1
|
Shahriari S, Ghildyal R. The actin-binding protein palladin associates with the respiratory syncytial virus matrix protein. J Virol 2024; 98:e0143524. [PMID: 39360826 PMCID: PMC11494977 DOI: 10.1128/jvi.01435-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 09/09/2024] [Indexed: 10/23/2024] Open
Abstract
The respiratory syncytial virus (RSV) matrix (M) protein plays an important role in infection as it can interact with viral components as well as the host cell actin microfilaments. The M-actin interaction may play a role in facilitating the transportation of virion components to the apical surface, where RSV is released. We show that M protein's association with actin is facilitated by palladin, an actin-binding protein. Cells were infected with RSV or transfected to express full-length M as a green fluorescent protein (GFP)-tagged protein, followed by removal of nuclear and cytosolic proteins to enrich for cytoskeleton and its associated proteins. M protein was present in inclusion bodies tethered to microfilaments in infected cells. In transfected cells, GFP-M was presented close to microfilaments, without association, suggesting the possible involvement of an additional protein in this interaction. As palladin can bind to proteins that also bind actin, we investigated its interaction with M. Cells were co-transfected to express GFP-M and palladin as an mCherry fluorescent-tagged protein, followed by cytoskeleton enrichment. M and palladin were observed to colocalize towards microfilaments, suggesting that palladin is involved in the M-actin interaction. In co-immunoprecipitation studies, M was found to associate with two isoforms of palladin, of 140 and 37 kDa. Interestingly, siRNA downregulation of palladin resulted in reduced titer of released RSV, while cell associated RSV titer increased, suggesting a role for palladin in virus release. Together, our data show that the M-actin interaction mediated by palladin is important for RSV budding and release.IMPORTANCERespiratory syncytial virus is responsible for severe lower respiratory tract infections in young children under 5 years old, the elderly, and the immunosuppressed. The interaction of the respiratory syncytial virus matrix protein with the host actin cytoskeleton is important in infection but has not been investigated in depth. In this study, we show that the respiratory syncytial virus matrix protein associates with actin microfilaments and the actin-binding protein palladin, suggesting a role for palladin in respiratory syncytial virus release. This study provides new insight into the role of the actin cytoskeleton in respiratory syncytial virus infection, a key host-RSV interaction in assembly. Understanding the mechanism by which the RSV M protein and actin interact will ultimately provide a basis for the development of therapeutics targeted at RSV infections.
Collapse
Affiliation(s)
- Shadi Shahriari
- Biomedical Research Cluster, Faculty of Science and Technology, University of Canberra, Canberra, Australia
| | - Reena Ghildyal
- Biomedical Research Cluster, Faculty of Science and Technology, University of Canberra, Canberra, Australia
| |
Collapse
|
2
|
Nguyen NUN, Hsu CC, Ali SR, Wang HV. Actin-organizing protein palladin modulates C2C12 cell fate determination. Biochem Biophys Rep 2024; 39:101762. [PMID: 39026565 PMCID: PMC11255515 DOI: 10.1016/j.bbrep.2024.101762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/28/2024] [Accepted: 06/20/2024] [Indexed: 07/20/2024] Open
Abstract
Background Cell confluency and serum deprivation promote the transition of C2C12 myoblasts into myocytes and subsequence fusion into myotubes. However, despite all myoblasts undergoing the same serum deprivation trigger, their responses vary: whether they become founder myocytes, remain proliferative, or evolve into fusion-competent myocytes remains unclear. We have previously shown that depletion of the scaffolding protein palladin in myoblasts inhibits cell migration and promotes premature muscle differentiation, pointing to its potential significance in muscle development and the necessity for a more in-depth examination of its function in cellular heterogeneity. Methods and results Here, we showed that the subcellular localization of palladin might contribute to founder-fate cell decision in the early differentiation process. Depleting palladin in C2C12 myoblasts depleted integrin-β3 plasma membrane localization of and focal adhesion formation at the early stage of myogenesis, decreased kindlin-2 and metavinculin expression during the myotube maturation process, leading to the inability of myocytes to fuse into preexisting mature myotubes. This aligns with previous findings where early differentiation into nascent myotubes occurred but compromised maturation. In contrast, wildtype C2C12 overexpressing the 140-kDa palladin isoform developed a polarized morphology with star-like structures toward other myoblasts. However, this behaviour was not observed in palladin-depleted cells, where the 140-kDa palladin overexpression could not recover cell migration capacity, suggesting other palladin isoforms are also needed to establish cell polarity. Conclusion Our study identifies a counter-intuitive role for palladin in regulating myoblast-to-myocyte cell fate decisions and impacting their ability to form mature multinucleated myotubes by influencing cell signalling pathways and cytoskeletal organization, necessary for skeletal muscle regeneration and repair studies.
Collapse
Affiliation(s)
- Ngoc Uyen Nhi Nguyen
- Department of Life Sciences, National Cheng Kung University, 1 University Road, Tainan, 70101, Taiwan
- Division of Cardiology, Department of Internal Medicine, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
| | - Ching-Cheng Hsu
- Institute of Basic Medical Science, National Cheng Kung University, 1 University Road, Tainan, 70101, Taiwan
- Division of Cardiology, Department of Internal Medicine, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
| | - Shah R. Ali
- Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York, USA
| | - Hao-Ven Wang
- Department of Life Sciences, National Cheng Kung University, 1 University Road, Tainan, 70101, Taiwan
- University Center for Bioscience and Biotechnology, National Cheng Kung University, 1 University Road, Tainan, 70101, Taiwan
- Marine Biology and Cetacean Research Center, National Cheng Kung University, 1 University Road, Tainan, 70101, Taiwan
| |
Collapse
|
3
|
Sargent R, Liu DH, Yadav R, Glennenmeier D, Bradford C, Urbina N, Beck MR. Integrated structural model of the palladin-actin complex using XL-MS, docking, NMR, and SAXS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.25.609580. [PMID: 39229147 PMCID: PMC11370566 DOI: 10.1101/2024.08.25.609580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Palladin is an actin binding protein that accelerates actin polymerization and is linked to metastasis of several types of cancer. Previously, three lysine residues in an immunoglobulin-like domain of palladin have been identified as essential for actin binding. However, it is still unknown where palladin binds to F-actin. Evidence that palladin binds to the sides of actin filaments to facilitate branching is supported by our previous study showing that palladin was able to compensate for Arp2/3 in the formation of Listeria actin comet tails. Here, we used chemical crosslinking to covalently link palladin and F-actin residues based on spatial proximity. Samples were then enzymatically digested, separated by liquid chromatography, and analyzed by tandem mass spectrometry. Peptides containing the crosslinks and specific residues involved were then identified for input to HADDOCK docking server to model the most likely binding conformation. Small angle X-ray scattering was used to provide further insight into palladin flexibility and the binding interface, and NMR spectra identified potential interactions between palladin's Ig domains. Our final structural model of the F-actin:palladin complex revealed how palladin interacts with and stabilizes F-actin at the interface between two actin monomers. Three actin residues that were identified in this study also appear commonly in the actin binding interface with other proteins such as myotilin, myosin, and tropomodulin. An accurate structural representation of the complex between palladin and actin extends our understanding of palladin's role in promoting cancer metastasis through regulation of actin dynamics. Significance In this study we have combined various advanced structural biology techniques to provide the first comprehensive model of the palladin-actin complex. Considering palladin's role in cancer cell metastasis, this structure could be useful in screening and developing chemotherapeutic agents that target this interaction and prevent cancer cell metastasis.
Collapse
|
4
|
Ooi E, Xiang R, Chamberlain AJ, Goddard ME. Archetypal clustering reveals physiological mechanisms linking milk yield and fertility in dairy cattle. J Dairy Sci 2024; 107:4726-4742. [PMID: 38369117 DOI: 10.3168/jds.2023-23699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 01/11/2024] [Indexed: 02/20/2024]
Abstract
Fertility in dairy cattle has declined as an unintended consequence of single-trait selection for high milk yield. The unfavorable genetic correlation between milk yield and fertility is now well documented; however, the underlying physiological mechanisms are still uncertain. To understand the relationship between these traits, we developed a method that clusters variants with similar patterns of effects and, after the integration of gene expression data, identifies the genes through which they are likely to act. Biological processes that are enriched in the genes of each cluster were then identified. We identified several clusters with unique patterns of effects. One of the clusters included variants associated with increased milk yield and decreased fertility, where the "archetypal" variant (i.e., the one with the largest effect) was associated with the GC gene, whereas others were associated with TRIM32, LRRK2, and U6-associated snRNA. These genes have been linked to transcription and alternative splicing, suggesting that these processes are likely contributors to the unfavorable relationship between the 2 traits. Another cluster, with archetypal variant near DGAT1 and including variants associated with CDH2, BTRC, SFRP2, ZFHX3, and SLITRK5, appeared to affect milk yield but have little effect on fertility. These genes have been linked to insulin, adipose tissue, and energy metabolism. A third cluster with archetypal variant near ZNF613 and including variants associated with ROBO1, EFNA5, PALLD, GPC6, and PTPRT were associated with fertility but not milk yield. These genes have been linked to GnRH neuronal migration, embryonic development, or ovarian function. The use of archetypal clustering to group variants with similar patterns of effects may assist in identifying the biological processes underlying correlated traits. The method is hypothesis generating and requires experimental confirmation. However, we have uncovered several novel mechanisms potentially affecting milk production and fertility such as GnRH neuronal migration. We anticipate our method to be a starting point for experimental research into novel pathways, which have been previously unexplored within the context of dairy production.
Collapse
Affiliation(s)
- E Ooi
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Melbourne, Victoria 3010, Australia; Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, Victoria 3083, Australia.
| | - R Xiang
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Melbourne, Victoria 3010, Australia; Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, Victoria 3083, Australia
| | - A J Chamberlain
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, Victoria 3083, Australia; School of Applied Systems Biology, La Trobe University, Bundoora, Victoria 3083, Australia
| | - M E Goddard
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Melbourne, Victoria 3010, Australia; Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, Victoria 3083, Australia
| |
Collapse
|
5
|
Tawfeeq C, Song J, Khaniya U, Madej T, Wang J, Youkharibache P, Abrol R. Towards a structural and functional analysis of the immunoglobulin-fold proteome. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 138:135-178. [PMID: 38220423 DOI: 10.1016/bs.apcsb.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
The immunoglobulin fold (Ig fold) domain is a super-secondary structural motif consisting of a sandwich with two layers of β-sheets that is present in many proteins with very diverse biological functions covering a wide range of physiological processes. This domain presents a modular architecture built with β strands connected by variable length loops that has a highly conserved structural core of four β-strands and quite variable β-sheet extensions in the two sandwich layers that enable both divergent and convergent evolutionary mechanisms in the known Ig fold proteome. The central role of this Ig fold's structural plasticity in the evolutionary success of antibodies in our immune system is well established. Nature has also utilized this Ig fold in all domains of life in many different physiological contexts that go way beyond the immune system. Here we will present a structural and functional overview of the utilization of the Ig fold in different biological processes and in different cellular contexts to highlight some of the innumerable ways that this structural motif can interact in multidomain proteins to enable their diversity of functions. This includes shareable specific protein structure visualizations behind those functions that serve as starting points for further explorations of the biomolecular interactions spanning the Ig fold proteome. This overview also highlights how this Ig fold is being utilized through natural adaptation, engineering, and even building from scratch for a range of biotechnological applications.
Collapse
Affiliation(s)
- Caesar Tawfeeq
- Department of Chemistry and Biochemistry, California State University Northridge, Northridge, United States
| | - James Song
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, United States
| | - Umesh Khaniya
- Cancer Data Science Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, United States
| | - Thomas Madej
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, United States
| | - Jiyao Wang
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, United States
| | - Philippe Youkharibache
- Cancer Data Science Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, United States.
| | - Ravinder Abrol
- Department of Chemistry and Biochemistry, California State University Northridge, Northridge, United States.
| |
Collapse
|
6
|
Akdaş EY, Temizci B, Karabay A. miR96- and miR182-driven regulation of cytoskeleton results in inhibition of glioblastoma motility. Cytoskeleton (Hoboken) 2023; 80:367-381. [PMID: 36961307 DOI: 10.1002/cm.21754] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/15/2023] [Accepted: 03/08/2023] [Indexed: 03/25/2023]
Abstract
Glioblastoma multiforme (GBM) is one of the most common forms of brain tumor. As an excessively invasive tumor type, GBM cannot be fully cured due to its invasion ability into healthy brain tissues. Therefore, molecular mechanisms behind GBM migration and invasion need to be deeply investigated for the development of effective GBM treatments. Cellular motility and invasion are strictly associated with the cytoskeleton, especially with actins and tubulins. Palladin, an actin-binding protein, tightly bundles actins during initial invadopodia and contraction fiber formations, which are essential for cellular motility. Spastin, a microtubule-binding protein, cuts microtubules into small pieces and acts on invadopodia elongation and cellular trafficking of invadopodia-associated proteins. Regulation of proteins such as spastin and palladin involved in dynamic reorganization of the cytoskeleton, are rapidly carried out by microRNAs at the posttranscriptional level. Therefore, determining possible regulatory miRNAs of spastin and palladin is critical to elucidate GBM motility. miR96 and miR182 down-regulate SPAST and PALLD at both transcript and protein levels. Over-expression of miR96 and miR182 resulted in inhibition of the motility. However, over-expression of spastin and palladin induced the motility. Spastin and palladin rescue of miR96- or miR182-transfected U251 MG cells resulted in diminished effects of the miRNAs and rescued the motility. Our results demonstrate that miR96 and miR182 over-expressions inhibit GBM motility by regulating cytoskeleton through spastin and palladin. These findings suggest that miR96 and miR182 should be investigated in more detail for their potential use in GBM therapy.
Collapse
Affiliation(s)
- Enes Yağız Akdaş
- Department of Molecular Biology and Genetics, Istanbul Technical University, Maslak, Istanbul, Turkey
| | - Benan Temizci
- Department of Molecular Biology and Genetics, Istanbul Technical University, Maslak, Istanbul, Turkey
| | - Arzu Karabay
- Department of Molecular Biology and Genetics, Istanbul Technical University, Maslak, Istanbul, Turkey
| |
Collapse
|
7
|
Albraiki S, Ajiboye O, Sargent R, Beck MR. Functional comparison of full-length palladin to isolated actin binding domain. Protein Sci 2023; 32:e4638. [PMID: 37027210 PMCID: PMC10117391 DOI: 10.1002/pro.4638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 03/29/2023] [Accepted: 04/04/2023] [Indexed: 04/08/2023]
Abstract
Palladin is an actin binding protein that is specifically upregulated in metastatic cancer cells but also colocalizes with actin stress fibers in normal cells and is critical for embryonic development as well as wound healing. Of nine isoforms present in humans, only the 90 kDa isoform of palladin, comprising three immunoglobulin (Ig) domains and one proline-rich region, is ubiquitously expressed. Previous work has established that the Ig3 domain of palladin is the minimal binding site for F-actin. In this work, we compare functions of the 90 kDa isoform of palladin to the isolated actin binding domain. To understand the mechanism of action for how palladin can influence actin assembly, we monitored F-actin binding and bundling as well as actin polymerization, depolymerization, and copolymerization. Together, these results demonstrate that there are key differences between the Ig3 domain and full-length palladin in actin binding stoichiometry, polymerization, and interactions with G-actin. Understanding the role of palladin in regulating the actin cytoskeleton may help us develop means to prevent cancer cells from reaching the metastatic stage of cancer progression.
