1
|
Gahmberg CG, Grönholm M, Madhavan S. Regulation of Dynamic Cell Adhesion by Integrin-Integrin Crosstalk. Cells 2022; 11:cells11101685. [PMID: 35626722 PMCID: PMC9140058 DOI: 10.3390/cells11101685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/11/2022] [Accepted: 05/17/2022] [Indexed: 02/07/2023] Open
Abstract
Most cells express several integrins. The integrins are able to respond to various cellular functions and needs by modifying their own activation state, but in addition by their ability to regulate each other by activation or inhibition. This crosstalk or transdominant regulation is strictly controlled. The mechanisms resulting in integrin crosstalk are incompletely understood, but they often involve intracellular signalling routes also used by other cell surface receptors. Several studies show that the integrin cytoplasmic tails bind to a number of cytoskeletal and adaptor molecules in a regulated manner. Recent work has shown that phosphorylations of integrins and key intracellular molecules are of pivotal importance in integrin-cytoplasmic interactions, and these in turn affect integrin activity and crosstalk. The integrin β-chains play a central role in regulating crosstalk. In addition to Integrin-integrin crosstalk, crosstalk may also occur between integrins and related receptors, including other adhesion receptors, growth factor and SARS-CoV-2 receptors.
Collapse
Affiliation(s)
- Carl G. Gahmberg
- Molecular and Integrative Biosciences Research Program, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 9 C, 00014 Helsinki, Finland; (M.G.); (S.M.)
- Correspondence: ; Tel.: +358-50-539-9439
| | - Mikaela Grönholm
- Molecular and Integrative Biosciences Research Program, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 9 C, 00014 Helsinki, Finland; (M.G.); (S.M.)
- Drug Research Program, Faculty of Pharmacy, University of Helsinki, Viikinkaari 9 C, 00014 Helsinki, Finland
| | - Sudarrshan Madhavan
- Molecular and Integrative Biosciences Research Program, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 9 C, 00014 Helsinki, Finland; (M.G.); (S.M.)
| |
Collapse
|
2
|
Samaržija I, Dekanić A, Humphries JD, Paradžik M, Stojanović N, Humphries MJ, Ambriović-Ristov A. Integrin Crosstalk Contributes to the Complexity of Signalling and Unpredictable Cancer Cell Fates. Cancers (Basel) 2020; 12:E1910. [PMID: 32679769 PMCID: PMC7409212 DOI: 10.3390/cancers12071910] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/10/2020] [Accepted: 07/12/2020] [Indexed: 12/12/2022] Open
Abstract
Integrins are heterodimeric cell surface receptors composed of α and β subunits that control adhesion, proliferation and gene expression. The integrin heterodimer binding to ligand reorganises the cytoskeletal networks and triggers multiple signalling pathways that can cause changes in cell cycle, proliferation, differentiation, survival and motility. In addition, integrins have been identified as targets for many different diseases, including cancer. Integrin crosstalk is a mechanism by which a change in the expression of a certain integrin subunit or the activation of an integrin heterodimer may interfere with the expression and/or activation of other integrin subunit(s) in the very same cell. Here, we review the evidence for integrin crosstalk in a range of cellular systems, with a particular emphasis on cancer. We describe the molecular mechanisms of integrin crosstalk, the effects of cell fate determination, and the contribution of crosstalk to therapeutic outcomes. Our intention is to raise awareness of integrin crosstalk events such that the contribution of the phenomenon can be taken into account when researching the biological or pathophysiological roles of integrins.
Collapse
Affiliation(s)
- Ivana Samaržija
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, 10000 Zagreb, Croatia; (I.S.); (M.P.); (N.S.)
| | - Ana Dekanić
- Laboratory for Protein Dynamics, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia;
| | - Jonathan D. Humphries
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine & Health, University of Manchester, Manchester M13 9PT, UK; (J.D.H.); (M.J.H.)
| | - Mladen Paradžik
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, 10000 Zagreb, Croatia; (I.S.); (M.P.); (N.S.)
| | - Nikolina Stojanović
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, 10000 Zagreb, Croatia; (I.S.); (M.P.); (N.S.)
| | - Martin J. Humphries
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine & Health, University of Manchester, Manchester M13 9PT, UK; (J.D.H.); (M.J.H.)
