhibiting cell growth, including wheat (Triticum aestivum), tomato (Solanum lycopersicum) and Arabidopsis thaliana. We further identified the wheat receptor kinase FERONIA (TaFER), which is capable of restoring the defects of the A. thaliana FER mutant. In addition, we found that FgRALF peptide binds to the extracellular malectin-like domain (ECD) of TaFER (TaFERECD) to suppress the PAMP-triggered immunity (PTI) and cell growth. Overexpression of TaFERECD in A. thaliana confers plant resistance to F. graminearum and protects from FgRALF-induced cell growth inhibition. Collectively, our results demonstrate that the fungal pathogen-secreted RALF mimic suppresses host immunity and inhibits cell growth via plant FER receptor. This establishes a novel pathway for the development of disease-resistant crops in the future without compromising their yield potential.
Collapse
Affiliation(s)
- Yujie Wang
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of EducationNanjingChina
| | - Xin Liu
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of EducationNanjingChina
- Institute of Food Safety and NutritionJiangsu Academy of Agricultural SciencesNanjingChina
| | - Bingqin Yuan
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of EducationNanjingChina
| | - Xue Chen
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of EducationNanjingChina
| | - Hanxi Zhao
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of EducationNanjingChina
| | - Qurban Ali
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of EducationNanjingChina
| | - Minghong Zheng
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of EducationNanjingChina
| | - Zheng Tan
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of EducationNanjingChina
| | - Hemin Yao
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of EducationNanjingChina
| | - Shuqing Zheng
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of EducationNanjingChina
| | - Jingni Wu
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of EducationNanjingChina
| | - Jianhong Xu
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of EducationNanjingChina
- Institute of Food Safety and NutritionJiangsu Academy of Agricultural SciencesNanjingChina
| | - Jianrong Shi
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of EducationNanjingChina
- Institute of Food Safety and NutritionJiangsu Academy of Agricultural SciencesNanjingChina
| | - Huijun Wu
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of EducationNanjingChina
| | - Xuewen Gao
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of EducationNanjingChina
| | - Qin Gu
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of EducationNanjingChina
| |
Collapse
|
3
|
Picazo I, Espeso EA. Interconnections between the Cation/Alkaline pH-Responsive Slt and the Ambient pH Response of PacC/Pal Pathways in Aspergillus nidulans. Cells 2024; 13:651. [PMID: 38607089 PMCID: PMC11011638 DOI: 10.3390/cells13070651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/21/2024] [Accepted: 04/05/2024] [Indexed: 04/13/2024] Open
Abstract
In the filamentous ascomycete Aspergillus nidulans, at least three high hierarchy transcription factors are required for growth at extracellular alkaline pH: SltA, PacC and CrzA. Transcriptomic profiles depending on alkaline pH and SltA function showed that pacC expression might be under SltA regulation. Additional transcriptional studies of PacC and the only pH-regulated pal gene, palF, confirmed both the strong dependence on ambient pH and the function of SltA. The regulation of pacC expression is dependent on the activity of the zinc binuclear (C6) cluster transcription factor PacX. However, we found that the ablation of sltA in the pacX- mutant background specifically prevents the increase in pacC expression levels without affecting PacC protein levels, showing a novel specific function of the PacX factor. The loss of sltA function causes the anomalous proteolytic processing of PacC and a reduction in the post-translational modifications of PalF. At alkaline pH, in a null sltA background, PacC72kDa accumulates, detection of the intermediate PacC53kDa form is extremely low and the final processed form of 27 kDa shows altered electrophoretic mobility. Constitutive ubiquitination of PalF or the presence of alkalinity-mimicking mutations in pacC, such as pacCc14 and pacCc700, resembling PacC53kDa and PacC27kDa, respectively, allowed the normal processing of PacC but did not rescue the alkaline pH-sensitive phenotype caused by the null sltA allele. Overall, data show that Slt and PacC/Pal pathways are interconnected, but the transcription factor SltA is on a higher hierarchical level than PacC on regulating the tolerance to the ambient alkalinity in A. nidulans.
Collapse
Affiliation(s)
| | - Eduardo A. Espeso
- Department of Molecular and Cellular Biology, Centro de Investigaciones Biológicas (CIB) Margarita Salas, Spanish Research Council (CSIC), Ramiro de Maeztu, 9, 28040 Madrid, Spain;
| |
Collapse
|
4
|
Dey S, Chakraborty R, Taneja B. Biophysical Characterization of the C-Terminal Tail of T. rubrum PacC Reveals an Inherent Intrinsically Disordered Structure with pH-Induced Structural Plasticity. ACS OMEGA 2023; 8:357-364. [PMID: 36643486 PMCID: PMC9835192 DOI: 10.1021/acsomega.2c04691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
PacC is a key transcriptional regulator of human pathogenic fungus Trichophyton rubrum with pivotal roles in pH homeostasis and virulence. We report the first biophysical characterization of the C-terminal inhibitory tail of PacC, pertinent to its physiological role in maintaining the inactive state of PacC at acidic pH which undergoes conformational changes for its proteolytic removal and activation, at alkaline pH. To gain insights into the structural features of PacC that enable the required conformational flexibility, we performed gel filtration chromatography, dynamic light scattering, circular dichroism, and 1-anilino-8-naphthalenesulfonate binding and showed that the tail exhibits properties similar to intrinsically disordered proteins, as also predicted by bioinformatics tools. We demonstrate that the C-terminal tail is conformationally flexible and attains a molten globule-like state at extremely acidic pH and undergoes biphasic GdmCl-induced unfolding in a noncooperative manner with an intermediate X state. We hypothesize that the conformational plasticity of the C-terminal tail of PacC may play a significant role in modulating its pH-dependent transcriptional activation.
Collapse
Affiliation(s)
- Sanchita
Sanchaya Dey
- CSIR-Institute
of Genomics and Integrative Biology (CSIR-IGIB), New Delhi110025, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India
| | - Rahul Chakraborty
- CSIR-Institute
of Genomics and Integrative Biology (CSIR-IGIB), New Delhi110025, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India
| | - Bhupesh Taneja
- CSIR-Institute
of Genomics and Integrative Biology (CSIR-IGIB), New Delhi110025, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India
| |
Collapse
|
5
|
Gu Q, Wang Y, Zhao X, Yuan B, Zhang M, Tan Z, Zhang X, Chen Y, Wu H, Luo Y, Keller NP, Gao X, Ma Z. Inhibition of histone acetyltransferase GCN5 by a transcription factor FgPacC controls fungal adaption to host-derived iron stress. Nucleic Acids Res 2022; 50:6190-6210. [PMID: 35687128 PMCID: PMC9226496 DOI: 10.1093/nar/gkac498] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 05/19/2022] [Accepted: 05/27/2022] [Indexed: 02/07/2023] Open
Abstract
Poaceae plants can locally accumulate iron to suppress pathogen infection. It remains unknown how pathogens overcome host-derived iron stress during their successful infections. Here, we report that Fusarium graminearum (Fg), a destructive fungal pathogen of cereal crops, is challenged by host-derived high-iron stress. Fg infection induces host alkalinization, and the pH-dependent transcription factor FgPacC undergoes a proteolytic cleavage into the functional isoform named FgPacC30 under alkaline host environment. Subsequently FgPacC30 binds to a GCCAR(R = A/G)G element at the promoters of the genes involved in iron uptake and inhibits their expression, leading to adaption of Fg to high-iron stress. Mechanistically, FgPacC30 binds to FgGcn5 protein, a catalytic subunit of Spt-Ada-Gcn5 Acetyltransferase (SAGA) complex, leading to deregulation of histone acetylation at H3K18 and H2BK11, and repression of iron uptake genes. Moreover, we identified a protein kinase FgHal4, which is highly induced by extracellular high-iron stress and protects FgPacC30 against 26S proteasome-dependent degradation by promoting FgPacC30 phosphorylation at Ser2. Collectively, this study uncovers a novel inhibitory mechanism of the SAGA complex by a transcription factor that enables a fungal pathogen to adapt to dynamic microenvironments during infection.
Collapse
Affiliation(s)
- Qin Gu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Education, Nanjing, China
| | - Yujie Wang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Education, Nanjing, China
| | - Xiaozhen Zhao
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Education, Nanjing, China
| | - Bingqin Yuan
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Education, Nanjing, China
| | - Mengxuan Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Education, Nanjing, China
| | - Zheng Tan
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Education, Nanjing, China
| | - Xinyue Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Education, Nanjing, China
| | - Yun Chen
- State Key Laboratory of Rice Biology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Huijun Wu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Education, Nanjing, China
| | - Yuming Luo
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, Huaiyin Normal University, Huai'an, China
| | - Nancy P Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
| | - Xuewen Gao
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Education, Nanjing, China
| | - Zhonghua Ma
- State Key Laboratory of Rice Biology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
6
|
Wang B, Han Z, Gong D, Xu X, Li Y, Sionov E, Prusky D, Bi Y, Zong Y. The pH signalling transcription factor PacC modulate growth, development, stress response and pathogenicity of Trichothecium roseum. Environ Microbiol 2022; 24:1608-1621. [PMID: 35199434 DOI: 10.1111/1462-2920.15943] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/14/2022] [Accepted: 02/14/2022] [Indexed: 11/27/2022]
Abstract
pH is one of the important environmental factors that affect the growth, development and pathogenicity of postharvest pathogen. The transcription factor PacC dominates the pH signal pathway. PacC in Trichothecium roseum showed three typical conserved zinc finger domains and closest homology to Fusarium graminearum. T. roseum increased the environmental pH both in vitro and in vivo. Expression patterns of TrpacC under different pH showed that at increasing pH from 3 to 5, the wild-type (WT) strain induced the expression of TrPacC in parallel to increased fungal growth; however, TrPacC expression decline at higer pH than 5, while fungal growth continued to increase. Development of a ΔTrPacC mutant down-regulated the expression of TrbrlA, TrabaA and TrwetA, reduced sporulation and delayed spore germination, resulting in smaller spores and sparse hyphae. ΔTrPacC mutant was sensitive to ionic stress, oxidative stress and cell wall integrity stress compared to the WT strain, especially the ionic stress. In addition, ∆TrPacC mutant showed reduced pathogenicity to muskmelon and tomato fruits. Taken together, T. roseum is an alkalinizing fungus, and the acidic environment could induce TrPacC expression. TrPacC positively regulates fungal growth and development as well as pathogenicity showing effect on fungal response to different stresses.