Collapse
Affiliation(s)
- Sharifah Albraiki
- Department of Chemistry and BiochemistryWichita State UniversityWichitaKansasUSA
- Department of Chemistry and GeosciencesJacksonville State UniversityJacksonvilleAlabamaUSA
| | - Oluwatosin Ajiboye
- Department of Chemistry and BiochemistryWichita State UniversityWichitaKansasUSA
| | - Rachel Sargent
- Department of Chemistry and BiochemistryWichita State UniversityWichitaKansasUSA
| | - Moriah R. Beck
- Department of Chemistry and BiochemistryWichita State UniversityWichitaKansasUSA
| |
Collapse
|
8
|
Deviatiiarov RM, Gams A, Kulakovskiy IV, Buyan A, Meshcheryakov G, Syunyaev R, Singh R, Shah P, Tatarinova TV, Gusev O, Efimov IR. An atlas of transcribed human cardiac promoters and enhancers reveals an important role of regulatory elements in heart failure. NATURE CARDIOVASCULAR RESEARCH 2023; 2:58-75. [PMID: 39196209 DOI: 10.1038/s44161-022-00182-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 11/02/2022] [Indexed: 08/29/2024]
Abstract
A deeper knowledge of the dynamic transcriptional activity of promoters and enhancers is needed to improve mechanistic understanding of the pathogenesis of heart failure and heart diseases. In this study, we used cap analysis of gene expression (CAGE) to identify and quantify the activity of transcribed regulatory elements (TREs) in the four cardiac chambers of 21 healthy and ten failing adult human hearts. We identified 17,668 promoters and 14,920 enhancers associated with the expression of 14,519 genes. We showed how these regulatory elements are alternatively transcribed in different heart regions, in healthy versus failing hearts and in ischemic versus non-ischemic heart failure samples. Cardiac-disease-related single-nucleotide polymorphisms (SNPs) appeared to be enriched in TREs, potentially affecting the allele-specific transcription factor binding. To conclude, our open-source heart CAGE atlas will serve the cardiovascular community in improving the understanding of the role of the cardiac gene regulatory networks in cardiovascular disease and therapy.
Collapse
Affiliation(s)
- Ruslan M Deviatiiarov
- Laboratory of Regulatory Genomics, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Anna Gams
- Department of Biomedical Engineering, The George Washington University, Washington, DC, USA
| | - Ivan V Kulakovskiy
- Laboratory of Regulatory Genomics, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Andrey Buyan
- Laboratory of Regulatory Genomics, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Russia
| | | | - Roman Syunyaev
- Department of Biomedical Engineering, The George Washington University, Washington, DC, USA
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Ramesh Singh
- Inova Heart and Vascular Institute, Falls Church, VA, USA
| | - Palak Shah
- Department of Biomedical Engineering, The George Washington University, Washington, DC, USA
- Inova Heart and Vascular Institute, Falls Church, VA, USA
| | - Tatiana V Tatarinova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia.
- Department of Biology, University of La Verne, La Verne, CA, USA.
| | - Oleg Gusev
- Laboratory of Regulatory Genomics, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia.
- Graduate School of Medicine, Juntendo University, Tokyo, Japan.
- RIKEN Center for Integrative Medical Sciences, RIKEN, Yokohama, Japan.
- Endocrinology Research Center, Moscow, Russia.
| | - Igor R Efimov
- Department of Biomedical Engineering, The George Washington University, Washington, DC, USA.
- Department of Biomedical Engineering, Northwestern University, Chicago, IL, USA.
- Department of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
9
|
Zhang T, Song C, Li H, Zheng Y, Zhang Y. Different Extracellular β-Amyloid (1-42) Aggregates Differentially Impair Neural Cell Adhesion and Neurite Outgrowth through Differential Induction of Scaffold Palladin. Biomolecules 2022; 12:biom12121808. [PMID: 36551236 PMCID: PMC9775237 DOI: 10.3390/biom12121808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/25/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Extracellular amyloid β-protein (1-42) (Aβ42) aggregates have been recognized as toxic agents for neural cells in vivo and in vitro. The aim of this study was to investigate the cytotoxic effects of extracellular Aβ42 aggregates in soluble (or suspended, SAβ42) and deposited (or attached, DAβ42) forms on cell adhesion/re-adhesion, neurite outgrowth, and intracellular scaffold palladin using the neural cell lines SH-SY5Y and HT22, and to elucidate the potential relevance of these effects. The effect of extracellular Aβ42 on neural cell adhesion was directly associated with their neurotrophic or neurotoxic activity, with SAβ42 aggregates reducing cell adhesion and associated live cell de-adherence more than DAβ42 aggregates, while causing higher mortality. The reduction in cell adhesion due to extracellular Aβ42 aggregates was accompanied by the impairment of neurite outgrowth, both in length and number, and similarly, SAβ42 aggregates impaired the extension of neurites more severely than DAβ42 aggregates. Further, the disparate changes of intracellular palladin induced by SAβ42 and DAβ42 aggregates, respectively, might underlie their aforementioned effects on target cells. Further, the use of anti-oligomeric Aβ42 scFv antibodies revealed that extracellular Aβ42 aggregates, especially large DAβ42 aggregates, had some independent detrimental effects, including physical barrier effects on neural cell adhesion and neuritogenesis in addition to their neurotoxicity, which might be caused by the rigid C-terminal clusters formed between adjacent Aβ42 chains in Aβ42 aggregates. Our findings, concerning how scaffold palladin responds to extracellular Aβ42 aggregates, and is closely connected with declines in cell adhesion and neurite outgrowth, provide new insights into the cytotoxicity of extracellular Aβ42 aggregates in Alzheimer disease.
Collapse
Affiliation(s)
- Tianyu Zhang
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun 130012, China
| | - Chuli Song
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun 130012, China
| | - He Li
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun 130012, China
| | - Yanru Zheng
- School of Life Science, Jilin University, Changchun 130012, China
| | - Yingjiu Zhang
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun 130012, China
- School of Life Science, Jilin University, Changchun 130012, China
- Correspondence:
| |
Collapse
|
10
|
Artelt N, Ritter AM, Leitermann L, Kliewe F, Schlüter R, Simm S, van den Brandt J, Endlich K, Endlich N. The podocyte-specific knockout of palladin in mice with a 129 genetic background affects podocyte morphology and the expression of palladin interacting proteins. PLoS One 2021; 16:e0260878. [PMID: 34879092 PMCID: PMC8654177 DOI: 10.1371/journal.pone.0260878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 11/18/2021] [Indexed: 11/19/2022] Open
Abstract
Proper and size selective blood filtration in the kidney depends on an intact morphology of podocyte foot processes. Effacement of interdigitating podocyte foot processes in the glomeruli causes a leaky filtration barrier resulting in proteinuria followed by the development of chronic kidney diseases. Since the function of the filtration barrier is depending on a proper actin cytoskeleton, we studied the role of the important actin-binding protein palladin for podocyte morphology. Podocyte-specific palladin knockout mice on a C57BL/6 genetic background (PodoPalldBL/6-/-) were back crossed to a 129 genetic background (PodoPalld129-/-) which is known to be more sensitive to kidney damage. Then we analyzed the morphological changes of glomeruli and podocytes as well as the expression of the palladin-binding partners Pdlim2, Lasp-1, Amotl1, ezrin and VASP in 6 and 12 months old mice. PodoPalld129-/- mice in 6 and 12 months showed a marked dilatation of the glomerular tuft and a reduced expression of the mesangial marker protein integrin α8 compared to controls of the same age. Furthermore, ultrastructural analysis showed significantly more podocytes with morphological deviations like an enlarged sub-podocyte space and regions with close contact to parietal epithelial cells. Moreover, PodoPalld129-/- of both age showed a severe effacement of podocyte foot processes, a significantly reduced expression of pLasp-1 and Pdlim2, and significantly reduced mRNA expression of Pdlim2 and VASP, three palladin-interacting proteins. Taken together, the results show that palladin is essential for proper podocyte morphology in mice with a 129 background.
Collapse
Affiliation(s)
- Nadine Artelt
- Institute for Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Alina M. Ritter
- Institute for Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Linda Leitermann
- Institute for Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Felix Kliewe
- Institute for Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Rabea Schlüter
- Imaging Center of the Department of Biology, University of Greifswald, Greifswald, Germany
| | - Stefan Simm
- Institute of Bioinformatics, University Medicine Greifswald, Greifswald, Germany
| | - Jens van den Brandt
- Central Core and Research Facility of Laboratory Animals (ZSFV), University Medicine Greifswald, Greifswald, Germany
| | - Karlhans Endlich
- Institute for Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Nicole Endlich
- Institute for Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
- * E-mail:
| |
Collapse
|
11
|
Kwon HK, Choi H, Park SG, Park WJ, Kim, DH, Park ZY. Integrated Quantitative Phosphoproteomics and Cell-based Functional Screening Reveals Specific Pathological Cardiac Hypertrophy-related Phosphorylation Sites. Mol Cells 2021; 44:500-516. [PMID: 34158421 PMCID: PMC8334354 DOI: 10.14348/molcells.2021.4002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 01/07/2019] [Indexed: 12/29/2022] Open
Abstract
Cardiac hypertrophic signaling cascades resulting in heart failure diseases are mediated by protein phosphorylation. Recent developments in mass spectrometry-based phosphoproteomics have led to the identification of thousands of differentially phosphorylated proteins and their phosphorylation sites. However, functional studies of these differentially phosphorylated proteins have not been conducted in a large-scale or high-throughput manner due to a lack of methods capable of revealing the functional relevance of each phosphorylation site. In this study, an integrated approach combining quantitative phosphoproteomics and cell-based functional screening using phosphorylation competition peptides was developed. A pathological cardiac hypertrophy model, junctate-1 transgenic mice and control mice, were analyzed using label-free quantitative phosphoproteomics to identify differentially phosphorylated proteins and sites. A cell-based functional assay system measuring hypertrophic cell growth of neonatal rat ventricle cardiomyocytes (NRVMs) following phenylephrine treatment was applied, and changes in phosphorylation of individual differentially phosphorylated sites were induced by incorporation of phosphorylation competition peptides conjugated with cell-penetrating peptides. Cell-based functional screening against 18 selected phosphorylation sites identified three phosphorylation sites (Ser-98, Ser-179 of Ldb3, and Ser-1146 of palladin) displaying near-complete inhibition of cardiac hypertrophic growth of NRVMs. Changes in phosphorylation levels of Ser-98 and Ser-179 in Ldb3 were further confirmed in NRVMs and other pathological/physiological hypertrophy models, including transverse aortic constriction and swimming models, using site-specific phospho-antibodies. Our integrated approach can be used to identify functionally important phosphorylation sites among differentially phosphorylated sites, and unlike conventional approaches, it is easily applicable for large-scale and/or high-throughput analyses.
Collapse
Affiliation(s)
- Hye Kyeong Kwon
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
| | - Hyunwoo Choi
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
| | - Sung-Gyoo Park
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
| | - Woo Jin Park
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
| | - Do Han Kim,
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
| | - Zee-Yong Park
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
| |
Collapse
|
12
|
Kostan J, Pavšič M, Puž V, Schwarz TC, Drepper F, Molt S, Graewert MA, Schreiner C, Sajko S, van der Ven PFM, Onipe A, Svergun DI, Warscheid B, Konrat R, Fürst DO, Lenarčič B, Djinović-Carugo K. Molecular basis of F-actin regulation and sarcomere assembly via myotilin. PLoS Biol 2021; 19:e3001148. [PMID: 33844684 PMCID: PMC8062120 DOI: 10.1371/journal.pbio.3001148] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 04/22/2021] [Accepted: 02/16/2021] [Indexed: 12/25/2022] Open
Abstract
Sarcomeres, the basic contractile units of striated muscle cells, contain arrays of thin (actin) and thick (myosin) filaments that slide past each other during contraction. The Ig-like domain-containing protein myotilin provides structural integrity to Z-discs-the boundaries between adjacent sarcomeres. Myotilin binds to Z-disc components, including F-actin and α-actinin-2, but the molecular mechanism of binding and implications of these interactions on Z-disc integrity are still elusive. To illuminate them, we used a combination of small-angle X-ray scattering, cross-linking mass spectrometry, and biochemical and molecular biophysics approaches. We discovered that myotilin displays conformational ensembles in solution. We generated a structural model of the F-actin:myotilin complex that revealed how myotilin interacts with and stabilizes F-actin via its Ig-like domains and flanking regions. Mutant myotilin designed with impaired F-actin binding showed increased dynamics in cells. Structural analyses and competition assays uncovered that myotilin displaces tropomyosin from F-actin. Our findings suggest a novel role of myotilin as a co-organizer of Z-disc assembly and advance our mechanistic understanding of myotilin's structural role in Z-discs.
Collapse
Affiliation(s)
- Julius Kostan
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Vienna, Austria
| | - Miha Pavšič
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Vid Puž
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Thomas C. Schwarz
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Vienna, Austria
| | - Friedel Drepper
- Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Sibylle Molt
- Institute for Cell Biology, Department of Molecular Cell Biology, University of Bonn, Bonn, Germany
| | | | - Claudia Schreiner
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Vienna, Austria
| | - Sara Sajko
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Vienna, Austria
| | - Peter F. M. van der Ven
- Institute for Cell Biology, Department of Molecular Cell Biology, University of Bonn, Bonn, Germany
| | - Adekunle Onipe
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Vienna, Austria
| | - Dmitri I. Svergun
- European Molecular Biology Laboratory, Hamburg Unit, c/o DESY, Hamburg, Germany
| | - Bettina Warscheid
- Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Robert Konrat
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Vienna, Austria
| | - Dieter O. Fürst
- Institute for Cell Biology, Department of Molecular Cell Biology, University of Bonn, Bonn, Germany
| | - Brigita Lenarčič
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
- Department of Biochemistry, Molecular and Structural Biology, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Kristina Djinović-Carugo
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Vienna, Austria
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
13
|
Xu D, Wang J, Ma Y, Ding J, Han X, Chen Y. Microcystin-leucine-arginine induces apical ectoplasmic specialization disassembly. CHEMOSPHERE 2021; 264:128440. [PMID: 33002802 DOI: 10.1016/j.chemosphere.2020.128440] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 09/13/2020] [Accepted: 09/23/2020] [Indexed: 06/11/2023]
Abstract
Microcystin-leucine-arginine (MC-LR) has been identified to be a hazardous material to cause hepatotoxicity. In this study, mice were exposed to MC-LR dissolved in drinking water at doses of 1, 10, 20 and 30 μg/L for 90 and 180 days, respectively. We validated MC-LR accelerated spermatid exfoliation and caused large vacuoles in testes, reducing sperm count and increasing percentage of morphologically abnormal sperm. Furthermore, we found MC-LR induced the apical ectoplasmic specialization (ES) disassembly by disrupting F-actin organization. Further studies identified that downregulation of Palladin, the actin crosslinking protein, might be associated with disassembly of the apical ES in mice testis following MC-LR exposure. We also confirmed that MC-LR disrupted the interaction between Palladin and other actin-related proteins and thus impeded the F-actin organization. Additionally, we found that autophagy initiated by AMPK/ULK1 signaling pathway mediated the degradation of Palladin in Sertoli cells challenged with MC-LR. Following exposure to MC-LR, reduced PP2A activity and upregulated expression of LKB1 and CAMKK2 could activate AMPK. In conclusion, these results revealed MC-LR induced the degradation of Palladin via AMPK/ULK1-mediated autophagy, which might result in the apical ES disorder and spermatid exfoliation from spermatogenic epithelium. Our work may provide a new perspective to understand MC-LR-induced male infertility.