| | - Andreja Ambriović-Ristov
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, 10000 Zagreb, Croatia; (I.S.); (M.P.); (N.S.)
| |
Collapse
|
3
|
Regulation of cell adhesion: a collaborative effort of integrins, their ligands, cytoplasmic actors, and phosphorylation. Q Rev Biophys 2019; 52:e10. [PMID: 31709962 DOI: 10.1017/s0033583519000088] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Integrins are large heterodimeric type 1 membrane proteins expressed in all nucleated mammalian cells. Eighteen α-chains and eight β-chains can combine to form 24 different integrins. They are cell adhesion proteins, which bind to a large variety of cellular and extracellular ligands. Integrins are required for cell migration, hemostasis, translocation of cells out from the blood stream and further movement into tissues, but also for the immune response and tissue morphogenesis. Importantly, integrins are not usually active as such, but need activation to become adhesive. Integrins are activated by outside-in activation through integrin ligand binding, or by inside-out activation through intracellular signaling. An important question is how integrin activity is regulated, and this topic has recently drawn much attention. Changes in integrin affinity for ligand binding are due to allosteric structural alterations, but equally important are avidity changes due to integrin clustering in the plane of the plasma membrane. Recent studies have partially solved how integrin cell surface structures change during activation. The integrin cytoplasmic domains are relatively short, but by interacting with a variety of cytoplasmic proteins in a regulated manner, the integrins acquire a number of properties important not only for cell adhesion and movement, but also for cellular signaling. Recent work has shown that specific integrin phosphorylations play pivotal roles in the regulation of integrin activity. Our purpose in this review is to integrate the present knowledge to enable an understanding of how cell adhesion is dynamically regulated.
Collapse
|
4
|
Yang TL, Lee PL, Lee DY, Wang WL, Wei SY, Lee CI, Chiu JJ. Differential regulations of fibronectin and laminin in Smad2 activation in vascular endothelial cells in response to disturbed flow. J Biomed Sci 2018; 25:1. [PMID: 29295709 PMCID: PMC5749020 DOI: 10.1186/s12929-017-0402-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 12/22/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Atherosclerosis occurs in arterial curvatures and branches, where the flow is disturbed with low and oscillatory shear stress (OSS). The remodeling and alterations of extracellular matrices (ECMs) and their composition is the critical step in atherogenesis. In this study, we investigated the effects of different ECM proteins on the regulation of mechanotransduction in vascular endothelial cells (ECs) in response to OSS. METHODS Through the experiments ranging from in vitro cell culture studies on effects of OSS on molecular signaling to in vivo examinations on clinical specimens from patients with coronary artery disease (CAD), we elucidated the roles of integrins and different ECMs, i.e., fibronectin (FN) and laminin (LM), in transforming growth factor (TGF)-β receptor (TβR)-mediated Smad2 activation and nuclear factor-κB (NF-κB) signaling in ECs in response to OSS and hence atherogenesis. RESULTS OSS at 0.5±12 dynes/cm2 induces sustained increases in the association of types I and II TβRs with β1 and β3 integrins in ECs grown on FN, but it only transient increases in ECs grown on LM. OSS induces a sustained activation of Smad2 in ECs on FN, but only a transient activation of Smad2 in ECs on LM. OSS-activation of Smad2 in ECs on FN regulates downstream NF-κB signaling and pro-inflammatory gene expression through the activation of β1 integrin and its association with TβRs. In contrast, OSS induces transient activations of β1 and β3 integrins in ECs on LM, which associate with type I TβR to regulate Smad2 phosphorylation, resulting in transient induction of NF-κB and pro-inflammatory gene expression. In vivo investigations on diseased human coronary arteries from CAD patients revealed that Smad2 is highly activated in ECs of atherosclerotic lesions, which is accompanied by the concomitant increase of FN rather than LM in the EC layer and neointimal region of atherosclerotic lesions. CONCLUSIONS Our findings provide new insights into the mechanisms of how OSS regulates Smad2 signaling and pro-inflammatory genes through the complex signaling networks of integrins, TβRs, and ECMs, thus illustrating the molecular basis of regional pro-inflammatory activation within disturbed flow regions in the arterial tree.