Collapse
Affiliation(s)
- Bin Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Zhanhong Han
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Di Gong
- Deparment of Food Science, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Xiaobin Xu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Yongcai Li
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Edward Sionov
- Deparment of Food Science, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Dov Prusky
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Yang Bi
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Yuanyuan Zong
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
7
|
Lim S, Bijlani S, Blachowicz A, Chiang YM, Lee MS, Torok T, Venkateswaran K, Wang CCC. Identification of the pigment and its role in UV resistance in Paecilomyces variotii, a Chernobyl isolate, using genetic manipulation strategies. Fungal Genet Biol 2021; 152:103567. [PMID: 33989788 DOI: 10.1016/j.fgb.2021.103567] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/18/2021] [Accepted: 01/26/2021] [Indexed: 11/19/2022]
Abstract
Fungi produce secondary metabolites that are not directly involved in their growth, but often contribute to their adaptation to extreme environmental stimuli and enable their survival. Conidial pigment or melanin is one of the secondary metabolites produced naturally by a polyketide synthesis (PKS) gene cluster in several filamentous fungi and is known to protect these fungi from extreme radiation conditions. Several pigmented or melanized fungi have been shown to grow under extreme radiation conditions at the Chernobyl nuclear accident site. Some of these fungi, including Paecilomyces variotii, were observed to grow towards the source of radiation. Therefore, in this study, we wanted to identify if the pigment produced by P. variotii, contributes to providing protection against radiation condition. We first identified the PKS gene responsible for synthesis of pigment in P. variotii and confirmed its role in providing protection against UV irradiation through CRISPR-Cas9 mediated gene deletion. This is the first report that describes the use of CRISPR methodology to create gene deletions in P. variotii. Further, we showed that the pigment produced by this fungus, was not inhibited by DHN-melanin pathway inhibitors, indicating that the fungus does not produce melanin. We then identified the pigment synthesized by the PKS gene of P. variotii, as a naptho-pyrone Ywa1, by heterologously expressing the gene in Aspergillus nidulans. The results obtained will further aid in understanding the mechanistic basis of radiation resistance.
Collapse
Affiliation(s)
- Sujeung Lim
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Swati Bijlani
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Adriana Blachowicz
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States; Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| | - Yi-Ming Chiang
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Ming-Shian Lee
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Tamas Torok
- Ecology Department, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Kasthuri Venkateswaran
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| | - Clay C C Wang
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States; Department of Chemistry, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA, United States.
| |
Collapse
|
8
|
Sardana K, Gupta A, Mathachan SR. Immunopathogenesis of Dermatophytoses and Factors Leading to Recalcitrant Infections. Indian Dermatol Online J 2021; 12:389-399. [PMID: 34211904 PMCID: PMC8202482 DOI: 10.4103/idoj.idoj_503_20] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/27/2020] [Accepted: 12/20/2020] [Indexed: 11/11/2022] Open
Abstract
The pathogenesis of dermatophytic infections involves the interplay of three major factors: the dermatophyte, the inherent host defense, and the adaptive host immune response. The fungal virulence factors determine the adhesion and invasion of the skin while the immune response depends on an interaction of the pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMP) with pattern recognition receptors (PRRs) of the host, which lead to a differential Th (T helper) 1, Th2, Th17, and Treg response. While anthropophilic dermatophytes Trichophyton rubrum and now increasingly by T. interdigitale subvert the immune response via mannans, zoophilic species are eliminated due to a brisk immune response. Notably, delayed-type hypersensitivity (Th1) response of T lymphocytes causes the elimination of fungal infection, while chronic disease caused by anthropophilic species corresponds to toll-like receptor 2 mediated IL (interleukin)-10 release and generation of T-regulatory cells with immunosuppressive potential. Major steps that determine the ultimate clinical course and chronicity include genetic susceptibility factors, impaired epidermal and immunological barriers, variations in the composition of sebum and sweat, carbon dioxide tension, skin pH, and topical steroid abuse. It is important to understand these multifarious aspects to surmount the problem of recalcitrant dermatophytosis when the disorder fails conventional therapeutic agents.
Collapse
Affiliation(s)
- Kabir Sardana
- Department of Dermatology, Post Graduate Institute of Medical Education and Research Dr. Ram Manohar Lohia Hospital, New Delhi, India
| | - Aastha Gupta
- Department of Dermatology, Post Graduate Institute of Medical Education and Research Dr. Ram Manohar Lohia Hospital, New Delhi, India
| | - Sinu Rose Mathachan
- Department of Dermatology, Post Graduate Institute of Medical Education and Research Dr. Ram Manohar Lohia Hospital, New Delhi, India
| |
Collapse
|
9
|
Toledo H, Sánchez CI, Marín L, Amich J, Calera JA. Regulation of zinc homeostatic genes by environmental pH in the filamentous fungus Aspergillus fumigatus. Environ Microbiol 2021; 24:643-666. [PMID: 33687784 DOI: 10.1111/1462-2920.15452] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 11/30/2022]
Abstract
Aspergillus fumigatus can grow over a broad range of pH values even though zinc availability is greatly conditioned by ambient pH. It has been previously shown that regulation of zinc homeostatic genes in this fungus relies on the transcription factor ZafA. In addition, their expression is further modulated by the transcription factor PacC depending on ambient pH, which allows this fungus to grow in diverse types of niches, including soils and the lungs of immunosuppressed hosts. In this work the regulation by PacC of genes zrfB and zrfC that are expressed, respectively, under acidic and alkaline zinc-limiting conditions have been analysed in detail. Thus, data that extend the current model for PacC function, including the role of the full-length PacC72 protein and the PacC processed forms (PacC53 and PacC27 ) on gene expression has been provided, and a new mechanism for the repression of acid-expressed genes in alkaline media based on interference with the start of transcription has been described. Moreover, it was proposed that the transcription of both acid-expressed and alkaline-expressed genes under zinc-limiting conditions might also rely on a third factor (putatively Pontin/Reptin), which may be required to integrate the action of PacC and ZafA into gene specific transcriptional responses.
Collapse
Affiliation(s)
- Héctor Toledo
- Instituto de Biología Funcional y Genómica (IBFG-CSIC), Universidad de Salamanca, Salamanca, Spain.,Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain.,Servicio de Microbiología Clínica y Parasitología, Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | - Clara Inés Sánchez
- Instituto de Biología Funcional y Genómica (IBFG-CSIC), Universidad de Salamanca, Salamanca, Spain.,Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain.,Escuela de Microbiología, Universidad Industrial de Santander, Bucaramanga, Colombia
| | - Laura Marín
- Instituto de Biología Funcional y Genómica (IBFG-CSIC), Universidad de Salamanca, Salamanca, Spain
| | - Jorge Amich
- Instituto de Biología Funcional y Genómica (IBFG-CSIC), Universidad de Salamanca, Salamanca, Spain.,Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain.,Manchester Fungal Infection Group, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - José Antonio Calera
- Instituto de Biología Funcional y Genómica (IBFG-CSIC), Universidad de Salamanca, Salamanca, Spain.,Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain
| |
Collapse
|
10
|
Li B, Chen Y, Tian S. Function of pH-dependent transcription factor PacC in regulating development, pathogenicity, and mycotoxin biosynthesis of phytopathogenic fungi. FEBS J 2021; 289:1723-1730. [PMID: 33751796 DOI: 10.1111/febs.15808] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 01/30/2021] [Accepted: 03/08/2021] [Indexed: 11/28/2022]
Abstract
pH, as one of the most important environmental factors, affects various biological processes in pathogenic fungi. Sensing and responding to fluctuations in ambient pH are essential for these fungi to complete their life cycle. Fungi have evolved a complicated and conserved system, the so-called Pal-pH pathway, to regulate genes and adapt to alterations in ambient pH. PacC is the dominant transcription factor in the Pal-pH pathway and regulates various biological processes. The regulatory mode of PacC has been extensively studied in Aspergillus nidulans and is generally conserved in other fungal species, including numerous phytopathogenic fungi. However, species-specific alterations have been reported. This review summarizes recent advances in the regulatory mechanisms of PacC and its role in controlling development, pathogenicity, and mycotoxin biosynthesis in phytopathogenic fungi. Potential applications of these findings and some unresolved questions are also discussed.
Collapse
Affiliation(s)
- Boqiang Li
- Key Laboratory of Plant Resources, Institute of Botany, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yong Chen
- Key Laboratory of Plant Resources, Institute of Botany, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Shiping Tian
- Key Laboratory of Plant Resources, Institute of Botany, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
11
|
Picazo I, Etxebeste O, Requena E, Garzia A, Espeso EA. Defining the transcriptional responses of Aspergillus nidulans to cation/alkaline pH stress and the role of the transcription factor SltA. Microb Genom 2020; 6:mgen000415. [PMID: 32735212 PMCID: PMC7641419 DOI: 10.1099/mgen.0.000415] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/12/2020] [Indexed: 01/27/2023] Open
Abstract
Fungi have developed the ability to overcome extreme growth conditions and thrive in hostile environments. The model fungus Aspergillus nidulans tolerates, for example, ambient alkalinity up to pH 10 or molar concentrations of multiple cations. The ability to grow under alkaline pH or saline stress depends on the effective function of at least three regulatory pathways mediated by the zinc-finger transcription factor PacC, which mediates the ambient pH regulatory pathway, the calcineurin-dependent CrzA and the cation homeostasis responsive factor SltA. Using RNA sequencing, we determined the effect of external pH alkalinization or sodium stress on gene expression. The data show that each condition triggers transcriptional responses with a low degree of overlap. By sequencing the transcriptomes of the null mutant, the role of SltA in the above-mentioned homeostasis mechanisms was also studied. The results show that the transcriptional role of SltA is wider than initially expected and implies, for example, the positive control of the PacC-dependent ambient pH regulatory pathway. Overall, our data strongly suggest that the stress response pathways in fungi include some common but mostly exclusive constituents, and that there is a hierarchical relationship among the main regulators of stress response, with SltA controlling pacC expression, at least in A. nidulans.
Collapse
Affiliation(s)
- Irene Picazo
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu, 9, 28040 Madrid, Spain
| | - Oier Etxebeste
- Laboratory of Biology, Department of Applied Chemistry, Faculty of Chemistry, University of The Basque Country, Manuel de Lardizabal, 3, 20018 San Sebastian, Spain
| | - Elena Requena
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu, 9, 28040 Madrid, Spain
- Present address: Department of Plant Protection, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Ctra de La Coruña Km 7, 28040 Madrid, Spain
| | - Aitor Garzia
- Laboratory of RNA Molecular Biology, Rockefeller University, New York, USA
| | - Eduardo Antonio Espeso
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu, 9, 28040 Madrid, Spain
| |
Collapse
|
12
|
Athanasopoulos A, André B, Sophianopoulou V, Gournas C. Fungal plasma membrane domains. FEMS Microbiol Rev 2020; 43:642-673. [PMID: 31504467 DOI: 10.1093/femsre/fuz022] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 08/25/2019] [Indexed: 12/11/2022] Open
Abstract
The plasma membrane (PM) performs a plethora of physiological processes, the coordination of which requires spatial and temporal organization into specialized domains of different sizes, stability, protein/lipid composition and overall architecture. Compartmentalization of the PM has been particularly well studied in the yeast Saccharomyces cerevisiae, where five non-overlapping domains have been described: The Membrane Compartments containing the arginine permease Can1 (MCC), the H+-ATPase Pma1 (MCP), the TORC2 kinase (MCT), the sterol transporters Ltc3/4 (MCL), and the cell wall stress mechanosensor Wsc1 (MCW). Additional cortical foci at the fungal PM are the sites where clathrin-dependent endocytosis occurs, the sites where the external pH sensing complex PAL/Rim localizes, and sterol-rich domains found in apically grown regions of fungal membranes. In this review, we summarize knowledge from several fungal species regarding the organization of the lateral PM segregation. We discuss the mechanisms of formation of these domains, and the mechanisms of partitioning of proteins there. Finally, we discuss the physiological roles of the best-known membrane compartments, including the regulation of membrane and cell wall homeostasis, apical growth of fungal cells and the newly emerging role of MCCs as starvation-protective membrane domains.