Collapse
Affiliation(s)
- Dihui Xu
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, China.
| | - Jing Wang
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, China.
| | - Yuhan Ma
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, China.
| | - Jie Ding
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, China.
| | - Xiaodong Han
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, China.
| | - Yabing Chen
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, China.
| |
Collapse
|
14
|
Wang L, Yan M, Wu S, Wu X, Bu T, Wong CK, Ge R, Sun F, Cheng CY. Actin binding proteins, actin cytoskeleton and spermatogenesis – Lesson from toxicant models. Reprod Toxicol 2020; 96:76-89. [DOI: 10.1016/j.reprotox.2020.05.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/15/2020] [Accepted: 05/30/2020] [Indexed: 12/16/2022]
|
15
|
Vattepu R, Klausmeyer RA, Ayella A, Yadav R, Dille JT, Saiz SV, Beck MR. Conserved tryptophan mutation disrupts structure and function of immunoglobulin domain revealing unusual tyrosine fluorescence. Protein Sci 2020; 29:2062-2074. [PMID: 32797644 DOI: 10.1002/pro.3929] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 12/27/2022]
Abstract
Immunoglobulin (Ig) domains are the most prevalent protein domain structure and share a highly conserved folding pattern; however, this structural family of proteins is also the most diverse in terms of biological roles and tissue expression. Ig domains vary significantly in amino acid sequence but share a highly conserved tryptophan in the hydrophobic core of this beta-stranded protein. Palladin is an actin binding and bundling protein that has five Ig domains and plays an important role in normal cell adhesion and motility. Mutation of the core tryptophan in one Ig domain of palladin has been identified in a pancreatic cancer cell line, suggesting a crucial role for this sole tryptophan in palladin Ig domain structure, stability, and function. We found that actin binding and bundling was not completely abolished with removal of this tryptophan despite a partially unfolded structure and significantly reduced stability of the mutant Ig domain as shown by circular dichroism investigations. In addition, this mutant palladin domain displays a tryptophan-like fluorescence attributed to an anomalous tyrosine emission at 341 nm. Our results indicate that this emission originates from a tyrosinate that may be formed in the excited ground state by proton transfer to a nearby aspartic acid residue. Furthermore, this study emphasizes the importance of tryptophan in protein structural stability and illustrates how tyrosinate emission contributions may be overlooked during the interpretation of the fluorescence properties of proteins.
Collapse
Affiliation(s)
- Ravi Vattepu
- Chemistry Department, Wichita State University, Wichita, Kansas, USA
| | | | - Allan Ayella
- Chemistry Department, Wichita State University, Wichita, Kansas, USA.,Chemistry Department, Washburn University, Topeka, Kansas, USA
| | - Rahul Yadav
- Chemistry Department, Wichita State University, Wichita, Kansas, USA
| | - Joseph T Dille
- Chemistry Department, Wichita State University, Wichita, Kansas, USA
| | - Stan V Saiz
- Chemistry Department, Wichita State University, Wichita, Kansas, USA
| | - Moriah R Beck
- Chemistry Department, Wichita State University, Wichita, Kansas, USA
| |
Collapse
|
16
|
Filomena MC, Yamamoto DL, Caremani M, Kadarla VK, Mastrototaro G, Serio S, Vydyanath A, Mutarelli M, Garofalo A, Pertici I, Knöll R, Nigro V, Luther PK, Lieber RL, Beck MR, Linari M, Bang M. Myopalladin promotes muscle growth through modulation of the serum response factor pathway. J Cachexia Sarcopenia Muscle 2020; 11:169-194. [PMID: 31647200 PMCID: PMC7015241 DOI: 10.1002/jcsm.12486] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 07/01/2019] [Accepted: 07/22/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Myopalladin (MYPN) is a striated muscle-specific, immunoglobulin-containing protein located in the Z-line and I-band of the sarcomere as well as the nucleus. Heterozygous MYPN gene mutations are associated with hypertrophic, dilated, and restrictive cardiomyopathy, and homozygous loss-of-function truncating mutations have recently been identified in patients with cap myopathy, nemaline myopathy, and congenital myopathy with hanging big toe. METHODS Constitutive MYPN knockout (MKO) mice were generated, and the role of MYPN in skeletal muscle was studied through molecular, cellular, biochemical, structural, biomechanical, and physiological studies in vivo and in vitro. RESULTS MKO mice were 13% smaller compared with wild-type controls and exhibited a 48% reduction in myofibre cross-sectional area (CSA) and significantly increased fibre number. Similarly, reduced myotube width was observed in MKO primary myoblast cultures. Biomechanical studies showed reduced isometric force and power output in MKO mice as a result of the reduced CSA, whereas the force developed by each myosin molecular motor was unaffected. While the performance by treadmill running was similar in MKO and wild-type mice, MKO mice showed progressively decreased exercise capability, Z-line damage, and signs of muscle regeneration following consecutive days of downhill running. Additionally, MKO muscle exhibited progressive Z-line widening starting from 8 months of age. RNA-sequencing analysis revealed down-regulation of serum response factor (SRF)-target genes in muscles from postnatal MKO mice, important for muscle growth and differentiation. The SRF pathway is regulated by actin dynamics as binding of globular actin to the SRF-cofactor myocardin-related transcription factor A (MRTF-A) prevents its translocation to the nucleus where it binds and activates SRF. MYPN was found to bind and bundle filamentous actin as well as interact with MRTF-A. In particular, while MYPN reduced actin polymerization, it strongly inhibited actin depolymerization and consequently increased MRTF-A-mediated activation of SRF signalling in myogenic cells. Reduced myotube width in MKO primary myoblast cultures was rescued by transduction with constitutive active SRF, demonstrating that MYPN promotes skeletal muscle growth through activation of the SRF pathway. CONCLUSIONS Myopalladin plays a critical role in the control of skeletal muscle growth through its effect on actin dynamics and consequently the SRF pathway. In addition, MYPN is important for the maintenance of Z-line integrity during exercise and aging. These results suggest that muscle weakness in patients with biallelic MYPN mutations may be associated with reduced myofibre CSA and SRF signalling and that the disease phenotype may be aggravated by exercise.
Collapse
Affiliation(s)
- Maria Carmela Filomena
- Institute of Genetic and Biomedical Research (IRGB), Milan UnitNational Research CouncilMilanItaly
- Humanitas Clinical and Research CenterRozzanoMilanItaly
| | - Daniel L. Yamamoto
- Institute of Genetic and Biomedical Research (IRGB), Milan UnitNational Research CouncilMilanItaly
| | - Marco Caremani
- Department of BiologyUniversity of FlorenceSesto FiorentinoFlorenceItaly
| | | | | | - Simone Serio
- Humanitas Clinical and Research CenterRozzanoMilanItaly
| | | | | | - Arcamaria Garofalo
- Telethon Institute of Genetics and Medicine (TIGEM)PozzuoliItaly
- Department of Precision MedicineUniversity of Campania “Luigi Vanvitelli”NaplesItaly
| | - Irene Pertici
- Department of BiologyUniversity of FlorenceSesto FiorentinoFlorenceItaly
| | - Ralph Knöll
- Integrated Cardio Metabolic Centre (ICMC), Myocardial GeneticsKarolinska Institutet, University Hospital, Heart and Vascular ThemeSweden
- Research and Early Development, Cardiovascular, Renal and Metabolic Diseases (CVRM), Biopharmaceuticals R&DAstraZenecaMölndalSweden
| | - Vincenzo Nigro
- Telethon Institute of Genetics and Medicine (TIGEM)PozzuoliItaly
- Department of Precision MedicineUniversity of Campania “Luigi Vanvitelli”NaplesItaly
| | | | - Richard L. Lieber
- Shirley Ryan AbilityLab and Hines V.A. Medical Center ChicagoChicagoILUSA
- Department of Physical Medicine and RehabilitationNorthwestern UniversityChicagoILUSA
- Department of Orthopaedic SurgeryUniversity of California San DiegoLa JollaCAUSA
| | - Moriah R. Beck
- Department of ChemistryWichita State UniversityWichitaKSUSA
| | - Marco Linari
- Department of BiologyUniversity of FlorenceSesto FiorentinoFlorenceItaly
| | - Marie‐Louise Bang
- Institute of Genetic and Biomedical Research (IRGB), Milan UnitNational Research CouncilMilanItaly
- Humanitas Clinical and Research CenterRozzanoMilanItaly
| |
Collapse
|
17
|
Krokhotin A, Sarker M, Sevilla EA, Costantini LM, Griffith JD, Campbell SL, Dokholyan NV. Distinct Binding Modes of Vinculin Isoforms Underlie Their Functional Differences. Structure 2019; 27:1527-1536.e3. [PMID: 31422909 PMCID: PMC6774862 DOI: 10.1016/j.str.2019.07.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 05/23/2019] [Accepted: 07/23/2019] [Indexed: 12/11/2022]
Abstract
Vinculin and its splice isoform metavinculin play key roles in regulating cellular morphology, motility, and force transduction. Vinculin is distinct from metavinculin in its ability to bundle filamentous actin (F-actin). To elucidate the molecular basis for these differences, we employed computational and experimental approaches. Results from these analyses suggest that the C terminus of both vinculin and metavinculin form stable interactions with the F-actin surface. However, the metavinculin tail (MVt) domain contains a 68 amino acid insert, with helix 1 (H1) sequestered into a globular subdomain, which protrudes from the F-actin surface and prevents actin bundling by sterically occluding actin filaments. Consistent with our model, deletion and selective point mutations within the MVt H1 disrupt this protruding structure, and facilitate actin bundling similar to vinculin tail (Vt) domain.
Collapse
Affiliation(s)
- Andrey Krokhotin
- Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Departments of Pathology, Genetics and Developmental Biology, Howard Hughes Medical Institute, Stanford Medical School, Palo Alto, CA 94305, USA
| | - Muzaddid Sarker
- Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Ernesto Alva Sevilla
- Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Lindsey M Costantini
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jack D Griffith
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Sharon L Campbell
- Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Nikolay V Dokholyan
- Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Departments of Pharmacology and Departments of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA 17033, USA.
| |
Collapse
|
18
|
Ono K, Qin Z, Johnsen RC, Baillie DL, Ono S. Kettin, the large actin-binding protein with multiple immunoglobulin domains, is essential for sarcomeric actin assembly and larval development in Caenorhabditis elegans. FEBS J 2019; 287:659-670. [PMID: 31411810 DOI: 10.1111/febs.15039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/29/2019] [Accepted: 08/12/2019] [Indexed: 12/30/2022]
Abstract
Among many essential genes in the nematode Caenorhabditis elegans, let-330 is located on the left arm of chromosome V and was identified as the largest target of a mutagen in this region. However, let-330 gene has not been characterized at the molecular level. Here, we report that two sequenced let-330 alleles are nonsense mutations of ketn-1, a previously characterized gene encoding kettin. Kettin is a large actin-binding protein of 472 kDa with 31 immunoglobulin domains and is expressed in muscle cells in C. elegans. let-330/ketn-1 mutants are homozygous lethal at the first larval stage with mild defects in body elongation. These mutants have severe defects in sarcomeric actin and myosin assembly in striated muscle. However, α-actinin and vinculin, which are components of the dense bodies anchoring actin to the membranes, were not significantly disorganized by let-330/ketn-1 mutation. Kettin localizes to embryonic myofibrils before α-actinin is expressed, and α-actinin deficiency does not affect kettin localization in larval muscle. Depletion of vinculin minimally affects kettin localization but significantly reduces colocalization of actin with kettin in embryonic muscle cells. These results indicate that kettin is an essential protein for sarcomeric assembly of actin filaments in muscle cells.
Collapse
Affiliation(s)
- Kanako Ono
- Department of Pathology, Emory University, Atlanta, GA, USA.,Department of Cell Biology, Emory University, Atlanta, GA, USA.,Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Zhaozhao Qin
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada
| | - Robert C Johnsen
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada
| | - David L Baillie
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada
| | - Shoichiro Ono
- Department of Pathology, Emory University, Atlanta, GA, USA.,Department of Cell Biology, Emory University, Atlanta, GA, USA.,Winship Cancer Institute, Emory University, Atlanta, GA, USA
| |
Collapse
|
19
|
Abstract
The interactions of cytoskeletal actin filaments with myosin family motors are essential for the integrity and function of eukaryotic cells. They support a wide range of force-dependent functions. These include mechano-transduction, directed transcellular transport processes, barrier functions, cytokinesis, and cell migration. Despite the indispensable role of tropomyosins in the generation and maintenance of discrete actomyosin-based structures, the contribution of individual cytoskeletal tropomyosin isoforms to the structural and functional diversification of the actin cytoskeleton remains a work in progress. Here, we review processes that contribute to the dynamic sorting and targeted distribution of tropomyosin isoforms in the formation of discrete actomyosin-based structures in animal cells and their effects on actin-based motility and contractility.
Collapse
|
20
|
The Cytoskeleton-A Complex Interacting Meshwork. Cells 2019; 8:cells8040362. [PMID: 31003495 PMCID: PMC6523135 DOI: 10.3390/cells8040362] [Citation(s) in RCA: 181] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/15/2019] [Accepted: 04/15/2019] [Indexed: 12/22/2022] Open
Abstract
The cytoskeleton of animal cells is one of the most complicated and functionally versatile structures, involved in processes such as endocytosis, cell division, intra-cellular transport, motility, force transmission, reaction to external forces, adhesion and preservation, and adaptation of cell shape. These functions are mediated by three classical cytoskeletal filament types, as follows: Actin, microtubules, and intermediate filaments. The named filaments form a network that is highly structured and dynamic, responding to external and internal cues with a quick reorganization that is orchestrated on the time scale of minutes and has to be tightly regulated. Especially in brain tumors, the cytoskeleton plays an important role in spreading and migration of tumor cells. As the cytoskeletal organization and regulation is complex and many-faceted, this review aims to summarize the findings about cytoskeletal filament types, including substructures formed by them, such as lamellipodia, stress fibers, and interactions between intermediate filaments, microtubules and actin. Additionally, crucial regulatory aspects of the cytoskeletal filaments and the formed substructures are discussed and integrated into the concepts of cell motility. Even though little is known about the impact of cytoskeletal alterations on the progress of glioma, a final point discussed will be the impact of established cytoskeletal alterations in the cellular behavior and invasion of glioma.
Collapse
|
21
|
Sarker M, Lee HT, Mei L, Krokhotin A, de Los Reyes SE, Yen L, Costantini LM, Griffith J, Dokholyan NV, Alushin GM, Campbell SL. Cardiomyopathy Mutations in Metavinculin Disrupt Regulation of Vinculin-Induced F-Actin Assemblies. J Mol Biol 2019; 431:1604-1618. [PMID: 30844403 DOI: 10.1016/j.jmb.2019.02.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/22/2019] [Accepted: 02/22/2019] [Indexed: 10/27/2022]
Abstract
Debilitating heart conditions, notably dilated and hypertrophic cardiomyopathies (CMs), are associated with point mutations in metavinculin, a larger isoform of the essential cytoskeletal protein vinculin. Metavinculin is co-expressed with vinculin at sub-stoichiometric ratios in cardiac tissues. CM mutations in the metavinculin tail domain (MVt) occur within the extra 68-residue insert that differentiates it from the vinculin tail domain (Vt). Vt binds actin filaments (F-actin) and promotes vinculin dimerization to bundle F-actin into thick fibers. While MVt binds to F-actin in a similar manner to Vt, MVt is incapable of F-actin bundling and inhibits Vt-mediated F-actin bundling. We performed F-actin co-sedimentation and negative-stain EM experiments to dissect the coordinated roles of metavinculin and vinculin in actin fiber assembly and the effects of three known metavinculin CM mutations. These CM mutants were found to weakly induce the formation of disordered F-actin assemblies. Notably, they fail to inhibit Vt-mediated F-actin bundling and instead promote formation of large assemblies embedded with linear bundles. Computational models of MVt bound to F-actin suggest that MVt undergoes a conformational change licensing the formation of a protruding sub-domain incorporating the insert, which sterically prevents dimerization and bundling of F-actin by Vt. Sub-domain formation is destabilized by CM mutations, disrupting this inhibitory mechanism. These findings provide new mechanistic insights into the ability of metavinculin to tune actin organization by vinculin and suggest that dysregulation of this process by CM mutants could underlie their malfunction in disease.
