1
|
Kristensen SS, Lukassen MV, Siebenhaar S, Diep DB, Morth JP, Mathiesen G. Lactiplantibacillus plantarum as a novel platform for production and purification of integral membrane proteins using RseP as the benchmark. Sci Rep 2023; 13:14361. [PMID: 37658186 PMCID: PMC10474122 DOI: 10.1038/s41598-023-41559-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 08/28/2023] [Indexed: 09/03/2023] Open
Abstract
The present study describes a detailed procedure for expressing and purifying the integral membrane protein RseP using the pSIP system and Lactiplantibacillus plantarum as an expression host. RseP is a membrane-bound site-2-protease and a known antibacterial target in multiple human pathogens. In the present study, we screened five RseP orthologs from Gram-positive bacteria and found RseP from Enterococcus faecium (EfmRseP) to yield the highest protein levels. The production conditions were optimized and EfmRseP was purified by immobilized metal ion affinity chromatography followed by size-exclusion chromatography. The purification resulted in an overall yield of approximately 1 mg of pure protein per 3 g of wet-weight cell pellet. The structural integrity of the purified protein was confirmed using circular dichroism. We further assessed the expression and purification of RseP from E. faecium in the Gram-negative Escherichia coli. Detection of soluble protein failed in two of the three E. coli strains tested. Purification of EfmRseP expressed in E. coli C43(DE3) resulted in a protein with lower purity compared to EfmRseP expressed in L. plantarum. To our knowledge, this is the first time L. plantarum and the pSIP expression system have been applied for the production of membrane proteins.
Collapse
Affiliation(s)
- Sofie S Kristensen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway.
| | - Marie V Lukassen
- Department of Biotechnology and Biomedicine, Technical University of Denmark (DTU), Kongens Lyngby, Denmark
| | - Suzana Siebenhaar
- Department of Biotechnology and Biomedicine, Technical University of Denmark (DTU), Kongens Lyngby, Denmark
| | - Dzung B Diep
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - J Preben Morth
- Department of Biotechnology and Biomedicine, Technical University of Denmark (DTU), Kongens Lyngby, Denmark.
| | - Geir Mathiesen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway.
| |
Collapse
|
2
|
Kristensen SS, Diep DB, Kjos M, Mathiesen G. The role of site-2-proteases in bacteria: a review on physiology, virulence, and therapeutic potential. MICROLIFE 2023; 4:uqad025. [PMID: 37223736 PMCID: PMC10202637 DOI: 10.1093/femsml/uqad025] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/21/2023] [Accepted: 05/02/2023] [Indexed: 05/25/2023]
Abstract
Site-2-proteases are a class of intramembrane proteases involved in regulated intramembrane proteolysis. Regulated intramembrane proteolysis is a highly conserved signaling mechanism that commonly involves sequential digestion of an anti-sigma factor by a site-1- and site-2-protease in response to external stimuli, resulting in an adaptive transcriptional response. Variation of this signaling cascade continues to emerge as the role of site-2-proteases in bacteria continues to be explored. Site-2-proteases are highly conserved among bacteria and play a key role in multiple processes, including iron uptake, stress response, and pheromone production. Additionally, an increasing number of site-2-proteases have been found to play a pivotal role in the virulence properties of multiple human pathogens, such as alginate production in Pseudomonas aeruginosa, toxin production in Vibrio cholerae, resistance to lysozyme in enterococci and antimicrobials in several Bacillus spp, and cell-envelope lipid composition in Mycobacterium tuberculosis. The prominent role of site-2-proteases in bacterial pathogenicity highlights the potential of site-2-proteases as novel targets for therapeutic intervention. In this review, we summarize the role of site-2-proteases in bacterial physiology and virulence, as well as evaluate the therapeutic potential of site-2-proteases.
Collapse
Affiliation(s)
- Sofie S Kristensen
- Faculty of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences (NMBU), 1433 Ås, Norway
| | | | - Morten Kjos
- Corresponding author. NMBU, P.O. Box 5003, 1433 Ås, Norway. E-mail:
| | | |
Collapse
|
3
|
Kupke T, Götz RM, Richter FM, Beck R, Lolicato F, Nickel W, Hopf C, Brügger B. In vivo characterization of the bacterial intramembrane-cleaving protease RseP using the heme binding tag-based assay iCliPSpy. Commun Biol 2023; 6:287. [PMID: 36934128 PMCID: PMC10024687 DOI: 10.1038/s42003-023-04654-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 03/02/2023] [Indexed: 03/20/2023] Open
Abstract
Regulated intramembrane proteolysis (RIP) describes the protease-dependent cleavage of transmembrane proteins within the hydrophobic core of cellular membranes. Intramembrane-cleaving proteases (I-CliPs) that catalyze these reactions are found in all kingdoms of life and are involved in a wide range of cellular processes, including signaling and protein homeostasis. I-CLiPs are multispanning membrane proteins and represent challenging targets in structural and enzyme biology. Here we introduce iCLiPSpy, a simple assay to study I-CLiPs in vivo. To allow easy detection of enzyme activity, we developed a heme-binding reporter based on TNFα that changes color after I-CLiP-mediated proteolysis. Co-expression of the protease and reporter in Escherichia coli (E. coli) results in white or green colonies, depending on the activity of the protease. As a proof of concept, we use this assay to study the bacterial intramembrane-cleaving zinc metalloprotease RseP in vivo. iCLiPSpy expands the methodological repertoire for identifying residues important for substrate binding or activity of I-CLiPs and can in principle be adapted to a screening assay for the identification of inhibitors or activators of I-CLiPs, which is of great interest for proteases being explored as biomedical targets.
Collapse
Affiliation(s)
- Thomas Kupke
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120, Heidelberg, Germany.
| | - Rabea M Götz
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Paul-Wittsack-Str. 10, 68163, Mannheim, Germany
| | - Florian M Richter
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Paul-Wittsack-Str. 10, 68163, Mannheim, Germany
| | - Rainer Beck
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120, Heidelberg, Germany
| | - Fabio Lolicato
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120, Heidelberg, Germany
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Walter Nickel
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120, Heidelberg, Germany
| | - Carsten Hopf
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Paul-Wittsack-Str. 10, 68163, Mannheim, Germany
| | - Britta Brügger
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120, Heidelberg, Germany.
| |
Collapse
|
4
|
Olenic S, Kroos L. An optimized disulfide cross-linking protocol to determine interactions of proteins produced in Escherichia coli. STAR Protoc 2023; 4:101962. [PMID: 36566383 PMCID: PMC9803820 DOI: 10.1016/j.xpro.2022.101962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/26/2022] [Accepted: 12/02/2022] [Indexed: 12/25/2022] Open
Abstract
Protein-protein interactions play important roles in regulating cellular functions. We present an optimized disulfide cross-linking protocol for testing predicted interactions of soluble or membrane proteins. Coexpression in E. coli of proteins with a single cysteine residue results in disulfide bond formation upon treating the cells with oxidants if the two proteins interact and the cysteine residues are near each other. Quantification of cross-linked proteins after immunoblot sensitively and reproducibly measures the interaction. For complete details on the use and execution of this protocol, please refer to Olenic et al. (2022).1.
Collapse
Affiliation(s)
- Sandra Olenic
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA.
| | - Lee Kroos
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
5
|
Rong Y, Jensen SI, Lindorff-Larsen K, Nielsen AT. Folding of heterologous proteins in bacterial cell factories: Cellular mechanisms and engineering strategies. Biotechnol Adv 2023; 63:108079. [PMID: 36528238 DOI: 10.1016/j.biotechadv.2022.108079] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 11/20/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022]
Abstract
The expression of correctly folded and functional heterologous proteins is important in many biotechnological production processes, whether it is enzymes, biopharmaceuticals or biosynthetic pathways for production of sustainable chemicals. For industrial applications, bacterial platform organisms, such as E. coli, are still broadly used due to the availability of tools and proven suitability at industrial scale. However, expression of heterologous proteins in these organisms can result in protein aggregation and low amounts of functional protein. This review provides an overview of the cellular mechanisms that can influence protein folding and expression, such as co-translational folding and assembly, chaperone binding, as well as protein quality control, across different model organisms. The knowledge of these mechanisms is then linked to different experimental methods that have been applied in order to improve functional heterologous protein folding, such as codon optimization, fusion tagging, chaperone co-production, as well as strain and protein engineering strategies.
