1
|
DeBartolo D, Arnold FJ, Liu Y, Molotsky E, Tang HY, Merry DE. Differentially disrupted spinal cord and muscle energy metabolism in spinal and bulbar muscular atrophy. JCI Insight 2024; 9:e178048. [PMID: 38452174 PMCID: PMC11128210 DOI: 10.1172/jci.insight.178048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/27/2024] [Indexed: 03/09/2024] Open
Abstract
Prior studies showed that polyglutamine-expanded androgen receptor (AR) is aberrantly acetylated and that deacetylation of the mutant AR by overexpression of nicotinamide adenine dinucleotide-dependent (NAD+-dependent) sirtuin 1 is protective in cell models of spinal and bulbar muscular atrophy (SBMA). Based on these observations and reduced NAD+ in muscles of SBMA mouse models, we tested the therapeutic potential of NAD+ restoration in vivo by treating postsymptomatic transgenic SBMA mice with the NAD+ precursor nicotinamide riboside (NR). NR supplementation failed to alter disease progression and had no effect on increasing NAD+ or ATP content in muscle, despite producing a modest increase of NAD+ in the spinal cords of SBMA mice. Metabolomic and proteomic profiles of SBMA quadriceps muscles indicated alterations in several important energy-related pathways that use NAD+, in addition to the NAD+ salvage pathway, which is critical for NAD+ regeneration for use in cellular energy production. We also observed decreased mRNA levels of nicotinamide riboside kinase 2 (Nmrk2), which encodes a key kinase responsible for NR phosphorylation, allowing its use by the NAD+ salvage pathway. Together, these data suggest a model in which NAD+ levels are significantly decreased in muscles of an SBMA mouse model and intransigent to NR supplementation because of decreased levels of Nmrk2.
Collapse
Affiliation(s)
- Danielle DeBartolo
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Frederick J. Arnold
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Yuhong Liu
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Elana Molotsky
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Hsin-Yao Tang
- Proteomics and Metabolomics Shared Resource, Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Diane E. Merry
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
2
|
Pluciennik A, Liu Y, Molotsky E, Marsh GB, Ranxhi B, Arnold FJ, St.-Cyr S, Davidson B, Pourshafie N, Lieberman AP, Gu W, Todi SV, Merry DE. Deubiquitinase USP7 contributes to the pathogenicity of spinal and bulbar muscular atrophy. J Clin Invest 2021; 131:134565. [PMID: 33170804 PMCID: PMC7773404 DOI: 10.1172/jci134565] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 10/29/2020] [Indexed: 12/24/2022] Open
Abstract
Polyglutamine (polyQ) diseases are devastating, slowly progressing neurodegenerative conditions caused by expansion of polyQ-encoding CAG repeats within the coding regions of distinct, unrelated genes. In spinal and bulbar muscular atrophy (SBMA), polyQ expansion within the androgen receptor (AR) causes progressive neuromuscular toxicity, the molecular basis of which is unclear. Using quantitative proteomics, we identified changes in the AR interactome caused by polyQ expansion. We found that the deubiquitinase USP7 preferentially interacts with polyQ-expanded AR and that lowering USP7 levels reduced mutant AR aggregation and cytotoxicity in cell models of SBMA. Moreover, USP7 knockdown suppressed disease phenotypes in SBMA and spinocerebellar ataxia type 3 (SCA3) fly models, and monoallelic knockout of Usp7 ameliorated several motor deficiencies in transgenic SBMA mice. USP7 overexpression resulted in reduced AR ubiquitination, indicating the direct action of USP7 on AR. Using quantitative proteomics, we identified the ubiquitinated lysine residues on mutant AR that are regulated by USP7. Finally, we found that USP7 also differentially interacts with mutant Huntingtin (HTT) protein in striatum and frontal cortex of a knockin mouse model of Huntington's disease. Taken together, our findings reveal a critical role for USP7 in the pathophysiology of SBMA and suggest a similar role in SCA3 and Huntington's disease.
Collapse
Affiliation(s)
- Anna Pluciennik
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Yuhong Liu
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Elana Molotsky
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Gregory B. Marsh
- Department of Pharmacology and Neurology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Bedri Ranxhi
- Department of Pharmacology and Neurology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Frederick J. Arnold
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Sophie St.-Cyr
- Department of Pathology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Beverly Davidson
- Department of Pathology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Naemeh Pourshafie
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA
- George Washington University, Institute of Biomedical Sciences, Washington, DC, USA
| | - Andrew P. Lieberman
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Wei Gu
- Department of Pathology and Cell Biology and Institute for Cancer Genetics, Columbia University, New York, New York, USA
| | - Sokol V. Todi
- Department of Pharmacology and Neurology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Diane E. Merry
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
3
|
Moriyama T, Yoneda Y, Oka M, Yamada M. Transportin-2 plays a critical role in nucleocytoplasmic shuttling of oestrogen receptor-α. Sci Rep 2020; 10:18640. [PMID: 33122699 PMCID: PMC7596556 DOI: 10.1038/s41598-020-75631-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/16/2020] [Indexed: 12/15/2022] Open
Abstract
Oestrogen receptor-α (ERα) shuttles continuously between the nucleus and the cytoplasm, and functions as an oestrogen-dependent transcription factor in the nucleus and as an active mediator of signalling pathways, such as phosphatidylinositol 3-kinase (PI3K)/AKT, in the cytoplasm. However, little is known regarding the mechanism of ERα nucleocytoplasmic shuttling. In this study, we found that ERα is transported into the nucleus by importin-α/β1. Furthermore, we found that Transportin-2 (TNPO2) is involved in 17β-oestradiol (E2)-dependent cytoplasmic localisation of ERα. Interestingly, it was found that TNPO2 does not mediate nuclear export, but rather is involved in the cytoplasmic retention of ERα via the proline/tyrosine (PY) motifs. Moreover, we found that TNPO2 competitively binds to the basic nuclear localisation signal (NLS) of ERα with importin-α to inhibit importin-α/β-dependent ERα nuclear import. Finally, we confirmed that TNPO2 knockdown enhances the nuclear localisation of wild-type ERα and reduces PI3K/AKT phosphorylation in the presence of E2. These results reveal that TNPO2 regulates nucleocytoplasmic shuttling and cytoplasmic retention of ERα, so that ERα has precise functions depending on the stimulation.