Collapse
Affiliation(s)
- Muzaddid Sarker
- Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Hyunna T Lee
- Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Lin Mei
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, NY 10065, USA
| | - Andrey Krokhotin
- Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | - Laura Yen
- Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY 10025, USA
| | - Lindsey M Costantini
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jack Griffith
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Nikolay V Dokholyan
- Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Gregory M Alushin
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, NY 10065, USA
| | - Sharon L Campbell
- Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
22
|
Leal-Gutiérrez JD, Elzo MA, Johnson DD, Hamblen H, Mateescu RG. Genome wide association and gene enrichment analysis reveal membrane anchoring and structural proteins associated with meat quality in beef. BMC Genomics 2019; 20:151. [PMID: 30791866 PMCID: PMC6385435 DOI: 10.1186/s12864-019-5518-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 02/07/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Meat quality related phenotypes are difficult and expensive to measure and predict but are ideal candidates for genomic selection if genetic markers that account for a worthwhile proportion of the phenotypic variation can be identified. The objectives of this study were: 1) to perform genome wide association analyses for Warner-Bratzler Shear Force (WBSF), marbling, cooking loss, tenderness, juiciness, connective tissue and flavor; 2) to determine enriched pathways present in each genome wide association analysis; and 3) to identify potential candidate genes with multiple quantitative trait loci (QTL) associated with meat quality. RESULTS The WBSF, marbling and cooking loss traits were measured in longissimus dorsi muscle from 672 steers. Out of these, 495 animals were used to measure tenderness, juiciness, connective tissue and flavor by a sensory panel. All animals were genotyped for 221,077 markers and included in a genome wide association analysis. A total number of 68 genomic regions covering 52 genes were identified using the whole genome association approach; 48% of these genes encode transmembrane proteins or membrane associated molecules. Two enrichment analysis were performed: a tissue restricted gene enrichment applying a correlation analysis between raw associated single nucleotide polymorphisms (SNPs) by trait, and a functional classification analysis performed using the DAVID Bioinformatic Resources 6.8 server. The tissue restricted gene enrichment approach identified eleven pathways including "Endoplasmic reticulum membrane" that influenced multiple traits simultaneously. The DAVID functional classification analysis uncovered eleven clusters related to transmembrane or structural proteins. A gene network was constructed where the number of raw associated uncorrelated SNPs for each gene across all traits was used as a weight. A multiple SNP association analysis was performed for the top five most connected genes in the gene-trait network. The gene network identified the EVC2, ANXA10 and PKHD1 genes as potentially harboring multiple QTLs. Polymorphisms identified in structural proteins can modulate two different processes with direct effect on meat quality: in vivo myocyte cytoskeletal organization and postmortem proteolysis. CONCLUSION The main result from the present analysis is the uncovering of several candidate genes associated with meat quality that have structural function in the skeletal muscle.
Collapse
Affiliation(s)
| | - Mauricio A. Elzo
- Department of Animal Sciences, University of Florida, Gainesville, FL USA
| | - D. Dwain Johnson
- Department of Animal Sciences, University of Florida, Gainesville, FL USA
| | - Heather Hamblen
- Department of Animal Sciences, University of Florida, Gainesville, FL USA
| | - Raluca G. Mateescu
- Department of Animal Sciences, University of Florida, Gainesville, FL USA
| |
Collapse
|
23
|
Lee S, Kassianidou E, Kumar S. Actomyosin stress fiber subtypes have unique viscoelastic properties and roles in tension generation. Mol Biol Cell 2018; 29:1992-2004. [PMID: 29927349 PMCID: PMC6232976 DOI: 10.1091/mbc.e18-02-0106] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Actomyosin stress fibers (SFs) support cell shape and migration by directing intracellular tension to the extracellular matrix (ECM) via focal adhesions. Migrating cells exhibit three SF subtypes (dorsal SFs, transverse arcs, and ventral SFs), which differ in their origin, location, and ECM connectivity. While each subtype is hypothesized to play unique structural roles, this idea has not been directly tested at the single-SF level. Here, we interrogate the mechanical properties of single SFs of each subtype based on their retraction kinetics following laser incision. While each SF subtype bears distinct mechanical properties, these properties are highly interdependent, with incision of dorsal fibers producing centripetal recoil of adjacent transverse arcs and the retraction of incised transverse arcs being limited by attachment points to dorsal SFs. These observations hold whether cells are allowed to spread freely or are confined to crossbow ECM patterns. Consistent with this interdependence, subtype-specific knockdown of dorsal SFs (palladin) or transverse arcs (mDia2) influences ventral SF retraction. These altered mechanics are partially phenocopied in cells cultured on ECM microlines that preclude assembly of dorsal SFs and transverse arcs. Our findings directly demonstrate that different SF subtypes play distinct roles in generating tension and form a mechanically interdependent network.
Collapse
Affiliation(s)
- Stacey Lee
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, Berkeley, Berkeley, CA 94720-1762.,Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720-1762
| | - Elena Kassianidou
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, Berkeley, Berkeley, CA 94720-1762.,Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720-1762
| | - Sanjay Kumar
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, Berkeley, Berkeley, CA 94720-1762.,Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720-1762.,Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720-1762
| |
Collapse
|
24
|
Artelt N, Ludwig TA, Rogge H, Kavvadas P, Siegerist F, Blumenthal A, van den Brandt J, Otey CA, Bang ML, Amann K, Chadjichristos CE, Chatziantoniou C, Endlich K, Endlich N. The Role of Palladin in Podocytes. J Am Soc Nephrol 2018; 29:1662-1678. [PMID: 29720549 DOI: 10.1681/asn.2017091039] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 03/28/2018] [Indexed: 11/03/2022] Open
Abstract
Background Podocyte loss and effacement of interdigitating podocyte foot processes are the major cause of a leaky filtration barrier and ESRD. Because the complex three-dimensional morphology of podocytes depends on the actin cytoskeleton, we studied the role in podocytes of the actin bundling protein palladin, which is highly expressed therein.Methods We knocked down palladin in cultured podocytes by siRNA transfection or in zebrafish embryos by morpholino injection and studied the effects by immunofluorescence and live imaging. We also investigated kidneys of mice with podocyte-specific knockout of palladin (PodoPalld-/- mice) by immunofluorescence and ultrastructural analysis and kidney biopsy specimens from patients by immunostaining for palladin.Results Compared with control-treated podocytes, palladin-knockdown podocytes had reduced actin filament staining, smaller focal adhesions, and downregulation of the podocyte-specific proteins synaptopodin and α-actinin-4. Furthermore, palladin-knockdown podocytes were more susceptible to disruption of the actin cytoskeleton with cytochalasin D, latrunculin A, or jasplakinolide and showed altered migration dynamics. In zebrafish embryos, palladin knockdown compromised the morphology and dynamics of epithelial cells at an early developmental stage. Compared with PodoPalld+/+ controls, PodoPalld-/- mice developed glomeruli with a disturbed morphology, an enlarged subpodocyte space, mild effacement, and significantly reduced expression of nephrin and vinculin. Furthermore, nephrotoxic serum injection led to significantly higher levels of proteinuria in PodoPalld-/- mice than in controls. Kidney biopsy specimens from patients with diabetic nephropathy and FSGS showed downregulation of palladin in podocytes as well.Conclusions Palladin has an important role in podocyte function in vitro and in vivo.
Collapse
Affiliation(s)
| | | | | | - Panagiotis Kavvadas
- National Institute for Health and Medical Research (INSERM), Unité Mixte de Recherche (UMR)-S1155, Tenon Hospital, Sorbonne Universités, Paris, France
| | | | | | - Jens van den Brandt
- Central Core and Research Facility of Laboratory Animals (ZSFV), University Medicine Greifswald, Greifswald, Germany
| | - Carol A Otey
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill (UNC), Chapel Hill, North Carolina
| | - Marie-Louise Bang
- Institute of Genetic and Biomedical Research, UOS Milan, National Research Council, Milan, Italy.,Humanitas Clinical and Research Center, Rozzano, Milan, Italy; and
| | - Kerstin Amann
- Department of Nephropathology, University Medicine Erlangen, Erlangen, Germany
| | - Christos E Chadjichristos
- National Institute for Health and Medical Research (INSERM), Unité Mixte de Recherche (UMR)-S1155, Tenon Hospital, Sorbonne Universités, Paris, France
| | - Christos Chatziantoniou
- National Institute for Health and Medical Research (INSERM), Unité Mixte de Recherche (UMR)-S1155, Tenon Hospital, Sorbonne Universités, Paris, France
| | | | | |
Collapse
|
25
|
Efficient models of polymerization applied to FtsZ ring assembly in Escherichia coli. Proc Natl Acad Sci U S A 2018; 115:4933-4938. [PMID: 29686085 DOI: 10.1073/pnas.1719391115] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
High protein concentrations complicate modeling of polymer assembly kinetics by introducing structural complexity and a large variety of protein forms. We present a modeling approach that achieves orders of magnitude speed-up by replacing distributions of lengths and widths with their average counterparts and by introducing a hierarchical classification of species and reactions into sets. We have used this model to study FtsZ ring assembly in Escherichia coli The model's prediction of key features of the ring formation, such as time to reach the steady state, total concentration of FtsZ species in the ring, total concentration of monomers, and average dimensions of filaments and bundles, are all in agreement with the experimentally observed values. Besides validating our model against the in vivo observations, this study fills some knowledge gaps by proposing a specific structure of the ring, describing the influence of the total concentration in short and long kinetics processes, determining some characteristic mechanisms in polymer assembly regulation, and providing insights about the role of ZapA proteins, critical components for both positioning and stability of the ring.
Collapse
|
26
|
DePasquale JA. Apical surface ring formation in
Cyprinus carpio
scale epidermis. ACTA ZOOL-STOCKHOLM 2018. [DOI: 10.1111/azo.12256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
27
|
Abstract
Palladin is an important component of motile actin-rich structures and nucleates branched actin filament arrays in vitro Here we examine the role of palladin during Listeria monocytogenes infections in order to tease out novel functions of palladin. We show that palladin is co-opted by L. monocytogenes during its cellular entry and intracellular motility. Depletion of palladin resulted in shorter and misshapen comet tails, and when actin- or VASP-binding mutants of palladin were overexpressed in cells, comet tails disintegrated or became thinner. Comet tail thinning resulted in parallel actin bundles within the structures. To determine whether palladin could compensate for the Arp2/3 complex, we overexpressed palladin in cells treated with the Arp2/3 inhibitor CK-666. In treated cells, bacterial motility could be initiated and maintained when levels of palladin were increased. To confirm these findings, we utilized a cell line depleted of multiple Arp2/3 complex subunits. Within these cells, L. monocytogenes failed to generate comet tails. When palladin was overexpressed in this Arp2/3 functionally null cell line, the ability of L. monocytogenes to generate comet tails was restored. Using purified protein components, we demonstrate that L. monocytogenes actin clouds and comet tails can be generated (in a cell-free system) by palladin in the absence of the Arp2/3 complex. Collectively, our results demonstrate that palladin can functionally replace the Arp2/3 complex during bacterial actin-based motility.IMPORTANCE Structures containing branched actin filaments require the Arp2/3 complex. One of the most commonly used systems to study intracellular movement generated by Arp2/3-based actin motility exploits actin-rich comet tails made by Listeria Using these infections together with live imaging and cell-free protein reconstitution experiments, we show that another protein, palladin, can be used in place of Arp2/3 to form actin-rich structures. Additionally, we show that palladin is needed for the structural integrity of comet tails as its depletion or mutation of critical regions causes dramatic changes to comet tail organization. These findings are the first to identify a protein that can functionally replace the Arp2/3 complex and have implications for all actin-based structures thought to exclusively use that complex.
Collapse
|
28
|
Palladin is a novel microtubule-associated protein responsible for spindle orientation. Sci Rep 2017; 7:11806. [PMID: 28924223 PMCID: PMC5603589 DOI: 10.1038/s41598-017-12051-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 08/25/2017] [Indexed: 11/26/2022] Open
Abstract
Mitotic spindles, which consist of microtubules (MTs) and associated proteins, play critical roles in controlling cell division and maintaining tissue homeostasis. The orientation of the mitotic spindle is closely related with the duration of mitosis. However, the molecular mechanism in regulating the orientation of the mitotic spindles is largely undefined. In this study, we found that Palladin is a novel MT-associated protein and regulator of spindle orientation, which maintains proper spindle orientation by stabilizing astral MTs. Palladin depletion distorted spindle orientation, prolonged the metaphase, and impaired proliferation of HeLa cells. Results showed that Palladin depletion-induced spindle misorientation and astral MT instability could be rescued by constitutively active AKT1 or dominant negative GSK3β. Our findings revealed that Palladin regulates spindle orientation and mitotic progression mainly through the AKT1–GSK3β pathway.
Collapse
|
29
|
Sun HM, Chen XL, Chen XJ, Liu J, Ma L, Wu HY, Huang QH, Xi XD, Yin T, Zhu J, Chen Z, Chen SJ. PALLD Regulates Phagocytosis by Enabling Timely Actin Polymerization and Depolymerization. THE JOURNAL OF IMMUNOLOGY 2017; 199:1817-1826. [PMID: 28739877 DOI: 10.4049/jimmunol.1602018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 06/12/2017] [Indexed: 12/28/2022]
Abstract
PALLD is an actin cross-linker supporting cellular mechanical tension. However, its involvement in the regulation of phagocytosis, a cellular activity essential for innate immunity and physiological tissue turnover, is unclear. We report that PALLD is highly induced along with all-trans-retinoic acid-induced maturation of myeloid leukemia cells, to promote Ig- or complement-opsonized phagocytosis. PALLD mechanistically facilitates phagocytic receptor clustering by regulating actin polymerization and c-Src dynamic activation during particle binding and early phagosome formation. PALLD is also required at the nascent phagosome to recruit phosphatase oculocerebrorenal syndrome of Lowe, which regulates phosphatidylinositol-4,5-bisphosphate hydrolysis and actin depolymerization to complete phagosome closure. Collectively, our results show a new function for PALLD as a crucial regulator of the early phase of phagocytosis by elaborating dynamic actin polymerization and depolymerization.
Collapse
Affiliation(s)
- Hai-Min Sun
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, RuiJin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xin-Lei Chen
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, RuiJin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xin-Jie Chen
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, RuiJin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jin Liu
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, RuiJin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Lie Ma
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, RuiJin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hai-Yan Wu
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, RuiJin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Qiu-Hua Huang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, RuiJin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiao-Dong Xi
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, RuiJin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Tong Yin
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, RuiJin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jiang Zhu
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, RuiJin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhu Chen
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, RuiJin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Sai-Juan Chen
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, RuiJin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
30
|
Gajjala PR, Jankowski V, Heinze G, Bilo G, Zanchetti A, Noels H, Liehn E, Perco P, Schulz A, Delles C, Kork F, Biessen E, Narkiewicz K, Kawecka-Jaszcz K, Floege J, Soranna D, Zidek W, Jankowski J. Proteomic-Biostatistic Integrated Approach for Finding the Underlying Molecular Determinants of Hypertension in Human Plasma. Hypertension 2017; 70:412-419. [PMID: 28652472 DOI: 10.1161/hypertensionaha.116.08906] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 01/03/2017] [Accepted: 05/07/2017] [Indexed: 01/08/2023]
Abstract
Despite advancements in lowering blood pressure, the best approach to lower it remains controversial because of the lack of information on the molecular basis of hypertension. We, therefore, performed plasma proteomics of plasma from patients with hypertension to identify molecular determinants detectable in these subjects but not in controls and vice versa. Plasma samples from hypertensive subjects (cases; n=118) and controls (n=85) from the InGenious HyperCare cohort were used for this study and performed mass spectrometric analysis. Using biostatistical methods, plasma peptides specific for hypertension were identified, and a model was developed using least absolute shrinkage and selection operator logistic regression. The underlying peptides were identified and sequenced off-line using matrix-assisted laser desorption ionization orbitrap mass spectrometry. By comparison of the molecular composition of the plasma samples, 27 molecular determinants were identified differently expressed in cases from controls. Seventy percent of the molecular determinants selected were found to occur less likely in hypertensive patients. In cross-validation, the overall R2 was 0.434, and the area under the curve was 0.891 with 95% confidence interval 0.8482 to 0.9349, P<0.0001. The mean values of the cross-validated proteomic score of normotensive and hypertensive patients were found to be -2.007±0.3568 and 3.383±0.2643, respectively, P<0.0001. The molecular determinants were successfully identified, and the proteomic model developed shows an excellent discriminatory ability between hypertensives and normotensives. The identified molecular determinants may be the starting point for further studies to clarify the molecular causes of hypertension.