Collapse
Affiliation(s)
- Tung-Lin Yang
- Department of Life Sciences, National Central University, Jung-Li, Taoyuan, Taiwan.,Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Pei-Ling Lee
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Ding-Yu Lee
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan.,Departments of Food Science and Biological Science and Technology, China University of Science and Technology, Taipei, Taiwan
| | - Wei-Li Wang
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Shu-Yi Wei
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Chih-I Lee
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Jeng-Jiann Chiu
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan. .,Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan. .,Institute of Biomedical Engineering, National Cheng-Kung University, Tainan, Taiwan. .,College of Pharmacy, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
5
|
Hartman CD, Isenberg BC, Chua SG, Wong JY. Extracellular matrix type modulates cell migration on mechanical gradients. Exp Cell Res 2017; 359:361-366. [PMID: 28821395 PMCID: PMC5603420 DOI: 10.1016/j.yexcr.2017.08.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 07/21/2017] [Accepted: 08/12/2017] [Indexed: 11/25/2022]
Abstract
Extracellular matrix composition and stiffness are known to be critical determinants of cell behavior, modulating processes including differentiation, traction generation, and migration. Recent studies have demonstrated that the ECM composition can modulate how cells migrate in response to gradients in environmental stiffness, altering a cell's ability to undergo durotaxis. These observations were limited to single varieties of extracellular matrix, but typically cells are exposed to environments containing complex mixtures of extracellular matrix proteins. Here, we investigate migration of NIH 3T3 fibroblasts on mechanical gradients coated with one or more type of extracellular matrix protein. Our results show that NIH 3T3 fibroblasts exhibit durotaxis on fibronectin-coated mechanical gradients but not on those coated with laminin, demonstrating that extracellular matrix type can act as a regulator of cell response to mechanical gradients. Interestingly, NIH 3T3 fibroblasts were also observed to migrate randomly on gradients coated with a mixture of both fibronectin and laminin, suggesting that there may be a complex interplay in the cellular response to mechanical gradients in the presence of multiple extracellular matrix signals. These findings indicate that specific composition of available adhesion ligands is a critical determinant of a cell's migratory response to mechanical gradients.
Collapse
Affiliation(s)
- Christopher D Hartman
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, United States
| | - Brett C Isenberg
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, United States
| | - Samantha G Chua
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, United States
| | - Joyce Y Wong
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, United States.
| |
Collapse
|
6
|
Ezpeleta J, Boudet-Devaud F, Pietri M, Baudry A, Baudouin V, Alleaume-Butaux A, Dagoneau N, Kellermann O, Launay JM, Schneider B. Protective role of cellular prion protein against TNFα-mediated inflammation through TACE α-secretase. Sci Rep 2017; 7:7671. [PMID: 28794434 PMCID: PMC5550509 DOI: 10.1038/s41598-017-08110-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 07/11/2017] [Indexed: 12/21/2022] Open
Abstract
Although cellular prion protein PrPC is well known for its implication in Transmissible Spongiform Encephalopathies, its functions remain elusive. Combining in vitro and in vivo approaches, we here show that PrPC displays the intrinsic capacity to protect neuronal cells from a pro-inflammatory TNFα noxious insult. Mechanistically, PrPC coupling to the NADPH oxidase-TACE α-secretase signaling pathway promotes TACE-mediated cleavage of transmembrane TNFα receptors (TNFRs) and the release of soluble TNFR, which limits the sensitivity of recipient cells to TNFα. We further show that PrPC expression is necessary for TACE α-secretase to stay at the plasma membrane in an active state for TNFR shedding. Such PrPC control of TACE localization depends on PrPC modulation of β1 integrin signaling and downstream activation of ROCK-I and PDK1 kinases. Loss of PrPC provokes TACE internalization, which in turn cancels TACE-mediated cleavage of TNFR and renders PrPC-depleted neuronal cells as well as PrPC knockout mice highly vulnerable to pro-inflammatory TNFα insult. Our work provides the prime evidence that in an inflammatory context PrPC adjusts the response of neuronal cells targeted by TNFα through TACE α-secretase. Our data also support the view that abnormal TACE trafficking and activity in prion diseases originate from a-loss-of-PrPC cytoprotective function.
