1
|
Ng LLH, Chow J, Lau KF. The AICD interactome: implications in neurodevelopment and neurodegeneration. Biochem Soc Trans 2024; 52:2539-2556. [PMID: 39670668 DOI: 10.1042/bst20241510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/14/2024]
Abstract
The pathophysiological mechanism involving the proteolytic processing of amyloid precursor protein (APP) and the generation of amyloid plaques is of significant interest in research on Alzheimer's disease (AD). The increasing significance of the downstream AD-related pathophysiological mechanisms has sparked research interest in other products of the APP processing cascades, including the APP intracellular domain (AICD). The potential importance of AICD in various cellular processes in the central nervous system has been established through the identification of its interactors. The interaction between AICD and its physiological binding partners is implicated in cellular events including regulation of transcriptional activity, cytoskeletal dynamics, neuronal growth, APP processing and cellular apoptosis. On the contrary, AICD is also implicated in neurodegeneration, which is a potential outcome of the functional fluctuation of AICD-mediated neuronal processes within the neuronal network. In this review, we summarize the neuronal functions and pathological manifestations of the dynamic AICD interaction network.
Collapse
Affiliation(s)
- Laura Lok-Haang Ng
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jessica Chow
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Kwok-Fai Lau
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
2
|
Bagyinszky E, An SSA. Haploinsufficiency and Alzheimer's Disease: The Possible Pathogenic and Protective Genetic Factors. Int J Mol Sci 2024; 25:11959. [PMID: 39596030 PMCID: PMC11594089 DOI: 10.3390/ijms252211959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/05/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disorder influenced by various genetic factors. In addition to the well-established amyloid precursor protein (APP), Presenilin-1 (PSEN1), Presenilin-2 (PSEN2), and apolipoprotein E (APOE), several other genes such as Sortilin-related receptor 1 (SORL1), Phospholipid-transporting ATPase ABCA7 (ABCA7), Triggering Receptor Expressed on Myeloid Cells 2 (TREM2), Phosphatidylinositol-binding clathrin assembly protein (PICALM), and clusterin (CLU) were implicated. These genes contribute to neurodegeneration through both gain-of-function and loss-of-function mechanisms. While it was traditionally thought that heterozygosity in autosomal recessive mutations does not lead to disease, haploinsufficiency was linked to several conditions, including cancer, autism, and intellectual disabilities, indicating that a single functional gene copy may be insufficient for normal cellular functions. In AD, the haploinsufficiency of genes such as ABCA7 and SORL1 may play significant yet under-explored roles. Paradoxically, heterozygous knockouts of PSEN1 or PSEN2 can impair synaptic plasticity and alter the expression of genes involved in oxidative phosphorylation and cell adhesion. Animal studies examining haploinsufficient AD risk genes, such as vacuolar protein sorting-associated protein 35 (VPS35), sirtuin-3 (SIRT3), and PICALM, have shown that their knockout can exacerbate neurodegenerative processes by promoting amyloid production, accumulation, and inflammation. Conversely, haploinsufficiency in APOE, beta-secretase 1 (BACE1), and transmembrane protein 59 (TMEM59) was reported to confer neuroprotection by potentially slowing amyloid deposition and reducing microglial activation. Given its implications for other neurodegenerative diseases, the role of haploinsufficiency in AD requires further exploration. Modeling the mechanisms of gene knockout and monitoring their expression patterns is a promising approach to uncover AD-related pathways. However, challenges such as identifying susceptible genes, gene-environment interactions, phenotypic variability, and biomarker analysis must be addressed. Enhancing model systems through humanized animal or cell models, utilizing advanced research technologies, and integrating multi-omics data will be crucial for understanding disease pathways and developing new therapeutic strategies.