Collapse
Affiliation(s)
- Prathibha R Gajjala
- From the Universitätsklinikum RWTH Aachen, Institute for Molecular Cardiovascular Research, Germany (P.R.G., V.J., H.N., E.L., F.K., E.B., J.J.); Experimental Vascular Pathology, Cardiovascular Research Institute Maastricht, University of Maastricht, The Netherlands (P.R.G., E.B., J.J.); Section for Clinical Biometrics, Center for Medical Statistics, Informatics and Intelligent Systems, Medical University of Vienna, Austria (G.H.); Departments of Medicine and Surgery (G.B.) and Statistics and Quantitative Methods (D.S.), University of Milano-Bicocca, Italy; Department of Cardiovascular, Neural, and Metabolic Sciences, Istituto Auxologico Italiano, Milan, Italy (G.B.); Istituto Auxologico Italiano, IRCCS, Milan, Italy (A.Z., D.S.); Università degli Studi di Milano, Italy (A.Z.); Department of Internal Medicine IV, Medical University Innsbruck, Austria (P.P.); Charité-Universitätsmedizin Berlin (CBF), Germany (A.S., W.Z.); Institute of Cardiovascular and Medical Sciences, University of Glasgow, UK (C.D.); Department of Hypertension and Diabetology, Medical University of Gdansk, Poland (K.N.); First Department of Cardiology, Interventional Electrocardiology and Hypertension, Jagiellonian University Medical College, Krakow, Poland (K.K.-J.); and Internal Medicine II, Universitätsklinikum RWTH Aachen, Germany (J.F.)
| | - Vera Jankowski
- From the Universitätsklinikum RWTH Aachen, Institute for Molecular Cardiovascular Research, Germany (P.R.G., V.J., H.N., E.L., F.K., E.B., J.J.); Experimental Vascular Pathology, Cardiovascular Research Institute Maastricht, University of Maastricht, The Netherlands (P.R.G., E.B., J.J.); Section for Clinical Biometrics, Center for Medical Statistics, Informatics and Intelligent Systems, Medical University of Vienna, Austria (G.H.); Departments of Medicine and Surgery (G.B.) and Statistics and Quantitative Methods (D.S.), University of Milano-Bicocca, Italy; Department of Cardiovascular, Neural, and Metabolic Sciences, Istituto Auxologico Italiano, Milan, Italy (G.B.); Istituto Auxologico Italiano, IRCCS, Milan, Italy (A.Z., D.S.); Università degli Studi di Milano, Italy (A.Z.); Department of Internal Medicine IV, Medical University Innsbruck, Austria (P.P.); Charité-Universitätsmedizin Berlin (CBF), Germany (A.S., W.Z.); Institute of Cardiovascular and Medical Sciences, University of Glasgow, UK (C.D.); Department of Hypertension and Diabetology, Medical University of Gdansk, Poland (K.N.); First Department of Cardiology, Interventional Electrocardiology and Hypertension, Jagiellonian University Medical College, Krakow, Poland (K.K.-J.); and Internal Medicine II, Universitätsklinikum RWTH Aachen, Germany (J.F.)
| | - Georg Heinze
- From the Universitätsklinikum RWTH Aachen, Institute for Molecular Cardiovascular Research, Germany (P.R.G., V.J., H.N., E.L., F.K., E.B., J.J.); Experimental Vascular Pathology, Cardiovascular Research Institute Maastricht, University of Maastricht, The Netherlands (P.R.G., E.B., J.J.); Section for Clinical Biometrics, Center for Medical Statistics, Informatics and Intelligent Systems, Medical University of Vienna, Austria (G.H.); Departments of Medicine and Surgery (G.B.) and Statistics and Quantitative Methods (D.S.), University of Milano-Bicocca, Italy; Department of Cardiovascular, Neural, and Metabolic Sciences, Istituto Auxologico Italiano, Milan, Italy (G.B.); Istituto Auxologico Italiano, IRCCS, Milan, Italy (A.Z., D.S.); Università degli Studi di Milano, Italy (A.Z.); Department of Internal Medicine IV, Medical University Innsbruck, Austria (P.P.); Charité-Universitätsmedizin Berlin (CBF), Germany (A.S., W.Z.); Institute of Cardiovascular and Medical Sciences, University of Glasgow, UK (C.D.); Department of Hypertension and Diabetology, Medical University of Gdansk, Poland (K.N.); First Department of Cardiology, Interventional Electrocardiology and Hypertension, Jagiellonian University Medical College, Krakow, Poland (K.K.-J.); and Internal Medicine II, Universitätsklinikum RWTH Aachen, Germany (J.F.)
| | - Grzegorz Bilo
- From the Universitätsklinikum RWTH Aachen, Institute for Molecular Cardiovascular Research, Germany (P.R.G., V.J., H.N., E.L., F.K., E.B., J.J.); Experimental Vascular Pathology, Cardiovascular Research Institute Maastricht, University of Maastricht, The Netherlands (P.R.G., E.B., J.J.); Section for Clinical Biometrics, Center for Medical Statistics, Informatics and Intelligent Systems, Medical University of Vienna, Austria (G.H.); Departments of Medicine and Surgery (G.B.) and Statistics and Quantitative Methods (D.S.), University of Milano-Bicocca, Italy; Department of Cardiovascular, Neural, and Metabolic Sciences, Istituto Auxologico Italiano, Milan, Italy (G.B.); Istituto Auxologico Italiano, IRCCS, Milan, Italy (A.Z., D.S.); Università degli Studi di Milano, Italy (A.Z.); Department of Internal Medicine IV, Medical University Innsbruck, Austria (P.P.); Charité-Universitätsmedizin Berlin (CBF), Germany (A.S., W.Z.); Institute of Cardiovascular and Medical Sciences, University of Glasgow, UK (C.D.); Department of Hypertension and Diabetology, Medical University of Gdansk, Poland (K.N.); First Department of Cardiology, Interventional Electrocardiology and Hypertension, Jagiellonian University Medical College, Krakow, Poland (K.K.-J.); and Internal Medicine II, Universitätsklinikum RWTH Aachen, Germany (J.F.)
| | - Alberto Zanchetti
- From the Universitätsklinikum RWTH Aachen, Institute for Molecular Cardiovascular Research, Germany (P.R.G., V.J., H.N., E.L., F.K., E.B., J.J.); Experimental Vascular Pathology, Cardiovascular Research Institute Maastricht, University of Maastricht, The Netherlands (P.R.G., E.B., J.J.); Section for Clinical Biometrics, Center for Medical Statistics, Informatics and Intelligent Systems, Medical University of Vienna, Austria (G.H.); Departments of Medicine and Surgery (G.B.) and Statistics and Quantitative Methods (D.S.), University of Milano-Bicocca, Italy; Department of Cardiovascular, Neural, and Metabolic Sciences, Istituto Auxologico Italiano, Milan, Italy (G.B.); Istituto Auxologico Italiano, IRCCS, Milan, Italy (A.Z., D.S.); Università degli Studi di Milano, Italy (A.Z.); Department of Internal Medicine IV, Medical University Innsbruck, Austria (P.P.); Charité-Universitätsmedizin Berlin (CBF), Germany (A.S., W.Z.); Institute of Cardiovascular and Medical Sciences, University of Glasgow, UK (C.D.); Department of Hypertension and Diabetology, Medical University of Gdansk, Poland (K.N.); First Department of Cardiology, Interventional Electrocardiology and Hypertension, Jagiellonian University Medical College, Krakow, Poland (K.K.-J.); and Internal Medicine II, Universitätsklinikum RWTH Aachen, Germany (J.F.)
| | - Heidi Noels
- From the Universitätsklinikum RWTH Aachen, Institute for Molecular Cardiovascular Research, Germany (P.R.G., V.J., H.N., E.L., F.K., E.B., J.J.); Experimental Vascular Pathology, Cardiovascular Research Institute Maastricht, University of Maastricht, The Netherlands (P.R.G., E.B., J.J.); Section for Clinical Biometrics, Center for Medical Statistics, Informatics and Intelligent Systems, Medical University of Vienna, Austria (G.H.); Departments of Medicine and Surgery (G.B.) and Statistics and Quantitative Methods (D.S.), University of Milano-Bicocca, Italy; Department of Cardiovascular, Neural, and Metabolic Sciences, Istituto Auxologico Italiano, Milan, Italy (G.B.); Istituto Auxologico Italiano, IRCCS, Milan, Italy (A.Z., D.S.); Università degli Studi di Milano, Italy (A.Z.); Department of Internal Medicine IV, Medical University Innsbruck, Austria (P.P.); Charité-Universitätsmedizin Berlin (CBF), Germany (A.S., W.Z.); Institute of Cardiovascular and Medical Sciences, University of Glasgow, UK (C.D.); Department of Hypertension and Diabetology, Medical University of Gdansk, Poland (K.N.); First Department of Cardiology, Interventional Electrocardiology and Hypertension, Jagiellonian University Medical College, Krakow, Poland (K.K.-J.); and Internal Medicine II, Universitätsklinikum RWTH Aachen, Germany (J.F.)
| | - Elisa Liehn
- From the Universitätsklinikum RWTH Aachen, Institute for Molecular Cardiovascular Research, Germany (P.R.G., V.J., H.N., E.L., F.K., E.B., J.J.); Experimental Vascular Pathology, Cardiovascular Research Institute Maastricht, University of Maastricht, The Netherlands (P.R.G., E.B., J.J.); Section for Clinical Biometrics, Center for Medical Statistics, Informatics and Intelligent Systems, Medical University of Vienna, Austria (G.H.); Departments of Medicine and Surgery (G.B.) and Statistics and Quantitative Methods (D.S.), University of Milano-Bicocca, Italy; Department of Cardiovascular, Neural, and Metabolic Sciences, Istituto Auxologico Italiano, Milan, Italy (G.B.); Istituto Auxologico Italiano, IRCCS, Milan, Italy (A.Z., D.S.); Università degli Studi di Milano, Italy (A.Z.); Department of Internal Medicine IV, Medical University Innsbruck, Austria (P.P.); Charité-Universitätsmedizin Berlin (CBF), Germany (A.S., W.Z.); Institute of Cardiovascular and Medical Sciences, University of Glasgow, UK (C.D.); Department of Hypertension and Diabetology, Medical University of Gdansk, Poland (K.N.); First Department of Cardiology, Interventional Electrocardiology and Hypertension, Jagiellonian University Medical College, Krakow, Poland (K.K.-J.); and Internal Medicine II, Universitätsklinikum RWTH Aachen, Germany (J.F.)
| | - Paul Perco
- From the Universitätsklinikum RWTH Aachen, Institute for Molecular Cardiovascular Research, Germany (P.R.G., V.J., H.N., E.L., F.K., E.B., J.J.); Experimental Vascular Pathology, Cardiovascular Research Institute Maastricht, University of Maastricht, The Netherlands (P.R.G., E.B., J.J.); Section for Clinical Biometrics, Center for Medical Statistics, Informatics and Intelligent Systems, Medical University of Vienna, Austria (G.H.); Departments of Medicine and Surgery (G.B.) and Statistics and Quantitative Methods (D.S.), University of Milano-Bicocca, Italy; Department of Cardiovascular, Neural, and Metabolic Sciences, Istituto Auxologico Italiano, Milan, Italy (G.B.); Istituto Auxologico Italiano, IRCCS, Milan, Italy (A.Z., D.S.); Università degli Studi di Milano, Italy (A.Z.); Department of Internal Medicine IV, Medical University Innsbruck, Austria (P.P.); Charité-Universitätsmedizin Berlin (CBF), Germany (A.S., W.Z.); Institute of Cardiovascular and Medical Sciences, University of Glasgow, UK (C.D.); Department of Hypertension and Diabetology, Medical University of Gdansk, Poland (K.N.); First Department of Cardiology, Interventional Electrocardiology and Hypertension, Jagiellonian University Medical College, Krakow, Poland (K.K.-J.); and Internal Medicine II, Universitätsklinikum RWTH Aachen, Germany (J.F.)
| | - Anna Schulz
- From the Universitätsklinikum RWTH Aachen, Institute for Molecular Cardiovascular Research, Germany (P.R.G., V.J., H.N., E.L., F.K., E.B., J.J.); Experimental Vascular Pathology, Cardiovascular Research Institute Maastricht, University of Maastricht, The Netherlands (P.R.G., E.B., J.J.); Section for Clinical Biometrics, Center for Medical Statistics, Informatics and Intelligent Systems, Medical University of Vienna, Austria (G.H.); Departments of Medicine and Surgery (G.B.) and Statistics and Quantitative Methods (D.S.), University of Milano-Bicocca, Italy; Department of Cardiovascular, Neural, and Metabolic Sciences, Istituto Auxologico Italiano, Milan, Italy (G.B.); Istituto Auxologico Italiano, IRCCS, Milan, Italy (A.Z., D.S.); Università degli Studi di Milano, Italy (A.Z.); Department of Internal Medicine IV, Medical University Innsbruck, Austria (P.P.); Charité-Universitätsmedizin Berlin (CBF), Germany (A.S., W.Z.); Institute of Cardiovascular and Medical Sciences, University of Glasgow, UK (C.D.); Department of Hypertension and Diabetology, Medical University of Gdansk, Poland (K.N.); First Department of Cardiology, Interventional Electrocardiology and Hypertension, Jagiellonian University Medical College, Krakow, Poland (K.K.-J.); and Internal Medicine II, Universitätsklinikum RWTH Aachen, Germany (J.F.)
| | - Christian Delles
- From the Universitätsklinikum RWTH Aachen, Institute for Molecular Cardiovascular Research, Germany (P.R.G., V.J., H.N., E.L., F.K., E.B., J.J.); Experimental Vascular Pathology, Cardiovascular Research Institute Maastricht, University of Maastricht, The Netherlands (P.R.G., E.B., J.J.); Section for Clinical Biometrics, Center for Medical Statistics, Informatics and Intelligent Systems, Medical University of Vienna, Austria (G.H.); Departments of Medicine and Surgery (G.B.) and Statistics and Quantitative Methods (D.S.), University of Milano-Bicocca, Italy; Department of Cardiovascular, Neural, and Metabolic Sciences, Istituto Auxologico Italiano, Milan, Italy (G.B.); Istituto Auxologico Italiano, IRCCS, Milan, Italy (A.Z., D.S.); Università degli Studi di Milano, Italy (A.Z.); Department of Internal Medicine IV, Medical University Innsbruck, Austria (P.P.); Charité-Universitätsmedizin Berlin (CBF), Germany (A.S., W.Z.); Institute of Cardiovascular and Medical Sciences, University of Glasgow, UK (C.D.); Department of Hypertension and Diabetology, Medical University of Gdansk, Poland (K.N.); First Department of Cardiology, Interventional Electrocardiology and Hypertension, Jagiellonian University Medical College, Krakow, Poland (K.K.-J.); and Internal Medicine II, Universitätsklinikum RWTH Aachen, Germany (J.F.)
| | - Felix Kork
- From the Universitätsklinikum RWTH Aachen, Institute for Molecular Cardiovascular Research, Germany (P.R.G., V.J., H.N., E.L., F.K., E.B., J.J.); Experimental Vascular Pathology, Cardiovascular Research Institute Maastricht, University of Maastricht, The Netherlands (P.R.G., E.B., J.J.); Section for Clinical Biometrics, Center for Medical Statistics, Informatics and Intelligent Systems, Medical University of Vienna, Austria (G.H.); Departments of Medicine and Surgery (G.B.) and Statistics and Quantitative Methods (D.S.), University of Milano-Bicocca, Italy; Department of Cardiovascular, Neural, and Metabolic Sciences, Istituto Auxologico Italiano, Milan, Italy (G.B.); Istituto Auxologico Italiano, IRCCS, Milan, Italy (A.Z., D.S.); Università degli Studi di Milano, Italy (A.Z.); Department of Internal Medicine IV, Medical University Innsbruck, Austria (P.P.); Charité-Universitätsmedizin Berlin (CBF), Germany (A.S., W.Z.); Institute of Cardiovascular and Medical Sciences, University of Glasgow, UK (C.D.); Department of Hypertension and Diabetology, Medical University of Gdansk, Poland (K.N.); First Department of Cardiology, Interventional Electrocardiology and Hypertension, Jagiellonian University Medical College, Krakow, Poland (K.K.-J.); and Internal Medicine II, Universitätsklinikum RWTH Aachen, Germany (J.F.)
