1
|
Szekely O, Armony G, Olsen GL, Bigman LS, Levy Y, Fass D, Frydman L. Identification and Rationalization of Kinetic Folding Intermediates for a Low-Density Lipoprotein Receptor Ligand-Binding Module. Biochemistry 2018; 57:4776-4787. [PMID: 29979586 DOI: 10.1021/acs.biochem.8b00466] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Many mutations that cause familial hypercholesterolemia localize to ligand-binding domain 5 (LA5) of the low-density lipoprotein receptor, motivating investigation of the folding and misfolding of this small, disulfide-rich, calcium-binding domain. LA5 folding is known to involve non-native disulfide isomers, yet these folding intermediates have not been structurally characterized. To provide insight into these intermediates, we used nuclear magnetic resonance (NMR) to follow LA5 folding in real time. We demonstrate that misfolded or partially folded disulfide intermediates are indistinguishable from the unfolded state when focusing on the backbone NMR signals, which provide information on the formation of only the final, native state. However, 13C labeling of cysteine side chains differentiated transient intermediates from the unfolded and native states and reported on disulfide bond formation in real time. The cysteine pairings in a dominant intermediate were identified using 13C-edited three-dimensional NMR, and coarse-grained molecular dynamics simulations were used to investigate the preference of this disulfide set over other non-native arrangements. The transient population of LA5 species with particular non-native cysteine connectitivies during folding supports the conclusion that cysteine pairing is not random and that there is a bias toward certain structural ensembles during the folding process, even prior to the binding of calcium.
Collapse
Affiliation(s)
- Or Szekely
- Department of Chemical and Biological Physics , Weizmann Institute of Science , Rehovot 7610001 , Israel
| | - Gad Armony
- Department of Structural Biology , Weizmann Institute of Science , Rehovot 7610001 , Israel
| | - Gregory Lars Olsen
- Department of Chemical and Biological Physics , Weizmann Institute of Science , Rehovot 7610001 , Israel
| | - Lavi S Bigman
- Department of Structural Biology , Weizmann Institute of Science , Rehovot 7610001 , Israel
| | - Yaakov Levy
- Department of Structural Biology , Weizmann Institute of Science , Rehovot 7610001 , Israel
| | - Deborah Fass
- Department of Structural Biology , Weizmann Institute of Science , Rehovot 7610001 , Israel
| | - Lucio Frydman
- Department of Chemical and Biological Physics , Weizmann Institute of Science , Rehovot 7610001 , Israel
| |
Collapse
|
2
|
Fernández-Higuero JA, Benito-Vicente A, Etxebarria A, Milicua JCG, Ostolaza H, Arrondo JLR, Martín C. Structural changes induced by acidic pH in human apolipoprotein B-100. Sci Rep 2016; 6:36324. [PMID: 27824107 PMCID: PMC5099883 DOI: 10.1038/srep36324] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 10/14/2016] [Indexed: 11/16/2022] Open
Abstract
Acidification in the endosome causes lipoprotein release by promoting a conformational change in the LDLR allowing its recycling and degradation of LDL. Notwithstanding conformational changes occurring in the LDLR have expanded considerably, structural changes occurring in LDL particles have not been fully explored yet. The objectives of the present work were to study structural changes occurring in apoB100 by infrared spectroscopy (IR) and also LDL size and morphology by dynamic light scattering (DLS) and electron microscopy (EM) at both pH 7.4 and 5.0. We determined by IR that pH acidification from 7.4 to 5.0, resembling that occurring within endosomal environment, induces a huge reversible structural rearrangement of apoB100 that is characterized by a reduction of beta-sheet content in favor of alpha-helix structures. Data obtained from DLS and EM showed no appreciable differences in size and morphology of LDL. These structural changes observed in apoB100, which are likely implied in particle release from lipoprotein receptor, also compromise the apoprotein stability what would facilitate LDL degradation. In conclusion, the obtained results reveal a more dynamic picture of the LDL/LDLR dissociation process than previously perceived and provide new structural insights into LDL/LDLR interactions than can occur at endosomal low-pH milieu.