Collapse
Affiliation(s)
- Alexandros Athanasopoulos
- Microbial Molecular Genetics Laboratory, Institute of Biosciences and Applications, National Centre for Scientific Research 'Demokritos,' Patr. Grigoriou E & 27 Neapoleos St. 15341, Agia Paraskevi, Greece
| | - Bruno André
- Molecular Physiology of the Cell laboratory, Université Libre de Bruxelles (ULB), Institut de Biologie et de Médecine Moléculaires, rue des Pr Jeener et Brachet 12, 6041, Gosselies, Belgium
| | - Vicky Sophianopoulou
- Microbial Molecular Genetics Laboratory, Institute of Biosciences and Applications, National Centre for Scientific Research 'Demokritos,' Patr. Grigoriou E & 27 Neapoleos St. 15341, Agia Paraskevi, Greece
| | - Christos Gournas
- Microbial Molecular Genetics Laboratory, Institute of Biosciences and Applications, National Centre for Scientific Research 'Demokritos,' Patr. Grigoriou E & 27 Neapoleos St. 15341, Agia Paraskevi, Greece
| |
Collapse
|
13
|
Khun KK, Ash GJ, Stevens MM, Huwer RK, Wilson BAL. Response of the macadamia seed weevil Kuschelorhynchus macadamiae (Coleoptera: Curculionidae) to Metarhizium anisopliae and Beauveria bassiana in laboratory bioassays. J Invertebr Pathol 2020; 174:107437. [PMID: 32593532 DOI: 10.1016/j.jip.2020.107437] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 05/29/2020] [Accepted: 06/20/2020] [Indexed: 11/19/2022]
Abstract
Macadamia seed weevil, Kuschelorhynchus macadamiae Jennings and Oberprieler, is a major pest of macadamia in eastern Australia, causing yield losses of up to 15%. Current control methods involve two applications of acephate per season but more recently have moved to a single application of indoxacarb, combined with the collection and destruction of fallen nuts that contain developing larvae. As a first step towards reducing the dependence of the industry on synthetic insecticides, we tested six isolates of M. anisopliae, six isolates of B. bassiana and one commercial B. bassiana product (Velifer® biological insecticide) against adult macadamia seed weevil under laboratory conditions. All isolates were pathogenic against adult weevils with M. anisopliae accession ECS1/BRIP 70272 and B. bassiana accession B27/BRIP 70267 causing 97.5% and 92.5% mortality 12 days after being treated at 1 × 107 conidia/mL. Isolates ECS1/BRIP 70272 and B27/BRIP 70267 had the shortest LT50 values of 5.13 days and 5.37 days respectively. The median lethal concentrations (LC50) for ECS1/BRIP 70272 and B27/BRIP 70267 were 1.48 × 105 and 1.65 × 105 conidia/mL respectively. Results of this study indicate that M. anisopliae accession ECS1/BRIP 70272 and B. bassiana accession B27/BRIP 70267 have considerable potential for K. macadamiae control, and should be developed into biological insecticides for integration into macadamia pest management programs.
Collapse
Affiliation(s)
- Kim Khuy Khun
- Faculty of Agronomy, Royal University of Agriculture, P.O. Box 2696, Dangkor District, Phnom Penh, Cambodia; Centre for Crop Health, Institute for Life Sciences and the Environment, University of Southern Queensland, Queensland 4350, Australia.
| | - Gavin J Ash
- Centre for Crop Health, Institute for Life Sciences and the Environment, University of Southern Queensland, Queensland 4350, Australia
| | - Mark M Stevens
- Yanco Agricultural Institute, NSW Department of Primary Industries, New South Wales 2703, Australia; Graham Centre for Agricultural Innovation (NSW Department of Primary Industries and Charles Sturt University), Australia
| | - Ruth K Huwer
- Wollongbar Primary Industries Institute, NSW Department of Primary Industries, New South Wales 2477, Australia
| | - Bree A L Wilson
- Centre for Crop Health, Institute for Life Sciences and the Environment, University of Southern Queensland, Queensland 4350, Australia
| |
Collapse
|
14
|
Improving cellulases production by Myceliophthora thermophila through disruption of protease genes. Biotechnol Lett 2019; 42:219-229. [DOI: 10.1007/s10529-019-02777-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 11/26/2019] [Indexed: 02/07/2023]
|
15
|
Chen Y, Li B, Xu X, Zhang Z, Tian S. The pH-responsive PacC transcription factor plays pivotal roles in virulence and patulin biosynthesis in Penicillium expansum. Environ Microbiol 2019; 20:4063-4078. [PMID: 30370586 DOI: 10.1111/1462-2920.14453] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 10/16/2018] [Indexed: 01/24/2023]
Abstract
The PacC (loss or reduction in phosphatase activity at acid but not at alkaline pH [Pac]) transcription factor regulates environmental adaptation, secondary metabolism and virulence in many fungal pathogens. Here, we report the functions of PacC in Penicillium expansum, a postharvest pathogenic fungus in horticultural crops, and ascertain that the gene expression and proteolytic processing of PePacC are strictly pH-dependent. Loss of PePacC resulted in an obvious decrease in growth and conidiation of P. expansum cultured in both acidic and alkaline conditions. The ΔPePacC mutant lost the ability of patulin production at pH values above 6.0 because expressions of all the genes in patulin cluster were significantly down-regulated. Additionally, virulence of the ΔPePacC mutant was obviously reduced in pear and apple fruits. Proteome analysis revealed that PePacC could function as an activator or repressor for different target proteins, including calreticulin (PeCRT) and sulfate adenylyltransferase (PeSAT), which were further proved to be involved in virulence of P. expansum. Our results demonstrate important roles for PePacC in patulin biosynthesis via limiting expressions of the genes in the cluster, and in pathogenesis via mediating a known virulence factor glucose oxidase (PeGOD) and new virulence factors, such as PeCRT and PeSAT.
Collapse
Affiliation(s)
- Yong Chen
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Boqiang Li
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Xiaodi Xu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhanquan Zhang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Shiping Tian
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,Biotechnology and Bioresources Utilization, Ministry of Education, Dalian, 116600, China
| |
Collapse
|
16
|
MaPacC, a pH-responsive transcription factor, negatively regulates thermotolerance and contributes to conidiation and virulence in Metarhizium acridum. Curr Genet 2019; 66:397-408. [DOI: 10.1007/s00294-019-01032-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/13/2019] [Accepted: 08/20/2019] [Indexed: 12/15/2022]
|
17
|
Korosi GA, Wilson BAL, Powell KS, Ash GJ, Reineke A, Savocchia S. Occurrence and diversity of entomopathogenic fungi (Beauveria spp. and Metarhizium spp.) in Australian vineyard soils. J Invertebr Pathol 2019; 164:69-77. [PMID: 31078548 DOI: 10.1016/j.jip.2019.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 05/06/2019] [Accepted: 05/08/2019] [Indexed: 10/26/2022]
Abstract
Entomopathogenic Ascomycetes: Hypocreales fungi occur worldwide in the soil; however, the abundance and distribution of these fungi in a vineyard environment is unknown. A survey of Australian vineyards was carried out in order to isolate and identify entomopathogenic fungi. A total of 240 soil samples were taken from eight vineyards in two states (New South Wales and Victoria). Insect baiting (using Tenebrio molitor) and soil dilution methods were used to isolate Beauveria spp. and Metarhizium spp. from all soil samples. Of the 240 soil samples, 60% contained either Beauveria spp. (26%) or Metarhizium spp. (33%). Species of Beauveria and Metarhizium were identified by sequencing the B locus nuclear intergenic region (Bloc) and elongation factor-1 alpha (EFT1) regions, respectively. Three Beauveria species (B. bassiana, B. australis and B. pseudobassiana) and six Metarhizium species (M. guizhouense, M. robertsii, M. brunneum, M. flavoviride var. pemphigi, M. pingshaense and M. majus) were identified. A new sister clade made up of six isolates was identified within B. australis. Two potentially new phylogenetic species (six isolates each) were found within the B. bassiana clade. This study revealed a diverse community of entomopathogenic fungi in sampled Australian vineyard soils.
Collapse
Affiliation(s)
- Gyongyver A Korosi
- National Wine and Grape Industry Centre, School of Agricultural and Wine Sciences, Charles Sturt University, Boorooma St, Wagga Wagga, New South Wales 2650, Australia.
| | - Bree A L Wilson
- Graham Centre for Agricultural Innovation, School of Agricultural and Wine Sciences, Charles Sturt University, Boorooma St, Wagga Wagga, New South Wales 2650, Australia
| | - Kevin S Powell
- National Wine and Grape Industry Centre, School of Agricultural and Wine Sciences, Charles Sturt University, Boorooma St, Wagga Wagga, New South Wales 2650, Australia; Agriculture Victoria, Rutherglen Centre, Rutherglen, Victoria 3685, Australia; Australian Wine Research Institute, Adelaide, South Australia, Australia
| | - Gavin J Ash
- Graham Centre for Agricultural Innovation, School of Agricultural and Wine Sciences, Charles Sturt University, Boorooma St, Wagga Wagga, New South Wales 2650, Australia
| | - Annette Reineke
- Hochschule Geisenheim University, Department of Crop Protection, Geisenheim 65366, Germany
| | - Sandra Savocchia
- National Wine and Grape Industry Centre, School of Agricultural and Wine Sciences, Charles Sturt University, Boorooma St, Wagga Wagga, New South Wales 2650, Australia
| |
Collapse
|
18
|
Aspergillus nidulans in the post-genomic era: a top-model filamentous fungus for the study of signaling and homeostasis mechanisms. Int Microbiol 2019; 23:5-22. [DOI: 10.1007/s10123-019-00064-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 01/30/2019] [Accepted: 02/04/2019] [Indexed: 02/07/2023]
|
19
|
Menon RR, Luo J, Chen X, Zhou H, Liu Z, Zhou G, Zhang N, Jin C. Screening of Fungi for Potential Application of Self-Healing Concrete. Sci Rep 2019; 9:2075. [PMID: 30765831 PMCID: PMC6375922 DOI: 10.1038/s41598-019-39156-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 01/18/2019] [Indexed: 02/03/2023] Open
Abstract
Concrete is susceptible to cracking owing to drying shrinkage, freeze-thaw cycles, delayed ettringite formation, reinforcement corrosion, creep and fatigue, etc. Continuous inspection and maintenance of concrete infrastructure require onerous labor and high costs. If the damaging cracks can heal by themselves without any human interference or intervention, that could be of great attraction. In this study, a novel self-healing approach is investigated, in which fungi are applied to heal cracks in concrete by promoting calcium carbonate precipitation. The goal of this investigation is to discover the most appropriate species of fungi for the application of biogenic crack repair. Our results showed that, despite the significant pH increase owing to the leaching of calcium hydroxide from concrete, Aspergillus nidulans (MAD1445), a pH regulatory mutant, could grow on concrete plates and promote calcium carbonate precipitation.