Collapse
Affiliation(s)
- Yixin Rong
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, 2800 Kgs. Lyngby, Denmark
| | - Sheila Ingemann Jensen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, 2800 Kgs. Lyngby, Denmark
| | - Kresten Lindorff-Larsen
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, 2200 Copenhagen N, Denmark
| | - Alex Toftgaard Nielsen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
6
|
The extracellular domain of site-2-metalloprotease RseP is important for sensitivity to bacteriocin EntK1. J Biol Chem 2022; 298:102593. [PMID: 36244452 PMCID: PMC9672952 DOI: 10.1016/j.jbc.2022.102593] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/01/2022] [Accepted: 10/03/2022] [Indexed: 11/17/2022] Open
Abstract
Enterocin K1 (EntK1), a bacteriocin that is highly potent against vancomycin-resistant enterococci, depends on binding to an intramembrane protease of the site-2 protease family, RseP, for its antimicrobial activity. RseP is highly conserved in both EntK1-sensitive and EntK1-insensitive bacteria, and the molecular mechanisms underlying the interaction between RseP and EntK1 and bacteriocin sensitivity are unknown. Here, we describe a mutational study of RseP from EntK1-sensitive Enterococcus faecium to identify regions of RseP involved in bacteriocin binding and activity. Mutational effects were assessed by studying EntK1 sensitivity and binding with strains of naturally EntK1-insensitive Lactiplantibacillus plantarum–expressing various RseP variants. We determined that site-directed mutations in conserved sequence motifs related to catalysis and substrate binding, and even deletion of two such motifs known to be involved in substrate binding, did not abolish bacteriocin sensitivity, with one exception. A mutation of a highly conserved asparagine, Asn359, in the extended so-called LDG motif abolished both binding of and killing by EntK1. By constructing various hybrids of the RseP proteins from sensitive E. faecium and insensitive L. plantarum, we showed that the extracellular PDZ domain is the key determinant of EntK1 sensitivity. Taken together, these data may provide valuable insight for guided construction of novel bacteriocins and may contribute to establishing RseP as an antibacterial target.
Collapse
|
7
|
Imaizumi Y, Takanuki K, Miyake T, Takemoto M, Hirata K, Hirose M, Oi R, Kobayashi T, Miyoshi K, Aruga R, Yokoyama T, Katagiri S, Matsuura H, Iwasaki K, Kato T, Kaneko MK, Kato Y, Tajiri M, Akashi S, Nureki O, Hizukuri Y, Akiyama Y, Nogi T. Mechanistic insights into intramembrane proteolysis by E. coli site-2 protease homolog RseP. SCIENCE ADVANCES 2022; 8:eabp9011. [PMID: 36001659 PMCID: PMC9401612 DOI: 10.1126/sciadv.abp9011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 07/01/2022] [Indexed: 05/31/2023]
Abstract
Site-2 proteases are a conserved family of intramembrane proteases that cleave transmembrane substrates to regulate signal transduction and maintain proteostasis. Here, we elucidated crystal structures of inhibitor-bound forms of bacterial site-2 proteases including Escherichia coli RseP. Structure-based chemical modification and cross-linking experiments indicated that the RseP domains surrounding the active center undergo conformational changes to expose the substrate-binding site, suggesting that RseP has a gating mechanism to regulate substrate entry. Furthermore, mutational analysis suggests that a conserved electrostatic linkage between the transmembrane and peripheral membrane-associated domains mediates the conformational changes. In vivo cleavage assays also support that the substrate transmembrane helix is unwound by strand addition to the intramembrane β sheet of RseP and is clamped by a conserved asparagine residue at the active center for efficient cleavage. This mechanism underlying the substrate binding, i.e., unwinding and clamping, appears common across distinct families of intramembrane proteases that cleave transmembrane segments.
Collapse
Affiliation(s)
- Yuki Imaizumi
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Kazunori Takanuki
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Takuya Miyake
- Institute for Life and Medical Sciences, Kyoto University, 53 Shogoinkawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Mizuki Takemoto
- Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kunio Hirata
- Life Science Research Infrastructure Group, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Mika Hirose
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Rika Oi
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Tatsuya Kobayashi
- Institute for Life and Medical Sciences, Kyoto University, 53 Shogoinkawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Kenichi Miyoshi
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Rie Aruga
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Tatsuhiko Yokoyama
- Institute for Life and Medical Sciences, Kyoto University, 53 Shogoinkawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Shizuka Katagiri
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Hiroaki Matsuura
- Life Science Research Infrastructure Group, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Kenji Iwasaki
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Takayuki Kato
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Mika K. Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Sendai, Miyagi 980-8575, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Sendai, Miyagi 980-8575, Japan
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Sendai, Miyagi 980-8575, Japan
| | - Michiko Tajiri
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Satoko Akashi
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Osamu Nureki
- Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yohei Hizukuri
- Institute for Life and Medical Sciences, Kyoto University, 53 Shogoinkawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yoshinori Akiyama
- Institute for Life and Medical Sciences, Kyoto University, 53 Shogoinkawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Terukazu Nogi
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| |
Collapse
|
8
|
Olenic S, Heo L, Feig M, Kroos L. Inhibitory proteins block substrate access by occupying the active site cleft of Bacillus subtilis intramembrane protease SpoIVFB. eLife 2022; 11:e74275. [PMID: 35471152 PMCID: PMC9042235 DOI: 10.7554/elife.74275] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 03/25/2022] [Indexed: 12/16/2022] Open
Abstract
Intramembrane proteases (IPs) function in numerous signaling pathways that impact health, but elucidating the regulation of membrane-embedded proteases is challenging. We examined inhibition of intramembrane metalloprotease SpoIVFB by proteins BofA and SpoIVFA. We found that SpoIVFB inhibition requires BofA residues in and near a predicted transmembrane segment (TMS). This segment of BofA occupies the SpoIVFB active site cleft based on cross-linking experiments. SpoIVFB inhibition also requires SpoIVFA. The inhibitory proteins block access of the substrate N-terminal region to the membrane-embedded SpoIVFB active site, based on additional cross-linking experiments; however, the inhibitory proteins did not prevent interaction between the substrate C-terminal region and the SpoIVFB soluble domain. We built a structural model of SpoIVFB in complex with BofA and parts of SpoIVFA and substrate, using partial homology and constraints from cross-linking and co-evolutionary analyses. The model predicts that conserved BofA residues interact to stabilize a TMS and a membrane-embedded C-terminal region. The model also predicts that SpoIVFA bridges the BofA C-terminal region and SpoIVFB, forming a membrane-embedded inhibition complex. Our results reveal a novel mechanism of IP inhibition with clear implications for relief from inhibition in vivo and design of inhibitors as potential therapeutics.