Collapse
Affiliation(s)
- Juliette Ezpeleta
- INSERM, UMR-S 1124, F-75006, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, UMR-S 1124, F-75006, Paris, France
| | - François Boudet-Devaud
- INSERM, UMR-S 1124, F-75006, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, UMR-S 1124, F-75006, Paris, France
| | - Mathéa Pietri
- INSERM, UMR-S 1124, F-75006, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, UMR-S 1124, F-75006, Paris, France
| | - Anne Baudry
- INSERM, UMR-S 1124, F-75006, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, UMR-S 1124, F-75006, Paris, France
| | - Vincent Baudouin
- INSERM, UMR-S 1124, F-75006, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, UMR-S 1124, F-75006, Paris, France
| | - Aurélie Alleaume-Butaux
- INSERM, UMR-S 1124, F-75006, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, UMR-S 1124, F-75006, Paris, France
| | - Nathalie Dagoneau
- INSERM, UMR-S 1124, F-75006, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, UMR-S 1124, F-75006, Paris, France
| | - Odile Kellermann
- INSERM, UMR-S 1124, F-75006, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, UMR-S 1124, F-75006, Paris, France
| | - Jean-Marie Launay
- AP-HP, INSERM UMR-S 942, Hôpital Lariboisière, F-75010, Paris, France.,Pharma Research Department, Hoffmann-La-Roche Ltd, CH4070, Basel, Switzerland
| | - Benoit Schneider
- INSERM, UMR-S 1124, F-75006, Paris, France. .,Université Paris Descartes, Sorbonne Paris Cité, UMR-S 1124, F-75006, Paris, France.
| |
Collapse
|
7
|
Yurdagul A, Orr AW. Blood Brothers: Hemodynamics and Cell-Matrix Interactions in Endothelial Function. Antioxid Redox Signal 2016; 25:415-34. [PMID: 26715135 PMCID: PMC5011636 DOI: 10.1089/ars.2015.6525] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 11/25/2015] [Accepted: 12/23/2015] [Indexed: 12/29/2022]
Abstract
SIGNIFICANCE Alterations in endothelial function contribute to a variety of vascular diseases. In pathological conditions, the endothelium shows a reduced ability to regulate vasodilation (endothelial dysfunction) and a conversion toward a proinflammatory and leaky phenotype (endothelial activation). At the interface between the vessel wall and blood, the endothelium exists in a complex microenvironment and must translate changes in these environmental signals to alterations in vessel function. Mechanical stimulation and endothelial cell interactions with the vascular matrix, as well as a host of soluble factors, coordinately contribute to this dynamic regulation. RECENT ADVANCES Blood hemodynamics play an established role in the regulation of endothelial function. However, a growing body of work suggests that subendothelial matrix composition similarly and coordinately regulates endothelial cell phenotype such that blood flow affects matrix remodeling, which affects the endothelial response to flow. CRITICAL ISSUES Hemodynamics and soluble factors likely affect endothelial matrix remodeling through multiple mechanisms, including transforming growth factor β signaling and alterations in cell-matrix receptors, such as the integrins. Likewise, differential integrin signaling following matrix remodeling appears to regulate several key flow-induced responses, including nitric oxide production, regulation of oxidant stress, and activation of proinflammatory signaling and gene expression. Microvascular remodeling responses, such as angiogenesis and arteriogenesis, may also show coordinated regulation by flow and matrix. FUTURE DIRECTIONS Identifying the mechanisms regulating the dynamic interplay between hemodynamics and matrix remodeling and their contribution to the pathogenesis of cardiovascular disease remains an important research area with therapeutic implications across a variety of conditions. Antioxid. Redox Signal. 25, 415-434.
Collapse
Affiliation(s)
- Arif Yurdagul
- Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center–Shreveport, Shreveport, Louisiana
| | - A. Wayne Orr
- Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center–Shreveport, Shreveport, Louisiana
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center–Shreveport, Shreveport, Louisiana
| |
Collapse
|
8
|
Suppression of cell adhesion through specific integrin crosstalk on mixed peptide-polysaccharide matrices. Biomaterials 2015; 37:73-81. [DOI: 10.1016/j.biomaterials.2014.10.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 10/02/2014] [Indexed: 12/17/2022]
|
9
|
Gahmberg CG, Grönholm M, Uotila LM. Regulation of integrin activity by phosphorylation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 819:85-96. [PMID: 25023169 DOI: 10.1007/978-94-017-9153-3_6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Integrins are heterodimeric complex type I membrane proteins involved in cellular adhesion and signaling. They exist as inactive molecules in resting cells, and need activation to become adhesive. Although much is known about their structure, and a large number of interacting molecules have been described, we still only partially understand how their activities are regulated. In this review we focus on the leukocyte-specific β2-integrins and, specifically, on the role of integrin phosphorylation in the regulation of activity. Phosphorylation reactions can be fast and reversible, thus enabling strictly directed regulatory activities both time-wise and locally in specific regions of the plasma membrane in different leukocytes.