Collapse
Affiliation(s)
- Eva Bagyinszky
- Department of Industrial and Environmental Engineering, Graduate School of Environment, Gachon University, Seongnam 13120, Republic of Korea
| | - Seong Soo A. An
- Department of Bionano Technology, Gachon Medical Research Institute, Gachon University, Seongnam 13120, Republic of Korea
| |
Collapse
|
3
|
Honda K, Takahashi H, Hata S, Abe R, Saito T, Saido TC, Taru H, Sobu Y, Ando K, Yamamoto T, Suzuki T. Suppression of the amyloidogenic metabolism of APP and the accumulation of Aβ by alcadein α in the brain during aging. Sci Rep 2024; 14:18471. [PMID: 39122814 PMCID: PMC11316129 DOI: 10.1038/s41598-024-69400-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024] Open
Abstract
Generation and accumulation of amyloid-β (Aβ) protein in the brain are the primary causes of Alzheimer's disease (AD). Alcadeins (Alcs composed of Alcα, Alcβ and Alcγ family) are a neuronal membrane protein that is subject to proteolytic processing, as is Aβ protein precursor (APP), by APP secretases. Previous observations suggest that Alcs are involved in the pathophysiology of Alzheimer's disease (AD). Here, we generated new mouse AppNL-F (APP-KI) lines with either Alcα- or Alcβ-deficient background and analyzed APP processing and Aβ accumulation through the aging process. The Alcα-deficient APP-KI (APP-KI/Alcα-KO) mice enhanced brain Aβ accumulation along with increased amyloidogenic β-site cleavage of APP through the aging process whereas Alcβ-deficient APP-KI (APP-KI/Alcβ-KO) mice neither affected APP metabolism nor Aβ accumulation at any age. More colocalization of APP and BACE1 was observed in the endolysosomal pathway in neurons of APP-KI/Alcα-KO mice compared to APP-KI and APP-KI/Alcβ-KO mice. These results indicate that Alcα plays an important role in the neuroprotective function by suppressing the amyloidogenic cleavage of APP by BACE1 in the brain, which is distinct from the neuroprotective function of Alcβ, in which p3-Alcβ peptides derived from Alcβ restores the viability in neurons impaired by toxic Aβ.
Collapse
Affiliation(s)
- Keiko Honda
- Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan
- Advanced Prevention and Research Laboratory for Dementia, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| | - Hiroo Takahashi
- Department of Molecular Neurobiology, Faculty of Medicine, Kagawa University, Miki-cho, 761-0793, Japan
| | - Saori Hata
- Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan
- Advanced Prevention and Research Laboratory for Dementia, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, 062-8517, Japan
| | - Ruriko Abe
- Advanced Prevention and Research Laboratory for Dementia, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, 062-8517, Japan
| | - Takashi Saito
- Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467-8601, Japan
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science Institute, Wako, 351-0198, Japan
| | - Hidenori Taru
- Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan
- Advanced Prevention and Research Laboratory for Dementia, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| | - Yuriko Sobu
- Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan
- Laboratory of Neuronal Regeneration, Graduate School of Brain Science, Doshisha University, Kyotanabe, 610-0394, Japan
| | - Kanae Ando
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Hachioji, Tokyo, 192-0397, Japan
| | - Tohru Yamamoto
- Department of Molecular Neurobiology, Faculty of Medicine, Kagawa University, Miki-cho, 761-0793, Japan.
| | - Toshiharu Suzuki
- Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan.
- Advanced Prevention and Research Laboratory for Dementia, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan.
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Hachioji, Tokyo, 192-0397, Japan.
| |
Collapse
|
4
|
Chau DDL, Ng LLH, Zhai Y, Lau KF. Amyloid precursor protein and its interacting proteins in neurodevelopment. Biochem Soc Trans 2023; 51:1647-1659. [PMID: 37387352 PMCID: PMC10629809 DOI: 10.1042/bst20221527] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/01/2023]
Abstract
Amyloid precursor protein (APP) is a key molecule in the pathogenesis of Alzheimer's disease (AD) as the pathogenic amyloid-β peptide is derived from it. Two closely related APP family proteins (APPs) have also been identified in mammals. Current knowledge, including genetic analyses of gain- and loss-of-function mutants, highlights the importance of APPs in various physiological functions. Notably, APPs consist of multiple extracellular and intracellular protein-binding regions/domains. Protein-protein interactions are crucial for many cellular processes. In past decades, many APPs interactors have been identified which assist the revelation of the putative roles of APPs. Importantly, some of these interactors have been shown to influence several APPs-mediated neuronal processes which are found defective in AD and other neurodegenerative disorders. Studying APPs-interactor complexes would not only advance our understanding of the physiological roles of APPs but also provide further insights into the association of these processes to neurodegeneration, which may lead to the development of novel therapies. In this mini-review, we summarize the roles of APPs-interactor complexes in neurodevelopmental processes including neurogenesis, neurite outgrowth, axonal guidance and synaptogenesis.