Collapse
Affiliation(s)
| | - Lim Heo
- Michigan State UniversityEast LansingUnited States
| | - Michael Feig
- Michigan State UniversityEast LansingUnited States
| | - Lee Kroos
- Michigan State UniversityEast LansingUnited States
| |
Collapse
|
9
|
Olenic S, Buchanan F, VanPortfliet J, Parrell D, Kroos L. Conserved Proline Residues of Bacillus subtilis Intramembrane Metalloprotease SpoIVFB Are Important for Substrate Interaction and Cleavage. J Bacteriol 2022; 204:e0038621. [PMID: 35007155 PMCID: PMC8923169 DOI: 10.1128/jb.00386-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 01/04/2022] [Indexed: 11/20/2022] Open
Abstract
Intramembrane metalloproteases (IMMPs) regulate diverse biological processes by cleaving membrane-associated substrates within the membrane or near its surface. SpoIVFB is an intramembrane metalloprotease of Bacillus subtilis that cleaves Pro-σK during endosporulation. Intramembrane metalloproteases have a broadly conserved NPDG motif, which in the structure of an archaeal enzyme is located in a short loop that interrupts a transmembrane segment facing the active site. The aspartate residue of the NPDG motif acts as a ligand of the zinc ion involved in catalysis. The functions of other residues in the short loop are less well understood. We found that the predicted short loop of SpoIVFB contains two highly conserved proline residues, P132 of the NPDG motif and P135. Mutational analysis revealed that both proline residues are important for Pro-σK cleavage in Escherichia coli engineered to synthesize the proteins. Substitutions for either residue also impaired the Pro-σK interaction with SpoIVFB in copurification assays. Disulfide cross-linking experiments showed that the predicted short loop of SpoIVFB is in proximity to the N-terminal pro-sequence region (Proregion) of Pro-σK. Alanine substitutions for N129 and P132 of the SpoIVFB NPDG motif reduced cross-linking between its predicted short loop and the Proregion more than a P135A substitution. Conversely, the SpoIVFB P135A substitution reduced Pro-σK cleavage more than the N129A and P132A substitutions during sporulation of B. subtilis. We conclude that all three conserved residues of SpoIVFB are important for substrate interaction and cleavage, and we propose that P135 is necessary to position D137 to act as a zinc ligand. IMPORTANCE Intramembrane metalloproteases (IMMPs) function in numerous signaling pathways. Bacterial IMMPs govern stress responses, including the sporulation of some species, thus enhancing the virulence and persistence of pathogens. Knowledge of IMMP-substrate interactions could aid therapeutic design, but structures of IMMP·substrate complexes are unknown. We examined the interaction of the IMMP SpoIVFB with its substrate Pro-σK, whose cleavage is required for Bacillus subtilis endosporulation. We found that conserved proline residues in a short loop predicted to interrupt a SpoIVFB transmembrane segment are important for Pro-σK binding and cleavage. The corresponding residues of the Escherichia coli IMMP RseP have also been shown to be important for substrate interaction and cleavage, suggesting that this is a broadly conserved feature of IMMPs, potentially suitable as a therapeutic target.
Collapse
Affiliation(s)
- Sandra Olenic
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| | - Fiona Buchanan
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| | - Jordyn VanPortfliet
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| | - Daniel Parrell
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| | - Lee Kroos
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
10
|
Miyake T, Hizukuri Y, Akiyama Y. Involvement of a Membrane-Bound Amphiphilic Helix in Substrate Discrimination and Binding by an Escherichia coli S2P Peptidase RseP. Front Microbiol 2020; 11:607381. [PMID: 33329500 PMCID: PMC7728848 DOI: 10.3389/fmicb.2020.607381] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/05/2020] [Indexed: 11/21/2022] Open
Abstract
Intramembrane proteases (IMPs) are a unique class of proteases that catalyze the proteolysis within the membrane and regulate diverse cellular processes in various organisms. RseP, an Escherichia coli site-2 protease (S2P) family IMP, is involved in the regulation of an extracytoplasmic stress response through the cleavage of membrane-spanning anti-stress-response transcription factor (anti-σE) protein RseA. Extracytoplasmic stresses trigger a sequential cleavage of RseA, in which first DegS cleaves off its periplasmic domain, and RseP catalyzes the second cleavage of RseA. The two tandem-arranged periplasmic PDZ (PDZ tandem) domains of RseP serve as a size-exclusion filter which prevents the access of an intact RseA into the active site of RseP IMP domain. However, RseP’s substrate recognition mechanism is not fully understood. Here, we found that a periplasmic region of RseP, located downstream of the PDZ tandem, contains a segment (named H1) predicted to form an amphiphilic helix. Bacterial S2P homologs with various numbers of PDZ domains have a similar amphiphilic helix in the corresponding region. We demonstrated that the H1 segment forms a partially membrane-embedded amphiphilic helix on the periplasmic surface of the membrane. Systematic and random mutagenesis analyses revealed that the H1 helix is important for the stability and proteolytic function of RseP and that mutations in the H1 segment can affect the PDZ-mediated substrate discrimination. Cross-linking experiments suggested that H1 directly interacts with the DegS-cleaved form of RseA. We propose that H1 acts as an adaptor required for proper arrangement of the PDZ tandem domain to perform its filter function and for substrate positioning for its efficient cleavage.
Collapse
Affiliation(s)
- Takuya Miyake
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Yohei Hizukuri
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Yoshinori Akiyama
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
11
|
Matsuhisa K, Saito A, Cai L, Kaneko M, Okamoto T, Sakaue F, Asada R, Urano F, Yanagida K, Okochi M, Kudo Y, Matsumoto M, Nakayama KI, Imaizumi K. Production of BBF2H7‐derived small peptide fragments via endoplasmic reticulum stress‐dependent regulated intramembrane proteolysis. FASEB J 2019; 34:865-880. [DOI: 10.1096/fj.201901748r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/04/2019] [Accepted: 10/15/2019] [Indexed: 01/04/2023]
Affiliation(s)
- Koji Matsuhisa
- Department of Biochemistry Institute of Biomedical & Health Sciences Hiroshima University Hiroshima Japan
- Department of Stress Protein Processing Institute of Biomedical & Health Sciences Hiroshima University Hiroshima Japan
| | - Atsushi Saito
- Department of Biochemistry Institute of Biomedical & Health Sciences Hiroshima University Hiroshima Japan
- Department of Stress Protein Processing Institute of Biomedical & Health Sciences Hiroshima University Hiroshima Japan
| | - Longjie Cai
- Department of Biochemistry Institute of Biomedical & Health Sciences Hiroshima University Hiroshima Japan
| | - Masayuki Kaneko
- Department of Biochemistry Institute of Biomedical & Health Sciences Hiroshima University Hiroshima Japan
| | - Takumi Okamoto
- Department of Biochemistry Institute of Biomedical & Health Sciences Hiroshima University Hiroshima Japan
| | - Fumika Sakaue
- Department of Biochemistry Institute of Biomedical & Health Sciences Hiroshima University Hiroshima Japan
- Department of Stress Protein Processing Institute of Biomedical & Health Sciences Hiroshima University Hiroshima Japan
| | - Rie Asada
- Department of Biochemistry Institute of Biomedical & Health Sciences Hiroshima University Hiroshima Japan
- Department of Medicine Division of Endocrinology Metabolism, and Lipid Research Washington University School of Medicine St. Louis MO USA
| | - Fumihiko Urano
- Department of Medicine Division of Endocrinology Metabolism, and Lipid Research Washington University School of Medicine St. Louis MO USA
| | - Kanta Yanagida
- Neuropsychiatry Department of Integrated Medicine Division of Internal Medicine Osaka University Graduate School of Medicine Osaka Japan
| | - Masayasu Okochi
- Neuropsychiatry Department of Integrated Medicine Division of Internal Medicine Osaka University Graduate School of Medicine Osaka Japan
| | - Yukitsuka Kudo
- Department of Gerontology and Geriatrics Institute of Development, Aging and Cancer Tohoku University Sendai Japan
| | - Masaki Matsumoto
- Department of Molecular and Cellular Biology Medical Institute of Bioregulation Kyushu University Fukuoka Japan
| | - Keiichi I. Nakayama
- Department of Molecular and Cellular Biology Medical Institute of Bioregulation Kyushu University Fukuoka Japan
| | - Kazunori Imaizumi
- Department of Biochemistry Institute of Biomedical & Health Sciences Hiroshima University Hiroshima Japan
| |
Collapse
|
12
|
Combating tigecycline resistant Acinetobacter baumannii: A leap forward towards multi-epitope based vaccine discovery. Eur J Pharm Sci 2019; 132:1-17. [DOI: 10.1016/j.ejps.2019.02.023] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/31/2019] [Accepted: 02/16/2019] [Indexed: 01/27/2023]
|
13
|
Interaction of intramembrane metalloprotease SpoIVFB with substrate Pro-σ K. Proc Natl Acad Sci U S A 2017; 114:E10677-E10686. [PMID: 29180425 DOI: 10.1073/pnas.1711467114] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Intramembrane proteases (IPs) cleave membrane-associated substrates in nearly all organisms and regulate diverse processes. A better understanding of how these enzymes interact with their substrates is necessary for rational design of IP modulators. We show that interaction of Bacillus subtilis IP SpoIVFB with its substrate Pro-σK depends on particular residues in the interdomain linker of SpoIVFB. The linker plus either the N-terminal membrane domain or the C-terminal cystathione-β-synthase (CBS) domain of SpoIVFB was sufficient for the interaction but not for cleavage of Pro-σK Chemical cross-linking and mass spectrometry of purified, inactive SpoIVFB-Pro-σK complex indicated residues of the two proteins in proximity. A structural model of the complex was built via partial homology and by using constraints based on cross-linking data. In the model, the Proregion of Pro-σK loops into the membrane domain of SpoIVFB, and the rest of Pro-σK interacts extensively with the linker and the CBS domain of SpoIVFB. The extensive interaction is proposed to allow coordination between ATP binding by the CBS domain and Pro-σK cleavage by the membrane domain.