Collapse
Affiliation(s)
- Carl G Gahmberg
- Division of Biochemistry and Biotechnology, Department of Biosciences, University of Helsinki, Viikinkaari 5, 00014, Helsinki, Finland,
| | | | | |
Collapse
|
10
|
Ray AM, Schaffner F, Janouskova H, Noulet F, Rognan D, Lelong-Rebel I, Choulier L, Blandin AF, Lehmann M, Martin S, Kapp T, Neubauer S, Rechenmacher F, Kessler H, Dontenwill M. Single cell tracking assay reveals an opposite effect of selective small non-peptidic α5β1 or αvβ3/β5 integrin antagonists in U87MG glioma cells. Biochim Biophys Acta Gen Subj 2014; 1840:2978-87. [DOI: 10.1016/j.bbagen.2014.04.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 04/11/2014] [Accepted: 04/29/2014] [Indexed: 01/24/2023]
|
11
|
Tumbarello DA, Temple J, Brenton JD. ß3 integrin modulates transforming growth factor beta induced (TGFBI) function and paclitaxel response in ovarian cancer cells. Mol Cancer 2012; 11:36. [PMID: 22640878 PMCID: PMC3442987 DOI: 10.1186/1476-4598-11-36] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Accepted: 05/28/2012] [Indexed: 02/05/2023] Open
Abstract
Background The extracellular matrix (ECM) has a key role in facilitating the progression of ovarian cancer and we have shown recently that the secreted ECM protein TGFBI modulates the response of ovarian cancer to paclitaxel-induced cell death. Results We have determined TGFBI signaling from the extracellular environment is preferential for the cell surface αvß3 integrin heterodimer, in contrast to periostin, a TGFBI paralogue, which signals primarily via a ß1 integrin-mediated pathway. We demonstrate that suppression of ß1 integrin expression, in ß3 integrin-expressing ovarian cancer cells, increases adhesion to rTGFBI. In addition, Syndecan-1 and −4 expression is dispensable for adhesion to rTGFBI and loss of Syndecan-1 cooperates with the loss of ß1 integrin to further enhance adhesion to rTGFBI. The RGD motif present in the carboxy-terminus of TGFBI is necessary, but not sufficient, for SKOV3 cell adhesion and is dispensable for adhesion of ovarian cancer cells lacking ß3 integrin expression. In contrast to TGFBI, the carboxy-terminus of periostin, lacking a RGD motif, is unable to support adhesion of ovarian cancer cells. Suppression of ß3 integrin in SKOV3 cells increases resistance to paclitaxel-induced cell death while suppression of ß1 integrin has no effect. Furthermore, suppression of TGFBI expression stimulates a paclitaxel resistant phenotype while suppression of fibronectin expression, which primarily signals through a ß1 integrin-mediated pathway, increases paclitaxel sensitivity. Conclusions Therefore, different ECM components use distinct signaling mechanisms in ovarian cancer cells and in particular, TGFBI preferentially interacts through a ß3 integrin receptor mediated mechanism to regulate the response of cells to paclitaxel-induced cell death.
Collapse
Affiliation(s)
- David A Tumbarello
- Cancer Research UK, Cambridge Research Institute, Robinson Way, Cambridge CB2 0RE, United Kingdom
| | | | | |
Collapse
|
12
|
Doyle JJ, Gerber EE, Dietz HC. Matrix-dependent perturbation of TGFβ signaling and disease. FEBS Lett 2012; 586:2003-15. [PMID: 22641039 PMCID: PMC3426037 DOI: 10.1016/j.febslet.2012.05.027] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2012] [Revised: 05/13/2012] [Accepted: 05/15/2012] [Indexed: 02/07/2023]
Abstract
Transforming growth factor beta (TGFβ) is a multipotent cytokine that is sequestered in the extracellular matrix (ECM) through interactions with a number of ECM proteins. The ECM serves to concentrate latent TGFβ at sites of intended function, to influence the bioavailability and/or function of TGFβ activators, and perhaps to regulate the intrinsic performance of cell surface effectors of TGFβ signal propagation. The downstream consequences of TGFβ signaling cascades in turn provide feedback modulation of the ECM. This review covers recent examples of how genetic mutations in constituents of the ECM or TGFβ signaling cascade result in altered ECM homeostasis, cellular performance and ultimately disease, with an emphasis on emerging therapeutic strategies that seek to capitalize on this refined mechanistic understanding.