Collapse
Affiliation(s)
- Rakenth R Menon
- Department of Mechanical Engineering, Binghamton University, Binghamton, NY, 13902, USA
| | - Jing Luo
- Department of Plant Biology, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Xiaobo Chen
- Materials Science and Engineering Program, Binghamton University, Binghamton, NY, 13902, USA
| | - Hui Zhou
- Materials Science and Engineering Program, Binghamton University, Binghamton, NY, 13902, USA
| | - Zhiyong Liu
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Guangwen Zhou
- Department of Mechanical Engineering, Binghamton University, Binghamton, NY, 13902, USA.,Materials Science and Engineering Program, Binghamton University, Binghamton, NY, 13902, USA
| | - Ning Zhang
- Department of Plant Biology, Rutgers University, New Brunswick, NJ, 08901, USA. .,Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, 08901, USA.
| | - Congrui Jin
- Department of Mechanical Engineering, Binghamton University, Binghamton, NY, 13902, USA. .,Materials Science and Engineering Program, Binghamton University, Binghamton, NY, 13902, USA.
| |
Collapse
|
20
|
Wu Y, Yin Z, Xu L, Feng H, Huang L. VmPacC Is Required for Acidification and Virulence in Valsa mali. Front Microbiol 2018; 9:1981. [PMID: 30190714 PMCID: PMC6115506 DOI: 10.3389/fmicb.2018.01981] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 08/06/2018] [Indexed: 11/18/2022] Open
Abstract
The role of the transcription factor PacC has been characterised in several pathogenic fungi, and it affects virulence via several mechanisms. In this study, we examined the role of the PacC homolog VmPacC in Valsa mali, the causal agent of apple canker disease. We found that the expression of VmPacC was up-regulated in neutral and alkaline pH and during infection. At pH 6–10, the radial growth of a VmPacC deletion mutant decreased compared to wild-type. In addition, the sensitivity to oxidative stress of the VmPacC deletion mutant was impaired, as its growth was more severely inhibited by H2O2 than that of the wild-type. The lesion size caused by the VmPacC deletion mutant was smaller than that of the wild-type on apple leaves and twigs. Interestingly, expression of pectinase genes increased in deletion mutant during infection. To further confirm the negative regulation, we generated dominant activated C-27 allele mutants that constitutively express VmPacC. The pectinase activity of activated mutants was reduced at pH 4. We further observed that V. mali can acidify the pH during infection, and that the capacity for acidification was impaired after VmPacC deletion. Furthermore, VmPacC is involved in the generation of citric acid, which affects virulence. These results indicate that VmPacC is part of the fungal responses to neutral and alkaline pH and oxidative stress. More importantly, VmPacC is required for acidification of its environment and for full virulence in V. mali.
Collapse
Affiliation(s)
- Yuxing Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas, China-Australia Joint Research Centre for Abiotic and Biotic Stress Management, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Zhiyuan Yin
- State Key Laboratory of Crop Stress Biology for Arid Areas, China-Australia Joint Research Centre for Abiotic and Biotic Stress Management, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Liangsheng Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, China-Australia Joint Research Centre for Abiotic and Biotic Stress Management, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Hao Feng
- State Key Laboratory of Crop Stress Biology for Arid Areas, China-Australia Joint Research Centre for Abiotic and Biotic Stress Management, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Lili Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, China-Australia Joint Research Centre for Abiotic and Biotic Stress Management, College of Plant Protection, Northwest A&F University, Yangling, China
| |
Collapse
|
21
|
Transcription Factors Controlling Primary and Secondary Metabolism in Filamentous Fungi: The β-Lactam Paradigm. FERMENTATION-BASEL 2018. [DOI: 10.3390/fermentation4020047] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
22
|
Virgilio S, Bertolini MC. Functional diversity in the pH signaling pathway: an overview of the pathway regulation in Neurospora crassa. Curr Genet 2017; 64:529-534. [DOI: 10.1007/s00294-017-0772-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 10/20/2017] [Accepted: 10/25/2017] [Indexed: 10/18/2022]
|
23
|
Differential Control of Asexual Development and Sterigmatocystin Biosynthesis by a Novel Regulator in Aspergillus nidulans. Sci Rep 2017; 7:46340. [PMID: 28422127 PMCID: PMC5396049 DOI: 10.1038/srep46340] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 03/15/2017] [Indexed: 11/08/2022] Open
Abstract
The filamentous fungus Aspergillus nidulans primarily reproduces by forming asexual spores called conidia and produces the mycotoxin sterigmatocystin (ST), the penultimate precursor of aflatoxins. It has been known that asexual development and ST production are tightly co-regulated by various regulatory inputs. Here, we report that the novel regulator AslA with a C2H2 domain oppositely regulates development and ST biosynthesis. Nullifying aslA resulted in defective conidiation and reduced expression of brlA encoding a key activator of asexual development, which indicates that AslA functions as an upstream activator of brlA expression. aslA deletion additionally caused enhanced ST production and expression of aflR encoding a transcriptional activator for ST biosynthetic genes, suggesting that AslA functions as an upstream negative regulator of aflR. Cellular and molecular studies showed that AslA has a trans-activation domain and is localized in the nuclei of vegetative and developing cells but not in spores, indicating that AslA is likely a transcription factor. Introduction of the aslA homologs from distantly-related aspergilli complemented the defects caused by aslA null mutation in A. nidulans, implying a functional conservancy of AslA. We propose that AslA is a novel regulator that may act at the split control point of the developmental and metabolic pathways.
Collapse
|
24
|
Bultman KM, Kowalski CH, Cramer RA. Aspergillus fumigatus virulence through the lens of transcription factors. Med Mycol 2016; 55:24-38. [PMID: 27816905 DOI: 10.1093/mmy/myw120] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 08/19/2016] [Accepted: 10/17/2016] [Indexed: 02/07/2023] Open
Abstract
Invasive aspergillosis (IA), most commonly caused by the filamentous fungus Aspergillus fumigatus, occurs in immune compromised individuals. The ability of A. fumigatus to proliferate in a multitude of environments is hypothesized to contribute to its pathogenicity and virulence. Transcription factors (TF) have long been recognized as critical proteins for fungal pathogenicity, as many are known to play important roles in the transcriptional regulation of pathways implicated in virulence. Such pathways include regulation of conidiation and development, adhesion, nutrient acquisition, adaptation to environmental stress, and interactions with the host immune system among others. In both murine and insect models of IA, TF loss of function in A. fumigatus results in cases of hyper- and hypovirulence as determined through host survival, fungal burden, and immune response analyses. Consequently, the study of specific TFs in A. fumigatus has revealed important insights into mechanisms of pathogenicity and virulence. Although in vitro studies have identified virulence-related functions of specific TFs, the full picture of their in vivo functions remain largely enigmatic and an exciting area of current research. Moreover, the vast majority of TFs remain to be characterized and studied in this important human pathogen. Here in this mini-review we provide an overview of selected TFs in A. fumigatus and their contribution to our understanding of this important human pathogen's pathogenicity and virulence.
Collapse
Affiliation(s)
- Katherine M Bultman
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Caitlin H Kowalski
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Robert A Cramer
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| |
Collapse
|
25
|
Martinez-Rossi NM, Peres NTA, Rossi A. Pathogenesis of Dermatophytosis: Sensing the Host Tissue. Mycopathologia 2016; 182:215-227. [DOI: 10.1007/s11046-016-0057-9] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Accepted: 08/24/2016] [Indexed: 01/09/2023]
|
26
|
Lucena-Agell D, Hervás-Aguilar A, Múnera-Huertas T, Pougovkina O, Rudnicka J, Galindo A, Tilburn J, Arst HN, Peñalva MA. Mutational analysis of the Aspergillus ambient pH receptor PalH underscores its potential as a target for antifungal compounds. Mol Microbiol 2016; 101:982-1002. [PMID: 27279148 PMCID: PMC5026065 DOI: 10.1111/mmi.13438] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2016] [Indexed: 12/18/2022]
Abstract
The pal/RIM ambient pH signalling pathway is crucial for the ability of pathogenic fungi to infect hosts. The Aspergillus nidulans 7‐TMD receptor PalH senses alkaline pH, subsequently facilitating ubiquitination of the arrestin PalF. Ubiquitinated PalF triggers downstream signalling events. The mechanism(s) by which PalH transduces the alkaline pH signal to PalF is poorly understood. We show that PalH is phosphorylated in a signal dependent manner, resembling mammalian GPCRs, although PalH phosphorylation, in contrast to mammalian GPCRs, is arrestin dependent. A genetic screen revealed that an ambient‐exposed region comprising the extracellular loop connecting TM4‐TM5 and ambient‐proximal residues within TM5 is required for signalling. In contrast, substitution by alanines of four aromatic residues within TM6 and TM7 results in a weak ‘constitutive’ activation of the pathway. Our data support the hypothesis that PalH mechanistically resembles mammalian GPCRs that signal via arrestins, such that the relative positions of individual helices within the heptahelical bundle determines the Pro316‐dependent transition between inactive and active PalH conformations, governed by an ambient‐exposed region including critical Tyr259 that potentially represents an agonist binding site. These findings open the possibility of screening for agonist compounds stabilizing the inactive conformation of PalH, which might act as antifungal drugs against ascomycetes.
Collapse
Affiliation(s)
- Daniel Lucena-Agell
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas CSIC, Ramiro de Maeztu 9, Madrid, 28040, Spain
| | - América Hervás-Aguilar
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas CSIC, Ramiro de Maeztu 9, Madrid, 28040, Spain
| | - Tatiana Múnera-Huertas
- Section of Microbiology, Imperial College London, Flowers Building, Armstrong Road, London, SW7 2AZ, UK
| | - Olga Pougovkina
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas CSIC, Ramiro de Maeztu 9, Madrid, 28040, Spain
| | - Joanna Rudnicka
- Section of Microbiology, Imperial College London, Flowers Building, Armstrong Road, London, SW7 2AZ, UK
| | - Antonio Galindo
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas CSIC, Ramiro de Maeztu 9, Madrid, 28040, Spain
| | - Joan Tilburn
- Section of Microbiology, Imperial College London, Flowers Building, Armstrong Road, London, SW7 2AZ, UK
| | - Herbert N Arst
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas CSIC, Ramiro de Maeztu 9, Madrid, 28040, Spain.,Section of Microbiology, Imperial College London, Flowers Building, Armstrong Road, London, SW7 2AZ, UK
| | - Miguel A Peñalva
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas CSIC, Ramiro de Maeztu 9, Madrid, 28040, Spain.
| |
Collapse
|
27
|
Mellado L, Arst HN, Espeso EA. Proteolytic activation of both components of the cation stress-responsive Slt pathway in Aspergillus nidulans. Mol Biol Cell 2016; 27:2598-612. [PMID: 27307585 PMCID: PMC4985261 DOI: 10.1091/mbc.e16-01-0049] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 06/10/2016] [Indexed: 12/14/2022] Open
Abstract
Tolerance of Aspergillus nidulans to alkalinity and elevated cation concentrations requires both SltA and SltB. Transcription factor SltA and the putative pseudokinase/protease signaling protein SltB comprise a regulatory pathway specific to filamentous fungi. In vivo, SltB is proteolytically cleaved into its two principal domains. Mutational analysis defines a chymotrypsin-like serine protease domain that mediates SltB autoproteolysis and proteolytic cleavage of SltA. The pseudokinase domain might modulate the protease activity of SltB. Three forms of the SltA transcription factor coexist in cells: a full-length, 78-kDa version and a processed, 32-kDa form, which is found in phosphorylated and unphosphorylated states. The SltA32kDa version mediates transcriptional regulation of sltB and, putatively, genes required for tolerance to cation stress and alkalinity. The full-length form, SltA78kDa, apparently has no transcriptional function. In the absence of SltB, only the primary product of SltA is detectable, and its level equals that of SltA78kDa. Mutations in sltB selected as suppressors of null vps alleles and resulting in cation/alkalinity sensitivity either reduced or eliminated SltA proteolysis. There is no evidence for cation or alkalinity regulation of SltB cleavage, but activation of sltB expression requires SltA. This work identifies the molecular mechanisms governing the Slt pathway.