Collapse
Affiliation(s)
- Tetsuji Moriyama
- Department of Cell Biology and Biochemistry, Division of Medicine, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka Shimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui, 910-1193, Japan
| | - Yoshihiro Yoneda
- Health and Nutrition (NIBIOHN), National Institutes of Biomedical Innovation, 7-6-8 Saito-Asagi, Ibaraki, Osaka, 567-0085, Japan.,Laboratory of Nuclear Transport Dynamics, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Masahiro Oka
- Laboratory of Nuclear Transport Dynamics, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka, 565-0871, Japan.,Laboratory of Nuclear Transport Dynamics, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Saito-Asagi, Ibaraki, Osaka, 567-0085, Japan
| | - Masami Yamada
- Department of Cell Biology and Biochemistry, Division of Medicine, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka Shimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui, 910-1193, Japan. .,Life Science Research Laboratory, University of Fukui, 23-3 Matsuoka Shimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui, 910-1193, Japan.
| |
Collapse
|
4
|
DNA-PK in human malignant disorders: Mechanisms and implications for pharmacological interventions. Pharmacol Ther 2020; 215:107617. [PMID: 32610116 DOI: 10.1016/j.pharmthera.2020.107617] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/15/2020] [Indexed: 12/12/2022]
Abstract
The DNA-PK holoenzyme is a fundamental element of the DNA damage response machinery (DDR), which is responsible for cellular genomic stability. Consequently, and predictably, over the last decades since its identification and characterization, numerous pre-clinical and clinical studies reported observations correlating aberrant DNA-PK status and activity with cancer onset, progression and responses to therapeutic modalities. Notably, various studies have established in recent years the role of DNA-PK outside the DDR network, corroborating its role as a pleiotropic complex involved in transcriptional programs that operate biologic processes as epithelial to mesenchymal transition (EMT), hypoxia, metabolism, nuclear receptors signaling and inflammatory responses. In particular tumor entities as prostate cancer, immense research efforts assisted mapping and describing the overall signaling networks regulated by DNA-PK that control metastasis and tumor progression. Correspondingly, DNA-PK emerges as an obvious therapeutic target in cancer and data pertaining to various pharmacological approaches have been published, largely in context of combination with DNA-damaging agents (DDAs) that act by inflicting DNA double strand breaks (DSBs). Currently, new generation inhibitors are tested in clinical trials. Several excellent reviews have been published in recent years covering the biology of DNA-PK and its role in cancer. In the current article we are aiming to systematically describe the main findings on DNA-PK signaling in major cancer types, focusing on both preclinical and clinical reports and present a detailed current status of the DNA-PK inhibitors repertoire.
Collapse
|
5
|
Abstract
Spinal and bulbar muscular atrophy (SBMA) is a neuromuscular disease caused by a polyglutamine (polyQ) expansion in the androgen receptor (AR). Despite the fact that the monogenic cause of SBMA has been known for nearly 3 decades, there is no effective treatment for this disease, underscoring the complexity of the pathogenic mechanisms that lead to a loss of motor neurons and muscle in SBMA patients. In the current review, we provide an overview of the system-wide clinical features of SBMA, summarize the structure and function of the AR, discuss both gain-of-function and loss-of-function mechanisms of toxicity caused by polyQ-expanded AR, and describe the cell and animal models utilized in the study of SBMA. Additionally, we summarize previously conducted clinical trials which, despite being based on positive results from preclinical studies, proved to be largely ineffective in the treatment of SBMA; nonetheless, these studies provide important insights as researchers develop the next generation of therapies.
Collapse
Affiliation(s)
- Frederick J Arnold
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 411E Jefferson Alumni Hall, 1020 Locust Street, Philadelphia, Pennsylvania, 19107, USA
| | - Diane E Merry
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 411E Jefferson Alumni Hall, 1020 Locust Street, Philadelphia, Pennsylvania, 19107, USA.
| |
Collapse
|
6
|
Deng Q, Luo L, Quan Z, Liu N, Du Z, Sun W, Luo C, Wu X. HepaCAM inhibits cell proliferation and invasion in prostate cancer by suppressing nuclear translocation of the androgen receptor via its cytoplasmic domain. Mol Med Rep 2019; 19:2115-2124. [PMID: 30664187 PMCID: PMC6390061 DOI: 10.3892/mmr.2019.9841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 12/12/2018] [Indexed: 12/04/2022] Open
Abstract
Hepatocyte cell adhesion molecule (HepaCAM) is a tumour suppressor. However, the mechanism of HepaCAM function in prostate cancer (PCa) remains unknown. In the present study, HepaCAM, androgen receptor (AR) and Ran were analysed in 46 PCa tissue samples using immunohistochemistry. Subsequently, the influence of HepaCAM and its cytoplasmic domain on cell proliferation, migration, and invasion, and associated proteins was examined using MTT, wound healing, Transwell and western blotting assays, respectively. Furthermore, nuclear translocation of AR and Ran was analysed using immunofluorescence and Western blot assays. The results demonstrated that HepaCAM expression was reduced in PCa, and there was an association between downregulation of HepaCAM and changes in the distribution of AR and Ran. Furthermore, HepaCAM, specifically the cytoplasmic domain, was involved in cell proliferation, migration and invasion. Nuclear translocation of AR was dependent on HepaCAM and its cytoplasmic domain. Additionally, HepaCAM suppression of the nuclear translocation of AR occurred via Ran. The results suggest that HepaCAM and its cytoplasmic domain suppress the nuclear translocation of AR via Ran in PCa. The cytoplasmic domain of HepaCAM may serve as a novel target for therapy in PCa.