| | - Erik Biessen
- From the Universitätsklinikum RWTH Aachen, Institute for Molecular Cardiovascular Research, Germany (P.R.G., V.J., H.N., E.L., F.K., E.B., J.J.); Experimental Vascular Pathology, Cardiovascular Research Institute Maastricht, University of Maastricht, The Netherlands (P.R.G., E.B., J.J.); Section for Clinical Biometrics, Center for Medical Statistics, Informatics and Intelligent Systems, Medical University of Vienna, Austria (G.H.); Departments of Medicine and Surgery (G.B.) and Statistics and Quantitative Methods (D.S.), University of Milano-Bicocca, Italy; Department of Cardiovascular, Neural, and Metabolic Sciences, Istituto Auxologico Italiano, Milan, Italy (G.B.); Istituto Auxologico Italiano, IRCCS, Milan, Italy (A.Z., D.S.); Università degli Studi di Milano, Italy (A.Z.); Department of Internal Medicine IV, Medical University Innsbruck, Austria (P.P.); Charité-Universitätsmedizin Berlin (CBF), Germany (A.S., W.Z.); Institute of Cardiovascular and Medical Sciences, University of Glasgow, UK (C.D.); Department of Hypertension and Diabetology, Medical University of Gdansk, Poland (K.N.); First Department of Cardiology, Interventional Electrocardiology and Hypertension, Jagiellonian University Medical College, Krakow, Poland (K.K.-J.); and Internal Medicine II, Universitätsklinikum RWTH Aachen, Germany (J.F.)
| | - Krzysztof Narkiewicz
- From the Universitätsklinikum RWTH Aachen, Institute for Molecular Cardiovascular Research, Germany (P.R.G., V.J., H.N., E.L., F.K., E.B., J.J.); Experimental Vascular Pathology, Cardiovascular Research Institute Maastricht, University of Maastricht, The Netherlands (P.R.G., E.B., J.J.); Section for Clinical Biometrics, Center for Medical Statistics, Informatics and Intelligent Systems, Medical University of Vienna, Austria (G.H.); Departments of Medicine and Surgery (G.B.) and Statistics and Quantitative Methods (D.S.), University of Milano-Bicocca, Italy; Department of Cardiovascular, Neural, and Metabolic Sciences, Istituto Auxologico Italiano, Milan, Italy (G.B.); Istituto Auxologico Italiano, IRCCS, Milan, Italy (A.Z., D.S.); Università degli Studi di Milano, Italy (A.Z.); Department of Internal Medicine IV, Medical University Innsbruck, Austria (P.P.); Charité-Universitätsmedizin Berlin (CBF), Germany (A.S., W.Z.); Institute of Cardiovascular and Medical Sciences, University of Glasgow, UK (C.D.); Department of Hypertension and Diabetology, Medical University of Gdansk, Poland (K.N.); First Department of Cardiology, Interventional Electrocardiology and Hypertension, Jagiellonian University Medical College, Krakow, Poland (K.K.-J.); and Internal Medicine II, Universitätsklinikum RWTH Aachen, Germany (J.F.)
| | - Kalina Kawecka-Jaszcz
- From the Universitätsklinikum RWTH Aachen, Institute for Molecular Cardiovascular Research, Germany (P.R.G., V.J., H.N., E.L., F.K., E.B., J.J.); Experimental Vascular Pathology, Cardiovascular Research Institute Maastricht, University of Maastricht, The Netherlands (P.R.G., E.B., J.J.); Section for Clinical Biometrics, Center for Medical Statistics, Informatics and Intelligent Systems, Medical University of Vienna, Austria (G.H.); Departments of Medicine and Surgery (G.B.) and Statistics and Quantitative Methods (D.S.), University of Milano-Bicocca, Italy; Department of Cardiovascular, Neural, and Metabolic Sciences, Istituto Auxologico Italiano, Milan, Italy (G.B.); Istituto Auxologico Italiano, IRCCS, Milan, Italy (A.Z., D.S.); Università degli Studi di Milano, Italy (A.Z.); Department of Internal Medicine IV, Medical University Innsbruck, Austria (P.P.); Charité-Universitätsmedizin Berlin (CBF), Germany (A.S., W.Z.); Institute of Cardiovascular and Medical Sciences, University of Glasgow, UK (C.D.); Department of Hypertension and Diabetology, Medical University of Gdansk, Poland (K.N.); First Department of Cardiology, Interventional Electrocardiology and Hypertension, Jagiellonian University Medical College, Krakow, Poland (K.K.-J.); and Internal Medicine II, Universitätsklinikum RWTH Aachen, Germany (J.F.)
| | - Juergen Floege
- From the Universitätsklinikum RWTH Aachen, Institute for Molecular Cardiovascular Research, Germany (P.R.G., V.J., H.N., E.L., F.K., E.B., J.J.); Experimental Vascular Pathology, Cardiovascular Research Institute Maastricht, University of Maastricht, The Netherlands (P.R.G., E.B., J.J.); Section for Clinical Biometrics, Center for Medical Statistics, Informatics and Intelligent Systems, Medical University of Vienna, Austria (G.H.); Departments of Medicine and Surgery (G.B.) and Statistics and Quantitative Methods (D.S.), University of Milano-Bicocca, Italy; Department of Cardiovascular, Neural, and Metabolic Sciences, Istituto Auxologico Italiano, Milan, Italy (G.B.); Istituto Auxologico Italiano, IRCCS, Milan, Italy (A.Z., D.S.); Università degli Studi di Milano, Italy (A.Z.); Department of Internal Medicine IV, Medical University Innsbruck, Austria (P.P.); Charité-Universitätsmedizin Berlin (CBF), Germany (A.S., W.Z.); Institute of Cardiovascular and Medical Sciences, University of Glasgow, UK (C.D.); Department of Hypertension and Diabetology, Medical University of Gdansk, Poland (K.N.); First Department of Cardiology, Interventional Electrocardiology and Hypertension, Jagiellonian University Medical College, Krakow, Poland (K.K.-J.); and Internal Medicine II, Universitätsklinikum RWTH Aachen, Germany (J.F.)
| | - Davide Soranna
- From the Universitätsklinikum RWTH Aachen, Institute for Molecular Cardiovascular Research, Germany (P.R.G., V.J., H.N., E.L., F.K., E.B., J.J.); Experimental Vascular Pathology, Cardiovascular Research Institute Maastricht, University of Maastricht, The Netherlands (P.R.G., E.B., J.J.); Section for Clinical Biometrics, Center for Medical Statistics, Informatics and Intelligent Systems, Medical University of Vienna, Austria (G.H.); Departments of Medicine and Surgery (G.B.) and Statistics and Quantitative Methods (D.S.), University of Milano-Bicocca, Italy; Department of Cardiovascular, Neural, and Metabolic Sciences, Istituto Auxologico Italiano, Milan, Italy (G.B.); Istituto Auxologico Italiano, IRCCS, Milan, Italy (A.Z., D.S.); Università degli Studi di Milano, Italy (A.Z.); Department of Internal Medicine IV, Medical University Innsbruck, Austria (P.P.); Charité-Universitätsmedizin Berlin (CBF), Germany (A.S., W.Z.); Institute of Cardiovascular and Medical Sciences, University of Glasgow, UK (C.D.); Department of Hypertension and Diabetology, Medical University of Gdansk, Poland (K.N.); First Department of Cardiology, Interventional Electrocardiology and Hypertension, Jagiellonian University Medical College, Krakow, Poland (K.K.-J.); and Internal Medicine II, Universitätsklinikum RWTH Aachen, Germany (J.F.)
| | - Walter Zidek
- From the Universitätsklinikum RWTH Aachen, Institute for Molecular Cardiovascular Research, Germany (P.R.G., V.J., H.N., E.L., F.K., E.B., J.J.); Experimental Vascular Pathology, Cardiovascular Research Institute Maastricht, University of Maastricht, The Netherlands (P.R.G., E.B., J.J.); Section for Clinical Biometrics, Center for Medical Statistics, Informatics and Intelligent Systems, Medical University of Vienna, Austria (G.H.); Departments of Medicine and Surgery (G.B.) and Statistics and Quantitative Methods (D.S.), University of Milano-Bicocca, Italy; Department of Cardiovascular, Neural, and Metabolic Sciences, Istituto Auxologico Italiano, Milan, Italy (G.B.); Istituto Auxologico Italiano, IRCCS, Milan, Italy (A.Z., D.S.); Università degli Studi di Milano, Italy (A.Z.); Department of Internal Medicine IV, Medical University Innsbruck, Austria (P.P.); Charité-Universitätsmedizin Berlin (CBF), Germany (A.S., W.Z.); Institute of Cardiovascular and Medical Sciences, University of Glasgow, UK (C.D.); Department of Hypertension and Diabetology, Medical University of Gdansk, Poland (K.N.); First Department of Cardiology, Interventional Electrocardiology and Hypertension, Jagiellonian University Medical College, Krakow, Poland (K.K.-J.); and Internal Medicine II, Universitätsklinikum RWTH Aachen, Germany (J.F.)
| | - Joachim Jankowski
- From the Universitätsklinikum RWTH Aachen, Institute for Molecular Cardiovascular Research, Germany (P.R.G., V.J., H.N., E.L., F.K., E.B., J.J.); Experimental Vascular Pathology, Cardiovascular Research Institute Maastricht, University of Maastricht, The Netherlands (P.R.G., E.B., J.J.); Section for Clinical Biometrics, Center for Medical Statistics, Informatics and Intelligent Systems, Medical University of Vienna, Austria (G.H.); Departments of Medicine and Surgery (G.B.) and Statistics and Quantitative Methods (D.S.), University of Milano-Bicocca, Italy; Department of Cardiovascular, Neural, and Metabolic Sciences, Istituto Auxologico Italiano, Milan, Italy (G.B.); Istituto Auxologico Italiano, IRCCS, Milan, Italy (A.Z., D.S.); Università degli Studi di Milano, Italy (A.Z.); Department of Internal Medicine IV, Medical University Innsbruck, Austria (P.P.); Charité-Universitätsmedizin Berlin (CBF), Germany (A.S., W.Z.); Institute of Cardiovascular and Medical Sciences, University of Glasgow, UK (C.D.); Department of Hypertension and Diabetology, Medical University of Gdansk, Poland (K.N.); First Department of Cardiology, Interventional Electrocardiology and Hypertension, Jagiellonian University Medical College, Krakow, Poland (K.K.-J.); and Internal Medicine II, Universitätsklinikum RWTH Aachen, Germany (J.F.).
| |
Collapse
|
31
|
Ruiz-Martinez A, Bartol TM, Sejnowski TJ, Tartakovsky DM. Efficient Multiscale Models of Polymer Assembly. Biophys J 2017; 111:185-96. [PMID: 27410746 DOI: 10.1016/j.bpj.2016.05.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 04/24/2016] [Accepted: 05/09/2016] [Indexed: 12/25/2022] Open
Abstract
Protein polymerization and bundling play a central role in cell physiology. Predictive modeling of these processes remains an open challenge, especially when the proteins involved become large and their concentrations high. We present an effective kinetics model of filament formation, bundling, and depolymerization after GTP hydrolysis, which involves a relatively small number of species and reactions, and remains robust over a wide range of concentrations and timescales. We apply this general model to study assembly of FtsZ protein, a basic element in the division process of prokaryotic cells such as Escherichia coli, Bacillus subtilis, or Caulobacter crescentus. This analysis demonstrates that our model outperforms its counterparts in terms of both accuracy and computational efficiency. Because our model comprises only 17 ordinary differential equations, its computational cost is orders-of-magnitude smaller than the current alternatives consisting of up to 1000 ordinary differential equations. It also provides, to our knowledge, a new insight into the characteristics and functioning of FtsZ proteins at high concentrations. The simplicity and versatility of our model render it a powerful computational tool, which can be used either as a standalone descriptor of other biopolymers' assembly or as a component in more complete kinetic models.
Collapse
Affiliation(s)
- Alvaro Ruiz-Martinez
- Department of Mechanical and Aerospace Engineering, University of California-San Diego, La Jolla, California
| | - Thomas M Bartol
- Computational Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, California
| | - Terrence J Sejnowski
- Computational Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, California; Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, California; The Division of Biological Studies Sciences, University of California-San Diego, La Jolla, California.
| | - Daniel M Tartakovsky
- Department of Mechanical and Aerospace Engineering, University of California-San Diego, La Jolla, California.
| |
Collapse
|
32
|
Annexin A2 is critical for blood-testis barrier integrity and spermatid disengagement in the mammalian testis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1864:527-545. [PMID: 27974247 DOI: 10.1016/j.bbamcr.2016.12.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 12/06/2016] [Accepted: 12/09/2016] [Indexed: 01/08/2023]
Abstract
Throughout spermatogenesis, two important processes occur at late stage VIII of the seminiferous epithelial cycle in the rat testis: preleptotene spermatocytes commence entry into the adluminal compartment and step 19 spermatids release from the seminiferous epithelium. Presently, it is not clear how these processes, which involve extensive restructuring of unique Sertoli-Sertoli and Sertoli-germ cell junctions, are mediated. We aimed to determine whether annexin A2 (ANXA2), a Ca2+-dependent and phospholipid-binding protein, participates in cell junction dynamics. To address this, in vitro and in vivo RNA interference studies were performed on prepubertal Sertoli cells and adult rat testes. The endpoints of Anxa2 knockdown were determined by immunoblotting, morphological analyses, fluorescent immunostaining, and barrier integrity assays. In the testis, ANXA2 localized to the Sertoli cell stalk, with specific staining at the blood-testis barrier and the concave (ventral) surface of elongated spermatids. ANXA2 also bound actin when testis lysates were used for immunoprecipitation. Anxa2 knockdown was found to disrupt the Sertoli cell/blood-testis barrier in vitro and in vivo. The disruption in barrier function was substantiated by changes in the localization of claudin-11, zona occludens-1, N-cadherin, and β-catenin. Furthermore, Anxa2 knockdown resulted in spermiation defects caused by a dysfunction of tubulobulbar complexes, testis-specific actin-rich ultrastructures that internalize remnant cell junction components prior to spermiation. Additionally, there were changes in the localization of several tubulobulbar complex component proteins, including actin-related protein 3, cortactin, and dynamin I/II. Our results indicate that ANXA2 is critical for the integrity of the blood-testis barrier and the timely release of spermatids.
Collapse
|
33
|
Chen X, Fan X, Tan J, Shi P, Wang X, Wang J, Kuang Y, Fei J, Liu J, Dang S, Wang Z. Palladin is involved in platelet activation and arterial thrombosis. Thromb Res 2016; 149:1-8. [PMID: 27865965 DOI: 10.1016/j.thromres.2016.11.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 08/31/2016] [Accepted: 11/09/2016] [Indexed: 10/20/2022]
Abstract
The dynamics of actin cytoskeleton have been shown to play a critical role during platelet activation. Palladin is an actin-associated protein, serving as a cytoskeleton scaffold to bundle actin fibers and actin cross linker. The functional role of palladin on platelet activation has not been investigated. Here, we characterized heterozygous palladin knockout (palladin+/-) mice to elucidate the platelet-related functions of palladin. The results showed that palladin was expressed in platelets and moderate palladin deficiency accelerated hemostasis and arterial thrombosis. The aggregation of palladin+/- platelets was increased in response to low levels of thrombin, U46619, and collagen. We also observed enhanced spreading of palladin+/- platelets on immobilized fibrinogen (Fg) and increased rate of clot retraction in platelet-rich plasma (PRP) containing palladin+/- platelets. Furthermore, the activation of the small GTPase Rac1 and Cdc42, which is associated with cytoskeletal dynamics and platelet activation signalings, was increased in the spreading and aggregating palladin+/- platelets compared to that in wild type platelets. Taken together, these findings indicated that palladin is involved in platelet activation and arterial thrombosis, implying a potent role of palladin in pathophysiology of thrombotic diseases.