Collapse
|
14
|
Bacillus subtilis Intramembrane Protease RasP Activity in Escherichia coli and In Vitro. J Bacteriol 2017; 199:JB.00381-17. [PMID: 28674070 DOI: 10.1128/jb.00381-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 06/29/2017] [Indexed: 01/19/2023] Open
Abstract
RasP is a predicted intramembrane metalloprotease of Bacillus subtilis that has been proposed to cleave the stress response anti-sigma factors RsiW and RsiV, the cell division protein FtsL, and remnant signal peptides within their transmembrane segments. To provide evidence for direct effects of RasP on putative substrates, we developed a heterologous coexpression system. Since expression of catalytically inactive RasP E21A inhibited expression of other membrane proteins in Escherichia coli, we added extra transmembrane segments to RasP E21A, which allowed accumulation of most other membrane proteins. A corresponding active version of RasP appeared to promiscuously cleave coexpressed membrane proteins, except those with a large periplasmic domain. However, stable cleavage products were not observed, even in clpP mutant E. coli Fusions of transmembrane segment-containing parts of FtsL and RsiW to E. coli maltose-binding protein (MBP) also resulted in proteins that appeared to be RasP substrates upon coexpression in E. coli, including FtsL with a full-length C-terminal domain (suggesting that prior cleavage by a site 1 protease is unnecessary) and RsiW designed to mimic the PrsW site 1 cleavage product (suggesting that further trimming by extracytoplasmic protease is unnecessary). Purified RasP cleaved His6-MBP-RsiW(73-118) in vitro within the RsiW transmembrane segment based on mass spectrometry analysis, demonstrating that RasP is an intramembrane protease. Surprisingly, purified RasP failed to cleave His6-MBP-FtsL(23-117). We propose that the lack of α-helix-breaking residues in the FtsL transmembrane segment creates a requirement for the membrane environment and/or an additional protein(s) in order for RasP to cleave FtsL.IMPORTANCE Intramembrane proteases govern important signaling pathways in nearly all organisms. In bacteria, they function in stress responses, cell division, pathogenesis, and other processes. Their membrane-associated substrates are typically inferred from genetic studies in the native bacterium. Evidence for direct effects has come sometimes from coexpression of the enzyme and potential substrate in a heterologous host and rarely from biochemical reconstitution of cleavage in vitro We applied these two approaches to the B. subtilis enzyme RasP and its proposed substrates RsiW and FtsL. We discovered potential pitfalls and solutions in heterologous coexpression experiments in E. coli, providing evidence that both substrates are cleaved by RasP in vivo but, surprisingly, that only RsiW was cleaved in vitro, suggesting that FtsL has an additional requirement.
Collapse
|
15
|
Akiyama K, Hizukuri Y, Akiyama Y. Involvement of a conserved GFG motif region in substrate binding by RseP, an E
scherichia coli
S2P protease. Mol Microbiol 2017; 104:737-751. [DOI: 10.1111/mmi.13659] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2017] [Indexed: 11/30/2022]
Affiliation(s)
- Koichiro Akiyama
- Institute for Frontier Life and Medical Sciences, Kyoto University; Kyoto 606-8507 Japan
| | - Yohei Hizukuri
- Institute for Frontier Life and Medical Sciences, Kyoto University; Kyoto 606-8507 Japan
| | - Yoshinori Akiyama
- Institute for Frontier Life and Medical Sciences, Kyoto University; Kyoto 606-8507 Japan
| |
Collapse
|
16
|
Hizukuri Y, Akiyama K, Akiyama Y. Biochemical Characterization of Function and Structure of RseP, an Escherichia coli S2P Protease. Methods Enzymol 2016; 584:1-33. [PMID: 28065260 DOI: 10.1016/bs.mie.2016.09.044] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Intramembrane-cleaving proteases (I-CLiPs) are a group of membrane-associated proteases with a unique feature: they are believed to cleave their substrate within the hydrophobic lipid bilayer, even though peptide bond hydrolysis requires a water molecule. Escherichia coli RseP, which belongs to the S2P zinc metalloprotease family of I-CLiPs, plays an essential role in activation of a cell envelope stress response through cleavage of anti-σE protein RseA, a single-span transmembrane protein. A recent study showed that it also cleaves remnant signal peptides generated upon membrane translocation of secretory proteins. Here, we describe several methods for characterization of the proteolytic functions and structure of RseP mainly in vivo, including a proteolytic activity assay using model substrates, an in vitro analysis of cleavage of signal peptides in a detergent solution and in the membrane vesicles, structural analysis of membrane-embedded RseP based on the thiol modifiability of introduced cysteine residues, and the protein interaction analysis by in vivo cross-linking protocols.
Collapse
Affiliation(s)
- Y Hizukuri
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - K Akiyama
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Y Akiyama
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.
| |
Collapse
|
17
|
A Novel SRP Recognition Sequence in the Homeostatic Control Region of Heat Shock Transcription Factor σ32. Sci Rep 2016; 6:24147. [PMID: 27052372 PMCID: PMC4823717 DOI: 10.1038/srep24147] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 03/21/2016] [Indexed: 12/29/2022] Open
Abstract
Heat shock response (HSR) generally plays a major role in sustaining protein homeostasis. In Escherichia coli, the activity and amount of the dedicated transcription factor σ32 transiently increase upon heat shock. The initial induction is followed by chaperone-mediated negative feedback to inactivate and degrade σ32. Previous work reported that signal recognition particle (SRP)-dependent targeting of σ32 to the membrane is essential for feedback control, though how SRP recognizes σ32 remained unknown. Extensive photo- and disulfide cross-linking studies in vivo now reveal that the highly conserved regulatory region of σ32 that lacks a consecutive hydrophobic stretch interacts with the signal peptide-binding site of Ffh (the protein subunit of SRP). Importantly, the σ32–Ffh interaction observed was significantly affected by mutations in this region that compromise the feedback regulation, but not by deleting the DnaK/DnaJ chaperones. Homeostatic regulation of HSR thus requires a novel type of SRP recognition mechanism.
