1
|
Ma R, Chen Y, Fang S, Jiang H, Yang S, Wu W. Palladium-catalyzed acetalization/cyclization of enynones with alcohols: rapid access to functionalized dihaloalkenyl dihydrofurans. Chem Commun (Camb) 2022; 58:13907-13910. [DOI: 10.1039/d2cc03949d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A novel Pd-catalyzed acetalization/cyclization of enynones and alcohols for the construction of dihaloalkenyl dihydrofuran derivatives is described.
Collapse
Affiliation(s)
- Ruize Ma
- School of Chemistry and Chemical Engineering, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Yang Chen
- School of Chemistry and Chemical Engineering, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Songjia Fang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Huanfeng Jiang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Shaorong Yang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Wanqing Wu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
2
|
Daujat-Chavanieu M, Gerbal-Chaloin S. Regulation of CAR and PXR Expression in Health and Disease. Cells 2020; 9:E2395. [PMID: 33142929 PMCID: PMC7692647 DOI: 10.3390/cells9112395] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/22/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022] Open
Abstract
Pregnane X receptor (PXR, NR1I2) and constitutive androstane receptor (CAR, NR1I3) are members of the nuclear receptor superfamily that mainly act as ligand-activated transcription factors. Their functions have long been associated with the regulation of drug metabolism and disposition, and it is now well established that they are implicated in physiological and pathological conditions. Considerable efforts have been made to understand the regulation of their activity by their cognate ligand; however, additional regulatory mechanisms, among which the regulation of their expression, modulate their pleiotropic effects. This review summarizes the current knowledge on CAR and PXR expression during development and adult life; tissue distribution; spatial, temporal, and metabolic regulations; as well as in pathological situations, including chronic diseases and cancers. The expression of CAR and PXR is modulated by complex regulatory mechanisms that involve the interplay of transcription factors and also post-transcriptional and epigenetic modifications. Moreover, many environmental stimuli affect CAR and PXR expression through mechanisms that have not been elucidated.
Collapse
Affiliation(s)
| | - Sabine Gerbal-Chaloin
- IRMB, University of Montpellier, INSERM, CHU Montpellier, 34295 Montpellier, France;
| |
Collapse
|
3
|
Pavek P. Pregnane X Receptor (PXR)-Mediated Gene Repression and Cross-Talk of PXR with Other Nuclear Receptors via Coactivator Interactions. Front Pharmacol 2016; 7:456. [PMID: 27932985 PMCID: PMC5122737 DOI: 10.3389/fphar.2016.00456] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 11/14/2016] [Indexed: 12/13/2022] Open
Abstract
Pregnane X receptor is a ligand-activated nuclear receptor (NR) that mainly controls inducible expression of xenobiotics handling genes including biotransformation enzymes and drug transporters. Nowadays it is clear that PXR is also involved in regulation of intermediate metabolism through trans-activation and trans-repression of genes controlling glucose, lipid, cholesterol, bile acid, and bilirubin homeostasis. In these processes PXR cross-talks with other NRs. Accumulating evidence suggests that the cross-talk is often mediated by competing for common coactivators or by disruption of coactivation and activity of other transcription factors by the ligand-activated PXR. In this respect mainly PXR-CAR and PXR-HNF4α interference have been reported and several cytochrome P450 enzymes (such as CYP7A1 and CYP8B1), phase II enzymes (SULT1E1, Gsta2, Ugt1a1), drug and endobiotic transporters (OCT1, Mrp2, Mrp3, Oatp1a, and Oatp4) as well as intermediate metabolism enzymes (PEPCK1 and G6Pase) have been shown as down-regulated genes after PXR activation. In this review, I summarize our current knowledge of PXR-mediated repression and coactivation interference in PXR-controlled gene expression regulation.