Collapse
Affiliation(s)
- Xuejiao Chen
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai 200025, China; Shanghai Research Center for Model Organisms, Shanghai 201203, China
| | - Xuemei Fan
- Department of Biochemistry and Molecular Cell Biology, SJTUSM, Shanghai 200025, China
| | - Juan Tan
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai 200025, China; Shanghai Research Center for Model Organisms, Shanghai 201203, China
| | - Panlai Shi
- Department of Biochemistry and Molecular Cell Biology, SJTUSM, Shanghai 200025, China
| | - Xiyi Wang
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai 200025, China; Shanghai Research Center for Model Organisms, Shanghai 201203, China
| | - Jinjin Wang
- Shanghai Research Center for Model Organisms, Shanghai 201203, China
| | - Ying Kuang
- Shanghai Research Center for Model Organisms, Shanghai 201203, China
| | - Jian Fei
- Shanghai Research Center for Model Organisms, Shanghai 201203, China
| | - Junling Liu
- Department of Biochemistry and Molecular Cell Biology, SJTUSM, Shanghai 200025, China
| | - Suying Dang
- Department of Biochemistry and Molecular Cell Biology, SJTUSM, Shanghai 200025, China; Shanghai Research Center for Model Organisms, Shanghai 201203, China.
| | - Zhugang Wang
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai 200025, China; Shanghai Research Center for Model Organisms, Shanghai 201203, China.
| |
Collapse
|
34
|
Yadav R, Vattepu R, Beck MR. Phosphoinositide Binding Inhibits Actin Crosslinking and Polymerization by Palladin. J Mol Biol 2016; 428:4031-4047. [PMID: 27487483 DOI: 10.1016/j.jmb.2016.07.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 07/23/2016] [Accepted: 07/26/2016] [Indexed: 12/11/2022]
Abstract
Actin cytoskeleton remodeling requires the coordinated action of a large number of actin binding proteins that reorganize the actin cytoskeleton by promoting polymerization, stabilizing filaments, causing branching, or crosslinking filaments. Palladin is a key cytoskeletal actin binding protein whose normal function is to enable cell motility during development of tissues and organs of the embryo and in wound healing, but palladin is also responsible for regulating the ability of cancer cells to become invasive and metastatic. The membrane phosphoinositide phosphatidylinositol (PI) 4,5-bisphosphate [PI(4,5)P2] is a well-known precursor for intracellular signaling and a bona fide regulator of actin cytoskeleton reorganization. Our results show that two palladin domains [immunoglobulin (Ig) 3 and 34] interact with the head group of PI(4,5)P2 with moderate affinity (apparent Kd=17μM). Interactions with PI(4,5)P2 decrease the actin polymerizing activity of Ig domain 3 of palladin (Palld-Ig3). Furthermore, NMR titration and docking studies show that residues K38 and K51, which are present on the β-sheet C and D, form salt bridges with the head group of PI(4,5)P2. Moreover, charge neutralization at lysine 38 in the Palld-Ig3 domain severely limits the actin polymerizing and bundling activity of Palld-Ig3. Our results provide biochemical proof that PI(4,5)P2 functions as a moderator of palladin activity and have also identified residues directly involved in the crosslinking activity of palladin.
Collapse
Affiliation(s)
- Rahul Yadav
- Chemistry Department, Wichita State University, 1845 Fairmount Street, Wichita, KS 67260, USA.
| | - Ravi Vattepu
- Chemistry Department, Wichita State University, 1845 Fairmount Street, Wichita, KS 67260, USA.
| | - Moriah R Beck
- Chemistry Department, Wichita State University, 1845 Fairmount Street, Wichita, KS 67260, USA.
| |
Collapse
|
35
|
The actin crosslinking protein palladin modulates force generation and mechanosensitivity of tumor associated fibroblasts. Sci Rep 2016; 6:28805. [PMID: 27353427 PMCID: PMC4926206 DOI: 10.1038/srep28805] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 06/10/2016] [Indexed: 01/15/2023] Open
Abstract
Cells organize actin filaments into higher-order structures by regulating the composition, distribution and concentration of actin crosslinkers. Palladin is an actin crosslinker found in the lamellar actin network and stress fibers, which are critical for mechanosensing of the environment. Palladin also serves as a molecular scaffold for α-actinin, another key actin crosslinker. By virtue of its close interactions with actomyosin structures in the cell, palladin may play an important role in cell mechanics. However, the role of palladin in cellular force generation and mechanosensing has not been studied. Here, we investigate the role of palladin in regulating the plasticity of the actin cytoskeleton and cellular force generation in response to alterations in substrate stiffness. Traction force microscopy revealed that tumor-associated fibroblasts generate larger forces on substrates of increased stiffness. Contrary to expectations, knocking down palladin increased the forces generated by cells and inhibited their ability to sense substrate stiffness for very stiff gels. This was accompanied by significant differences in actin organization, adhesion dynamics and altered myosin organization in palladin knock-down cells. Our results suggest that actin crosslinkers such as palladin and myosin motors coordinate for optimal cell function and to prevent aberrant behavior as in cancer metastasis.
Collapse
|
36
|
McLane JS, Ligon LA. Palladin mediates stiffness-induced fibroblast activation in the tumor microenvironment. Biophys J 2016. [PMID: 26200861 DOI: 10.1016/j.bpj.2015.06.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Mechanical properties of the tumor microenvironment have emerged as key factors in tumor progression. It has been proposed that increased tissue stiffness can transform stromal fibroblasts into carcinoma-associated fibroblasts. However, it is unclear whether the three to five times increase in stiffness seen in tumor-adjacent stroma is sufficient for fibroblast activation. In this study we developed a three-dimensional (3D) hydrogel model with precisely tunable stiffness and show that a physiologically relevant increase in stiffness is sufficient to lead to fibroblast activation. We found that soluble factors including CC-motif chemokine ligand (CCL) chemokines and fibronectin are necessary for this activation, and the combination of C-C chemokine receptor type 4 (CCR4) chemokine receptors and β1 and β3 integrins are necessary to transduce these chemomechanical signals. We then show that these chemomechanical signals lead to the gene expression changes associated with fibroblast activation via a network of intracellular signaling pathways that include focal adhesion kinase (FAK) and phosphoinositide 3-kinase (PI3K). Finally, we identify the actin-associated protein palladin as a key node in these signaling pathways that result in fibroblast activation.
Collapse
Affiliation(s)
- Joshua S McLane
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York; Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York
| | - Lee A Ligon
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York; Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York.
| |
Collapse
|
37
|
Lee M, San Martín A, Valdivia A, Martin-Garrido A, Griendling KK. Redox-Sensitive Regulation of Myocardin-Related Transcription Factor (MRTF-A) Phosphorylation via Palladin in Vascular Smooth Muscle Cell Differentiation Marker Gene Expression. PLoS One 2016; 11:e0153199. [PMID: 27088725 PMCID: PMC4835087 DOI: 10.1371/journal.pone.0153199] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 03/24/2016] [Indexed: 01/18/2023] Open
Abstract
Vascular smooth muscle cells (VSMCs) undergo a phenotypic switch from a differentiated to synthetic phenotype in cardiovascular diseases such as atherosclerosis and restenosis. Our previous studies indicate that transforming growth factor-β (TGF-β) helps to maintain the differentiated phenotype by regulating expression of pro-differentiation genes such as smooth muscle α-actin (SMA) and Calponin (CNN) through reactive oxygen species (ROS) derived from NADPH oxidase 4 (Nox4) in VSMCs. In this study, we investigated the relationship between Nox4 and myocardin-related transcription factor-A (MRTF-A), a transcription factor known to be important in expression of smooth muscle marker genes. Previous work has shown that MRTF-A interacts with the actin-binding protein, palladin, although how this interaction affects MRTF-A function is unclear, as is the role of phosphorylation in MRTF-A activity. We found that Rho kinase (ROCK)-mediated phosphorylation of MRTF-A is a key event in the regulation of SMA and CNN in VSMCs and that this phosphorylation depends upon Nox4-mediated palladin expression. Knockdown of Nox4 using siRNA decreases TGF-β -induced palladin expression and MRTF-A phosphorylation, suggesting redox-sensitive regulation of this signaling pathway. Knockdown of palladin also decreases MRTF-A phosphorylation. These data suggest that Nox4-dependent palladin expression and ROCK regulate phosphorylation of MRTF-A, a critical factor in the regulation of SRF responsive gene expression.
Collapse
Affiliation(s)
- Minyoung Lee
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, Georgia, United Sates of America
| | - Alejandra San Martín
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, Georgia, United Sates of America
| | - Alejandra Valdivia
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, Georgia, United Sates of America
| | - Abel Martin-Garrido
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, Georgia, United Sates of America
| | - Kathy K. Griendling
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, Georgia, United Sates of America
| |
Collapse
|
38
|
Gurung R, Yadav R, Brungardt JG, Orlova A, Egelman EH, Beck MR. Actin polymerization is stimulated by actin cross-linking protein palladin. Biochem J 2016; 473:383-96. [PMID: 26607837 PMCID: PMC4912051 DOI: 10.1042/bj20151050] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 11/25/2015] [Indexed: 12/15/2022]
Abstract
The actin scaffold protein palladin regulates both normal cell migration and invasive cell motility, processes that require the co-ordinated regulation of actin dynamics. However, the potential effect of palladin on actin dynamics has remained elusive. In the present study, we show that the actin-binding immunoglobulin-like domain of palladin, which is directly responsible for both actin binding and bundling, also stimulates actin polymerization in vitro. Palladin eliminated the lag phase that is characteristic of the slow nucleation step of actin polymerization. Furthermore, palladin dramatically reduced depolymerization, slightly enhanced the elongation rate, and did not alter the critical concentration. Microscopy and in vitro cross-linking assays reveal differences in actin bundle architecture when palladin is incubated with actin before or after polymerization. These results suggest a model whereby palladin stimulates a polymerization-competent form of globular or monomeric actin (G-actin), akin to metal ions, either through charge neutralization or through conformational changes.
Collapse
Affiliation(s)
- Ritu Gurung
- Chemistry Department, Wichita State University, Wichita, KS 67260, U.S.A
| | - Rahul Yadav
- Chemistry Department, Wichita State University, Wichita, KS 67260, U.S.A
| | - Joseph G Brungardt
- Chemistry Department, Wichita State University, Wichita, KS 67260, U.S.A
| | - Albina Orlova
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, U.S.A
| | - Edward H Egelman
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, U.S.A
| | - Moriah R Beck
- Chemistry Department, Wichita State University, Wichita, KS 67260, U.S.A.
| |
Collapse
|
39
|
Abstract
PURPOSE OF REVIEW The present review examines the role of actin binding proteins (ABPs) on blood-testis barrier (BTB), an androgen-dependent ultrastructure in the testis, in particular their involvement on BTB remodeling during spermatogenesis. RECENT FINDINGS The BTB divides the seminiferous epithelium into the basal and the adluminal compartments. The BTB is constituted by coexisting actin-based tight junction, basal ectoplasmic specialization, and gap junction, and also intermediate filament-based desmosome between Sertoli cells near the basement membrane. Junctions at the BTB undergo continuous remodeling to facilitate the transport of preleptotene spermatocytes residing in the basal compartment across the immunological barrier during spermatogenesis. Thus, meiosis I/II and postmeiotic spermatid development take place in the adluminal compartment behind the BTB. BTB remodeling also regulates exchanges of biomolecules between the two compartments. As tight junction, basal ectoplasmic specialization, and gap junction use F-actin for attachment, actin microfilaments rapidly convert between their bundled and unbundled/branched configuration to confer BTB plasticity. The events of actin reorganization are regulated by two major classes of ABPs that convert actin microfilaments between their bundled and branched/unbundled configuration. SUMMARY We provide a model on how ABPs regulate BTB remodeling, shedding new light on unexplained male infertility, such as environmental toxicant-induced reproductive dysfunction since the testis, in particular the BTB, is sensitive to environmental toxicants, such as cadmium, bisphenol A, phthalates, and PFOS (perfluorooctanesulfonic acid or perfluorooctane sulfonate).
Collapse
Affiliation(s)
- Nan Li
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York, USA
| | | | | |
Collapse
|
40
|
Nguyen NUN, Wang HV. Dual roles of palladin protein in in vitro myogenesis: inhibition of early induction but promotion of myotube maturation. PLoS One 2015; 10:e0124762. [PMID: 25875253 PMCID: PMC4396843 DOI: 10.1371/journal.pone.0124762] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 03/06/2015] [Indexed: 12/28/2022] Open
Abstract
Palladin is a microfilament-associated phosphoprotein whose function in skeletal muscle has rarely been studied. Therefore, we investigate whether myogenesis is influenced by the depletion of palladin expression known to interfere with the actin cytoskeleton dynamic required for skeletal muscle differentiation. The inhibition of palladin in C2C12 myoblasts leads to precocious myogenic differentiation with a concomitant reduction in cell apoptosis. This premature myogenesis is caused, in part, by an accelerated induction of p21, myogenin, and myosin heavy chain, suggesting that palladin acts as a negative regulator in early differentiation phases. Paradoxically, palladin-knockdown myoblasts are unable to differentiate terminally, despite their ability to perform some initial steps of differentiation. Cells with attenuated palladin expression form thinner myotubes with fewer myonuclei compared to those of the control. It is noteworthy that a negative regulator of myogenesis, myostatin, is activated in palladin-deficient myotubes, suggesting the palladin-mediated impairment of late-stage myogenesis. Additionally, overexpression of 140-kDa palladin inhibits myoblast differentiation while 200-kDa and 90-kDa palladin-overexpressed cells display an enhanced differentiation rate. Together, our data suggest that palladin might have both positive and negative roles in maintaining the proper skeletal myogenic differentiation in vitro.
Collapse
Affiliation(s)
- Ngoc-Uyen-Nhi Nguyen
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
- Center for Cell Dynamics, National Cheng Kung University, Tainan, Taiwan
| | - Hao-Ven Wang
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
- University Center for Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
- Center for Cell Dynamics, National Cheng Kung University, Tainan, Taiwan
- * E-mail:
| |
Collapse
|
41
|
Vattepu R, Yadav R, Beck MR. Actin-induced dimerization of palladin promotes actin-bundling. Protein Sci 2014; 24:70-80. [PMID: 25307943 DOI: 10.1002/pro.2588] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 10/09/2014] [Indexed: 12/12/2022]
Abstract
A subset of actin binding proteins is able to form crosslinks between two or more actin filaments, thus producing structures of parallel or networked bundles. These actin crosslinking proteins interact with actin through either bivalent binding or dimerization. We recently identified two binding sites within the actin binding domain of palladin, an actin crosslinking protein that plays an important role in normal cell adhesion and motility during wound healing and embryonic development. In this study, we show that actin induces dimerization of palladin. Furthermore, the extent of dimerization reflects earlier comparisons of actin binding and bundling between different domains of palladin. On the basis of these results we hypothesized that actin binding may promote a conformational change that results in dimerization of palladin, which in turn may drive the crosslinking of actin filaments. The proximal distance between two actin binding sites on crosslinking proteins determines the ultrastructural properties of the filament network, therefore we also explored interdomain interactions using a combination of chemical crosslinking experiments and actin cosedimentation assays. Limited proteolysis data reveals that palladin is less susceptible to enzyme digestion after actin binding. Our results suggest that domain movements in palladin are necessary for interactions with actin and are induced by interactions with actin filaments. Accordingly, we put forth a model linking the structural changes to functional dynamics.