Collapse
Affiliation(s)
- José A. Fernández-Higuero
- Biofisika Institute (UPV/EHU, CSIC), University of the Basque Country, UPV/EHU, Spain, Apdo. 644, 48080 Bilbao, Spain
- Dpt. Biochemistry and Molecular Biology, University of the Basque Country, UPV/EHU, Spain, Apdo. 644, 48080 Bilbao, Spain
| | - Asier Benito-Vicente
- Biofisika Institute (UPV/EHU, CSIC), University of the Basque Country, UPV/EHU, Spain, Apdo. 644, 48080 Bilbao, Spain
- Dpt. Biochemistry and Molecular Biology, University of the Basque Country, UPV/EHU, Spain, Apdo. 644, 48080 Bilbao, Spain
| | - Aitor Etxebarria
- Biofisika Institute (UPV/EHU, CSIC), University of the Basque Country, UPV/EHU, Spain, Apdo. 644, 48080 Bilbao, Spain
- Dpt. Biochemistry and Molecular Biology, University of the Basque Country, UPV/EHU, Spain, Apdo. 644, 48080 Bilbao, Spain
| | - José Carlos G. Milicua
- Dpt. Biochemistry and Molecular Biology, University of the Basque Country, UPV/EHU, Spain, Apdo. 644, 48080 Bilbao, Spain
| | - Helena Ostolaza
- Biofisika Institute (UPV/EHU, CSIC), University of the Basque Country, UPV/EHU, Spain, Apdo. 644, 48080 Bilbao, Spain
- Dpt. Biochemistry and Molecular Biology, University of the Basque Country, UPV/EHU, Spain, Apdo. 644, 48080 Bilbao, Spain
| | - José L. R. Arrondo
- Biofisika Institute (UPV/EHU, CSIC), University of the Basque Country, UPV/EHU, Spain, Apdo. 644, 48080 Bilbao, Spain
- Dpt. Biochemistry and Molecular Biology, University of the Basque Country, UPV/EHU, Spain, Apdo. 644, 48080 Bilbao, Spain
| | - Cesar Martín
- Biofisika Institute (UPV/EHU, CSIC), University of the Basque Country, UPV/EHU, Spain, Apdo. 644, 48080 Bilbao, Spain
- Dpt. Biochemistry and Molecular Biology, University of the Basque Country, UPV/EHU, Spain, Apdo. 644, 48080 Bilbao, Spain
| |
Collapse
|
3
|
Angarica VE, Orozco M, Sancho J. Exploring the complete mutational space of the LDL receptor LA5 domain using molecular dynamics: linking SNPs with disease phenotypes in familial hypercholesterolemia. Hum Mol Genet 2016; 25:1233-46. [PMID: 26755827 PMCID: PMC4764198 DOI: 10.1093/hmg/ddw004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 01/05/2016] [Indexed: 11/18/2022] Open
Abstract
Familial hypercholesterolemia (FH), a genetic disorder with a prevalence of 0.2%, represents a high-risk factor to develop cardiovascular and cerebrovascular diseases. The majority and most severe FH cases are associated to mutations in the receptor for low-density lipoproteins receptor (LDL-r), but the molecular basis explaining the connection between mutation and phenotype is often unknown, which hinders early diagnosis and treatment of the disease. We have used atomistic simulations to explore the complete SNP mutational space (227 mutants) of the LA5 repeat, the key domain for interacting with LDL that is coded in the exon concentrating the highest number of mutations. Four clusters of mutants of different stability have been identified. The majority of the 50 FH known mutations (33) appear distributed in the unstable clusters, i.e. loss of conformational stability explains two-third of FH phenotypes. However, one-third of FH phenotypes (17 mutations) do not destabilize the LR5 repeat. Combining our simulations with available structural data from different laboratories, we have defined a consensus-binding site for the interaction of the LA5 repeat with LDL-r partner proteins and have found that most (16) of the 17 stable FH mutations occur at binding site residues. Thus, LA5-associated FH arises from mutations that cause either the loss of stability or a decrease in domain's-binding affinity. Based on this finding, we propose the likely phenotype of each possible SNP in the LA5 repeat and outline a procedure to make a full computational diagnosis for FH.