Collapse
|
18
|
Zhang Y, Halder S, Kerr RA, Parrell D, Ruotolo B, Kroos L. Complex Formed between Intramembrane Metalloprotease SpoIVFB and Its Substrate, Pro-σK. J Biol Chem 2016; 291:10347-62. [PMID: 26953342 DOI: 10.1074/jbc.m116.715508] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Indexed: 11/06/2022] Open
Abstract
Intramembrane metalloproteases (IMMPs) are conserved from bacteria to humans and control many important signaling pathways, but little is known about how IMMPs interact with their substrates. SpoIVFB is an IMMP that cleaves Pro-σ(K) during Bacillus subtilis endospore formation. When catalytically inactive SpoIVFB was coexpressed with C-terminally truncated Pro-σ(K)(1-126) (which can be cleaved by active SpoIVFB) in Escherichia coli, the substrate dramatically improved solubilization of the enzyme from membranes with mild detergents. Both the Pro(1-20) and σ(K)(21-126) parts contributed to improving SpoIVFB solubilization from membranes, but only the σ(K) part was needed to form a stable complex with SpoIVFB in a pulldown assay. The last 10 residues of SpoIVFB were required for improved solubilization from membranes by Pro-σ(K)(1-126) and for normal interaction with the substrate. The inactive SpoIVFB·Pro-σ(K)(1-126)-His6 complex was stable during affinity purification and gel filtration chromatography. Disulfide cross-linking of the purified complex indicated that it resembled the complex formed in vivo Ion mobility-mass spectrometry analysis resulted in an observed mass consistent with a 4:2 SpoIVFB·Pro-σ(K)(1-126)-His6 complex. Stepwise photobleaching of SpoIVFB fused to a fluorescent protein supported the notion that the enzyme is tetrameric during B. subtilis sporulation. The results provide the first evidence that an IMMP acts as a tetramer, give new insights into how SpoIVFB interacts with its substrate, and lay the foundation for further biochemical analysis of the enzyme·substrate complex and future structural studies.
Collapse
Affiliation(s)
- Yang Zhang
- From the Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824 and
| | - Sabyasachi Halder
- From the Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824 and
| | - Richard A Kerr
- the Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109
| | - Daniel Parrell
- From the Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824 and
| | - Brandon Ruotolo
- the Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109
| | - Lee Kroos
- From the Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824 and
| |
Collapse
|
19
|
Akiyama K, Mizuno S, Hizukuri Y, Mori H, Nogi T, Akiyama Y. Roles of the membrane-reentrant β-hairpin-like loop of RseP protease in selective substrate cleavage. eLife 2015; 4. [PMID: 26447507 PMCID: PMC4597795 DOI: 10.7554/elife.08928] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 09/10/2015] [Indexed: 11/13/2022] Open
Abstract
Molecular mechanisms underlying substrate recognition and cleavage by Escherichia coli RseP, which belongs to S2P family of intramembrane-cleaving proteases, remain unclear. We examined the function of a conserved region looped into the membrane domain of RseP to form a β-hairpin-like structure near its active site in substrate recognition and cleavage. We observed that mutations disturbing the possible β-strand conformation of the loop impaired RseP proteolytic activity and that some of these mutations resulted in the differential cleavage of different substrates. Co-immunoprecipitation and crosslinking experiments suggest that the loop directly interacts with the transmembrane segments of substrates. Helix-destabilising mutations in the transmembrane segments of substrates suppressed the effect of loop mutations in an allele-specific manner. These results suggest that the loop promotes substrate cleavage by selectively recognising the transmembrane segments of substrates in an extended conformation and by presenting them to the proteolytic active site, which contributes to substrate discrimination.
Collapse
Affiliation(s)
| | - Shinya Mizuno
- Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Yohei Hizukuri
- Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Hiroyuki Mori
- Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Terukazu Nogi
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | | |
Collapse
|
20
|
The membrane anchor of the transcriptional activator SREBP is characterized by intrinsic conformational flexibility. Proc Natl Acad Sci U S A 2015; 112:12390-5. [PMID: 26392539 DOI: 10.1073/pnas.1513782112] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Regulated intramembrane proteolysis (RIP) is a conserved mechanism crucial for numerous cellular processes, including signaling, transcriptional regulation, axon guidance, cell adhesion, cellular stress responses, and transmembrane protein fragment degradation. Importantly, it is relevant in various diseases including Alzheimer's disease, cardiovascular diseases, and cancers. Even though a number of structures of different intramembrane proteases have been solved recently, fundamental questions concerning mechanistic underpinnings of RIP and therapeutic interventions remain. In particular, this includes substrate recognition, what properties render a given substrate amenable for RIP, and how the lipid environment affects the substrate cleavage. Members of the sterol regulatory element-binding protein (SREBP) family of transcription factors are critical regulators of genes involved in cholesterol/lipid homeostasis. After site-1 protease cleavage of the inactive SREBP transmembrane precursor protein, RIP of the anchor intermediate by site-2 protease generates the mature transcription factor. In this work, we have investigated the labile anchor intermediate of SREBP-1 using NMR spectroscopy. Surprisingly, NMR chemical shifts, site-resolved solvent exposure, and relaxation studies show that the cleavage site of the lipid-signaling protein intermediate bears rigid α-helical topology. An evolutionary conserved motif, by contrast, interrupts the secondary structure ∼9-10 residues C-terminal of the scissile bond and acts as an inducer of conformational flexibility within the carboxyl-terminal transmembrane region. These results are consistent with molecular dynamics simulations. Topology, stability, and site-resolved dynamics data suggest that the cleavage of the α-helical substrate in the case of RIP may be associated with a hinge motion triggered by the molecular environment.
Collapse
|
21
|
Kroos L, Akiyama Y. Biochemical and structural insights into intramembrane metalloprotease mechanisms. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:2873-85. [PMID: 24099006 DOI: 10.1016/j.bbamem.2013.03.032] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 03/07/2013] [Accepted: 03/27/2013] [Indexed: 01/11/2023]
Abstract
Intramembrane metalloproteases are nearly ubiquitous in living organisms and they function in diverse processes ranging from cholesterol homeostasis and the unfolded protein response in humans to sporulation, stress responses, and virulence of bacteria. Understanding how these enzymes function in membranes is a challenge of fundamental interest with potential applications if modulators can be devised. Progress is described toward a mechanistic understanding, based primarily on molecular genetic and biochemical studies of human S2P and bacterial SpoIVFB and RseP, and on the structure of the membrane domain of an archaeal enzyme. Conserved features of the enzymes appear to include transmembrane helices and loops around the active site zinc ion, which may be near the membrane surface. Extramembrane domains such as PDZ (PSD-95, DLG, ZO-1) or CBS (cystathionine-β-synthase) domains govern substrate access to the active site, but several different mechanisms of access and cleavage site selection can be envisioned, which might differ depending on the substrate and the enzyme. More work is needed to distinguish between these mechanisms, both for enzymes that have been relatively well-studied, and for enzymes lacking PDZ and CBS domains, which have not been studied. This article is part of a Special Issue entitled: Intramembrane Proteases.
Collapse
Affiliation(s)
- Lee Kroos
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA.
| | | |
Collapse
|
22
|
Schneider JS, Glickman MS. Function of site-2 proteases in bacteria and bacterial pathogens. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:2808-14. [PMID: 24099002 DOI: 10.1016/j.bbamem.2013.04.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 04/11/2013] [Accepted: 04/15/2013] [Indexed: 01/02/2023]
Abstract
Site-2 proteases (S2Ps) are a class of intramembrane metalloproteases named after the founding member of this protein family, human S2P, which control cholesterol and fatty acid biosynthesis by cleaving Sterol Regulatory Element Binding Proteins which control cholesterol and fatty acid biosynthesis. S2Ps are widely distributed in bacteria and participate in diverse pathways that control such diverse functions as membrane integrity, sporulation, lipid biosynthesis, pheromone production, virulence, and others. The most common signaling mechanism mediated by S2Ps is the coupled degradation of transmembrane anti-Sigma factors to activate ECF Sigma factor regulons. However, additional signaling mechanisms continue to emerge as more prokaryotic S2Ps are characterized, including direct proteolysis of membrane embedded transcription factors and proteolysis of non-transcriptional membrane proteins or membrane protein remnants. In this review we seek to comprehensively review the functions of S2Ps in bacteria and bacterial pathogens and attempt to organize these proteases into conceptual groups that will spur further study. This article is part of a Special Issue entitled: Intramembrane Proteases.