Collapse
Affiliation(s)
- Dennis Dik-Long Chau
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Laura Lok-Haang Ng
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yuqi Zhai
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Kwok-Fai Lau
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
5
|
Brandimarti R, Irollo E, Meucci O. The US9-Derived Protein gPTB9TM Modulates APP Processing Without Targeting Secretase Activities. Mol Neurobiol 2023; 60:1811-1825. [PMID: 36576708 PMCID: PMC9984340 DOI: 10.1007/s12035-022-03153-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 11/29/2022] [Indexed: 12/29/2022]
Abstract
Alteration of neuronal protein processing is often associated with neurological disorders and is highly dependent on cellular protein trafficking. A prime example is the amyloidogenic processing of amyloid precursor protein (APP) in intracellular vesicles, which plays a key role in age-related cognitive impairment. Most approaches to correct this altered processing aim to limit enzymatic activities that lead to toxic products, such as protein cleavage by β-secretase and the resulting amyloid β production. A viable alternative is to direct APP to cellular compartments where non-amyloidogenic mechanisms are favored. To this end, we exploited the molecular properties of the herpes simplex virus 1 (HSV-1) transport protein US9 to guide APP interaction with preferred endogenous targets. Specifically, we generated a US9 chimeric construct that facilitates APP processing through the non-amyloidogenic pathway and tested it in primary cortical neurons. In addition to reducing amyloid β production, our approach controls other APP-dependent biochemical steps that lead to neuronal deficits, including phosphorylation of APP and tau proteins. Notably, it also promotes the release of neuroprotective soluble αAPP. In contrast to other neuroprotective strategies, these US9-driven effects rely on the activity of endogenous neuronal proteins, which lends itself well to the study of fundamental mechanisms of APP processing/trafficking. Overall, this work introduces a new method to limit APP misprocessing and its cellular consequences without directly targeting secretase activity, offering a novel tool to reduce cognitive decline in pathologies such as Alzheimer's disease and HIV-associated neurocognitive disorders.
Collapse
Affiliation(s)
- Renato Brandimarti
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N.15th Street, Philadelphia, PA, 19102, USA.,Center for Neuroimmunology and CNS Therapeutics, Drexel University College of Medicine, 245 N.15th Street, Philadelphia, PA, 19102, USA.,Department of Pharmacy and Biotechnology, University of Bologna, Via San Giacomo,14, 40126, Bologna, Italy
| | - Elena Irollo
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N.15th Street, Philadelphia, PA, 19102, USA.,Center for Neuroimmunology and CNS Therapeutics, Drexel University College of Medicine, 245 N.15th Street, Philadelphia, PA, 19102, USA
| | - Olimpia Meucci
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N.15th Street, Philadelphia, PA, 19102, USA. .,Center for Neuroimmunology and CNS Therapeutics, Drexel University College of Medicine, 245 N.15th Street, Philadelphia, PA, 19102, USA. .,Department of Microbiology and Immunology, Drexel University College of Medicine, 245 N.15th Street, Philadelphia, PA, 19102, USA.