Collapse
Affiliation(s)
- Vladimir Espinosa Angarica
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain, Biocomputation and Complex Systems Physics Institute (BIFI), Joint Unit BIFI-IQFR (CSIC), Universidad de Zaragoza, Mariano Esquillor, Edificio I + D, 50018 Zaragoza, Spain
| | - Modesto Orozco
- Institut de Recerca Biomèdica (IRB Barcelona), Baldiri Reixac 10-12, 08028 Barcelona, Spain, Departament de Bioquímica i Biologia Molecular, Universitat de Barcelona, Diagonal 643, 08028 Barcelona, Spain, Joint BSC-CRG-IRB Program in Computational Biology, Baldiri Reixac 10-12, 08028 Barcelona, Spain, and
| | - Javier Sancho
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain, Biocomputation and Complex Systems Physics Institute (BIFI), Joint Unit BIFI-IQFR (CSIC), Universidad de Zaragoza, Mariano Esquillor, Edificio I + D, 50018 Zaragoza, Spain, Aragon Institute for Health Research (IIS Aragón), Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| |
Collapse
|
4
|
Martínez-Oliván J, Arias-Moreno X, Hurtado-Guerrero R, Carrodeguas JA, Miguel-Romero L, Marina A, Bruscolini P, Sancho J. The closed conformation of the LDL receptor is destabilized by the low Ca(++) concentration but favored by the high Mg(++) concentration in the endosome. FEBS Lett 2015; 589:3534-40. [PMID: 26526611 DOI: 10.1016/j.febslet.2015.10.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 10/06/2015] [Accepted: 10/14/2015] [Indexed: 10/22/2022]
Abstract
The LDL receptor (LDLR) internalizes LDL and VLDL particles. In the endosomes, it adopts a closed conformation important for recycling, by interaction of two modules of the ligand binding domain (LR4-5) and a β-propeller motif. Here, we investigate by SPR the interactions between those two modules and the β-propeller. Our results indicate that the two modules cooperate to bind the β-propeller. The binding is favored by low pH and by high [Ca(++)]. Our data show that Mg(++), at high concentration in the endosome, favors the formation of the closed conformation by replacing the structuring effect of Ca(++) in LR5. We propose a sequential model of LDL release where formation of the close conformation follows LDL release.
Collapse
Affiliation(s)
- Juan Martínez-Oliván
- Biocomputation and Complex Systems Physics Institute (BIFI)-Joint Unit BIFI-IQFR (CSIC), Universidad de Zaragoza, Zaragoza, Spain; Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain; Aragon Health Research Institute (IIS Aragón), Universidad de Zaragoza, Zaragoza, Spain
| | - Xabier Arias-Moreno
- Biocomputation and Complex Systems Physics Institute (BIFI)-Joint Unit BIFI-IQFR (CSIC), Universidad de Zaragoza, Zaragoza, Spain; Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain
| | - Ramón Hurtado-Guerrero
- Biocomputation and Complex Systems Physics Institute (BIFI)-Joint Unit BIFI-IQFR (CSIC), Universidad de Zaragoza, Zaragoza, Spain; Aragon Health Research Institute (IIS Aragón), Universidad de Zaragoza, Zaragoza, Spain; Fundación ARAID, Diputación General de Aragón, Spain
| | - José Alberto Carrodeguas
- Biocomputation and Complex Systems Physics Institute (BIFI)-Joint Unit BIFI-IQFR (CSIC), Universidad de Zaragoza, Zaragoza, Spain; Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain; Aragon Health Research Institute (IIS Aragón), Universidad de Zaragoza, Zaragoza, Spain
| | - Laura Miguel-Romero
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (IBV-CSIC), Spain
| | - Alberto Marina
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (IBV-CSIC), Spain
| | - Pierpaolo Bruscolini
- Biocomputation and Complex Systems Physics Institute (BIFI)-Joint Unit BIFI-IQFR (CSIC), Universidad de Zaragoza, Zaragoza, Spain
| | - Javier Sancho
- Biocomputation and Complex Systems Physics Institute (BIFI)-Joint Unit BIFI-IQFR (CSIC), Universidad de Zaragoza, Zaragoza, Spain; Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain; Aragon Health Research Institute (IIS Aragón), Universidad de Zaragoza, Zaragoza, Spain.
| |
Collapse
|
5
|
Martínez-Oliván J, Fraga H, Arias-Moreno X, Ventura S, Sancho J. Intradomain Confinement of Disulfides in the Folding of Two Consecutive Modules of the LDL Receptor. PLoS One 2015; 10:e0132141. [PMID: 26168158 PMCID: PMC4500599 DOI: 10.1371/journal.pone.0132141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 06/10/2015] [Indexed: 01/26/2023] Open
Abstract
The LDL receptor internalizes circulating LDL and VLDL particles for degradation. Its extracellular binding domain contains ten (seven LA and three EGF) cysteine-rich modules, each bearing three disulfide bonds. Despite the enormous number of disulfide combinations possible, LDLR oxidative folding leads to a single native species with 30 unique intradomain disulfides. Previous folding studies of the LDLR have shown that non native disulfides are initially formed that lead to compact species. Accordingly, the folding of the LDLR has been described as a "coordinated nonvectorial” reaction, and it has been proposed that early compaction funnels the reaction toward the native structure. Here we analyze the oxidative folding of LA4 and LA5, the modules critical for ApoE binding, isolated and in the LA45 tandem. Compared to LA5, LA4 folding is slow and inefficient, resembling that of LA5 disease-linked mutants. Without Ca++, it leads to a mixture of many two-disulfide scrambled species and, with Ca++, to the native form plus two three-disulfide intermediates. The folding of the LA45 tandem seems to recapitulate that of the individual repeats. Importantly, although the folding of the LA45 tandem takes place through formation of scrambled isomers, no interdomain disulfides are detected, i.e. the two adjacent modules fold independently without the assistance of interdomain covalent interactions. Reduction of incredibly large disulfide combinatorial spaces, such as that in the LDLR, by intradomain confinement of disulfide bond formation might be also essential for the efficient folding of other homologous disulfide-rich receptors.