Collapse
Affiliation(s)
- Qingfu Deng
- Department of Urology, First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, P.R. China
| | - Li Luo
- Key Laboratory of Diagnostics Medicine Designated by The Ministry of Education, Chongqing Medical University, Chongqing 400042, P.R. China
| | - Zhen Quan
- Department of Urology, First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, P.R. China
| | - Nanjing Liu
- Key Laboratory of Diagnostics Medicine Designated by The Ministry of Education, Chongqing Medical University, Chongqing 400042, P.R. China
| | - Zhongbo Du
- Department of Urology, First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, P.R. China
| | - Wei Sun
- Department of Urology, First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, P.R. China
| | - Chunli Luo
- Key Laboratory of Diagnostics Medicine Designated by The Ministry of Education, Chongqing Medical University, Chongqing 400042, P.R. China
| | - Xiaohou Wu
- Department of Urology, First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, P.R. China
| |
Collapse
|
7
|
Impaired Nuclear Export of Polyglutamine-Expanded Androgen Receptor in Spinal and Bulbar Muscular Atrophy. Sci Rep 2019; 9:119. [PMID: 30644418 PMCID: PMC6333819 DOI: 10.1038/s41598-018-36784-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 11/26/2018] [Indexed: 01/22/2023] Open
Abstract
Spinal and bulbar muscular atrophy (SBMA) is a neuromuscular disease caused by polyglutamine (polyQ) expansion in the androgen receptor (AR). Prior studies have highlighted the importance of AR nuclear localization in SBMA pathogenesis; therefore, in this study, we sought to determine the role of AR nuclear export in the pathological manifestations of SBMA. We demonstrate here that the nuclear export of polyQ-expanded AR is impaired, even prior to the formation of intranuclear inclusions of aggregated AR. Additionally, we find that promoting AR export with an exogenous nuclear export signal substantially reduces its aggregation and blocks hormone-induced toxicity. Moreover, we show that these protective effects are conferred by destabilization of the mutant protein due to an increase in proteasomal degradation of the cytoplasmic AR. Despite a growing body of evidence that global disruption of nucleo/cytoplasmic transport occurs in ALS and HD, our data suggest that no such global disruption occurs in models of SBMA; rather, AR-specific mechanisms, including reduced phosphorylation at Serine 650, are likely responsible for the impaired nuclear export of polyQ-expanded AR.
Collapse
|
8
|
Tecalco-Cruz AC. Molecular pathways involved in the transport of nuclear receptors from the nucleus to cytoplasm. J Steroid Biochem Mol Biol 2018; 178:36-44. [PMID: 29107180 DOI: 10.1016/j.jsbmb.2017.10.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/18/2017] [Accepted: 10/25/2017] [Indexed: 12/30/2022]
Abstract
Nuclear receptors (NRs) are transcription regulators that direct the expression of many genes linked to cellular processes, such as proliferation, differentiation, and apoptosis. Additionally, some cellular events are also modulated by signaling pathways induced by NRs outside of the nucleus. Hence, the subcellular transport of NRs is dynamic and is modulated by several signals, protein-protein interactions, and posttranslational modifications. Particularly, the exit of NRs from the nucleus to cytoplasm and/or other compartments is transcendental, as it is this export event, which determines their abundance in the cells' compartments, the activation or attenuation of nuclear or extranuclear pathways, and the magnitude and duration of their effects inside or outside of the nucleus. Consequently, an adequate control of the distribution of NRs is critical for homeostasis, because a deregulation in the nucleo-cytoplasmic transport of NRs could be involved in diseases including cancer as well as metabolic and vascular alterations. In this review, we investigated the pathways and molecular and biological aspects that have been described for the nuclear export of NRs so far and their functional relevance in some diseases. This information suggests that the transport of NRs out of the nucleus is a key mechanism for the identification of new therapeutic targets for alterations associated with the deregulation of the function of NRs.
Collapse
Affiliation(s)
- Angeles C Tecalco-Cruz
- Programa de Investigación de Cáncer de Mama, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Apdo Postal, D.F. 04510, Mexico.
| |
Collapse
|
9
|
Zhang J, Roggero VR, Allison LA. Nuclear Import and Export of the Thyroid Hormone Receptor. VITAMINS AND HORMONES 2017; 106:45-66. [PMID: 29407444 DOI: 10.1016/bs.vh.2017.04.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The thyroid hormone receptors, TRα1 and TRβ1, are members of the nuclear receptor superfamily that forms one of the most abundant classes of transcription factors in multicellular organisms. Although primarily localized to the nucleus, TRα1 and TRβ1 shuttle rapidly between the nucleus and cytoplasm. The fine balance between nuclear import and export of TRs has emerged as a critical control point for modulating thyroid hormone-responsive gene expression. Mutagenesis studies have defined two nuclear localization signal (NLS) motifs that direct nuclear import of TRα1: NLS-1 in the hinge domain and NLS-2 in the N-terminal A/B domain. Three nuclear export signal (NES) motifs reside in the ligand-binding domain. A combined approach of shRNA-mediated knockdown and coimmunoprecipitation assays revealed that nuclear entry of TRα1 is facilitated by importin 7, likely through interactions with NLS-2, and importin β1 and the adapter importin α1 interacting with both NLS-1 and NLS-2. Interestingly, TRβ1 lacks NLS-2 and nuclear import depends solely on the importin α1/β1 heterodimer. Heterokaryon and fluorescence recovery after photobleaching shuttling assays identified multiple exportins that play a role in nuclear export of TRα1, including CRM1 (exportin 1), and exportins 4, 5, and 7. Even single amino acid changes in TRs dramatically alter their intracellular distribution patterns. We conclude that mutations within NLS and NES motifs affect nuclear shuttling activity, and propose that TR mislocalization contributes to the development of some types of cancer and Resistance to Thyroid Hormone syndrome.