Collapse
Affiliation(s)
- Petr Pavek
- Department of Pharmacology and Toxicology and Centre for Drug Development, Faculty of Pharmacy in Hradec Kralove, Charles University in Prague Hradec Kralove, Czechia
| |
Collapse
|
4
|
Kadioglu O, Cao J, Kosyakova N, Mrasek K, Liehr T, Efferth T. Genomic and transcriptomic profiling of resistant CEM/ADR-5000 and sensitive CCRF-CEM leukaemia cells for unravelling the full complexity of multi-factorial multidrug resistance. Sci Rep 2016; 6:36754. [PMID: 27824156 PMCID: PMC5099876 DOI: 10.1038/srep36754] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 10/17/2016] [Indexed: 12/18/2022] Open
Abstract
We systematically characterised multifactorial multidrug resistance (MDR) in CEM/ADR5000 cells, a doxorubicin-resistant sub-line derived from drug-sensitive, parental CCRF-CEM cells developed in vitro. RNA sequencing and network analyses (Ingenuity Pathway Analysis) were performed. Chromosomal aberrations were identified by array-comparative genomic hybridisation (aCGH) and multicolour fluorescence in situ hybridisation (mFISH). Fifteen ATP-binding cassette transporters and numerous new genes were overexpressed in CEM/ADR5000 cells. The basic karyotype in CCRF-CEM cells consisted of 47, XX, der(5)t(5;14) (q35.33;q32.3), del(9) (p14.1), +20. CEM/ADR5000 cells acquired additional aberrations, including X-chromosome loss, 4q and 14q deletion, chromosome 7 inversion, balanced and unbalanced two and three way translocations: t(3;10), der(3)t(3;13), der(5)t(18;5;14), t(10;16), der(18)t(7;18), der(18)t(21;18;5), der(21;21;18;5) and der(22)t(9;22). CCRF-CEM consisted of two and CEM/ADR5000 of five major sub-clones, indicating genetic tumor heterogeneity. Loss of 3q27.1 in CEM/ADR5000 caused down-regulation of ABCC5 and ABCF3 expression, Xq28 loss down-regulated ABCD1 expression. ABCB1, the most well-known MDR gene, was 448-fold up-regulated due to 7q21.12 amplification. In addition to well-known drug resistance genes, numerous novel genes and genomic aberrations were identified. Transcriptomics and genetics in CEM/AD5000 cells unravelled a range of MDR mechanisms, which is much more complex than estimated thus far. This may have important implications for future treatment strategies.
Collapse
Affiliation(s)
- Onat Kadioglu
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Germany
| | - Jingming Cao
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Germany
| | - Nadezda Kosyakova
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Jena, Germany
| | - Kristin Mrasek
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Jena, Germany
| | - Thomas Liehr
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Jena, Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
5
|
Shmarakov IO. Retinoid-xenobiotic interactions: the Ying and the Yang. Hepatobiliary Surg Nutr 2015; 4:243-67. [PMID: 26311625 DOI: 10.3978/j.issn.2304-3881.2015.05.05] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 05/13/2015] [Indexed: 12/20/2022]
Abstract
The literature provides compelling evidence pointing to tight metabolic interactions between retinoids and xenobiotics. These are extensive and important for understanding xenobiotic actions in the body. Within the body, retinoids affect xenobiotic metabolism and actions and conversely, xenobiotics affect retinoid metabolism and actions. This article summarizes data that establish the importance of retinoid-dependent metabolic pathways for sustaining the body's responses to xenobiotic exposure, including the roles of all-trans- and 9-cis-retinoic acid for protecting mammals from harmful xenobiotic effects and for ensuring xenobiotic elimination from the body. This review will also consider molecular mechanisms underlying xenobiotic toxicity focusing on how this may contribute to retinoid deficiency and disruption of normal retinoid homeostasis. Special attention is paid to xenobiotic molecular targets (nuclear receptors, regulatory proteins, enzymes, and transporters) which affect retinoid metabolism and signaling.