Collapse
Affiliation(s)
- Juan Martínez-Oliván
- Biocomputation and Complex Systems Physics Institute (BIFI)-Joint Unit BIFI-IQFR(CSIC), Universidad de Zaragoza, Zaragoza, Spain
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain
| | - Hugo Fraga
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Departamento de Bioquimica, Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - Xabier Arias-Moreno
- Biocomputation and Complex Systems Physics Institute (BIFI)-Joint Unit BIFI-IQFR(CSIC), Universidad de Zaragoza, Zaragoza, Spain
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain
| | - Salvador Ventura
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Spain
- * E-mail: (SV); (JS)
| | - Javier Sancho
- Biocomputation and Complex Systems Physics Institute (BIFI)-Joint Unit BIFI-IQFR(CSIC), Universidad de Zaragoza, Zaragoza, Spain
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain
- * E-mail: (SV); (JS)
| |
Collapse
|
6
|
Fraga H, Graña-Montes R, Illa R, Covaleda G, Ventura S. Association between foldability and aggregation propensity in small disulfide-rich proteins. Antioxid Redox Signal 2014; 21:368-83. [PMID: 24635049 PMCID: PMC4076991 DOI: 10.1089/ars.2013.5543] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
AIMS Disulfide-rich domains (DRDs) are small proteins whose native structure is stabilized by the presence of covalent disulfide bonds. These domains are versatile and can perform a wide range of functions. Many of these domains readily unfold on disulfide bond reduction, suggesting that in the absence of covalent bonding they might display significant disorder. RESULTS Here, we analyzed the degree of disorder in 97 domains representative of the different DRDs families and demonstrate that, in terms of sequence, many of them can be classified as intrinsically disordered proteins (IDPs) or contain predicted disordered regions. The analysis of the aggregation propensity of these domains indicates that, similar to IDPs, their sequences are more soluble and have less aggregating regions than those of other globular domains, suggesting that they might have evolved to avoid aggregation after protein synthesis and before they can attain its compact and covalently linked native structure. INNOVATION AND CONCLUSION DRDs, which resemble IDPs in the reduced state and become globular when their disulfide bonds are formed, illustrate the link between protein folding and aggregation propensities and how these two properties cannot be easily dissociated, determining the main traits of the folding routes followed by these small proteins to attain their native oxidized states.
Collapse
Affiliation(s)
- Hugo Fraga
- Departament de Bioquimica i Biologia Molecular, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona , Barcelona, Spain
| | | | | | | | | |
Collapse
|
7
|
Martínez-Oliván J, Rozado-Aguirre Z, Arias-Moreno X, Angarica VE, Velázquez-Campoy A, Sancho J. Low-density lipoprotein receptor is a calcium/magnesium sensor - role of LR4 and LR5 ion interaction kinetics in low-density lipoprotein release in the endosome. FEBS J 2014; 281:2638-58. [PMID: 24720672 DOI: 10.1111/febs.12811] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 03/25/2014] [Accepted: 04/08/2014] [Indexed: 11/28/2022]
Abstract
The low-density lipoprotein receptor (LDLR) captures circulating lipoproteins and delivers them in the endosome for degradation. Its function is essential for cholesterol homeostasis, and mutations in the LDLR are the major cause of familiar hypercholesterolemia. The release of LDL is usually attributed to endosome acidification. As the pH drops, the affinity of the LDLR/LDL complex is reduced, whereas the strength of a self-complex formed between two domains of the receptor (i.e. the LDL binding domain and the β-propeller domain) increases. However, an alternative model states that, as a consequence of a drop in both pH and Ca(2+) concentration, the LDLR binding domain is destabilized in the endosome, which weakens the LDLR/LDL complex, thus liberating the LDL particles. In the present study, we test a key underlying assumption of the second model, namely that the lipoprotein binding repeats of the receptor (specifically repeats 4 and 5, LR4 and LR5) rapidly sense endosomal changes in Ca(2+) concentration. Our kinetic and thermodynamic analysis of Ca(2+) and Mg(2+) binding to LR4 and LR5, as well as to the tandem of the two (LR4-5), shows that both repeats spontaneously release Ca(2+) in a time scale much shorter than endosomal delivery of LDL, thus acting as Ca(2+) sensors that become unfolded under endosomal conditions. Our analysis additionally explains the lower Ca(2+) affinity of repeat LR4, compared to LR5, as arising from a very slow Ca(2+) binding reaction in the former, most likely related to the lower conformational stability of apolipoprotein LR4, compared to apolipoprotein LR5, as determined from thermal unfolding experiments and molecular dynamics simulations.