Collapse
Affiliation(s)
- Laura Mellado
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas, CSIC, 28040 Madrid, Spain
| | - Herbert N Arst
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas, CSIC, 28040 Madrid, Spain Section of Microbiology, Imperial College London, London SW7 2AZ, United Kingdom
| | - Eduardo A Espeso
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas, CSIC, 28040 Madrid, Spain
| |
Collapse
|
28
|
Molecular and cellular analysis of the pH response transcription factor PacC in the fungal symbiont Epichloë festucae. Fungal Genet Biol 2015; 85:25-37. [DOI: 10.1016/j.fgb.2015.10.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 10/29/2015] [Accepted: 10/31/2015] [Indexed: 11/19/2022]
|
29
|
Bussink HJ, Bignell EM, Múnera-Huertas T, Lucena-Agell D, Scazzocchio C, Espeso EA, Bertuzzi M, Rudnicka J, Negrete-Urtasun S, Peñas-Parilla MM, Rainbow L, Peñalva MÁ, Arst HN, Tilburn J. Refining the pH response in Aspergillus nidulans: a modulatory triad involving PacX, a novel zinc binuclear cluster protein. Mol Microbiol 2015; 98:1051-72. [PMID: 26303777 PMCID: PMC4832277 DOI: 10.1111/mmi.13173] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2015] [Indexed: 01/18/2023]
Abstract
The Aspergillus nidulans PacC transcription factor mediates gene regulation in response to alkaline ambient pH which, signalled by the Pal pathway, results in the processing of PacC72 to PacC27 via PacC53. Here we investigate two levels at which the pH regulatory system is transcriptionally moderated by pH and identify and characterise a new component of the pH regulatory machinery, PacX. Transcript level analysis and overexpression studies demonstrate that repression of acid‐expressed palF, specifying the Pal pathway arrestin, probably by PacC27 and/or PacC53, prevents an escalating alkaline pH response. Transcript analyses using a reporter and constitutively expressed pacC
trans‐alleles show that pacC preferential alkaline‐expression results from derepression by depletion of the acid‐prevalent PacC72 form. We additionally show that pacC repression requires PacX. pacX mutations suppress PacC processing recalcitrant mutations, in part, through derepressed PacC levels resulting in traces of PacC27 formed by pH‐independent proteolysis. pacX was cloned by impala transposon mutagenesis. PacX, with homologues within the Leotiomyceta, has an unusual structure with an amino‐terminal coiled‐coil and a carboxy‐terminal zinc binuclear cluster. pacX mutations indicate the importance of these regions. One mutation, an unprecedented finding in A. nidulans genetics, resulted from an insertion of an endogenous Fot1‐like transposon.
Collapse
Affiliation(s)
- Henk-Jan Bussink
- Section of Microbiology, Imperial College London, Flowers Building, Armstrong Road, London, SW7 2AZ, UK
| | - Elaine M Bignell
- Section of Microbiology, Imperial College London, Flowers Building, Armstrong Road, London, SW7 2AZ, UK.,Manchester Fungal Infection Group, Institute for Inflammation and Repair, University of Manchester, 46 Grafton Street, Manchester, M13 9NT, UK
| | - Tatiana Múnera-Huertas
- Section of Microbiology, Imperial College London, Flowers Building, Armstrong Road, London, SW7 2AZ, UK
| | - Daniel Lucena-Agell
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas CSIC, Ramiro de Maeztu 9, Madrid, 28040, Spain
| | - Claudio Scazzocchio
- Section of Microbiology, Imperial College London, Flowers Building, Armstrong Road, London, SW7 2AZ, UK.,Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Orsay, France
| | - Eduardo A Espeso
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas CSIC, Ramiro de Maeztu 9, Madrid, 28040, Spain
| | - Margherita Bertuzzi
- Manchester Fungal Infection Group, Institute for Inflammation and Repair, University of Manchester, 46 Grafton Street, Manchester, M13 9NT, UK
| | - Joanna Rudnicka
- Section of Microbiology, Imperial College London, Flowers Building, Armstrong Road, London, SW7 2AZ, UK
| | - Susana Negrete-Urtasun
- Section of Microbiology, Imperial College London, Flowers Building, Armstrong Road, London, SW7 2AZ, UK
| | - Maria M Peñas-Parilla
- Section of Microbiology, Imperial College London, Flowers Building, Armstrong Road, London, SW7 2AZ, UK
| | - Lynne Rainbow
- Section of Microbiology, Imperial College London, Flowers Building, Armstrong Road, London, SW7 2AZ, UK
| | - Miguel Á Peñalva
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas CSIC, Ramiro de Maeztu 9, Madrid, 28040, Spain
| | - Herbert N Arst
- Section of Microbiology, Imperial College London, Flowers Building, Armstrong Road, London, SW7 2AZ, UK
| | - Joan Tilburn
- Section of Microbiology, Imperial College London, Flowers Building, Armstrong Road, London, SW7 2AZ, UK
| |
Collapse
|
30
|
Characterization of AnNce102 and its role in eisosome stability and sphingolipid biosynthesis. Sci Rep 2015; 5:15200. [PMID: 26468899 PMCID: PMC4606592 DOI: 10.1038/srep15200] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 09/21/2015] [Indexed: 12/26/2022] Open
Abstract
The plasma membrane is implicated in a variety of functions, whose coordination necessitates highly dynamic organization of its constituents into domains of distinct protein and lipid composition. Eisosomes, at least partially, mediate this lateral plasma membrane compartmentalization. In this work, we show that the Nce102 homologue of Aspergillus nidulans colocalizes with eisosomes and plays a crucial role in density/number of PilA/SurG foci in the head of germlings. In addition we demonstrate that AnNce102 and PilA negatively regulate sphingolipid biosynthesis, since their deletions partially suppress the thermosensitivity of basA mutant encoding sphingolipid C4-hydroxylase and the growth defects observed upon treatment with inhibitors of sphingolipid biosynthesis, myriocin and Aureobasidin A. Moreover, we show that YpkA repression mimics genetic or pharmacological depletion of sphingolipids, conditions that induce the production of Reactive Oxygen Species (ROS), and can be partially overcome by deletion of pilA and/or annce102 at high temperatures. Consistent with these findings, pilAΔ and annce102Δ also show differential sensitivity to various oxidative agents, while AnNce102 overexpression can bypass sphingolipid depletion regarding the PilA/SurG foci number and organization, also leading to the mislocalization of PilA to septa.
Collapse
|
31
|
Peñalva MA, Lucena-Agell D, Arst HN. Liaison alcaline: Pals entice non-endosomal ESCRTs to the plasma membrane for pH signaling. Curr Opin Microbiol 2015; 22:49-59. [PMID: 25460796 DOI: 10.1016/j.mib.2014.09.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 09/02/2014] [Accepted: 09/12/2014] [Indexed: 12/21/2022]
Abstract
The alkaline pH-responsive Pal/Rim signal transduction pathway mediating regulation of gene expression by ambient pH has been extensively studied in Aspergillus nidulans and Saccharomyces cerevisiae. In A. nidulans, PalH, PalI, PalF, PalC, PalA and PalB are required for the proteolytic activation of the executing transcription factor PacC. Although necessary, Pal proteins are insufficient to transmit the signal, which additionally requires ESCRT-I, II and Vps20 with Snf7 in ESCRT-III. Although this initially suggested cooperation between a plasma membrane sensor and an ESCRT-containing Pal complex on endosomes, recent evidence convincingly indicates that pH signaling actually takes place in plasma membrane-associated foci in which Pal proteins and an ESCRT-III polymer scaffold cooperate for pH signaling purposes, representing another non-endosomal role of ESCRT components.
Collapse
Affiliation(s)
- Miguel A Peñalva
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas CSIC, Ramiro de Maeztu 9, Madrid 28040, Spain.
| | | | | |
Collapse
|
32
|
Ghamiloui MM, Valadkhani Z, Rahimi F. A study of microsporidiosis in corneal scrapings of keratitis patients referring to Farabi Eye Hospital, Tehran, Iran in 2013-14. Curr Med Mycol 2015; 1:39-44. [PMID: 28680995 PMCID: PMC5490328 DOI: 10.18869/acadpub.cmm.1.3.39] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background and Purpose: Microsporidiosis is one of the emerging and opportunistic infections, which causing various clinical symptoms in humans. The prevalence of this infection varies, depending on the infected organ, diagnostic methods, and geographical conditions. In the present study, we aimed to investigate microsporidial keratitis in patients referring to Farabi Eye Hospital Tehran, Iran in 2013-14. Materials and Methods: Two scraping samples were collected from 91 keratitis patients, five cases had prior history of receiving immune suppressive drugs. One of the two collected samples from each participant was used for Vero cell culture and the other was used for the preparation of Giemsa and Gram staining slides. After 30 days, the cells were scrapped and used for DNA extraction; afterwards, nested polymerase chain reaction (PCR) detection method was applied. Primer pairs of small-subunit ribosomal RNA gene were designed by CLC Genomics workbench software to amplify all major microsporidian pathogens, as well as E. bieneusi , which was used as the positive control in this study. Results: The nested PCR showed negative results regarding the presence of microsporidia in the samples. Similarly, Giemsa and Gram staining slides did not detect any spores. Conclusion: The prevalence of human microsporidiosis ranges between 0% and 50%, worldwide. Based on all the negative samples in the present study, we can conclude that the prevalence of this infection among Iranian patients falls in the lower quartile. By gathering further evidence, researchers can take a step forward in this area and open new doors for the assessment of AIDS patients and users of immunosuppressive drugs.