Collapse
|
13
|
Tkachenko E, Sabouri-Ghomi M, Pertz O, Kim C, Gutierrez E, Machacek M, Groisman A, Danuser G, Ginsberg MH. Protein kinase A governs a RhoA-RhoGDI protrusion-retraction pacemaker in migrating cells. Nat Cell Biol 2011; 13:660-7. [PMID: 21572420 PMCID: PMC3746034 DOI: 10.1038/ncb2231] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Accepted: 03/04/2011] [Indexed: 01/15/2023]
Abstract
The cyclical protrusion and retraction of the leading edge is a hallmark of many migrating cells involved in processes such as development, inflammation, and tumorigenesis. The molecular identity of signaling mechanisms that control these cycles has remained unknown. Here, we used live cell imaging of biosensors to monitor spontaneous morphodynamic and signaling activities, and employed correlative image analysis to examine the role of cAMP-activated Protein Kinase A (PKA) in protrusion regulation. PKA activity at the leading edge is closely synchronized with rapid protrusion and with the activity of RhoA. Ensuing PKA phosphorylation of RhoA and the resulting increased interaction between RhoA and RhoGDI establishes a negative feedback that controls the cycling of RhoA activity at the leading edge. Thus, cooperation between PKA, RhoA, and a RhoGDI forms a pacemaker that governs the morphodynamic behavior of migrating cells.
Collapse
Affiliation(s)
- Eugene Tkachenko
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, Mail Code 0726, La Jolla, California 92093, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Okada Y, Nishikawa JI, Semma M, Ichikawa A. Induction of integrin β3 in PGE2-stimulated adhesion of mastocytoma P-815 cells to the Arg-Gly-Asp-enriched fragment of fibronectin. Biochem Pharmacol 2011; 81:866-72. [DOI: 10.1016/j.bcp.2011.01.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 01/13/2011] [Accepted: 01/14/2011] [Indexed: 12/19/2022]
|
15
|
Hemidesmosomes and focal contact proteins: functions and cross-talk in keratinocytes, bullous diseases and wound healing. J Dermatol Sci 2011; 62:1-7. [PMID: 21376539 DOI: 10.1016/j.jdermsci.2011.01.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Accepted: 01/11/2011] [Indexed: 01/08/2023]
Abstract
The outer most layer of the skin, the epidermis, is attached to the dermis via a sheet of extracellular matrix proteins termed the basement membrane zone (BMZ). In the intact skin, adhesion of the keratinocytes in the basal layer of the epidermis to the BMZ is facilitated primarily by hemidesmosomes which associate with the keratin cytoskeleton. Cultured keratinocytes do not assemble bona fide hemidesmosomes although hemidesmosome protein clusters (stable anchoring contacts) are found along the substrate-attached surface of the cells and towards the leading edge of keratinocytes repopulating scratch wounds. Actin cytoskeleton-associated matrix adhesion devices termed focal contacts are not thought to play an important role in the adhesion of keratinocytes to the BMZ in intact skin but are prominent in cultured keratinocytes where they are believed to regulate cell migration. We review the molecular components, functions, dynamics and cross-talk of hemidesmosomes and focal contacts in keratinocytes. In addition, we briefly describe what is known about their role in autoimmune and genetic blistering diseases of the skin. We also discuss recent publications which indicate, contrary to expectation, that certain focal contact proteins retard keratinocyte migration while hemidesmosomal proteins regulate directed keratinocyte motility during wound healing.