Collapse
Affiliation(s)
- Jibo Zhang
- College of William and Mary, Williamsburg, VA, United States
| | | | | |
Collapse
|
10
|
Subramanian KS, Dziedzic RC, Nelson HN, Stern ME, Roggero VR, Bondzi C, Allison LA. Multiple exportins influence thyroid hormone receptor localization. Mol Cell Endocrinol 2015; 411:86-96. [PMID: 25911113 PMCID: PMC4458229 DOI: 10.1016/j.mce.2015.04.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 04/15/2015] [Accepted: 04/15/2015] [Indexed: 12/17/2022]
Abstract
The thyroid hormone receptor (TR) undergoes nucleocytoplasmic shuttling and regulates target genes involved in metabolism and development. Previously, we showed that TR follows a CRM1/calreticulin-mediated nuclear export pathway. However, two lines of evidence suggest TR also follows another pathway: export is only partially blocked by leptomycin B (LMB), a CRM1-specific inhibitor; and we identified nuclear export signals in TR that are LMB-resistant. To determine whether other exportins are involved in TR shuttling, we used RNA interference and fluorescence recovery after photobleaching shuttling assays in transfected cells. Knockdown of exportins 4, 5, and 7 altered TR shuttling dynamics, and when exportins 5 and 7 were overexpressed, TR distribution shifted toward the cytosol. To further assess the effects of exportin overexpression, we examined transactivation of a TR-responsive reporter gene. Our data indicate that multiple exportins influence TR localization, highlighting a fine balance of nuclear import, retention, and export that modulates TR function.
Collapse
Affiliation(s)
- Kelly S Subramanian
- Department of Biology, College of William and Mary, Williamsburg, Virginia 23185, USA
| | - Rose C Dziedzic
- Department of Biology, College of William and Mary, Williamsburg, Virginia 23185, USA
| | - Hallie N Nelson
- Department of Biology, College of William and Mary, Williamsburg, Virginia 23185, USA
| | - Mary E Stern
- Department of Biology, College of William and Mary, Williamsburg, Virginia 23185, USA
| | - Vincent R Roggero
- Department of Biology, College of William and Mary, Williamsburg, Virginia 23185, USA
| | - Cornelius Bondzi
- Department of Biological Sciences, Hampton University, Hampton, Virginia 23668, USA
| | - Lizabeth A Allison
- Department of Biology, College of William and Mary, Williamsburg, Virginia 23185, USA.
| |
Collapse
|
11
|
Glucocorticoid Receptor Transcriptional Activation via the BRG1-Dependent Recruitment of TOP2β and Ku70/86. Mol Cell Biol 2015; 35:2799-817. [PMID: 26055322 DOI: 10.1128/mcb.00230-15] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 05/27/2015] [Indexed: 12/20/2022] Open
Abstract
BRG1, the central ATPase of the human SWI/SNF complex, is critical for biological functions, including nuclear receptor (NR)-regulated transcription. Analysis of BRG1 mutants demonstrated that functional motifs outside the ATPase domain are important for transcriptional activity. In the course of experiments examining protein interactions mediated through these domains, Ku70 (XRCC6) was found to associate with a BRG1 fragment encompassing the conserved helicase-SANT-associated (HSA) and BRK domains of BRG1. Subsequent transcriptional activation assays and chromatin immunoprecipitation studies showed that Ku70/86 and components of the topoisomerase IIβ (TOP2β)/poly(ADP ribose) polymerase 1 (PARP1) complex are necessary for NR-mediated SWI/SNF-dependent transcriptional activation from endogenous promoters. In addition to establishing Ku-BRG1 binding and TOP2β/PARP1 recruitment by nuclear receptor transactivation, we demonstrate that the transient appearance of glucocorticoid receptor (GR)/BRG1-dependent, TOP2β-mediated double-strand DNA breaks is required for efficient GR-stimulated transcription. Taken together, these results suggest that a direct interaction between Ku70/86 and BRG1 brings together SWI/SNF remodeling capabilities and TOP2β activity to enhance the transcriptional response to hormone stimulation.