Collapse
Affiliation(s)
- Jessica S Schneider
- Immunology Program, Memorial Sloan Kettering Cancer Center, 1275 York Ave., New York, NY 10065, USA; Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Biomedical Sciences, USA
| | | |
Collapse
|
23
|
Site-2 protease substrate specificity and coupling in trans by a PDZ-substrate adapter protein. Proc Natl Acad Sci U S A 2013; 110:19543-8. [PMID: 24218594 DOI: 10.1073/pnas.1305934110] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Site-2 proteases (S2Ps) are intramembrane metalloproteases that cleave transmembrane substrates in all domains of life. Many S2Ps, including human S2P and Mycobacterium tuberculosis Rip1, have multiple substrates in vivo, which are often transcriptional regulators. However, S2Ps will also cleave transmembrane sequences of nonsubstrate proteins, suggesting additional specificity determinants. Many S2Ps also contain a PDZ domain, the function of which is poorly understood. Here, we identify an M. tuberculosis protein, PDZ-interacting protease regulator 1 (Ppr1), which bridges between the Rip1 PDZ domain and anti-sigma factor M (Anti-SigM), a Rip1 substrate, but not Anti-SigK or Anti-SigL, also Rip1 substrates. In vivo analyses of Ppr1 function indicate that it prevents nonspecific activation of the Rip1 pathway while coupling Rip1 cleavage of Anti-SigM, but not Anti-SigL, to site-1 proteolysis. Our results support a model of S2P substrate specificity in which a substrate-specific adapter protein tethers the S2P to its substrate while holding the protease inactive through its PDZ domain.
Collapse
|
24
|
Residues in conserved loops of intramembrane metalloprotease SpoIVFB interact with residues near the cleavage site in pro-σK. J Bacteriol 2013; 195:4936-46. [PMID: 23995631 DOI: 10.1128/jb.00807-13] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Intramembrane metalloproteases (IMMPs) control critical biological processes by cleaving membrane-associated proteins within a transmembrane segment or at a site near the membrane surface. Phylogenetic analysis divides IMMPs into four groups. SpoIVFB is a group III IMMP that regulates Bacillus subtilis endospore formation by cleaving Pro-σ(K) and releasing the active sigma factor from a membrane. To elucidate the enzyme-substrate interaction, single-cysteine versions of catalytically inactive SpoIVFB and C-terminally truncated Pro-σ(K)(1-126) (which can be cleaved by active SpoIVFB) were coexpressed in Escherichia coli, and proximity was tested by disulfide cross-linking in vivo. As expected, the results provided evidence that catalytic residue Glu-44 of SpoIVFB is near the cleavage site in the substrate. Also near the cleavage site were two residues of SpoIVFB in predicted conserved loops; Pro-135 in a short loop and Val-70 in a longer loop. Pro-135 corresponds to Pro-399 of RseP, a group I IMMP, and Pro-399 was reported previously to interact with substrate near the cleavage site, suggesting a conserved interaction across IMMP subfamilies. Val-70 follows a newly recognized conserved motif, PXGG (X is a large hydrophobic residue), which is in a hydrophobic region predicted to be a membrane reentrant loop. Following the hydrophobic region is a negatively charged region that is conserved in IMMPs of groups I and III. At least two residues with a negatively charged side chain are required in this region for activity of SpoIVFB. The region exhibits other features in IMMPs of groups II and IV. Its possible roles, as well as that of the short loop, are discussed. New insights into IMMP-substrate interaction build toward understanding how IMMPs function and may facilitate manipulation of their activity.
Collapse
|
25
|
Features of Pro-σK important for cleavage by SpoIVFB, an intramembrane metalloprotease. J Bacteriol 2013; 195:2793-806. [PMID: 23585539 DOI: 10.1128/jb.00229-13] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Intramembrane proteases regulate diverse processes by cleaving substrates within a transmembrane segment or near the membrane surface. Bacillus subtilis SpoIVFB is an intramembrane metalloprotease that cleaves Pro-σ(K) during sporulation. To elucidate features of Pro-σ(K) important for cleavage by SpoIVFB, coexpression of the two proteins in Escherichia coli was used along with cell fractionation. In the absence of SpoIVFB, a portion of the Pro-σ(K) was peripherally membrane associated. This portion was not observed in the presence of SpoIVFB, suggesting that it serves as the substrate. Deletion of Pro-σ(K) residues 2 to 8, addition of residues at its N terminus, or certain single-residue substitutions near the cleavage site impaired cleavage. Certain multiresidue substitutions near the cleavage site changed the position of cleavage, revealing preferences for a small residue preceding the cleavage site N-terminally (i.e., at the P1 position) and a hydrophobic residue at the second position following the cleavage site C-terminally (i.e., P2'). These features appear to be conserved among Pro-σ(K) orthologs. SpoIVFB did not tolerate an aromatic residue at P1 or P2' of Pro-σ(K). A Lys residue at P3' of Pro-σ(K) could not be replaced with Ala unless a Lys was provided farther C-terminally (e.g., at P9'). α-Helix-destabilizing residues near the cleavage site were not crucial for SpoIVFB to cleave Pro-σ(K). The preferences and tolerances of SpoIVFB are somewhat different from those of other intramembrane metalloproteases, perhaps reflecting differences in the interaction of the substrate with the membrane and the enzyme.
Collapse
|
26
|
Strisovsky K. Structural and mechanistic principles of intramembrane proteolysis--lessons from rhomboids. FEBS J 2013; 280:1579-603. [PMID: 23432912 DOI: 10.1111/febs.12199] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 02/11/2013] [Accepted: 02/18/2013] [Indexed: 02/03/2023]
Abstract
Intramembrane proteases cleave membrane proteins in their transmembrane helices to regulate a wide range of biological processes. They catalyse hydrolytic reactions within the hydrophobic environment of lipid membranes where water is normally excluded. How? Do the different classes of intramembrane proteases share any mechanistic principles? In this review these questions will be discussed in view of the crystal structures of prokaryotic members of the three known catalytic types of intramembrane proteases published over the past 7 years. Rhomboids, the intramembrane serine proteases that are the best understood family, will be the initial area of focus, and the principles that have arisen from a number of structural and biochemical studies will be considered. The site-2 metalloprotease and GXGD-type aspartyl protease structures will then be discussed, with parallels drawn and differences highlighted between these enzymes and the rhomboids. Despite the significant advances achieved so far, to obtain a detailed understanding of the mechanism of any intramembrane protease, high-resolution structural information on the substrate-enzyme complex is required. This remains a major challenge for the field.