Collapse
Affiliation(s)
- Juan Martínez-Oliván
- Biocomputation and Complex Systems Physics Institute (BIFI) - Joint Unit BIFI-IQFR (CSIC), Universidad de Zaragoza, Spain; Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Spain
| | | | | | | | | | | |
Collapse
|
8
|
Martínez-Oliván J, Arias-Moreno X, Velazquez-Campoy A, Millet O, Sancho J. LDL receptor/lipoprotein recognition: endosomal weakening of ApoB and ApoE binding to the convex face of the LR5 repeat. FEBS J 2014; 281:1534-46. [DOI: 10.1111/febs.12721] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 01/02/2014] [Accepted: 01/13/2014] [Indexed: 11/27/2022]
Affiliation(s)
- Juan Martínez-Oliván
- Biocomputation and Complex Systems Physics Institute (BIFI). BIFI-Instituto de Química Física Rocasolano (Consejo Superior de Investigaciones Científicas) Joint Unit; Universidad de Zaragoza; Spain
- Departamento de Bioquímica y Biología Molecular y Celular; Universidad de Zaragoza; Spain
| | - Xabier Arias-Moreno
- Biocomputation and Complex Systems Physics Institute (BIFI). BIFI-Instituto de Química Física Rocasolano (Consejo Superior de Investigaciones Científicas) Joint Unit; Universidad de Zaragoza; Spain
- Departamento de Bioquímica y Biología Molecular y Celular; Universidad de Zaragoza; Spain
| | - Adrián Velazquez-Campoy
- Biocomputation and Complex Systems Physics Institute (BIFI). BIFI-Instituto de Química Física Rocasolano (Consejo Superior de Investigaciones Científicas) Joint Unit; Universidad de Zaragoza; Spain
- Departamento de Bioquímica y Biología Molecular y Celular; Universidad de Zaragoza; Spain
- Fundación Agencia Aragonesa para la Investigación y Desarrollo; Diputación General de Aragón; Spain
| | - Oscar Millet
- Structural Biology Unit; CIC bioGUNE; Derio Spain
| | - Javier Sancho
- Biocomputation and Complex Systems Physics Institute (BIFI). BIFI-Instituto de Química Física Rocasolano (Consejo Superior de Investigaciones Científicas) Joint Unit; Universidad de Zaragoza; Spain
- Departamento de Bioquímica y Biología Molecular y Celular; Universidad de Zaragoza; Spain
| |
Collapse
|
9
|
Abstract
Molecular characterization of hemophilia B at gene level has become an indispensable tool for a proper genetic counseling in carriers and for a closer surveillance of inhibitor development in several severe forms. Our study was aimed at characterizing the molecular defects in the factor IX (FIX) gene in hemophilia B families in Aragon, a center-east region of Spain. Direct sequencing of all regions of likely functional significance of the FIX gene was performed in the screened 18 hemophilia B families. Quantitative techniques, such as multiplex ligation-dependent prove amplification reaction, were carried out only in patients in whom no mutation was found. We have identified the molecular events responsible for hemophilia B in 16 unrelated families (eight with mild hemophilia B and eight with severe hemophilia B). Out of all families studied, we have found 14 missense mutations and two nonsense mutations; still we were unsuccessful in determining the genetic defects in two severe and unrelated families. Of the 16 characterized mutations, 14 of them lie in the protease domain in which one mutation, A233T, was surprisingly found in three unrelated families. We also report and discuss the pathogenicity of F314L, a novel mutation found in the protease domain. Our molecular data reflect a notable heterogeneity of the mutational spectrum mainly in the protease domain of FIX. This is the first mutation report on the disease in Aragon, Spain.