Collapse
|
12
|
Grabowska MM, Elliott AD, DeGraff DJ, Anderson PD, Anumanthan G, Yamashita H, Sun Q, Friedman DB, Hachey DL, Yu X, Sheehan JH, Ahn JM, Raj GV, Piston DW, Gronostajski RM, Matusik RJ. NFI transcription factors interact with FOXA1 to regulate prostate-specific gene expression. Mol Endocrinol 2014; 28:949-64. [PMID: 24801505 DOI: 10.1210/me.2013-1213] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Androgen receptor (AR) action throughout prostate development and in maintenance of the prostatic epithelium is partly controlled by interactions between AR and forkhead box (FOX) transcription factors, particularly FOXA1. We sought to identity additional FOXA1 binding partners that may mediate prostate-specific gene expression. Here we identify the nuclear factor I (NFI) family of transcription factors as novel FOXA1 binding proteins. All four family members (NFIA, NFIB, NFIC, and NFIX) can interact with FOXA1, and knockdown studies in androgen-dependent LNCaP cells determined that modulating expression of NFI family members results in changes in AR target gene expression. This effect is probably mediated by binding of NFI family members to AR target gene promoters, because chromatin immunoprecipitation (ChIP) studies found that NFIB bound to the prostate-specific antigen enhancer. Förster resonance energy transfer studies revealed that FOXA1 is capable of bringing AR and NFIX into proximity, indicating that FOXA1 facilitates the AR and NFI interaction by bridging the complex. To determine the extent to which NFI family members regulate AR/FOXA1 target genes, motif analysis of publicly available data for ChIP followed by sequencing was undertaken. This analysis revealed that 34.4% of peaks bound by AR and FOXA1 contain NFI binding sites. Validation of 8 of these peaks by ChIP revealed that NFI family members can bind 6 of these predicted genomic elements, and 4 of the 8 associated genes undergo gene expression changes as a result of individual NFI knockdown. These observations suggest that NFI regulation of FOXA1/AR action is a frequent event, with individual family members playing distinct roles in AR target gene expression.
Collapse
Affiliation(s)
- Magdalena M Grabowska
- Department of Urologic Surgery (M.M.G., G.A. H.Y., Q.S., X.Y., R.J.M.), Department of Molecular Physiology and Biophysics (A.D.E., D.W.P.), and Vanderbilt-Ingram Cancer Center (R.J.M.), Vanderbilt University Medical Center, Nashville, Tennessee 37232; Department of Pathology (D.J.D.), Penn State University College of Medicine, Hershey, Pennsylvania 17033; Department of Biological Sciences (P.D.A.), Salisbury University, Salisbury, Maryland 21801; Mass Spectrometry Research Center (D.B.F., D.L.H.), Department of Biochemistry, Department of Biochemistry and Center for Structural Biology (J.H.S.), and Department of Cell and Developmental Biology (R.J.M.), Vanderbilt University, Nashville, Tennessee 37232; Department of Chemistry (J.-M.A.), University of Texas Dallas, Dallas, Texas 75080; Department of Urology (G.V.R.), University of Texas Southwestern, Dallas, Texas 75390; and Department of Biochemistry (R.M.G.), Developmental Genomics Group, NY State Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, Buffalo, New York 14203
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
The androgen receptor (AR) is a key molecule in prostate cancer and Kennedy's disease. Understanding the regulatory mechanisms of this steroid receptor is important in the development of potential therapies for these diseases. One layer of AR regulation is provided by post-translational modifications including phosphorylation, acetylation, sumoylation, ubiquitination and methylation. While these modifications have mostly been studied as individual events, it is becoming clear that these modifications can functionally interact with each other in a signalling pathway. In this review, the effects of all modifications are described with a focus on interplay between them and the functional consequences for the AR.
Collapse
Affiliation(s)
- Kelly Coffey
- Solid Tumour Target Discovery Group, The Medical School, Newcastle Cancer Centre at the Northern Institute for Cancer Research, Newcastle University, Framlington Place, Newcastle upon Tyne, Tyne and Wear, UK
| | | |
Collapse
|
14
|
Gioeli D, Paschal BM. Post-translational modification of the androgen receptor. Mol Cell Endocrinol 2012; 352:70-8. [PMID: 21820033 DOI: 10.1016/j.mce.2011.07.004] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 06/30/2011] [Accepted: 07/01/2011] [Indexed: 01/01/2023]
Abstract
Regulation of the androgen receptor (AR) by its cognate ligand is well established, but how post-translational modification modulates AR activity is only emerging. The AR is subject to modification by phosphorylation, acetylation, methylation, SUMOylation, and ubiquitination. As several of the enzymes that modify the AR are altered in prostate cancer, defining the context and physiological effects of these modifications could provide insight into mechanisms that underpin human disease. Here, we review how post-translational modification contributes to AR function as a transcription factor with particular emphasis on phosphorylation and dephosphorylation mechanisms.
Collapse
Affiliation(s)
- Daniel Gioeli
- Department of Microbiology, University of Virginia, Charlottesville, Virginia, USA
| | | |
Collapse
|
15
|
Upon the tightrope in prostate cancer: two acrobats on the same tightrope to cross the finishline. Mol Cell Biochem 2011; 364:53-7. [PMID: 22200977 DOI: 10.1007/s11010-011-1204-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 12/15/2011] [Indexed: 01/03/2023]
Abstract
Prostate cancer is a multifactorial, multistep progressive disorder that is undruggable to date because of stumbling blocks in the standardization of therapy. It is triggered by a broad range of proteins, signaling networks and DNA damage response modulators. It is becoming increasingly apparent that DNA repair mediators have split personalities, as they are instrumental in suppressing and promoting carcinogenesis. In this article, we discuss on post-transcriptional processing of regulators of DNA damage response, and how DNA repair proteins trigger shuttling of androgen receptor. Substantial fraction of information has been added into the existing literature of ATM biology; however, the particular area of post-transcriptional processing errors and gene therapy for reprogramming of ATM has been left unaddressed in prostate cancer. It is therefore noteworthy that the facet of targeting strategy, antisense morpholino oligonucleotides chemistry, and systematic delivery of AOs has promising outlook in splice-targeted antisense-mediated therapy.