Collapse
Affiliation(s)
- Kvido Strisovsky
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
| |
Collapse
|
27
|
Barchinger SE, Ades SE. Regulated proteolysis: control of the Escherichia coli σ(E)-dependent cell envelope stress response. Subcell Biochem 2013; 66:129-60. [PMID: 23479440 DOI: 10.1007/978-94-007-5940-4_6] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Over the past decade, regulatory proteolysis has emerged as a paradigm for transmembrane signal transduction in all organisms, from bacteria to humans. These conserved proteolytic pathways share a common design that involves the sequential proteolysis of a membrane-bound regulatory protein by two proteases. Proteolysis releases the regulator, which is inactive in its membrane-bound form, into the cytoplasm where it performs its cellular function. One of the best-characterized examples of signal transduction via regulatory proteolysis is the pathway governing the σ(E)-dependent cell envelope stress response in Escherichia coli. In unstressed cells, σ(E) is sequestered at the membrane by the transmembrane anti-sigma factor, RseA. Stresses that compromise the cell envelope and interfere with the proper folding of outer membrane proteins (OMPs) activate the proteolytic pathway. The C-terminal residues of unfolded OMPs bind to the inner membrane protease, DegS, to initiate the proteolytic cascade. DegS removes the periplasmic domain of RseA creating a substrate for the next protease in the pathway, RseP. RseP cleaves RseA in the periplasmic region in a process called regulated intramembrane proteolysis (RIP). The remaining fragment of RseA is released into the cytoplasm and fully degraded by the ATP-dependent protease, ClpXP, with the assistance of the adaptor protein, SspB, thereby freeing σ(E) to reprogram gene expression. A growing body of evidence indicates that the overall proteolytic framework that governs the σ(E) response is used to regulate similar anti-sigma factor/sigma factor pairs throughout the bacterial world and has been adapted to recognize a wide variety of signals and control systems as diverse as envelope stress responses, sporulation, virulence, and iron-siderophore uptake. In this chapter, we review the extensive physiological, biochemical, and structural studies on the σ(E) system that provide remarkable insights into the mechanistic underpinnings of this regulated proteolytic signal transduction pathway. These studies reveal design principles that are applicable to related proteases and regulatory proteolytic pathways in all domains of life.
Collapse
Affiliation(s)
- Sarah E Barchinger
- Graduate Program in BMMB, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | | |
Collapse
|
28
|
Hizukuri Y, Akiyama Y. PDZ domains of RseP are not essential for sequential cleavage of RseA or stress-induced σ(E) activation in vivo. Mol Microbiol 2012; 86:1232-45. [PMID: 23016873 DOI: 10.1111/mmi.12053] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2012] [Indexed: 11/29/2022]
Abstract
The Escherichia coli σ(E) extracytoplasmic stress response monitors and responds to folding stress in the cell envelope. A protease cascade directed at RseA, a membrane-spanning anti-σ that inhibits σ(E) activity, controls this critical signal-transduction system. Stress cues activate DegS to cleave RseA; a second cleavage by RseP releases RseA from the membrane, enabling its rapid degradation. Stress control of proteolysis requires that RseP cleavage is dependent on DegS cleavage. Recent in vitro and structural studies found that RseP cleavage requires binding of RseP PDZ-C to the newly exposed C-terminal residue (Val148) of RseA, generated by DegS cleavage, explaining dependence. We tested this mechanism in vivo. Neither mutation in the putative PDZ ligand-binding regions nor even deletion of entire RseP PDZ domains had significant effects on RseA cleavage in vivo, and the C-terminal residue of DegS-processed RseA also little affected RseA cleavage. Indeed, strains with a chromosomal rseP gene deleted for either PDZ domain and strains with a chromosomal rseA V148 mutation grew normally and exhibited almost normal σ(E) activation in response to stress signals. We conclude that recognition of the cleaved amino acid by the RseP PDZ domain is not essential for sequential cleavage of RseA and σ(E) stress response in vivo.
Collapse
Affiliation(s)
- Yohei Hizukuri
- Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| | | |
Collapse
|
29
|
Truscott KN, Bezawork-Geleta A, Dougan DA. Unfolded protein responses in bacteria and mitochondria: a central role for the ClpXP machine. IUBMB Life 2012; 63:955-63. [PMID: 22031494 DOI: 10.1002/iub.526] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In the crowded environment of a cell, the protein quality control machinery, such as molecular chaperones and proteases, maintains a population of folded and hence functional proteins. The accumulation of unfolded proteins in a cell is particularly harmful as it not only reduces the concentration of active proteins but also overburdens the protein quality control machinery, which in turn, can lead to a significant increase in nonproductive folding and protein aggregation. To circumvent this problem, cells use heat shock and unfolded protein stress response pathways, which essentially sense the change to protein homeostasis upregulating protein quality control factors that act to restore the balance. Interestingly, several stress response pathways are proteolytically controlled. In this review, we provide a brief summary of targeted protein degradation by AAA+ proteases and focus on the role of ClpXP proteases, particularly in the signaling pathway of the Escherichia coli extracellular stress response and the mitochondrial unfolded protein response.
Collapse
Affiliation(s)
- Kaye N Truscott
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia.
| | | | | |
Collapse
|
30
|
Merdanovic M, Clausen T, Kaiser M, Huber R, Ehrmann M. Protein quality control in the bacterial periplasm. Annu Rev Microbiol 2012; 65:149-68. [PMID: 21639788 DOI: 10.1146/annurev-micro-090110-102925] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Protein quality control involves sensing and treatment of defective or incomplete protein structures. Misfolded or mislocalized proteins trigger dedicated signal transduction cascades that upregulate the production of protein quality-control factors. Corresponding proteases and chaperones either degrade or repair damaged proteins, thereby reducing the level of aggregation-prone molecules. Because the periplasm of gram-negative bacteria is particularly exposed to environmental changes and respective protein-folding stresses connected with the presence of detergents, low or high osmolarity of the medium, elevated temperatures, and the host's immune response, fine-tuned protein quality control systems are essential for survival under these unfavorable conditions. This review discusses recent advances in the identification and characterization of the key cellular factors and the emerging general principles of the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Melisa Merdanovic
- Centre for Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, 45117 Essen, Germany.
| | | | | | | | | |
Collapse
|
31
|
Villanelo F, Ordenes A, Brunet J, Lagos R, Monasterio O. A model for the Escherichia coli FtsB/FtsL/FtsQ cell division complex. BMC STRUCTURAL BIOLOGY 2011; 11:28. [PMID: 21672257 PMCID: PMC3152878 DOI: 10.1186/1472-6807-11-28] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Accepted: 06/14/2011] [Indexed: 11/10/2022]
Abstract
BACKGROUND Bacterial division is produced by the formation of a macromolecular complex in the middle of the cell, called the divisome, formed by more than 10 proteins. This process can be divided into two steps, in which the first is the polymerization of FtsZ to form the Z ring in the cytoplasm, and then the sequential addition of FtsA/ZipA to anchor the ring at the cytoplasmic membrane, a stage completed by FtsEX and FtsK. In the second step, the formation of the peptidoglycan synthesis machinery in the periplasm takes place, followed by cell division. The proteins involved in connecting both steps in cell division are FtsQ, FtsB and FtsL, and their interaction is a crucial and conserved event in the division of different bacteria. These components are small bitopic membrane proteins, and their specific function seems to be mainly structural. The purpose of this study was to obtain a structural model of the periplasmic part of the FtsB/FtsL/FtsQ complex, using bioinformatics tools and experimental data reported in the literature. RESULTS Two oligomeric models for the periplasmic region of the FtsB/FtsL/FtsQ E. coli complex were obtained from bioinformatics analysis. The FtsB/FtsL subcomplex was modelled as a coiled-coil based on sequence information and several stoichiometric possibilities. The crystallographic structure of FtsQ was added to this complex, through protein-protein docking. Two final structurally-stable models, one trimeric and one hexameric, were obtained. The nature of the protein-protein contacts was energetically favourable in both models and the overall structures were in agreement with the experimental evidence reported. CONCLUSIONS The two models obtained for the FtsB/FtsL/FtsQ complex were stable and thus compatible with the in vivo periplasmic complex structure. Although the hexameric model 2:2:2 has features that indicate that this is the most plausible structure, the ternary complex 1:1:1 cannot be discarded. Both models could be further stabilized by the binding of the other proteins of the divisome. The bioinformatics modelling of this kind of protein complex, whose function is mainly structural, provide useful information. Experimental results should confirm or reject these models and provide new data for future bioinformatics studies to refine the models.