Collapse
Affiliation(s)
- Igor O Shmarakov
- Department of Biochemistry and Biotechnology, Chernivtsi National University, Chernivtsi, Ukraine
| |
Collapse
|
6
|
Lehman AMB, Montford JR, Horita H, Ostriker AC, Weiser-Evans MCM, Nemenoff RA, Furgeson SB. Activation of the retinoid X receptor modulates angiotensin II-induced smooth muscle gene expression and inflammation in vascular smooth muscle cells. Mol Pharmacol 2014; 86:570-9. [PMID: 25169989 PMCID: PMC4201143 DOI: 10.1124/mol.114.092163] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 08/28/2014] [Indexed: 01/04/2023] Open
Abstract
The retinoid X receptor (RXR) partners with numerous nuclear receptors, such as the peroxisome proliferator activated receptor (PPAR) family, liver X receptors (LXRs), and farnesoid X receptor (FXR). Although each heterodimer can be activated by specific ligands, a subset of these receptors, defined as permissive nuclear receptors, can also be activated by RXR agonists known as rexinoids. Many individual RXR heterodimers have beneficial effects in vascular smooth muscle cells (SMCs). Because rexinoids can potently activate multiple RXR pathways, we hypothesized that treating SMCs with rexinoids would more effectively reverse the pathophysiologic effects of angiotensin II than an individual heterodimer agonist. Cultured rat aortic SMCs were pretreated with either an RXR agonist (bexarotene or 9-cis retinoic acid) or vehicle (dimethylsulfoxide) for 24 hours before stimulation with angiotensin II. Compared with dimethylsulfoxide, bexarotene blocked angiotensin II-induced SM contractile gene induction (calponin and smooth muscle-α-actin) and protein synthesis ([(3)H]leucine incorporation). Bexarotene also decreased angiotensin II-mediated inflammation, as measured by decreased expression of monocyte chemoattractant protein-1 (MCP-1). Activation of p38 mitogen-activated protein (MAP) kinase but not extracellular signal-related kinase (ERK) or protein kinase B (Akt) was also blunted by bexarotene. We compared bexarotene to five agonists of nuclear receptors (PPARα, PPARγ, PPARδ, LXR, and FXR). Bexarotene had a greater effect on calponin reduction, MCP-1 inhibition, and p38 MAP kinase inhibition than any individual agonist. PPARγ knockout cells demonstrated blunted responses to bexarotene, indicating that PPARγ is necessary for the effects of bexarotene. These data demonstrate that RXR is a potent modulator of angiotensin II-mediated responses in the vasculature, partially through inhibition of p38.
Collapse
Affiliation(s)
- Allison M B Lehman
- Division of Renal Diseases and Hypertension (A.L., J.R.M., H.H., A.C.O., M.W.E., R.A.N., S.B.F.), Cardiovascular Pulmonary Research Laboratory, Department of Medicine (M.W.E., R.A.N.), University of Colorado Anschutz Medical Campus, Aurora, Colorado; and Department of Medicine, Denver Health Hospital, Denver, Colorado (S.B.F)
| | - John R Montford
- Division of Renal Diseases and Hypertension (A.L., J.R.M., H.H., A.C.O., M.W.E., R.A.N., S.B.F.), Cardiovascular Pulmonary Research Laboratory, Department of Medicine (M.W.E., R.A.N.), University of Colorado Anschutz Medical Campus, Aurora, Colorado; and Department of Medicine, Denver Health Hospital, Denver, Colorado (S.B.F)
| | - Henrick Horita
- Division of Renal Diseases and Hypertension (A.L., J.R.M., H.H., A.C.O., M.W.E., R.A.N., S.B.F.), Cardiovascular Pulmonary Research Laboratory, Department of Medicine (M.W.E., R.A.N.), University of Colorado Anschutz Medical Campus, Aurora, Colorado; and Department of Medicine, Denver Health Hospital, Denver, Colorado (S.B.F)
| | - Allison C Ostriker
- Division of Renal Diseases and Hypertension (A.L., J.R.M., H.H., A.C.O., M.W.E., R.A.N., S.B.F.), Cardiovascular Pulmonary Research Laboratory, Department of Medicine (M.W.E., R.A.N.), University of Colorado Anschutz Medical Campus, Aurora, Colorado; and Department of Medicine, Denver Health Hospital, Denver, Colorado (S.B.F)