Collapse
|
10
|
Rius M, Chillarón J. Carrier subunit of plasma membrane transporter is required for oxidative folding of its helper subunit. J Biol Chem 2012; 287:18190-200. [PMID: 22493502 DOI: 10.1074/jbc.m111.321943] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
We study the amino acid transport system b(0,+) as a model for folding, assembly, and early traffic of membrane protein complexes. System b(0,+) is made of two disulfide-linked membrane subunits: the carrier, b(0,+) amino acid transporter (b(0,+)AT), a polytopic protein, and the helper, related to b(0,+) amino acid transporter (rBAT), a type II glycoprotein. rBAT ectodomain mutants display folding/trafficking defects that lead to type I cystinuria. Here we show that, in the presence of b(0,+)AT, three disulfides were formed in the rBAT ectodomain. Disulfides Cys-242-Cys-273 and Cys-571-Cys-666 were essential for biogenesis. Cys-673-Cys-685 was dispensable, but the single mutants C673S, and C685S showed compromised stability and trafficking. Cys-242-Cys-273 likely was the first disulfide to form, and unpaired Cys-242 or Cys-273 disrupted oxidative folding. Strikingly, unassembled rBAT was found as an ensemble of different redox species, mainly monomeric. The ensemble did not change upon inhibition of rBAT degradation. Overall, these results indicated a b(0,+)AT-dependent oxidative folding of the rBAT ectodomain, with the initial and probably cotranslational formation of Cys-242-Cys-273, followed by the oxidation of Cys-571-Cys-666 and Cys-673-Cys-685, that was completed posttranslationally.
Collapse
Affiliation(s)
- Mònica Rius
- Department of Physiology and Immunology, Faculty of Biology, University of Barcelona, E-08028 Barcelona, Spain
| | | |
Collapse
|
11
|
Chang JY. Diverse pathways of oxidative folding of disulfide proteins: underlying causes and folding models. Biochemistry 2011; 50:3414-31. [PMID: 21410235 DOI: 10.1021/bi200131j] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The pathway of oxidative folding of disulfide proteins exhibits a high degree of diversity, which is manifested mainly by distinct structural heterogeneity and diverse rearrangement pathways of folding intermediates. During the past two decades, the scope of this diversity has widened through studies of more than 30 disulfide-rich proteins by various laboratories. A more comprehensive landscape of the mechanism of protein oxidative folding has emerged. This review will cover three themes. (1) Elaboration of the scope of diversity of disulfide folding pathways, including the two opposite extreme models, represented by bovine pancreatic trypsin inhibitor (BPTI) and hirudin. (2) Demonstration of experimental evidence accounting for the underlying mechanism of the folding diversity. (3) Discussion of the convergence between the extreme models of oxidative folding and models of conventional conformational folding (framework model, hydrophobic collapse model).
Collapse
Affiliation(s)
- Jui-Yoa Chang
- Research Center for Protein Chemistry, Institute of Molecular Medicine, Department of Biochemistry and Molecular Biology, Medical School, The University of Texas, Houston, 77030, USA.
| |
Collapse
|
12
|
Jiang C, Xiong W, Lu BY, Gonda MA, Chang JY. Synthesis and Immune Response of Non-native Isomers of Vascular Endothelial Growth Factor. Biochemistry 2010; 49:6550-6. [DOI: 10.1021/bi100815n] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Chuantao Jiang
- Research Center for Protein Chemistry, Brown Foundation Institute of Molecular Medicine, and Department of Biochemistry and Molecular Biology, The University of Texas, Houston, Texas 77030
| | - Wei Xiong
- Research Center for Protein Chemistry, Brown Foundation Institute of Molecular Medicine, and Department of Biochemistry and Molecular Biology, The University of Texas, Houston, Texas 77030
| | - Bao-Yuan Lu
- Research Center for Protein Chemistry, Brown Foundation Institute of Molecular Medicine, and Department of Biochemistry and Molecular Biology, The University of Texas, Houston, Texas 77030
| | | | - Jui-Yoa Chang
- Research Center for Protein Chemistry, Brown Foundation Institute of Molecular Medicine, and Department of Biochemistry and Molecular Biology, The University of Texas, Houston, Texas 77030
| |
Collapse
|
13
|
Pena F, Jansens A, van Zadelhoff G, Braakman I. Calcium as a crucial cofactor for low density lipoprotein receptor folding in the endoplasmic reticulum. J Biol Chem 2010; 285:8656-64. [PMID: 20089850 DOI: 10.1074/jbc.m110.105718] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The family of low density lipoprotein (LDL) receptors mediate uptake of a plethora of ligands from the circulation and couple this to signaling, thereby performing a crucial role in physiological processes including embryonic development, cancer development, homeostasis of lipoproteins, viral infection, and neuronal plasticity. Structural integrity of individual ectodomain modules in these receptors depends on calcium, and we showed before that the LDL receptor folds its modules late after synthesis via intermediates with abundant non-native disulfide bonds and structure. Using a radioactive pulse-chase approach, we here show that for proper LDL receptor folding, calcium had to be present from the very early start of folding, which suggests at least some native, essential coordination of calcium ions at the still largely non-native folding phase. As long as the protein was in the endoplasmic reticulum (ER), its folding was reversible, which changed only upon both proper incorporation of calcium and exit from the ER. Coevolution of protein folding with the high calcium concentration in the ER may be the basis for the need for this cation throughout the folding process even though calcium is only stably integrated in native repeats at a later stage.