Collapse
Affiliation(s)
- M M Ghamiloui
- Department of Parasitology, Pasteur Institute of Iran, Tehran, Iran
| | - Z Valadkhani
- Department of Parasitology, Pasteur Institute of Iran, Tehran, Iran
| | - F Rahimi
- Cornea Clinic, Farabi Research Eye Hospital, Professor of ophthalmology, Tehran University of Medical Science, Tehran, Iran
| |
Collapse
|
33
|
Häkkinen M, Sivasiddarthan D, Aro N, Saloheimo M, Pakula TM. The effects of extracellular pH and of the transcriptional regulator PACI on the transcriptome of Trichoderma reesei. Microb Cell Fact 2015; 14:63. [PMID: 25925231 PMCID: PMC4446002 DOI: 10.1186/s12934-015-0247-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Accepted: 04/20/2015] [Indexed: 11/21/2022] Open
Abstract
Background Extracellular pH is one of the several environmental factors affecting protein production by filamentous fungi. Regulatory mechanisms ensure that extracellular enzymes are produced under pH-conditions in which the enzymes are active. In filamentous fungi, the transcriptional regulation in different ambient pH has been studied especially in Aspergilli, whereas the effects of pH in the industrial producer of hydrolytic enzymes, Trichoderma reesei, have mainly been studied at the protein level. In this study, the pH-dependent expression of T. reesei genes was investigated by genome-wide transcriptional profiling and by analysing the effects of deletion of the gene encoding the transcriptional regulator pac1, the orthologue of Aspergillus nidulans pacC gene. Results Transcriptional analysis revealed the pH-responsive genes of T. reesei, and functional classification of the genes identified the activities most affected by changing pH. A large number of genes encoding especially transporters, signalling-related proteins, extracellular enzymes and proteins involved in different metabolism-related functions were found to be pH-responsive. Several cellulase- and hemicellulase-encoding genes were found among the pH-responsive genes. Especially, genes encoding hemicellulases with the similar type of activity were shown to include both genes up-regulated at low pH and genes up-regulated at high pH. However, relatively few of the cellulase- and hemicellulase-encoding genes showed direct PACI-mediated regulation, indicating the importance of other regulatory mechanisms affecting expression in different pH conditions. New information was gained on the effects of pH on the genes involved in ambient pH-signalling and on the known and candidate regulatory genes involved in regulation of cellulase and hemicellulase encoding genes. In addition, co-regulated genomic clusters responding to change of ambient pH were identified. Conclusions Ambient pH was shown to be an important determinant of T. reesei gene expression. The pH-responsive genes, including those affected by the regulator of ambient pH sensing, were identified, and novel information on the activity of genes encoding carbohydrate active enzymes at different pH was gained. Electronic supplementary material The online version of this article (doi:10.1186/s12934-015-0247-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mari Häkkinen
- VTT Technical Research Centre of Finland, P.O. Box 1000, (Tietotie 2, Espoo), FI-02044 VTT, Finland.
| | - Dhinakaran Sivasiddarthan
- VTT Technical Research Centre of Finland, P.O. Box 1000, (Tietotie 2, Espoo), FI-02044 VTT, Finland.
| | - Nina Aro
- VTT Technical Research Centre of Finland, P.O. Box 1000, (Tietotie 2, Espoo), FI-02044 VTT, Finland.
| | - Markku Saloheimo
- VTT Technical Research Centre of Finland, P.O. Box 1000, (Tietotie 2, Espoo), FI-02044 VTT, Finland.
| | - Tiina M Pakula
- VTT Technical Research Centre of Finland, P.O. Box 1000, (Tietotie 2, Espoo), FI-02044 VTT, Finland.
| |
Collapse
|
34
|
Aspergillus nidulans Ambient pH Signaling Does Not Require Endocytosis. EUKARYOTIC CELL 2015; 14:545-53. [PMID: 25841020 DOI: 10.1128/ec.00031-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 03/30/2015] [Indexed: 01/10/2023]
Abstract
Aspergillus nidulans (Pal) ambient pH signaling takes place in cortical structures containing components of the ESCRT pathway, which are hijacked by the alkaline pH-activated, ubiquitin-modified version of the arrestin-like protein PalF and taken to the plasma membrane. There, ESCRTs scaffold the assembly of dedicated Pal proteins acting downstream. The molecular details of this pathway, which results in the two-step proteolytic processing of the transcription factor PacC, have received considerable attention due to the key role that it plays in fungal pathogenicity. While current evidence strongly indicates that the pH signaling role of ESCRT complexes is limited to plasma membrane-associated structures where PacC proteolysis would take place, the localization of the PalB protease, which almost certainly catalyzes the first and only pH-regulated proteolytic step, had not been investigated. In view of ESCRT participation, this formally leaves open the possibility that PalB activation requires endocytic internalization. As endocytosis is essential for hyphal growth, nonlethal endocytic mutations are predicted to cause an incomplete block. We used a SynA internalization assay to measure the extent to which any given mutation prevents endocytosis. We show that none of the tested mutations impairing endocytosis to different degrees, including slaB1, conditionally causing a complete block, have any effect on the activation of the pathway. We further show that PalB, like PalA and PalC, localizes to cortical structures in an alkaline pH-dependent manner. Therefore, signaling through the Pal pathway does not involve endocytosis.
Collapse
|
35
|
Ment D, Alkan N, Luria N, Bi FC, Reuveni E, Fluhr R, Prusky D. A Role of AREB in the Regulation of PACC-Dependent Acid-Expressed-Genes and Pathogenicity of Colletotrichum gloeosporioides. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:154-66. [PMID: 25317668 DOI: 10.1094/mpmi-09-14-0252-r] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Gene expression regulation by pH in filamentous fungi and yeasts is controlled by the PACC/RIM101 transcription factor. In Colletotrichum gloeosporioides, PACC is known to act as positive regulator of alkaline-expressed genes, and this regulation was shown to contribute to fungal pathogenicity. PACC is also a negative regulator of acid-expressed genes, however; the mechanism of downregulation of acid-expressed genes by PACC and their contribution to C. gloeosporioides pathogenicity is not well understood. RNA sequencing data analysis was employed to demonstrate that PACC transcription factor binding sites (TFBS) are significantly overrepresented in the promoter of PACC-upregulated, alkaline-expressed genes. In contrast, they are not overrepresented in the PACC-downregulated, acid-expressed genes. Instead, acid-expressed genes showed overrepresentation of AREB GATA TFBS in C. gloeosporioides and in homologs of five other ascomycetes genomes. The areB promoter contains PACC TFBS; its transcript was upregulated at pH 7 and repressed in ΔpacC. Furthermore, acid-expressed genes were found to be constitutively upregulated in ΔareB during alkalizing conditions. The areB mutants showed significantly reduced ammonia secretion and pathogenicity on tomato fruit. Present results indicate that PACC activates areB expression, thereby conditionally repressing acid-expressed genes and contributing critically to C. gloeosporioides pathogenicity.
Collapse
|
36
|
Edgerton H, Paolillo V, Oakley BR. Spatial regulation of the spindle assembly checkpoint and anaphase-promoting complex in Aspergillus nidulans. Mol Microbiol 2014; 95:442-57. [PMID: 25417844 DOI: 10.1111/mmi.12871] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2014] [Indexed: 11/29/2022]
Abstract
The spindle assembly checkpoint (SAC) plays a critical role in preventing mitotic errors by inhibiting anaphase until all kinetochores are correctly attached to spindle microtubules. In spite of the economic and medical importance of filamentous fungi, relatively little is known about the behavior of SAC proteins in these organisms. In our efforts to understand the role of γ-tubulin in cell cycle regulation, we have created functional fluorescent protein fusions of four SAC proteins in Aspergillus nidulans, the homologs of Mad2, Mps1, Bub1/BubR1 and Bub3. Time-lapse imaging reveals that SAC proteins are in distinct compartments of the cell until early mitosis when they co-localize at the spindle pole body. SAC activity is, thus, spatially regulated in A. nidulans. Likewise, Cdc20, an activator of the anaphase-promoting complex/cyclosome, is excluded from interphase nuclei, but enters nuclei at mitotic onset and accumulates to a higher level in mitotic nuclei than in the surrounding nucleoplasm before leaving in anaphase/telophase. The activity of this critical cell cycle regulatory complex is likely regulated by the location of Cdc20. Finally, the γ-tubulin mutation mipAD159 causes a nuclear-specific failure of nuclear localization of Mps1 and Bub1/R1 but not of Cdc20, Bub3 or Mad2.
Collapse
Affiliation(s)
- Heather Edgerton
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Ave., Lawrence, KS, 66045, USA
| | | | | |
Collapse
|
37
|
A modified recombineering protocol for the genetic manipulation of gene clusters in Aspergillus fumigatus. PLoS One 2014; 9:e111875. [PMID: 25372385 PMCID: PMC4221250 DOI: 10.1371/journal.pone.0111875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 10/02/2014] [Indexed: 01/07/2023] Open
Abstract
Genomic analyses of fungal genome structure have revealed the presence of physically-linked groups of genes, termed gene clusters, where collective functionality of encoded gene products serves a common biosynthetic purpose. In multiple fungal pathogens of humans and plants gene clusters have been shown to encode pathways for biosynthesis of secondary metabolites including metabolites required for pathogenicity. In the major mould pathogen of humans Aspergillus fumigatus, multiple clusters of co-ordinately upregulated genes were identified as having heightened transcript abundances, relative to laboratory cultured equivalents, during the early stages of murine infection. The aim of this study was to develop and optimise a methodology for manipulation of gene cluster architecture, thereby providing the means to assess their relevance to fungal pathogenicity. To this end we adapted a recombineering methodology which exploits lambda phage-mediated recombination of DNA in bacteria, for the generation of gene cluster deletion cassettes. By exploiting a pre-existing bacterial artificial chromosome (BAC) library of A. fumigatus genomic clones we were able to implement single or multiple intra-cluster gene replacement events at both subtelomeric and telomere distal chromosomal locations, in both wild type and highly recombinogenic A. fumigatus isolates. We then applied the methodology to address the boundaries of a gene cluster producing a nematocidal secondary metabolite, pseurotin A, and to address the role of this secondary metabolite in insect and mammalian responses to A. fumigatus challenge.
Collapse
|
38
|
pH signaling in human fungal pathogens: a new target for antifungal strategies. EUKARYOTIC CELL 2014; 13:342-52. [PMID: 24442891 DOI: 10.1128/ec.00313-13] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Fungi are exposed to broadly fluctuating environmental conditions, to which adaptation is crucial for their survival. An ability to respond to a wide pH range, in particular, allows them to cope with rapid changes in their extracellular settings. PacC/Rim signaling elicits the primary pH response in both model and pathogenic fungi and has been studied in multiple fungal species. In the predominant human pathogenic fungi, namely, Candida albicans, Aspergillus fumigatus, and Cryptococcus neoformans, this pathway is required for many functions associated with pathogenesis and virulence. Aspects of this pathway are fungus specific and do not exist in mammalian cells. In this review, we highlight recent advances in our understanding of PacC/Rim-mediated functions and discuss the growing interest in this cascade and its factors as potential drug targets for antifungal strategies. We focus on both conserved and distinctive features in model and pathogenic fungi, highlighting the specificities of PacC/Rim signaling in C. albicans, A. fumigatus, and C. neoformans. We consider the role of this pathway in fungal virulence, including modulation of the host immune response. Finally, as now recognized for other signaling cascades, we highlight the role of pH in adaptation to antifungal drug pressure. By acting on the PacC/Rim pathway, it may therefore be possible (i) to ensure fungal specificity and to limit the side effects of drugs, (ii) to ensure broad-spectrum efficacy, (iii) to attenuate fungal virulence, (iv) to obtain additive or synergistic effects with existing antifungal drugs through tolerance inhibition, and (v) to slow the emergence of resistant mutants.
Collapse
|
39
|
Hansen NB, Lübeck M, Lübeck PS. Advancing USER cloning into simpleUSER and nicking cloning. J Microbiol Methods 2013; 96:42-9. [PMID: 24184309 DOI: 10.1016/j.mimet.2013.10.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 10/22/2013] [Accepted: 10/23/2013] [Indexed: 11/15/2022]
Abstract
The two novel methods for DNA cloning presented here have been developed for the rapid construction of vectors used for insertion of genes in filamentous fungi. The current study shows that both simpleUSER cloning and nicking cloning can substitute USER cloning for insertion of single PCR fragments into plasmids. The simpleUSER cloning method proposed in this paper varies from USER cloning by substituting the dual enzymatic plasmid preparation step with a single enzymatic step. The other method further abolishes the use of USER™ enzyme mix and PfuTurbo Cx polymerase, and is referred to as nicking cloning. We show that both simpleUSER cloning and nicking cloning can substitute USER cloning for insertion of single PCR fragments into plasmids, and that the combination of these two methods works efficiently for the construction of selective plasmids and plasmids for co-transformation. This strategy was applied to genetically modify the filamentous fungus Aspergillus carbonarius. The two methods simplify DNA cloning by reducing time and complexity associated with cloning in filamentous fungi.