Collapse
|
16
|
To WS, Midwood KS. Cryptic domains of tenascin-C differentially control fibronectin fibrillogenesis. Matrix Biol 2010; 29:573-85. [DOI: 10.1016/j.matbio.2010.08.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Revised: 08/02/2010] [Accepted: 08/04/2010] [Indexed: 12/20/2022]
|
17
|
Eke I, Koch U, Hehlgans S, Sandfort V, Stanchi F, Zips D, Baumann M, Shevchenko A, Pilarsky C, Haase M, Baretton GB, Calleja V, Larijani B, Fässler R, Cordes N. PINCH1 regulates Akt1 activation and enhances radioresistance by inhibiting PP1alpha. J Clin Invest 2010; 120:2516-27. [PMID: 20530873 DOI: 10.1172/jci41078] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Accepted: 04/28/2010] [Indexed: 01/03/2023] Open
Abstract
Tumor cell resistance to ionizing radiation and chemotherapy is a major obstacle in cancer therapy. One factor contributing to this is integrin-mediated adhesion to ECM. The adapter protein particularly interesting new cysteine-histidine-rich 1 (PINCH1) is recruited to integrin adhesion sites and promotes cell survival, but the mechanisms underlying this effect are not well understood. Here we have shown that PINCH1 is expressed at elevated levels in human tumors of diverse origins relative to normal tissue. Furthermore, PINCH1 promoted cell survival upon treatment with ionizing radiation in vitro and in vivo by perpetuating Akt1 phosphorylation and activity. Mechanistically, PINCH1 was found to directly bind to protein phosphatase 1alpha (PP1alpha) - an Akt1-regulating protein - and inhibit PP1alpha activity, resulting in increased Akt1 phosphorylation and enhanced radioresistance. Thus, our data suggest that targeting signaling molecules such as PINCH1 that function downstream of focal adhesions (the complexes that mediate tumor cell adhesion to ECM) may overcome radio- and chemoresistance, providing new therapeutic approaches for cancer.
Collapse
Affiliation(s)
- Iris Eke
- OncoRay - Center for Radiation Research in Oncology, Medical Faculty Carl Gustav Carus, Dresden University of Technology, 01307 Dresden, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Worth DC, Hodivala-Dilke K, Robinson SD, King SJ, Morton PE, Gertler FB, Humphries MJ, Parsons M. Alpha v beta3 integrin spatially regulates VASP and RIAM to control adhesion dynamics and migration. ACTA ACUST UNITED AC 2010; 189:369-83. [PMID: 20404115 PMCID: PMC2856911 DOI: 10.1083/jcb.200912014] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Loss of β3 integrin enhances turnover of focal adhesions and cell migration speed due to increased β1 integrin–talin interactions. Integrins are fundamental to the control of protrusion and motility in adherent cells. However, the mechanisms by which specific members of this receptor family cooperate in signaling to cytoskeletal and adhesion dynamics are poorly understood. Here, we show that the loss of β3 integrin in fibroblasts results in enhanced focal adhesion turnover and migration speed but impaired directional motility on both 2D and 3D matrices. These motility defects are coupled with an increased rate of actin-based protrusion. Analysis of downstream signaling events reveals that loss of β3 integrin results in a loss of protein kinase A–dependent phosphorylation of the actin regulatory protein vasodilator-stimulated phosphoprotein (VASP). Dephosphorylated VASP in β3-null cells is preferentially associated with Rap1-GTP–interacting adaptor molecule (RIAM) both in vitro and in vivo, which leads to enhanced formation of a VASP–RIAM complex at focal adhesions and subsequent increased binding of talin to β1 integrin. These data demonstrate a novel mechanism by which αvβ3 integrin acts to locally suppress β1 integrin activation and regulate protrusion, adhesion dynamics, and persistent migration.