| | - Mary C M Weiser-Evans
- Division of Renal Diseases and Hypertension (A.L., J.R.M., H.H., A.C.O., M.W.E., R.A.N., S.B.F.), Cardiovascular Pulmonary Research Laboratory, Department of Medicine (M.W.E., R.A.N.), University of Colorado Anschutz Medical Campus, Aurora, Colorado; and Department of Medicine, Denver Health Hospital, Denver, Colorado (S.B.F)
| | - Raphael A Nemenoff
- Division of Renal Diseases and Hypertension (A.L., J.R.M., H.H., A.C.O., M.W.E., R.A.N., S.B.F.), Cardiovascular Pulmonary Research Laboratory, Department of Medicine (M.W.E., R.A.N.), University of Colorado Anschutz Medical Campus, Aurora, Colorado; and Department of Medicine, Denver Health Hospital, Denver, Colorado (S.B.F)
| | - Seth B Furgeson
- Division of Renal Diseases and Hypertension (A.L., J.R.M., H.H., A.C.O., M.W.E., R.A.N., S.B.F.), Cardiovascular Pulmonary Research Laboratory, Department of Medicine (M.W.E., R.A.N.), University of Colorado Anschutz Medical Campus, Aurora, Colorado; and Department of Medicine, Denver Health Hospital, Denver, Colorado (S.B.F)
| |
Collapse
|
7
|
Dawson MI, Xia Z. The retinoid X receptors and their ligands. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1821:21-56. [PMID: 22020178 DOI: 10.1016/j.bbalip.2011.09.014] [Citation(s) in RCA: 264] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Revised: 08/23/2011] [Accepted: 09/23/2011] [Indexed: 12/12/2022]
Abstract
This chapter presents an overview of the current status of studies on the structural and molecular biology of the retinoid X receptor subtypes α, β, and γ (RXRs, NR2B1-3), their nuclear and cytoplasmic functions, post-transcriptional processing, and recently reported ligands. Points of interest are the different changes in the ligand-binding pocket induced by variously shaped agonists, the communication of the ligand-bound pocket with the coactivator binding surface and the heterodimerization interface, and recently identified ligands that are natural products, those that function as environmental toxins or drugs that had been originally designed to interact with other targets, as well as those that were deliberately designed as RXR-selective transcriptional agonists, synergists, or antagonists. Of these synthetic ligands, the general trend in design appears to be away from fully aromatic rigid structures to those containing partial elements of the flexible tetraene side chain of 9-cis-retinoic acid. This article is part of a Special Issue entitled Advances in High Density Lipoprotein Formation and Metabolism: A Tribute to John F. Oram (1945-2010).
Collapse
Affiliation(s)
- Marcia I Dawson
- Cancer Center, Sanford-Burn Medical Research Institute, 10901 North Torrey Pines Rd., La Jolla, CA 93207, USA.
| | | |
Collapse
|
8
|
Lefebvre P, Benomar Y, Staels B. Retinoid X receptors: common heterodimerization partners with distinct functions. Trends Endocrinol Metab 2010; 21:676-83. [PMID: 20674387 DOI: 10.1016/j.tem.2010.06.009] [Citation(s) in RCA: 220] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Revised: 06/25/2010] [Accepted: 06/29/2010] [Indexed: 01/19/2023]
Abstract
Retinoid X receptors (RXRs) have been implicated in a diversity of cellular processes ranging from cellular proliferation to lipid metabolism. These pleiotropic effects stem not only from the ability of RXRs to dimerize with diverse nuclear receptors, which exert transcriptional control on specific aspects of cell biology, but also because binding of RXR ligands to heterodimers can stimulate transcriptional activation by RXR partner receptors. This signaling network is rendered more complex by the existence of different RXR isotypes (RXRα, RXRβ, RXRγ) with distinct properties that thereby modulate the transcriptional activity of RXR-containing heterodimers. This review discusses the emerging roles of RXR isotypes in the RXR signaling network and possible implications for our understanding of nuclear receptor biology and pharmacology.