Collapse
Affiliation(s)
- Felipe Villanelo
- Laboratorio de Biología Estructural y Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Chile
| | | | | | | | | |
Collapse
|
32
|
Chen G, Zhang X. New insights into S2P signaling cascades: regulation, variation, and conservation. Protein Sci 2011; 19:2015-30. [PMID: 20836086 DOI: 10.1002/pro.496] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Regulated intramembrane proteolysis (RIP) is a conserved mechanism that regulates signal transduction across the membrane by recruiting membrane-bound proteases to cleave membrane-spanning regulatory proteins. As the first identified protease that performs RIP, the metalloprotease site-2 protease (S2P) has received extensive study during the past decade, and an increasing number of S2P-like proteases have been identified and studied in different organisms; however, some of their substrates and the related S1Ps remain elusive. Here, we review recent research on S2P cascades, including human S2P, E. coli RseP, B. subtilis SpoIVFB and the newly identified S2P homologs. We also discuss the variation and conservation of characterized S2P cascades. The conserved catalytic motif of S2P and prevalence of amino acids of low helical propensity in the transmembrane segments of the substrates suggest a conserved catalytic conformation and mechanism within the S2P family. The review also sheds light on future research on S2P cascades.
Collapse
Affiliation(s)
- Gu Chen
- College of Light Industry and Food Sciences, South China University of Technology, Guangzhou 510640, China.
| | | |
Collapse
|
33
|
Hasenbein S, Meltzer M, Hauske P, Kaiser M, Huber R, Clausen T, Ehrmann M. Conversion of a Regulatory into a Degradative Protease. J Mol Biol 2010; 397:957-66. [DOI: 10.1016/j.jmb.2010.02.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Revised: 02/11/2010] [Accepted: 02/15/2010] [Indexed: 01/31/2023]
|
34
|
Meltzer M, Hasenbein S, Mamant N, Merdanovic M, Poepsel S, Hauske P, Kaiser M, Huber R, Krojer T, Clausen T, Ehrmann M. Structure, function and regulation of the conserved serine proteases DegP and DegS of Escherichia coli. Res Microbiol 2009; 160:660-6. [DOI: 10.1016/j.resmic.2009.07.012] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Revised: 07/31/2009] [Accepted: 07/31/2009] [Indexed: 01/24/2023]
|
35
|
Regulated intramembrane proteolysis in the control of extracytoplasmic function sigma factors. Res Microbiol 2009; 160:696-703. [DOI: 10.1016/j.resmic.2009.08.019] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Revised: 08/24/2009] [Accepted: 08/25/2009] [Indexed: 11/18/2022]
|
36
|
Cleavage of RseA by RseP requires a carboxyl-terminal hydrophobic amino acid following DegS cleavage. Proc Natl Acad Sci U S A 2009; 106:14837-42. [PMID: 19706448 DOI: 10.1073/pnas.0903289106] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Regulated intramembrane proteolysis (RIP) by the Site-2 protease (S2P) results in the release of a transmembrane signaling protein. Curiously, however, S2P cleavage must be preceded by the action of the Site-1 protease (S1P). To decipher the underlying mechanism, we reconstituted sequential, in vitro cleavages of the Escherichia coli transmembrane protein RseA by DegS (S1P) and RseP (S2P). After DegS cleavage, the newly exposed carboxyl-terminal residue Val-148 of RseA plays an essential role for RseP cleavage, and its mutation to charged or dissimilar amino acids crippled the Site-2 cleavage. By contrast, the identity of residues 146 and 147 of RseA has no impact on Site-2 cleavage. These results explain why Site-1 cleavage must precede Site-2 cleavage. Structural analysis reveals that the putative peptide-binding groove in the second, but not the first, PDZ domain of RseP is poised for binding to a single hydrophobic amino acid. These observations suggest that after DegS cleavage, the newly exposed carboxyl terminus of RseA may facilitate Site-2 cleavage through direct interaction with the PDZ domain.
Collapse
|
37
|
Inaba K, Suzuki M, Maegawa KI, Akiyama S, Ito K, Akiyama Y. A pair of circularly permutated PDZ domains control RseP, the S2P family intramembrane protease of Escherichia coli. J Biol Chem 2008; 283:35042-52. [PMID: 18945679 PMCID: PMC3259892 DOI: 10.1074/jbc.m806603200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Revised: 10/06/2008] [Indexed: 01/09/2023] Open
Abstract
The sigma(E) pathway of extracytoplasmic stress responses in Escherichia coli is activated through sequential cleavages of the anti-sigma(E) protein, RseA, by membrane proteases DegS and RseP. Without the first cleavage by DegS, RseP is unable to cleave full-length RseA. We previously showed that a PDZ-like domain in the RseP periplasmic region is essential for this negative regulation of RseP. We now isolated additional deregulated RseP mutants. Many of the mutations affected a periplasmic region that is N-terminal to the previously defined PDZ domain. We expressed these regions and determined their crystal structures. Consistent with a recent prediction, our results indicate that RseP has tandem, circularly permutated PDZ domains (PDZ-N and PDZ-C). Strikingly, almost all the strong mutations have been mapped around the ligand binding cleft region in PDZ-N. These results together with those of an in vitro reaction reproducing the two-step RseA cleavage suggest that the proteolytic function of RseP is controlled by ligand binding to PDZ-N.
Collapse
Affiliation(s)
- Kenji Inaba
- Medical Institute of
Bioregulation, Kyushu University, Fukuoka 812-8582, the
Institute for Protein Research, Osaka
University, Osaka 565-0871, the
PRESTO, JST, Saitama 332-0012, the
RIKEN Harima Institute, Hyogo
679-5148, and the Institute for Virus
Research, Kyoto University, Kyoto 606-8507, Japan
| | - Mamoru Suzuki
- Medical Institute of
Bioregulation, Kyushu University, Fukuoka 812-8582, the
Institute for Protein Research, Osaka
University, Osaka 565-0871, the
PRESTO, JST, Saitama 332-0012, the
RIKEN Harima Institute, Hyogo
679-5148, and the Institute for Virus
Research, Kyoto University, Kyoto 606-8507, Japan
| | - Ken-ichi Maegawa
- Medical Institute of
Bioregulation, Kyushu University, Fukuoka 812-8582, the
Institute for Protein Research, Osaka
University, Osaka 565-0871, the
PRESTO, JST, Saitama 332-0012, the
RIKEN Harima Institute, Hyogo
679-5148, and the Institute for Virus
Research, Kyoto University, Kyoto 606-8507, Japan
| | - Shuji Akiyama
- Medical Institute of
Bioregulation, Kyushu University, Fukuoka 812-8582, the
Institute for Protein Research, Osaka
University, Osaka 565-0871, the
PRESTO, JST, Saitama 332-0012, the
RIKEN Harima Institute, Hyogo
679-5148, and the Institute for Virus
Research, Kyoto University, Kyoto 606-8507, Japan
| | - Koreaki Ito
- Medical Institute of
Bioregulation, Kyushu University, Fukuoka 812-8582, the
Institute for Protein Research, Osaka
University, Osaka 565-0871, the
PRESTO, JST, Saitama 332-0012, the
RIKEN Harima Institute, Hyogo
679-5148, and the Institute for Virus
Research, Kyoto University, Kyoto 606-8507, Japan
| | - Yoshinori Akiyama
- Medical Institute of
Bioregulation, Kyushu University, Fukuoka 812-8582, the
Institute for Protein Research, Osaka
University, Osaka 565-0871, the
PRESTO, JST, Saitama 332-0012, the
RIKEN Harima Institute, Hyogo
679-5148, and the Institute for Virus
Research, Kyoto University, Kyoto 606-8507, Japan
| |
Collapse
|
38
|
Ades SE. Regulation by destruction: design of the σE envelope stress response. Curr Opin Microbiol 2008; 11:535-40. [DOI: 10.1016/j.mib.2008.10.004] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Revised: 09/29/2008] [Accepted: 10/03/2008] [Indexed: 01/07/2023]
|