| |
Collapse
|
6
|
Hata S, Kano K, Kikuchi K, Kinoshita S, Sobu Y, Saito H, Saito T, Saido TC, Sano Y, Taru H, Aoki J, Komano H, Tomita T, Natori S, Suzuki T. Suppression of amyloid-β secretion from neurons by cis-9, trans-11-octadecadienoic acid, an isomer of conjugated linoleic acid. J Neurochem 2021; 159:603-617. [PMID: 34379812 DOI: 10.1111/jnc.15490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 08/04/2021] [Indexed: 11/28/2022]
Abstract
Two common conjugated linoleic acids (LAs), cis-9, trans-11 CLA (c9,t11 CLA) and trans-10, cis-12 CLA (t10,c12 CLA), exert various biological activities. However, the effect of CLA on the generation of neurotoxic amyloid-β (Aβ) protein remains unclear. We found that c9,t11 CLA significantly suppressed the generation of Aβ in mouse neurons. CLA treatment did not affect the level of β-site APP-cleaving enzyme 1 (BACE1), a component of active γ-secretase complex presenilin 1 amino-terminal fragment, or Aβ protein precursor (APP) in cultured neurons. BACE1 and γ-secretase activities were not directly affected by c9,t11 CLA. Localization of BACE1 and APP in early endosomes increased in neurons treated with c9,t11 CLA; concomitantly, the localization of both proteins was reduced in late endosomes, the predominant site of APP cleavage by BACE1. The level of CLA-containing phosphatidylcholine (CLA-PC) increased dramatically in neurons incubated with CLA. Incorporation of phospholipids containing c9,t11 CLA, but not t10,c12 CLA, into the membrane may affect the localization of some membrane-associated proteins in intracellular membrane compartments. Thus, in neurons treated with c9,t11 CLA, reduced colocalization of APP with BACE1 in late endosomes may decrease APP cleavage by BACE1 and subsequent Aβ generation. Our findings suggest that accumulation of c9,t11 CLA-PC/LPC in neuronal membranes suppresses production of neurotoxic Aβ in neurons.
Collapse
Affiliation(s)
- Saori Hata
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305-8566, Japan.,Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| | - Kuniyuki Kano
- Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan.,Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Kazunori Kikuchi
- Department of Neuropathology and Neurosciences, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Shoichi Kinoshita
- Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| | - Yuriko Sobu
- Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan.,Advanced Prevention and Research Laboratory for Dementia, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| | - Haruka Saito
- Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| | - Takashi Saito
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science Institute, Wako, 351-0198, Japan.,Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467-8601, Japan
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science Institute, Wako, 351-0198, Japan
| | - Yoshitake Sano
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, 278-8510, Japan
| | - Hidenori Taru
- Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| | - Junken Aoki
- Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan.,Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Hiroto Komano
- Advanced Prevention and Research Laboratory for Dementia, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan.,Division of Neuroscience, School of Pharmacy, Iwate Medical University, Yahaba-cho, 028-3694, Japan
| | - Taisuke Tomita
- Department of Neuropathology and Neurosciences, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Shunji Natori
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Toshiharu Suzuki
- Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan.,Advanced Prevention and Research Laboratory for Dementia, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| |
Collapse
|
7
|
Hata S, Hu A, Piao Y, Nakaya T, Taru H, Morishima-Kawashima M, Murayama S, Nishimura M, Suzuki T. Enhanced amyloid-β generation by γ-secretase complex in DRM microdomains with reduced cholesterol levels. Hum Mol Genet 2021; 29:382-393. [PMID: 31841137 DOI: 10.1093/hmg/ddz297] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 11/18/2019] [Accepted: 12/06/2019] [Indexed: 11/13/2022] Open
Abstract
A neuropathologic hallmark of Alzheimer's disease (AD) is the presence of senile plaques that contain neurotoxic amyloid-β protein (Aβ) species, which are generated by the cleavage of amyloid β-protein precursor by secretases such as the γ-secretase complex, preferentially located in detergent-resistant membrane (DRM) regions and comprising endoproteolysed amino- and carboxy-terminal fragments of presenilin, nicastrin, anterior pharynx defective 1 and presenilin enhancer 2. Whereas some of familial AD patients harbor causative PSEN mutations that lead to more generation of neurotoxic Aβ42, the contribution of Aβ generation to sporadic/late-onset AD remains unclear. We found that the carboxy-terminal fragment of presenilin 1 was redistributed from DRM regions to detergent-soluble membrane (non-DRM) regions in brain tissue samples from individuals with sporadic AD. DRM fractions from AD brain sample had the ability to generate significantly more Aβ and had a lower cholesterol content than DRM fractions from non-demented control subjects. We further demonstrated that lowering the cholesterol content of DRM regions from cultured cells contributed to the redistribution of γ-secretase components and Aβ production. Taken together, the present analyses suggest that the lowered cholesterol content in DRM regions may be a cause of sporadic/late-onset AD by enhancing overall Aβ generation.