Collapse
|
16
|
Schütz SV, Schrader AJ, Zengerling F, Genze F, Cronauer MV, Schrader M. Inhibition of glycogen synthase kinase-3β counteracts ligand-independent activity of the androgen receptor in castration resistant prostate cancer. PLoS One 2011; 6:e25341. [PMID: 21980429 PMCID: PMC3183056 DOI: 10.1371/journal.pone.0025341] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Accepted: 09/01/2011] [Indexed: 11/19/2022] Open
Abstract
In order to generate genomic signals, the androgen receptor (AR) has to be transported into the nucleus upon androgenic stimuli. However, there is evidence from in vitro experiments that in castration-resistant prostate cancer (CRPC) cells the AR is able to translocate into the nucleus in a ligand-independent manner. The recent finding that inhibition of the glycogen-synthase-kinase 3β (GSK-3β) induces a rapid nuclear export of the AR in androgen-stimulated prostate cancer cells prompted us to analyze the effects of a GSK-3β inhibition in the castration-resistant LNCaP sublines C4-2 and LNCaP-SSR. Both cell lines exhibit high levels of nuclear AR in the absence of androgenic stimuli. Exposure of these cells to the maleimide SB216763, a potent GSK-3β inhibitor, resulted in a rapid nuclear export of the AR even under androgen-deprived conditions. Moreover, the ability of C4-2 and LNCaP-SSR cells to grow in the absence of androgens was diminished after pharmacological inhibition of GSK-3β in vitro. The ability of SB216763 to modulate AR signalling and function in CRPC in vivo was additionally demonstrated in a modified chick chorioallantoic membrane xenograft assay after systemic delivery of SB216763. Our data suggest that inhibition of GSK-3β helps target the AR for export from the nucleus thereby diminishing the effects of mislocated AR in CRPC cells. Therefore, inhibition of GSK-3β could be an interesting new strategy for the treatment of CRPC.
Collapse
|
17
|
Kumazaki M, Ando H, Ushijima K, Maekawa T, Motosugi Y, Takada M, Tateishi M, Fujimura A. Influence of dosing time on the efficacy and safety of finasteride in rats. J Pharmacol Exp Ther 2011; 338:718-23. [PMID: 21606174 DOI: 10.1124/jpet.111.182865] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Finasteride (FIN), a widely used medication for the treatment of androgen-dependent diseases, blocks the conversion of testosterone to a more potent androgen, dihydrotestosterone (DHT). In this study, we investigated a dosing time-dependent effect and safety of FIN in rats. Androgen receptor (AR) mRNA and nuclear protein levels exhibited clear daily rhythms with the peak during the dark period in the prostate and during the light period in the liver. Repeated oral administration of FIN (5 or 100 mg/kg) at 3 h after lights on (HALO) for 2 weeks decreased serum DHT concentration throughout a 24-h period, whereas the dosing of the agent at 15 HALO decreased its level only transiently even in the higher dose group. FIN caused laboratory abnormalities in the 3 HALO group but not in the 15 HALO group. However, the effect of FIN on the prostate weight was not influenced by the dosing time. These results suggest that the safety, but not effect, of FIN depends on its dosing time in rats. The dosing of FIN in the active period might be a rational dosage regimen, which is needed to be confirmed in human subjects.
Collapse
Affiliation(s)
- Masafumi Kumazaki
- Division of Clinical Pharmacology, Department of Pharmacology, Jichi Medical University, Tochigi 329-0498, Japan
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Chymkowitch P, Le May N, Charneau P, Compe E, Egly JM. The phosphorylation of the androgen receptor by TFIIH directs the ubiquitin/proteasome process. EMBO J 2010; 30:468-79. [PMID: 21157430 DOI: 10.1038/emboj.2010.337] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Accepted: 11/22/2010] [Indexed: 11/09/2022] Open
Abstract
In response to hormonal stimuli, a cascade of hierarchical post-translational modifications of nuclear receptors are required for the correct expression of target genes. Here, we show that the transcription factor TFIIH, via its cdk7 kinase, phosphorylates the androgen receptor (AR) at position AR/S515. Strikingly, this phosphorylation is a key step for an accurate transactivation that includes the cyclic recruitment of the transcription machinery, the MDM2 E3 ligase, the subsequent ubiquitination of AR at the promoter of target genes and its degradation by the proteasome machinery. Impaired phosphorylation disrupts the transactivation, as observed in cells either overexpressing the non-phosphorylated AR/S515A, isolated from xeroderma pigmentosum patient (bearing a mutation in XPD subunit of TFIIH), or in which cdk7 kinase was silenced. Indeed, besides affecting the cyclic recruitment of the transcription machinery, the AR phosphorylation defect favourizes to the recruitment of the E3 ligase CHIP instead of MDM2, at the PSA promoter, that will further attract the proteasome machinery. These observations illustrate how the TFIIH phosphorylation might participate to the transactivation by regulating the nuclear receptors turnover.
Collapse
Affiliation(s)
- Pierre Chymkowitch
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, INSERM, Université de Strasbourg, Illkirch cedex, France
| | | | | | | | | |
Collapse
|
19
|
Giraldi T, Giovannelli P, Di Donato M, Castoria G, Migliaccio A, Auricchio F. Steroid signaling activation and intracellular localization of sex steroid receptors. J Cell Commun Signal 2010; 4:161-72. [PMID: 21234121 DOI: 10.1007/s12079-010-0103-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Accepted: 10/13/2010] [Indexed: 12/21/2022] Open
Abstract
In addition to stimulating gene transcription, sex steroids trigger rapid, non-genomic responses in the extra-nuclear compartment of target cells. These events take place within seconds or minutes after hormone administration and do not require transcriptional activity of sex steroid receptors. Depending on cell systems, activation of extra-nuclear signaling pathways by sex steroids fosters cell cycle progression, prevents apoptosis, leads to epigenetic modifications and increases cell migration through cytoskeleton changes. These findings have raised the question of intracellular localization of sex steroid receptors mediating these responses. During the past years, increasing evidence has shown that classical sex steroid receptors localized in the extra-nuclear compartment or close to membranes of target cells induce these events. The emerging picture is that a process of bidirectional control between signaling activation and sex steroid receptor localization regulates the outcome of hormonal responses in target cells. This mechanism ensures cell cycle progression in estradiol-treated breast cancer cells, and its derangement might occur in progression of human proliferative diseases. These findings will be reviewed here together with unexpected examples of the relationship between sex steroid receptor localization, signaling activation and biological responses in target cells. We apologize to scientists whose reports are not mentioned or extensively discussed owing to space limitations.