Collapse
Affiliation(s)
- Florentina Pena
- Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, 3584 CH Utrecht, The Netherlands
| | | | | | | |
Collapse
|
14
|
Benham AM. Protein folding and disulfide bond formation in the eukaryotic cell: meeting report based on the presentations at the European Network Meeting on Protein Folding and Disulfide Bond Formation 2009 (Elsinore, Denmark). FEBS J 2009; 276:6905-11. [PMID: 19860835 DOI: 10.1111/j.1742-4658.2009.07409.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The endoplasmic reticulum (ER) plays a critical role as a compartment for protein folding in eukaryotic cells. Defects in protein folding contribute to a growing list of diseases, and advances in our understanding of the molecular details of protein folding are helping to provide more efficient ways of producing recombinant proteins for industrial and medicinal use. Moreover, research performed in recent years has shown the importance of the ER as a signalling compartment that contributes to overall cellular homeostasis. Hamlet's castle provided a stunning backdrop for the latest European network meeting to discuss this subject matter in Elsinore, Denmark, from 3 to 5 June 2009. Organized by researchers at the Department of Biology, University of Copenhagen, the meeting featured 20 talks by both established names and younger scientists, focusing on topics such as oxidative protein folding and maturation (in particular in the ER, but also in other compartments), cellular redox regulation, ER-associated degradation, and the unfolded protein response. Exciting new advances were presented, and the intimate setting with about 50 participants provided an excellent opportunity to discuss current key questions in the field.
Collapse
Affiliation(s)
- Adam M Benham
- Biological and Biomedical Sciences, Durham University, UK.
| |
Collapse
|
15
|
Arias-Moreno X, Cuesta-Lopez S, Millet O, Sancho J, Velazquez-Campoy A. Thermodynamics of protein-cation interaction: Ca+2and Mg+2binding to the fifth binding module of the LDL receptor. Proteins 2009; 78:950-61. [DOI: 10.1002/prot.22619] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
16
|
Chang JY. Conformational Isomers of Denatured and Unfolded Proteins: Methods of Production and Applications. Protein J 2009; 28:44-56. [DOI: 10.1007/s10930-009-9162-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
17
|
Chang JY, Lin CCJ, Salamanca S, Pangburn MK, Wetsel RA. Denaturation and unfolding of human anaphylatoxin C3a: an unusually low covalent stability of its native disulfide bonds. Arch Biochem Biophys 2008; 480:104-10. [PMID: 18854167 DOI: 10.1016/j.abb.2008.09.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Accepted: 09/22/2008] [Indexed: 11/19/2022]
Abstract
The complement C3a anaphylatoxin is a major molecular mediator of innate immunity. It is a potent activator of mast cells, basophils and eosinophils and causes smooth muscle contraction. Structurally, C3a is a relatively small protein (77 amino acids) comprising a N-terminal domain connected by 3 native disulfide bonds and a helical C-terminal segment. The structural stability of C3a has been investigated here using three different methods: Disulfide scrambling; Differential CD spectroscopy; and Reductive unfolding. Two uncommon features regarding the stability of C3a and the structure of denatured C3a have been observed in this study. (a) There is an unusual disconnection between the conformational stability of C3a and the covalent stability of its three native disulfide bonds that is not seen with other disulfide proteins. As measured by both methods of disulfide scrambling and differential CD spectroscopy, the native C3a exhibits a global conformational stability that is comparable to numerous proteins with similar size and disulfide content, all with mid-point denaturation of [GdmCl](1/2) at 3.4-5M. These proteins include hirudin, tick anticoagulant protein and leech carboxypeptidase inhibitor. However, the native disulfide bonds of C3a is 150-1000 fold less stable than those proteins as evaluated by the method of reductive unfolding. The 3 native disulfide bonds of C3a can be collectively and quantitatively reduced with as low as 1mM of dithiothreitol within 5 min. The fragility of the native disulfide bonds of C3a has not yet been observed with other native disulfide proteins. (b) Using the method of disulfide scrambling, denatured C3a was shown to consist of diverse isomers adopting varied extent of unfolding. Among them, the most extensively unfolded isomer of denatured C3a is found to assume beads-form disulfide pattern, comprising Cys(36)-Cys(49) and two disulfide bonds formed by two pair of consecutive cysteines, Cys(22)-Cys(23) and Cys(56)-Cys(57), a unique disulfide structure of polypeptide that has not been documented previously.