Collapse
Affiliation(s)
- Niels Bjørn Hansen
- Section for Sustainable Biotechnology, Aalborg University, A.C. Meyers Vaenge 15, Copenhagen, SV DK-2450, Denmark.
| | - Mette Lübeck
- Section for Sustainable Biotechnology, Aalborg University, A.C. Meyers Vaenge 15, Copenhagen, SV DK-2450, Denmark.
| | - Peter Stephensen Lübeck
- Section for Sustainable Biotechnology, Aalborg University, A.C. Meyers Vaenge 15, Copenhagen, SV DK-2450, Denmark.
| |
Collapse
|
40
|
Rossi A, Cruz AHS, Santos RS, Silva PM, Silva EM, Mendes NS, Martinez-Rossi NM. Ambient pH sensing in filamentous fungi: pitfalls in elucidating regulatory hierarchical signaling networks. IUBMB Life 2013; 65:930-5. [PMID: 24265200 DOI: 10.1002/iub.1217] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Accepted: 09/25/2013] [Indexed: 11/12/2022]
Abstract
In this article, the experiments used to construct the ambient pH-signaling network involved in the secretion of enzymes by filamentous fungi have been reviewed, focusing on the phosphate-repressible phosphatases in Aspergillus nidulans. Classic and molecular genetics have been used to demonstrate that proteolysis of the transcription factor PacC at alkaline ambient pH is imperative for its action, implying that the full-length version is not an active molecular form of PacC. It has been hypothesized that the transcriptional regulator PacC may be functional at both acidic and alkaline ambient pH, in either the full-length or the proteolyzed form, if it carries a pal-dependent molecular tag. The products of the pal genes are involved in a metabolic pathway that led to the synthesis of effector molecules that tag the pacC product, perhaps facilitating its proteolysis.
Collapse
Affiliation(s)
- Antonio Rossi
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|
41
|
The pH signaling transcription factor PacC is required for full virulence in Penicillium digitatum. Appl Microbiol Biotechnol 2013; 97:9087-98. [PMID: 23917633 DOI: 10.1007/s00253-013-5129-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 07/07/2013] [Accepted: 07/12/2013] [Indexed: 01/27/2023]
Abstract
Penicillium digitatum is the most important postharvest pathogen of citrus fruits. Along disease progression, the infected citrus peel tissue is acidified due to the accumulation of organic acids. So far, relatively little is known about the environmental factors that regulate pathogenicity in this fungus. In this study, the role of the pH signaling transcription factor PacC in the pathogenesis of P. digitatum was investigated. We identified the pacC ortholog (PdpacC) in P. digitatum and found that its transcript levels were elevated under alkaline conditions (pH ≥ 7) in vitro, as well as during the infection of citrus fruits in spite of the low pH (about 3.0 to 3.5) of the macerated tissue. Na(+) and pectin also induced the expression of PdpacC. Disruption of PdpacC resulted in impaired mycelial growth under neutral or alkaline pH conditions and on synthetic medium supplemented with pectin as the sole carbon source, and attenuated virulence towards citrus fruits. Introducing the full length of PdpacC into the ΔPdpacC mutant restored all these phenotypes. The expression of the polygalacturonase gene Pdpg2 and pectin lyase gene Pdpnl1 in P. digitatum was upregulated in the wild type strain but not or weakly upregulated in the ΔPdpacC mutant during infection. Disruption of Pdpg2 also resulted in attenuated virulence of P. digitatum towards citrus fruits. Collectively, we conclude that PdPacC plays an important role in pathogenesis of P. digitatum via regulation of the expression of cell wall degradation enzyme genes, such as Pdpg2 and Pdpnl1.
Collapse
|
42
|
Landraud P, Chuzeville S, Billon-Grande G, Poussereau N, Bruel C. Adaptation to pH and role of PacC in the rice blast fungus Magnaporthe oryzae. PLoS One 2013; 8:e69236. [PMID: 23874922 PMCID: PMC3712939 DOI: 10.1371/journal.pone.0069236] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 06/06/2013] [Indexed: 11/30/2022] Open
Abstract
Fungi are known to adapt to pH partly via specific activation of the Pal signaling pathway and subsequent gene regulation through the transcription factor PacC. The role of PacC in pathogenic fungi has been explored in few species, and each time its partaking in virulence has been found. We studied the impact of pH and the role of PacC in the biology of the rice pathogen Magnaporthe oryzae. Conidia formation and germination were affected by pH whereas fungal growth and appressorium formation were not. Growth in vitro and in planta was characterized by alkalinization and ammonia accumulation in the surrounding medium. Expression of the MoPACC gene increased when the fungus was placed under alkaline conditions. Except for MoPALF, expression of the MoPAL genes encoding the pH-signaling components was not influenced by pH. Deletion of PACC caused a progressive loss in growth rate from pH 5 to pH 8, a loss in conidia production at pH 8 in vitro, a loss in regulation of the MoPALF gene, a decreased production of secreted lytic enzymes and a partial loss in virulence towards barley and rice. PacC therefore plays a significant role in M. oryzae’s biology, and pH is revealed as one component at work during interaction between the fungus and its host plants.
Collapse
Affiliation(s)
- Patricia Landraud
- UMR 5240 - Microbiologie, Adaptation et Pathogénie; Université Lyon 1, CNRS, Bayer CropScience, Villeurbanne, France
| | - Sarah Chuzeville
- UMR 5240 - Microbiologie, Adaptation et Pathogénie; Université Lyon 1, CNRS, Bayer CropScience, Villeurbanne, France
| | - Geneviève Billon-Grande
- UMR 5240 - Microbiologie, Adaptation et Pathogénie; Université Lyon 1, CNRS, Bayer CropScience, Villeurbanne, France
| | - Nathalie Poussereau
- UMR 5240 - Microbiologie, Adaptation et Pathogénie; Université Lyon 1, CNRS, Bayer CropScience, Villeurbanne, France
| | - Christophe Bruel
- UMR 5240 - Microbiologie, Adaptation et Pathogénie; Université Lyon 1, CNRS, Bayer CropScience, Villeurbanne, France
- * E-mail:
| |
Collapse
|
43
|
Ke R, Haynes K, Stark J. Modelling the activation of alkaline pH response transcription factor PacC in Aspergillus nidulans: involvement of a negative feedback loop. J Theor Biol 2013; 326:11-20. [PMID: 23458440 DOI: 10.1016/j.jtbi.2013.02.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 01/12/2013] [Accepted: 02/14/2013] [Indexed: 01/21/2023]
Abstract
Alkaline pH adaptation represents an important environmental stress response in Aspergillus nidulans. It is mediated by the pal signalling pathway and the PacC transcription factor. Although studied extensively experimentally, the activation mechanism of PacC has not been quantified, and it is not clear how this activation is regulated. Here, by constructing mathematical models, we first show that the pattern of PacC activation observed in previously published experiments cannot be explained based on existing knowledge about PacC activation. Extending the model with a negative feedback loop is necessary to produce simulation results that are consistent with the data, suggesting the existence of a negative feedback loop in the PacC activation process. This extended model is then validated against published measurements for cells with drug treatment and mutant cells. Furthermore, we investigate the role of an intermediate form of PacC in the PacC activation process, and propose experiments that can be used to test our predictions. Our work illustrates how mathematical models can be used to uncover regulatory mechanisms in the transcription regulation, and generate hypotheses that guide further laboratory investigations.
Collapse
Affiliation(s)
- Ruian Ke
- Department of Mathematics, Imperial College London, United Kingdom.
| | | | | |
Collapse
|
44
|
Abstract
The human fungal pathogen Cryptococcus neoformans is characterized by its ability to induce a distinct polysaccharide capsule in response to a number of host-specific environmental stimuli. The induction of capsule is a complex biological process encompassing regulation at multiple steps, including the biosynthesis, transport, and maintenance of the polysaccharide at the cell surface. By precisely regulating the composition of its cell surface and secreted polysaccharides, C. neoformans has developed intricate ways to establish chronic infection and dormancy in the human host. The plasticity of the capsule structure in response to various host conditions also underscores the complex relationship between host and parasite. Much of this precise regulation of capsule is achieved through the transcriptional responses of multiple conserved signaling pathways that have been coopted to regulate this C. neoformans-specific virulence-associated phenotype. This review focuses on specific host stimuli that trigger the activation of the signal transduction cascades and on the downstream transcriptional responses that are required for robust encapsulation around the cell.
Collapse
|
45
|
Cupertino FB, Freitas FZ, de Paula RM, Bertolini MC. Ambient pH controls glycogen levels by regulating glycogen synthase gene expression in Neurospora crassa. New insights into the pH signaling pathway. PLoS One 2012; 7:e44258. [PMID: 22952943 PMCID: PMC3432076 DOI: 10.1371/journal.pone.0044258] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 07/31/2012] [Indexed: 01/15/2023] Open
Abstract
Glycogen is a polysaccharide widely distributed in microorganisms and animal cells and its metabolism is under intricate regulation. Its accumulation in a specific situation results from the balance between glycogen synthase and glycogen phosphorylase activities that control synthesis and degradation, respectively. These enzymes are highly regulated at transcriptional and post-translational levels. The existence of a DNA motif for the Aspergillus nidulans pH responsive transcription factor PacC in the promoter of the gene encoding glycogen synthase (gsn) in Neurospora crassa prompted us to investigate whether this transcription factor regulates glycogen accumulation. Transcription factors such as PacC in A. nidulans and Rim101p in Saccharomyces cerevisiae play a role in the signaling pathway that mediates adaptation to ambient pH by inducing the expression of alkaline genes and repressing acidic genes. We showed here that at pH 7.8 pacC was over-expressed and gsn was down-regulated in wild-type N. crassa coinciding with low glycogen accumulation. In the pacCKO strain the glycogen levels and gsn expression at alkaline pH were, respectively, similar to and higher than the wild-type strain at normal pH (5.8). These results characterize gsn as an acidic gene and suggest a regulatory role for PACC in gsn expression. The truncated recombinant protein, containing the DNA-binding domain specifically bound to a gsn DNA fragment containing the PacC motif. DNA-protein complexes were observed with extracts from cells grown at normal and alkaline pH and confirmed by ChIP-PCR analysis. The PACC present in these extracts showed equal molecular mass, indicating that the protein is already processed at normal pH, in contrast to A. nidulans. Together, these results show that the pH signaling pathway controls glycogen accumulation by regulating gsn expression and suggest the existence of a different mechanism for PACC activation in N. crassa.