Collapse
Affiliation(s)
- Tiziana Giraldi
- Department of General Pathology, II University of Naples, Via L. de Crecchio, 7, 80138 Naples, Italy
| | | | | | | | | | | |
Collapse
|
20
|
Schütz SV, Cronauer MV, Rinnab L. Inhibition of glycogen synthase kinase-3beta promotes nuclear export of the androgen receptor through a CRM1-dependent mechanism in prostate cancer cell lines. J Cell Biochem 2010; 109:1192-200. [PMID: 20127713 DOI: 10.1002/jcb.22500] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The androgen receptor (AR) is a ligand-dependent transcription factor belonging to the steroid hormone receptor superfamily. Under normal conditions, in the absence of a ligand, the AR is localized to the cytoplasm and is actively transported into the nucleus upon binding of androgens. In advanced prostate cancer (PCa) cell lines, an increased sensitivity to dihydrotestosterone (DHT), enabling the cells to proliferate under sub-physiological levels of androgens, has been associated with increased stability and nuclear localization of the AR. There is experimental evidence that the glycogen synthase kinase-3beta (GSK-3beta), a multifunctional serine/threonine kinase is involved in estrogen and AR stability. As demonstrated in the following study by immunoprecipitation analysis, GSK-3beta binds to the AR forming complexes in the cytoplasm and in the nucleus. Furthermore, inhibition of GSK-3beta activity by pharmacological inhibitors like the maleimide SB216761, the chloromethyl-thienyl-ketone GSK-3 inhibitor VI or the aminopyrazol GSK-3 inhibitor XIII in cells grown in the presence of DHT triggered a rapid nuclear export of endogenous AR as well as of green fluorescent AR-EosFP. The nuclear export of AR following GSK-3beta inhibition could be blocked by leptomycin B suggesting a CRM1-dependent export mechanism. This assumption is supported by the localization of a putative CRM1 binding site at the C-terminus of the AR protein. The results suggest that GSK-3beta is an important element not only in AR stability but also significantly alters nuclear translocation of the AR, thereby modulating the androgenic response of human PCa cells.
Collapse
Affiliation(s)
- Stefanie V Schütz
- Institute of General Zoology and Endocrinology, Ulm University, Albert Einstein Allee 11, 89069 Ulm, Germany
| | | | | |
Collapse
|
21
|
Abstract
Most transcription factors including nuclear receptors (NRs) act as sensors of the extracellular and intracellular compartments. As such, NRs serve as integrating platforms for a variety of stimuli and are targets for Post-translational modifications such as phosphorylations. During the last decade, knowledge of NRs phosphorylation advanced considerably because of the emergence of new technologies. Indeed, the development of a wide range of phosphorylation site databases, high accuracy mass spectrometry, and phospho-specific antibodies allowed the identification of multiple novel phosphorylation sites in NRs. New and improved methods also emerge to connect these data with the downstream consequences of phosphorylation on NRs structure (computational prediction, NMR), intracellular localization (FRAP), interaction with coregulators (proteomics, FRET, FLIM), and affinity for DNA (ChIP, ChIP-seq, FRAP). In the future, such integrated strategies should provide data with a treasure-trove of information about the integration of numerous signaling events by NRs.
Collapse
|
22
|
Chen S, Kesler CT, Paschal BM, Balk SP. Androgen receptor phosphorylation and activity are regulated by an association with protein phosphatase 1. J Biol Chem 2009; 284:25576-84. [PMID: 19622840 DOI: 10.1074/jbc.m109.043133] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Androgen receptor (AR) is phosphorylated at multiple sites in response to ligand binding, but the functional consequences and mechanisms regulating AR phosphorylation remain to be established. We observed initially that okadaic acid, an inhibitor of the major PPP family serine/threonine phosphatases PP2A and protein phosphatase 1 (PP1), had cell type-dependent effects on AR expression. More specific inhibitors of PP2A (fostriecin) and PP1 (tautomycin and siRNA against the PP1alpha catalytic subunit) demonstrated that PP1 and protein phosphatase 2A had opposite effects on AR protein and transcriptional activity. PP1 inhibition enhanced proteasome-mediated AR degradation, while PP1alpha overexpression increased AR expression and markedly enhanced AR transcriptional activity. Coprecipitation experiments demonstrated an AR-PP1 interaction, while immunofluorescence and nuclear-cytoplasmic fractionation showed androgen-stimulated nuclear translocation of both AR and PP1 in prostate cancer cells. Studies with phosphospecific AR antibodies showed that PP1 inhibition dramatically increased phosphorylation of Ser-650, a site in the AR hinge region shown to mediate nuclear export. Significantly, PP1 inhibition caused a marked decrease in nuclear localization of the wild-type AR, but did not alter total or nuclear levels of a S650A mutant AR. These findings reveal a critical role of PP1 in regulating AR protein stability and nuclear localization through dephosphorylation of Ser-650. Moreover, AR may function as a PP1 regulatory subunit and mediate PP1 recruitment to chromatin, where it can modulate transcription and splicing.