Collapse
Affiliation(s)
- Daniel C Worth
- Randall Division of Cell and Molecular Biophysics, King's College London, London SE1 1UL, England, UK
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Kawabe JI, Yuhki KI, Okada M, Kanno T, Yamauchi A, Tashiro N, Sasaki T, Okumura S, Nakagawa N, Aburakawa Y, Takehara N, Fujino T, Hasebe N, Narumiya S, Ushikubi F. Prostaglandin I2 promotes recruitment of endothelial progenitor cells and limits vascular remodeling. Arterioscler Thromb Vasc Biol 2009; 30:464-70. [PMID: 20007911 DOI: 10.1161/atvbaha.109.193730] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
OBJECTIVE Endothelial progenitor cells (EPCs) play an important role in the self-healing of a vascular injury by participating in the reendothelialization that limits vascular remodeling. We evaluated whether prostaglandin I(2) plays a role in the regulation of the function of EPCs to limit vascular remodeling. METHODS AND RESULTS EPCs (Lin(-)cKit(+)Flk-1(+) cells) were isolated from the bone marrow (BM) of wild-type (WT) mice or mice lacking the prostaglandin I(2) receptor IP (IP(-/-) mice). Reverse transcription-polymerase chain reaction analysis showed that EPCs among BM cells specifically express IP. The cellular properties of EPCs, adhesion, migration, and proliferation on fibronectin were significantly attenuated in IP-deficient EPCs compared with WT EPCs. In contrast, IP agonists facilitated these functions in WT EPCs, but not in IP-deficient EPCs. The specific deletion of IP in BM cells, which was performed by transplanting BM cells of IP(-/-) mice to WT mice, accelerated wire injury-mediated neointimal hyperplasia in the femoral artery. Notably, transfused WT EPCs, but not IP-deficient EPCs, were recruited to the injured vessels, participated in reendothelialization, and efficiently rescued the accelerated vascular remodeling. CONCLUSIONS These findings clearly indicate that the prostaglandin I(2)-IP system is essential for EPCs to accomplish their function and plays a critical role in the regulation of vascular remodeling.
Collapse
Affiliation(s)
- Jun-Ichi Kawabe
- Department of Pharmacology, Asahikawa Medical College, Midorigaoka Higashi 2-1-1-1, Asahikawa 078-8510, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Gonzalez AM, Bhattacharya R, deHart GW, Jones JCR. Transdominant regulation of integrin function: mechanisms of crosstalk. Cell Signal 2009; 22:578-83. [PMID: 19874888 DOI: 10.1016/j.cellsig.2009.10.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Accepted: 10/18/2009] [Indexed: 12/20/2022]
Abstract
Transdominant inhibition of integrins or integrin-integrin crosstalk is an important regulator of integrin ligand binding and subsequent signaling events that control a variety of cell functions in many tissues. Here we discuss examples of integrin crosstalk and detail our current understanding of the molecular mechanisms that are involved in this receptor phenomenon. The cytoskeleton associated protein talin is a key regulator of integrin crosstalk. We describe how the interaction of talin and the cytoplasmic tail of beta integrin is controlled and how competitive inhibitors of this binding play a role in integrin crosstalk. We conclude with a discussion of how integrin crosstalk impacts the interpretation of integrin inhibitor and knockdown studies in both the laboratory and clinical setting.
Collapse
Affiliation(s)
- Annette M Gonzalez
- Department of Cell and Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| | | | | | | |
Collapse
|
21
|
A-kinase anchoring in dendritic cells is required for antigen presentation. PLoS One 2009; 4:e4807. [PMID: 19277197 PMCID: PMC2652104 DOI: 10.1371/journal.pone.0004807] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Accepted: 02/10/2009] [Indexed: 11/25/2022] Open
Abstract
Background Dendritic cells (DC) are the most potent antigen presenting cells (APC) of the immune system. Prostaglandin E2, cyclic AMP, and protein kinase A (PKA) have all been shown to regulate DC maturation and activity. In other cells, the ability of these molecules to convey their signals has been shown to be dependent on A-kinase anchoring proteins (AKAPs). Here we present evidence for the existence and functional importance of AKAPs in human DC. Methodology/Principal Findings Using immunofluorescence and/or western analyses we identify AKAP79, AKAP149, AKAP95, AKAP LBC and Ezrin. We also demonstrate by western analysis that expression of AKAP79, AKAP149 and RII are upregulated with DC differentiation and maturation. We establish the functional importance of PKA anchoring in multiple aspects of DC biology using the anchoring inhibitor peptides Ht31 and AKAP-IS. Incubation of protein or peptide antigen loaded DC with Ht31 or AKAP-IS results in a 30–50% decrease in antigen presentation as measured by IFN-γ production from antigen specific CD4+ T cells. Incubation of LPS treated DC with Ht31 results in 80% inhibition of TNF-α and IL-10 production. Ht31 slightly decreases the expression of CD18 and CD11a and CD11b, slightly increases the basal expression of CD83, dramatically decreases the LPS stimulated expression of CD40, CD80 and CD83, and significantly increases the expression of the chemokine receptor CCR7. Conclusions These experiments represent the first evidence for the functional importance of PKA anchoring in multiple aspects of DC biology.
Collapse
|