Collapse
Affiliation(s)
- Fernanda Barbosa Cupertino
- Departamento de Bioquímica e Tecnologia Química, Instituto de Química, Universidade Estadual Paulista, UNESP, Araraquara, São Paulo, Brazil
| | - Fernanda Zanolli Freitas
- Departamento de Bioquímica e Tecnologia Química, Instituto de Química, Universidade Estadual Paulista, UNESP, Araraquara, São Paulo, Brazil
| | | | - Maria Célia Bertolini
- Departamento de Bioquímica e Tecnologia Química, Instituto de Química, Universidade Estadual Paulista, UNESP, Araraquara, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
46
|
Edgerton-Morgan H, Oakley BR. γ-Tubulin plays a key role in inactivating APC/C(Cdh1) at the G(1)-S boundary. ACTA ACUST UNITED AC 2012; 198:785-91. [PMID: 22927465 PMCID: PMC3432763 DOI: 10.1083/jcb.201203115] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Failure to inactivate APC/CCdhA at the G1–S boundary of the cell cycle as a result of a γ-tubulin mutation that disrupts the APC/CCdhA localization prevents cell cycle progression. A γ-tubulin mutation in Aspergillus nidulans, mipA-D159, causes failure of inactivation of the anaphase-promoting complex/cyclosome (APC/C) in interphase, resulting in failure of cyclin B (CB) accumulation and removal of nuclei from the cell cycle. We have investigated the role of CdhA, the A. nidulans homologue of the APC/C activator protein Cdh1, in γ-tubulin–dependent inactivation of the APC/C. CdhA was not essential, but it targeted CB for destruction in G1, and APC/CCdhA had to be inactivated for the G1–S transition. mipA-D159 altered the localization pattern of CdhA, and deletion of the gene encoding CdhA allowed CB to accumulate in all nuclei in strains carrying mipA-D159. These data indicate that mipA-D159 causes a failure of inactivation of APC/CCdhA at G1–S, perhaps by altering its localization to the spindle pole body, and, thus, that γ-tubulin plays an important role in inactivating APC/CCdhA at this point in the cell cycle.
Collapse
|
47
|
Liu S, Peng G, Xia Y. The adenylate cyclase gene MaAC is required for virulence and multi-stress tolerance of Metarhizium acridum. BMC Microbiol 2012; 12:163. [PMID: 22853879 PMCID: PMC3438079 DOI: 10.1186/1471-2180-12-163] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 07/26/2012] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND The efficacy of entomopathogenic fungi in pest control is mainly affected by various adverse environmental factors, such as heat shock and UV-B radiation, and by responses of the host insect, such as oxidative stress, osmotic stress and fever. In this study, an adenylate cyclase gene (MaAC) was cloned from the locust-specific entomopathogenic fungus, Metarhizium acridum, which is homologous to various fungal adenylate cyclase genes. RNA silencing was adapted to analyze the role of MaAC in virulence and tolerance to adverse environmental and host insect factors. RESULTS Compared with the wild type, the vegetative growth of the RNAi mutant was decreased in PD (potato dextrose medium), Czapek-dox and PDA plates, respectively, demonstrating that MaAC affected vegetative growth. The cAMP levels were also reduced in PD liquid culture, and exogenous cAMP restored the growth of RNAi mutants. These findings suggested that MaAC is involved in cAMP synthesis. The knockdown of MaAC by RNAi led to a reduction in virulence after injection or topical inoculation. Furthermore, the RNAi mutant grew much slower than the wild type in the haemolymph of locust in vitro and in vivo, thus demonstrating that MaAC affects the virulence of M. acridum via fungal growth inside the host locust. A plate assay indicated that the tolerances of the MaAC RNAi mutant under oxidative stress, osmotic stress, heat shock and UV-B radiation was decreased compared with the wild type. CONCLUSION MaAC is required for virulence and tolerance to oxidative stress, osmotic stress, heat shock and UV-B radiation. MaAC affects fungal virulence via vegetative growth inside the insect and tolerance against oxidative stress, osmotic stress and locust fever.
Collapse
Affiliation(s)
- Shuyang Liu
- Genetic Engineering Research Center, College of Bioengineering, Chongqing University, Chongqing, 400030, P. R. China
- Chongqing Engineering Research Center for Fungal Insecticides, Chongqing, 400030, P. R. China
- Key Lab of Functional Gene and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing, 400030, P. R. China
| | - Guoxiong Peng
- Genetic Engineering Research Center, College of Bioengineering, Chongqing University, Chongqing, 400030, P. R. China
- Chongqing Engineering Research Center for Fungal Insecticides, Chongqing, 400030, P. R. China
- Key Lab of Functional Gene and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing, 400030, P. R. China
| | - Yuxian Xia
- Genetic Engineering Research Center, College of Bioengineering, Chongqing University, Chongqing, 400030, P. R. China
- Chongqing Engineering Research Center for Fungal Insecticides, Chongqing, 400030, P. R. China
- Key Lab of Functional Gene and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing, 400030, P. R. China
| |
Collapse
|
48
|
Abenza JF, Galindo A, Pinar M, Pantazopoulou A, de los Ríos V, Peñalva MA. Endosomal maturation by Rab conversion in Aspergillus nidulans is coupled to dynein-mediated basipetal movement. Mol Biol Cell 2012; 23:1889-901. [PMID: 22456509 PMCID: PMC3350553 DOI: 10.1091/mbc.e11-11-0925] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Highly motile fungal early endosomes can be easily distinguished from more static late endosomes and vacuoles, a feature that is exploited to study endosomal maturation. RabA/RabB early endosomes mature into RabSRab7 late endosomes as they move away from the tip where endocytosis predominates, augmenting their size, with concomitant loss of motility. We exploit the ease with which highly motile early endosomes are distinguished from static late endosomes in order to study Aspergillus nidulans endosomal traffic. RabSRab7 mediates homotypic fusion of late endosomes/vacuoles in a homotypic fusion- and vacuole protein sorting/Vps41–dependent manner. Progression across the endocytic pathway involves endosomal maturation because the end products of the pathway in the absence of RabSRab7 are minivacuoles that are competent in multivesicular body sorting and cargo degradation but retain early endosomal features, such as the ability to undergo long-distance movement and propensity to accumulate in the tip region if dynein function is impaired. Without RabSRab7, early endosomal Rab5s—RabA and RabB—reach minivacuoles, in agreement with the view that Rab7 homologues facilitate the release of Rab5 homologues from endosomes. RabSRab7 is recruited to membranes already at the stage of late endosomes still lacking vacuolar morphology, but the transition between early and late endosomes is sharp, as only in a minor proportion of examples are RabA/RabB and RabSRab7 detectable in the same—frequently the less motile—structures. This early-to-late endosome/vacuole transition is coupled to dynein-dependent movement away from the tip, resembling the periphery-to-center traffic of endosomes accompanying mammalian cell endosomal maturation. Genetic studies establish that endosomal maturation is essential, whereas homotypic vacuolar fusion is not.
Collapse
Affiliation(s)
- Juan F Abenza
- Departamento de Medicina Molecular y Celular, Centro de Investigaciones Biológicas del Consejo Superior de Investigaciones Cientificas, 28040 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
49
|
Galindo A, Calcagno-Pizarelli AM, Arst HN, Peñalva MÁ. An ordered pathway for the assembly of fungal ESCRT-containing ambient pH signalling complexes at the plasma membrane. J Cell Sci 2012; 125:1784-95. [PMID: 22344261 PMCID: PMC3346829 DOI: 10.1242/jcs.098897] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The fungal pal/RIM signalling pathway, which regulates gene expression in response to environmental pH involves, in addition to dedicated proteins, several components of ESCRT complexes, which suggested that pH signalling proteins assemble on endosomal platforms. In Aspergillus nidulans, dedicated Pal proteins include the plasma membrane receptor PalH and its coupled arrestin, PalF, which becomes ubiquitylated in alkaline pH conditions, and three potentially endosomal ESCRT-III associates, including Vps32 interactors PalA and PalC and Vps24 interactor calpain-like PalB. We studied the subcellular locations at which signalling takes place after activating the pathway by shifting ambient pH to alkalinity. Rather than localising to endosomes, Vps32 interactors PalA and PalC transiently colocalise at alkaline-pH-induced cortical structures in a PalH-, Vps23- and Vps32-dependent but Vps27-independent manner. These cortical structures are much more stable when Vps4 is deficient, indicating that their half-life depends on ESCRT-III disassembly. Pull-down studies revealed that Vps23 interacts strongly with PalF, but co-immunoprecipitates exclusively with ubiquitylated PalF forms from extracts. We demonstrate that Vps23-GFP, expressed at physiological levels, is also recruited to cortical structures, very conspicuous in vps27Δ cells in which the prominent signal of Vps23-GFP on endosomes is eliminated, in a PalF- and alkaline pH-dependent manner. Dual-channel epifluorescence microscopy showed that PalC arrives at cortical complexes before PalA. As PalC recruitment is PalA independent and PalA recruitment is PalC dependent but PalB independent, these data complete the participation order of Pal proteins in the pathway and strongly support a model in which pH signalling takes place in ESCRT-containing, plasma-membrane-associated, rather than endosome-associated, complexes.
Collapse
Affiliation(s)
- Antonio Galindo
- Department of Molecular Medicine, Centro de Investigaciones Biológicas CSIC, Madrid, Spain
| | | | | | | |
Collapse
|
50
|
Calcagno-Pizarelli AM, Hervás-Aguilar A, Galindo A, Abenza JF, Peñalva MA, Arst HN. Rescue of Aspergillus nidulans severely debilitating null mutations in ESCRT-0, I, II and III genes by inactivation of a salt-tolerance pathway allows examination of ESCRT gene roles in pH signalling. J Cell Sci 2011; 124:4064-76. [PMID: 22135362 PMCID: PMC3244986 DOI: 10.1242/jcs.088344] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The Aspergillus pal pathway hijacks ESCRT proteins into ambient pH signalling complexes. We show that components of ESCRT-0, ESCRT-I, ESCRT-II and ESCRT-III are nearly essential for growth, precluding assessment of null mutants for pH signalling or trafficking. This severely debilitating effect is rescued by loss-of-function mutations in two cation tolerance genes, one of which, sltA, encodes a transcription factor whose inactivation promotes hypervacuolation. Exploiting a conditional expression sltA allele, we demonstrate that deletion of vps27 (ESCRT-0), vps23 (ESCRT-I), vps36 (ESCRT-II), or vps20 or vps32 (both ESCRT-III) leads to numerous small vacuoles, a phenotype also suppressed by SltA downregulation. This situation contrasts with normal vacuoles and vacuole-associated class E compartments seen in Saccharomyces cerevisiae ESCRT null mutants. Exploiting the suppressor phenotype of sltA− mutations, we establish that Vps23, Vps36, Vps20 and Vps32 are essential for pH signalling. Phosphatidylinositol 3-phosphate-recognising protein Vps27 (ESCRT-0) is not, consistent with normal pH signalling in rabB null mutants unable to recruit Vps34 kinase to early endosomes. In contrast to the lack of pH signalling in the absence of Vps20 or Vps32, detectable signalling occurs in the absence of ESCRT-III subunit Vps24. Our data support a model in which certain ESCRT proteins are recruited to the plasma membrane to mediate pH signalling.
Collapse
Affiliation(s)
- Ana M Calcagno-Pizarelli
- Section of Microbiology, Imperial College London, Flowers Building, Armstrong Road, London SW7 2AZ, UK
| | | | | | | | | | | |
Collapse
|