Collapse
Affiliation(s)
- Jui-Yoa Chang
- Research Center for Protein Chemistry, Institute of Molecular Medicine, The University of Texas Medical School, Houston, TX 77030, USA.
| | | | | | | | | |
Collapse
|
18
|
Zhao Z, Michaely P. The epidermal growth factor homology domain of the LDL receptor drives lipoprotein release through an allosteric mechanism involving H190, H562, and H586. J Biol Chem 2008; 283:26528-37. [PMID: 18677035 DOI: 10.1074/jbc.m804624200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The low density lipoprotein (LDL) receptor (LDLR) mediates efficient endocytosis of VLDL, VLDL remnants, and LDL. As part of the endocytic process, the LDLR releases lipoproteins in endosomes. The release process correlates with an acid-dependent conformational change in the receptor from an extended, "open" state to a compact, "closed" state. The closed state has an intramolecular contact involving H190, H562, and H586. The current model for lipoprotein release holds that protonation of these histidines drives the conformational change that is associated with release. We tested the roles of H190, H562, and H586 on LDLR conformation and on lipoprotein binding, uptake, and release using variants in which the three histidines were replaced with alanine (AAA variant) or in which the histidines were replaced with charged residues that can form ionic contacts at neutral pH (DRK variant). Contrary to expectation, both the AAA and the DRK variants exhibited normal acid-dependent transitions from open to closed conformations. Despite this similarity, both the AAA and DRK mutations modulated lipoprotein release, indicating that H190, H562, and H586 act subsequent to the conformational transition. These observations also suggest that the intramolecular contact does not drive release through a competitive mechanism. In support of this possibility, mutagenesis experiments showed that beta-VLDL binding was inhibited by mutations at D203 and E208, which are exposed in the closed conformation of the LDLR. We propose that H190, H562, and H586 are part of an allosteric mechanism that drives lipoprotein release.
Collapse
Affiliation(s)
- Zhenze Zhao
- Department of Cell Biology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390-9039, USA
| | | |
Collapse
|
19
|
Arias-Moreno X, Velazquez-Campoy A, Rodríguez JC, Pocoví M, Sancho J. Mechanism of low density lipoprotein (LDL) release in the endosome: implications of the stability and Ca2+ affinity of the fifth binding module of the LDL receptor. J Biol Chem 2008; 283:22670-9. [PMID: 18574243 DOI: 10.1074/jbc.m802153200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Uptake of low density lipoproteins (LDL) by their receptor, LDLR, is the primary mechanism by which cells incorporate cholesterol from plasma. Mutations in LDLR lead to familial hypercholesterolemia, a common disease affecting 1 in 500 of the human population. LDLR is a modular protein that uses several small repeats to bind LDL. The repeats contain around 40 residues, including three disulfide bonds and a calcium ion. Repeat 5 (LR5) is critical for LDL and beta-migrating very low density lipoprotein binding. Based on the crystal structure of LDLR at endosomal pH (but close to extracellular calcium concentration), LR5 has been proposed to bind to the epidermal growth factor (EGF) precursor domain of LDLR in the endosome, thus releasing the LDL particles previously bound in extracellular conditions. We report here the conformational stability of LR5 as a function of temperature and calcium concentration under both extracellular and endosomal pH conditions. The repeat was very stable when it bore a bound calcium ion but was severely destabilized in the absence of calcium and even further destabilized at acidic versus neutral pH. The temperature and calcium concentration dependence of LR5 stability clearly indicate that under endosomal conditions the unfolded conformation of the repeat is largely dominant. We thus propose a new mechanism for LDL release in the endosome in which calcium depletion and decreased stability at acidic pH drives LR5 unfolding, which triggers LDL release from the receptor. Subsequent binding of LR5 to the EGF precursor domain, if it takes place at low calcium concentrations, would contribute to a further shifting of the equilibrium toward dissociation.
Collapse
Affiliation(s)
- Xabier Arias-Moreno
- Biocomputation and Complex Systems Physics Institute (BIFI), Universidad de Zaragoza, 50009 Zaragoza, Spain
| | | | | | | | | |
Collapse
|