Collapse
|
9
|
Lefebvre B, Benomar Y, Guédin A, Langlois A, Hennuyer N, Dumont J, Bouchaert E, Dacquet C, Pénicaud L, Casteilla L, Pattou F, Ktorza A, Staels B, Lefebvre P. Proteasomal degradation of retinoid X receptor alpha reprograms transcriptional activity of PPARgamma in obese mice and humans. J Clin Invest 2010; 120:1454-68. [PMID: 20364085 DOI: 10.1172/jci38606] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Accepted: 01/27/2010] [Indexed: 12/14/2022] Open
Abstract
Obese patients have chronic, low-grade inflammation that predisposes to type 2 diabetes and results, in part, from dysregulated visceral white adipose tissue (WAT) functions. The specific signaling pathways underlying WAT dysregulation, however, remain unclear. Here we report that the PPARgamma signaling pathway operates differently in the visceral WAT of lean and obese mice. PPARgamma in visceral, but not subcutaneous, WAT from obese mice displayed increased sensitivity to activation by its agonist rosiglitazone. This increased sensitivity correlated with increased expression of the gene encoding the ubiquitin hydrolase/ligase ubiquitin carboxyterminal esterase L1 (UCH-L1) and with increased degradation of the PPARgamma heterodimerization partner retinoid X receptor alpha (RXRalpha), but not RXRbeta, in visceral WAT from obese humans and mice. Interestingly, increased UCH-L1 expression and RXRalpha proteasomal degradation was induced in vitro by conditions mimicking hypoxia, a condition that occurs in obese visceral WAT. Finally, PPARgamma-RXRbeta heterodimers, but not PPARgamma-RXRalpha complexes, were able to efficiently dismiss the transcriptional corepressor silencing mediator for retinoid and thyroid hormone receptors (SMRT) upon agonist binding. Increasing the RXRalpha/RXRbeta ratio resulted in increased PPARgamma responsiveness following agonist stimulation. Thus, the selective proteasomal degradation of RXRalpha initiated by UCH-L1 upregulation modulates the relative affinity of PPARgamma heterodimers for SMRT and their responsiveness to PPARgamma agonists, ultimately activating the PPARgamma-controlled gene network in visceral WAT of obese animals and humans.
Collapse
|
10
|
Padovani AMS, Molina MF, Mann KK. Inhibition of liver x receptor/retinoid X receptor-mediated transcription contributes to the proatherogenic effects of arsenic in macrophages in vitro. Arterioscler Thromb Vasc Biol 2010; 30:1228-36. [PMID: 20339114 DOI: 10.1161/atvbaha.110.205500] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVE To determine whether arsenic inhibits transcriptional activation of the liver X receptor (LXR)/retinoid X receptor (RXR) heterodimers, thereby impairing cholesterol efflux from macrophages and potentially contributing to a proatherogenic phenotype. METHODS AND RESULTS Arsenic is an important environmental contaminant and has been linked to an increased incidence of atherosclerosis. Previous findings showed that arsenic inhibits transcriptional activation of type 2 nuclear receptors, known to heterodimerize with RXR. Environmentally relevant arsenic doses decrease the LXR/RXR ligand-induced expression of the LXR target genes (ABCA1 and SREBP-1c). Arsenic failed to decrease cAMP-induced ABCA1 expression, suggesting a selective LXR/RXR effect. This selectivity correlated with the ability of arsenic to decrease LXR/RXR ligand-induced, but not cAMP-induced, cholesterol efflux. By using chromatin immunoprecipitation assays, we found that arsenic inhibits the ability of LXR/RXR ligands to induce activation markers on the ABCA1 and SREBP-1c promoters and blocks ligand-induced release of the nuclear receptor coexpressor (NCoR) from the promoter. Arsenic did not alter the ability of LXR to transrepress inflammatory gene transcription, further supporting our hypothesis that RXR is the target for arsenic inhibition. CONCLUSIONS Exposure to arsenic enhances the risk of atherosclerosis. We present data that arsenic inhibits the transcriptional activity of the liver X receptor, resulting in decreased cholesterol-induced gene expression and efflux from macrophages. Therefore, arsenic may promote an athersclerotic environment by decreasing the ability of macrophages to efflux excess cholesterol, thereby favoring increased plaque formation.
Collapse
Affiliation(s)
- Alessandra M S Padovani
- Segal Cancer Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, Canada
| | | | | |
Collapse
|