Collapse
Affiliation(s)
- Shaoyong Chen
- Cancer Biology Program, Hematology-Oncology Division, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA.
| | | | | | | |
Collapse
|
23
|
Nguyen MM, Dincer Z, Wade JR, Alur M, Michalak M, DeFranco DB, Wang Z. Cytoplasmic localization of the androgen receptor is independent of calreticulin. Mol Cell Endocrinol 2009; 302:65-72. [PMID: 19150386 PMCID: PMC2806808 DOI: 10.1016/j.mce.2008.12.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Revised: 11/04/2008] [Accepted: 12/15/2008] [Indexed: 10/21/2022]
Abstract
Identification and characterization of factors regulating intracellular localization of the androgen receptor (AR) are fundamentally important because nucleocytoplasmic trafficking of AR is a critical step in AR regulation by androgen manipulation. Normally, AR is localized to the cytoplasm in the absence of androgen. Upon ligand binding, AR translocates to the nucleus, where it can modulate transcription of AR-responsive genes. The withdrawal of androgen results in the export of unliganded AR from the nucleus to the cytoplasm, where it is transcriptionally inactive. Calreticulin has been implicated as a possible nuclear export factor for AR because the two proteins form a complex. In this study, we assessed whether the cytoplasmic localization of AR requires binding to calreticulin. To test this we substituted the calreticulin binding sequence (CBS) KVFFKR (residues 579-584) with the amino acids RLAARK in AR and monitored the cellular localization of a GFP-AR fusion protein in the absence of androgen. We also determined if knockdown or knockout of calreticulin expression affected the cytoplasmic localization of the AR. We found that a mutated CBS did not affect the localization of AR and that in the absence of androgen, AR is localized to the cytoplasm regardless of its ability to interact with calreticulin. Also, a reduction in the levels or loss of calreticulin did not affect the localization of AR. These data argue that calreticulin is not required for the cytoplasmic localization of AR.
Collapse
Affiliation(s)
| | | | | | | | - Marek Michalak
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2S7
| | - Donald B. DeFranco
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260
| | - Zhou Wang
- Corresponding author at: University of Pittsburgh, Shadyside Medical Center, Suite G40, Pittsburgh, PA 15232, United States. Tel.: +1 412 623 3903; fax: +1 412 623 3904., (Z. Wang)
| |
Collapse
|
24
|
Lobo GP, Waite KA, Planchon SM, Romigh T, Houghton JA, Eng C. ATP modulates PTEN subcellular localization in multiple cancer cell lines. Hum Mol Genet 2008; 17:2877-85. [PMID: 18579579 PMCID: PMC2525500 DOI: 10.1093/hmg/ddn185] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The tumour suppressor gene PTEN plays an important somatic role in both hereditary and sporadic breast carcinogenesis. While the role of PTEN's lipid phosphatase activity, as a negative regulator of the cytoplasmic phosphatidylinositol-3-kinase/Akt pathway is well known, it is now well established that PTEN exists and functions in the nucleus. Multiple mechanisms of regulating PTEN's subcellular localization have been reported. However none are ubiquitous across multiple cancer cell lines and tissue types. We show here that adenosine triphosphate (ATP) regulates PTEN subcellular localization in a variety of different cancer cell lines, including those derived from breast, colon and thyroid carcinomas. Cells deficient in ATP show an increased level of nuclear PTEN protein. This increase in PTEN is reversed when cells are supplemented with ATP, ADP or AMP. In contrast, the addition of the non-hydrolyzable analogue ATPgammaS, did not reverse nuclear PTEN protein levels in all the cell types tested. To our knowledge, this is the first report that describes a regulation of PTEN subcellular localization that is not specific to one cell line or tissue type, but appears to be common across a variety of cell lineages.
Collapse
Affiliation(s)
- Glenn P Lobo
- Genomic Medicine Institute, Cleveland Clinic Foundation, 9500 Euclid Ave, NE-50, Cleveland, OH 44195, USA
| | | | | | | | | | | |
Collapse
|
25
|
Ponguta LA, Gregory CW, French FS, Wilson EM. Site-specific androgen receptor serine phosphorylation linked to epidermal growth factor-dependent growth of castration-recurrent prostate cancer. J Biol Chem 2008; 283:20989-1001. [PMID: 18511414 DOI: 10.1074/jbc.m802392200] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The androgen receptor (AR) is required for prostate cancer development and contributes to tumor progression after remission in response to androgen deprivation therapy. Epidermal growth factor (EGF) increases AR transcriptional activity at low levels of androgen in the CWR-R1 prostate cancer cell line derived from the castration-recurrent CWR22 prostate cancer xenograft. Here we report that knockdown of AR decreases EGF stimulation of prostate cancer cell growth and demonstrate a mechanistic link between EGF and AR signaling. The EGF-induced increase in AR transcriptional activity is dependent on phosphorylation at mitogen-activated protein kinase consensus site Ser-515 in the AR NH(2)-terminal region and at protein kinase C consensus site Ser-578 in the AR DNA binding domain. Phosphorylation at these sites alters the nuclear-cytoplasmic shuttling of AR and AR interaction with the Ku-70/80 regulatory subunits of DNA-dependent protein kinase. Abolishing AR Ser-578 phosphorylation by introducing an S578A mutation eliminates the AR transcriptional response to EGF and increases both AR binding of Ku-70/80 and nuclear retention of AR in association with hyperphosphorylation of AR Ser-515. The results support a model in which AR transcriptional activity increases castration-recurrent prostate cancer cell growth in response to EGF by site-specific serine phosphorylation that regulates nuclear-cytoplasmic shuttling through interactions with the Ku-70/80 regulatory complex.
Collapse
Affiliation(s)
- Liliana A Ponguta
- Laboratories for Reproductive Biology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | |
Collapse
|