Collapse
Affiliation(s)
- Ravi Vattepu
- Chemistry Department, Wichita State University, Wichita, Kansas, 67260
| | | | | |
Collapse
|
42
|
Qian X, Mruk DD, Cheng YH, Cheng CY. Actin cross-linking protein palladin and spermatogenesis. SPERMATOGENESIS 2014; 3:e23473. [PMID: 23687615 PMCID: PMC3644046 DOI: 10.4161/spmg.23473] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In the seminiferous epithelium of the mammalian testis, the most distinctive ultrastructure is the extensive bundles of actin filaments that lie near the Sertoli-spermatid interface and the Sertoli-Sertoli cell interface known as the apical ectoplasmic specialization (apical ES) and the basal ES, respectively. These actin filament bundles not only confer strong adhesion at these sites, they are uniquely found in the testis. Recent studies have shown that ES also confers spermatid and Sertoli cell polarity in the seminiferous epithelium during the epithelial cycle. While these junctions were first described in the 1970s, there are few functional studies in the literature to examine the regulation of these actin filament bundles. It is conceivable that these actin filament bundles at the ES undergo extensive re-organization to accommodate changes in location of developing spermatids during spermiogenesis as spermatids are transported across the seminiferous epithelium. Additionally, these actin filaments are rapidly reorganized during BTB restructuring to accommodate the transit of preleptotene spermatocytes across the barrier at stage VIII of the epithelial cycle. Thus, actin binding and regulatory proteins are likely involved in these events to confer changes in F-actin organization at these sites. Interestingly, there are no reports in the field to study these regulatory proteins until recently. Herein, we summarize some of the latest findings in the field regarding a novel actin cross-linker and actin-bundling protein called palladin. We also discuss in this opinion article the likely role of palladin in regulating actin filament bundles at the ES during spermatogenesis, highlighting the significant of palladin and how this protein is plausibly working in concert with other actin-binding/regulatory proteins and components of polarity proteins to regulate the cyclic events of actin organization and re-organization during the epithelial cycle of spermatogenesis. We also propose a hypothetic model by which palladin regulates ES restructuring during the epithelial cycle of spermatogenesis.
Collapse
Affiliation(s)
- Xiaojing Qian
- The Mary M. Wohlford Laboratory for Male Contraceptive Research; Center for Biomedical Research; Population Council; New York, NY USA ; School of Basic Medicine; Peking Union Medical College; Beijing, China
| | | | | | | |
Collapse
|
43
|
Niedenberger BA, Chappell VA, Otey CA, Geyer CB. Actin dynamics regulate subcellular localization of the F-actin-binding protein PALLD in mouse Sertoli cells. Reproduction 2014; 148:333-41. [PMID: 24989903 DOI: 10.1530/rep-14-0147] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Sertoli cells undergo terminal differentiation at puberty to support all phases of germ cell development, which occurs in the mouse beginning in the second week of life. By ∼18 days postpartum (dpp), nearly all Sertoli cells have ceased proliferation. This terminal differentiation is accompanied by the development of unique and regionally concentrated filamentous actin (F-actin) structures at the basal and apical aspects of the seminiferous epithelium, and this reorganization is likely to involve the action of actin-binding proteins. Palladin (PALLD) is a widely expressed F-actin-binding and bundling protein recently shown to regulate these structures, yet it is predominantly nuclear in Sertoli cells at puberty. We found that PALLD localized within nuclei of primary Sertoli cells grown in serum-free media but relocalized to the cytoplasm upon serum stimulation. We utilized this system with in vivo relevance to Sertoli cell development to investigate mechanisms regulating nuclear localization of this F-actin-binding protein. Our results indicate that PALLD can be shuttled from the nucleus to the cytoplasm, and that this relocalization occurred following depolymerization of the F-actin cytoskeleton in response to cAMP signaling. Nuclear localization was reduced in Hpg-mutant testes, suggesting the involvement of gonadotropin signaling. We found that PALLD nuclear localization was unaffected in testis tissues from LH receptor and androgen receptor-mutant mice. However, PALLD nuclear localization was reduced in the testes of FSH receptor-mutant mice, suggesting that FSH signaling during Sertoli cell maturation regulates this subcellular localization.
Collapse
MESH Headings
- Actin Cytoskeleton/metabolism
- Actins/metabolism
- Active Transport, Cell Nucleus
- Animals
- Cells, Cultured
- Cyclic AMP/metabolism
- Cytoplasm/metabolism
- Cytoskeletal Proteins/metabolism
- Follicle Stimulating Hormone/metabolism
- Gonadotropin-Releasing Hormone/genetics
- Gonadotropin-Releasing Hormone/metabolism
- Humans
- Karyopherins/metabolism
- Luteinizing Hormone/metabolism
- Male
- Mice
- Mice, Knockout
- Phosphoproteins/metabolism
- Protein Precursors/genetics
- Protein Precursors/metabolism
- Receptors, Androgen/genetics
- Receptors, Androgen/metabolism
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, FSH/genetics
- Receptors, FSH/metabolism
- Receptors, LH/genetics
- Receptors, LH/metabolism
- Sertoli Cells/metabolism
- rho GTP-Binding Proteins/metabolism
- Exportin 1 Protein
Collapse
Affiliation(s)
- Bryan A Niedenberger
- Department of Anatomy and Cell BiologyBrody School of Medicine, Greenville, North Carolina 27834, USAEast Carolina Diabetes and Obesity InstituteGreenville, North Carolina 27834, USADepartment of Cell Biology and PhysiologyUniversity of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Vesna A Chappell
- Department of Anatomy and Cell BiologyBrody School of Medicine, Greenville, North Carolina 27834, USAEast Carolina Diabetes and Obesity InstituteGreenville, North Carolina 27834, USADepartment of Cell Biology and PhysiologyUniversity of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Carol A Otey
- Department of Anatomy and Cell BiologyBrody School of Medicine, Greenville, North Carolina 27834, USAEast Carolina Diabetes and Obesity InstituteGreenville, North Carolina 27834, USADepartment of Cell Biology and PhysiologyUniversity of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Christopher B Geyer
- Department of Anatomy and Cell BiologyBrody School of Medicine, Greenville, North Carolina 27834, USAEast Carolina Diabetes and Obesity InstituteGreenville, North Carolina 27834, USADepartment of Cell Biology and PhysiologyUniversity of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA Department of Anatomy and Cell BiologyBrody School of Medicine, Greenville, North Carolina 27834, USAEast Carolina Diabetes and Obesity InstituteGreenville, North Carolina 27834, USADepartment of Cell Biology and PhysiologyUniversity of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
44
|
Nguyen NUN, Liang VR, Wang HV. Actin-associated protein palladin is required for migration behavior and differentiation potential of C2C12 myoblast cells. Biochem Biophys Res Commun 2014; 452:728-33. [DOI: 10.1016/j.bbrc.2014.08.143] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 08/26/2014] [Indexed: 11/17/2022]
|
45
|
Tolbert CE, Thompson PM, Superfine R, Burridge K, Campbell SL. Phosphorylation at Y1065 in vinculin mediates actin bundling, cell spreading, and mechanical responses to force. Biochemistry 2014; 53:5526-36. [PMID: 25115937 PMCID: PMC4151700 DOI: 10.1021/bi500678x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
![]()
Vinculin
is an essential structural adaptor protein that localizes
to sites of adhesion and is involved in a number of cell processes
including adhesion, spreading, motility, force transduction, and cell
survival. The C-terminal vinculin tail domain (Vt) contains the necessary
structural components to bind and cross-link actin filaments. Actin
binding to Vt induces a conformational change that promotes dimerization
through the C-terminal hairpin of Vt and enables actin filament cross-linking.
Here we show that Src phosphorylation of Y1065 within the C-terminal
hairpin regulates Vt-mediated actin bundling and provide a detailed
characterization of Y1065 mutations. Furthermore, we show that phosphorylation
at Y1065 plays a role in cell spreading and the response to the application
of mechanical force.
Collapse
Affiliation(s)
- Caitlin E Tolbert
- Department of Cell Biology and Physiology, ‡Department of Biochemistry and Biophysics, §Graduate Molecular and Cellular Biophysics Program, ∥Department of Physics and Astronomy, and ⊥the Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599, United States
| | | | | | | | | |
Collapse
|
46
|
Zhang XL, De S, McIntosh LP, Paetzel M. Structural Characterization of the C3 Domain of Cardiac Myosin Binding Protein C and Its Hypertrophic Cardiomyopathy-Related R502W Mutant. Biochemistry 2014; 53:5332-42. [DOI: 10.1021/bi500784g] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiaolu Linda Zhang
- Department
of Molecular Biology and Biochemistry, Simon Fraser University, South
Science Building, 8888 University Drive, Burnaby, British Columbia, Canada V5A 1S6
| | - Soumya De
- Department
of Biochemistry and Molecular Biology, Department of Chemistry, and
The Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| | - Lawrence P. McIntosh
- Department
of Biochemistry and Molecular Biology, Department of Chemistry, and
The Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| | - Mark Paetzel
- Department
of Molecular Biology and Biochemistry, Simon Fraser University, South
Science Building, 8888 University Drive, Burnaby, British Columbia, Canada V5A 1S6
| |
Collapse
|
47
|
Koskinen M, Hotulainen P. Measuring F-actin properties in dendritic spines. Front Neuroanat 2014; 8:74. [PMID: 25140131 PMCID: PMC4122166 DOI: 10.3389/fnana.2014.00074] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 07/16/2014] [Indexed: 12/28/2022] Open
Abstract
During the last decade, numerous studies have demonstrated that the actin cytoskeleton plays a pivotal role in the control of dendritic spine shape. Synaptic stimulation rapidly changes the actin dynamics and many actin regulators have been shown to play roles in neuron functionality. Accordingly, defects in the regulation of the actin cytoskeleton in neurons have been implicated in memory disorders. Due to the small size of spines, it is difficult to detect changes in the actin structures in dendritic spines by conventional light microscopy imaging. Instead, to know how tightly actin filaments are bundled together, and how fast the filaments turnover, we need to use advanced microscopy techniques, such as fluorescence recovery after photobleaching (FRAP), photoactivatable green fluorescent protein (PAGFP) fluorescence decay and fluorescence anisotropy. Fluorescence anisotropy, which measures the Förster resonance energy transfer (FRET) between two GFP fluorophores, has been proposed as a method to measure the level of actin polymerization. Here, we propose a novel idea that fluorescence anisotropy could be more suitable to study the level of actin filament bundling instead of actin polymerization. We validate the method in U2OS cell line where the actin structures can be clearly distinguished and apply to analyze how actin filament organization in dendritic spines changes during neuronal maturation. In addition to fluorescence anisotropy validation, we take a critical look at the properties and limitations of FRAP and PAGFP fluorescence decay methods and offer our proposals for the analysis methods for these approaches. These three methods complement each other, each providing additional information about actin dynamics and organization in dendritic spines.
Collapse
Affiliation(s)
- Mikko Koskinen
- Neuroscience Center, University of Helsinki Helsinki, Finland
| | | |
Collapse
|
48
|
von Nandelstadh P, Gucciardo E, Lohi J, Li R, Sugiyama N, Carpen O, Lehti K. Actin-associated protein palladin promotes tumor cell invasion by linking extracellular matrix degradation to cell cytoskeleton. Mol Biol Cell 2014; 25:2556-70. [PMID: 24989798 PMCID: PMC4148246 DOI: 10.1091/mbc.e13-11-0667] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Basal-like breast carcinomas, characterized by unfavorable prognosis and frequent metastases, are associated with epithelial-to-mesenchymal transition. During this process, cancer cells undergo cytoskeletal reorganization and up-regulate membrane-type 1 matrix metalloproteinase (MT1-MMP; MMP14), which functions in actin-based pseudopods to drive invasion by extracellular matrix degradation. However, the mechanisms that couple matrix proteolysis to the actin cytoskeleton in cell invasion have remained unclear. On the basis of a yeast two-hybrid screen for the MT1-MMP cytoplasmic tail-binding proteins, we identify here a novel Src-regulated protein interaction between the dynamic cytoskeletal scaffold protein palladin and MT1-MMP. These proteins were coexpressed in invasive human basal-like breast carcinomas and corresponding cell lines, where they were associated in the same matrix contacting and degrading membrane complexes. The silencing and overexpression of the 90-kDa palladin isoform revealed the functional importance of the interaction with MT1-MMP in pericellular matrix degradation and mesenchymal tumor cell invasion, whereas in MT1-MMP-negative cells, palladin overexpression was insufficient for invasion. Moreover, this invasion was inhibited in a dominant-negative manner by an immunoglobulin domain-containing palladin fragment lacking the dynamic scaffold and Src-binding domains. These results identify a novel protein interaction that links matrix degradation to cytoskeletal dynamics and migration signaling in mesenchymal cell invasion.
Collapse
Affiliation(s)
- Pernilla von Nandelstadh
- Research Programs Unit, Genome-Scale Biology, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland Department of Pathology, Haartman Institute, FIN-00014, University of Helsinki, Helsinki, Finland
| | - Erika Gucciardo
- Research Programs Unit, Genome-Scale Biology, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland Department of Pathology, Haartman Institute, FIN-00014, University of Helsinki, Helsinki, Finland
| | - Jouko Lohi
- Department of Pathology, Haartman Institute, FIN-00014, University of Helsinki, Helsinki, Finland Department of Pathology, HUSLAB, Helsinki University Central Hospital, FIN-00290, Helsinki, Finland
| | - Rui Li
- Research Programs Unit, Genome-Scale Biology, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland Department of Pathology, Haartman Institute, FIN-00014, University of Helsinki, Helsinki, Finland
| | - Nami Sugiyama
- Research Programs Unit, Genome-Scale Biology, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland Department of Pathology, Haartman Institute, FIN-00014, University of Helsinki, Helsinki, Finland
| | - Olli Carpen
- Department of Pathology, University of Turku and Turku University Central Hospital, FIN-20520, Turku, Finland
| | - Kaisa Lehti
- Research Programs Unit, Genome-Scale Biology, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland Department of Pathology, Haartman Institute, FIN-00014, University of Helsinki, Helsinki, Finland
| |
Collapse
|
49
|
Abstract
The transport of germ cells across the seminiferous epithelium is composed of a series of cellular events during the epithelial cycle essential to the completion of spermatogenesis. Without the timely transport of spermatids during spermiogenesis, spermatozoa that are transformed from step 19 spermatids in the rat testis fail to reach the luminal edge of the apical compartment and enter the tubule lumen at spermiation, thereby arriving the epididymis for further maturation. Step 19 spermatids and/or sperms that remain in the epithelium beyond stage VIII of the epithelial cycle will be removed by the Sertoli cell via phagocytosis to form phagosomes and be degraded by lysosomes, leading to subfertility and/or infertility. However, the biology of spermatid transport, in particular the final events that lead to spermiation remain elusive. Based on recent data in the field, we critically evaluate the biology of spermiation herein by focusing on the actin binding proteins (ABPs) that regulate the organization of actin microfilaments at the Sertoli-spermatid interface, which is crucial for spermatid transport during this event. The hypothesis we put forth herein also highlights some specific areas of research that can be pursued by investigators in the years to come.
Collapse
|
50
|
Tom M, Manfrin C, Mosco A, Gerdol M, De Moro GDM, Pallavicini A, Giulianini PG. Different transcription regulation routes are exerted by L- and D-amino acid enantiomers of peptide hormones. J Exp Biol 2014; 217:4337-46. [DOI: 10.1242/jeb.109140] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
Conversion of one or more amino acids in eukaryotic peptides to the D-configuration is catalyzed by specific L/D peptide isomerases and it is a poorly investigated post-translational modification. No common modified amino acid and no specific modified position have been recognized and mechanisms underlying changes in the peptide function provided by this conversion were not sufficiently studied. The 72 amino acid crustacean hyperglycemic hormone (CHH) of Astacidea crustaceans exhibits a co-existence of two peptide enantiomers alternately having D- or L-phenylalanine in their third position. It is a pleiotropic hormone regulating several physiological processes in different target tissues and along different time scales. CHH enantiomers differently affect time courses and intensities of examined processes. The short-term effects of the two isomers on gene expression are presented here, examined in the hepatopancreas, gills, hemocytes and muscles of the astacid Pontastacus leptodactylus. Muscles and hemocytes were poorly affected by both isomers. Two CHH modes of action were elucidated in the hepatopancreas and the gills: specific gene induction by D-CHH only, elucidated in both organs and mutual targeted attenuation affected by both enantiomers elucidated in the gills. Consequently a two-receptor system is hypothesized for conveying the effect of the two CHH isomers.
Collapse
Affiliation(s)
- Moshe Tom
- Israel Oceanographic and Limnological Research, Israel
| | | | | | | | | | | | | |
Collapse
|