Collapse
Affiliation(s)
- Saori Hata
- Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Anqi Hu
- Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Yi Piao
- Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Tadashi Nakaya
- Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Hidenori Taru
- Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Maho Morishima-Kawashima
- Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan.,Department of Molecular Neuropathology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Shigeo Murayama
- Department of Neuropathology, Tokyo Metropolitan Institute of Gerontology, Tokyo 173-0015, Japan
| | - Masaki Nishimura
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Shiga 520-2192, Japan
| | - Toshiharu Suzuki
- Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| |
Collapse
|
8
|
Bartling CRO, Jensen TMT, Henry SM, Colliander AL, Sereikaite V, Wenzler M, Jain P, Maric HM, Harpsøe K, Pedersen SW, Clemmensen LS, Haugaard-Kedström LM, Gloriam DE, Ho A, Strømgaard K. Targeting the APP-Mint2 Protein-Protein Interaction with a Peptide-Based Inhibitor Reduces Amyloid-β Formation. J Am Chem Soc 2021; 143:891-901. [PMID: 33398998 DOI: 10.1021/jacs.0c10696] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
There is an urgent need for novel therapeutic approaches to treat Alzheimer's disease (AD) with the ability to both alleviate the clinical symptoms and halt the progression of the disease. AD is characterized by the accumulation of amyloid-β (Aβ) peptides which are generated through the sequential proteolytic cleavage of the amyloid precursor protein (APP). Previous studies reported that Mint2, a neuronal adaptor protein binding both APP and the γ-secretase complex, affects APP processing and formation of pathogenic Aβ. However, there have been contradicting results concerning whether Mint2 has a facilitative or suppressive effect on Aβ generation. Herein, we deciphered the APP-Mint2 protein-protein interaction (PPI) via extensive probing of both backbone H-bond and side-chain interactions. We also developed a proteolytically stable, high-affinity peptide targeting the APP-Mint2 interaction. We found that both an APP binding-deficient Mint2 variant and a cell-permeable PPI inhibitor significantly reduced Aβ42 levels in a neuronal in vitro model of AD. Together, these findings demonstrate a facilitative role of Mint2 in Aβ formation, and the combination of genetic and pharmacological approaches suggests that targeting Mint2 is a promising therapeutic strategy to reduce pathogenic Aβ levels.
Collapse
Affiliation(s)
- Christian R O Bartling
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 162, DK-2100 Copenhagen, Denmark.,Department of Biology, Boston University, 24 Cummington Mall, Boston, Massachusetts 02215, United States
| | - Thomas M T Jensen
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 162, DK-2100 Copenhagen, Denmark
| | - Shawna M Henry
- Department of Biology, Boston University, 24 Cummington Mall, Boston, Massachusetts 02215, United States
| | - Anna L Colliander
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 162, DK-2100 Copenhagen, Denmark
| | - Vita Sereikaite
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 162, DK-2100 Copenhagen, Denmark
| | - Marcella Wenzler
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 162, DK-2100 Copenhagen, Denmark
| | - Palash Jain
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 162, DK-2100 Copenhagen, Denmark
| | - Hans M Maric
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 162, DK-2100 Copenhagen, Denmark
| | - Kasper Harpsøe
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 162, DK-2100 Copenhagen, Denmark
| | - Søren W Pedersen
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 162, DK-2100 Copenhagen, Denmark
| | - Louise S Clemmensen
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 162, DK-2100 Copenhagen, Denmark
| | - Linda M Haugaard-Kedström
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 162, DK-2100 Copenhagen, Denmark
| | - David E Gloriam
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 162, DK-2100 Copenhagen, Denmark
| | - Angela Ho
- Department of Biology, Boston University, 24 Cummington Mall, Boston, Massachusetts 02215, United States
| | - Kristian Strømgaard
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 162, DK-2100 Copenhagen, Denmark
| |
Collapse
|
9
|
Wu PF, Bhore N, Lee YL, Chou JY, Chen YW, Wu PY, Hsu WM, Lee H, Huang YS, Lu PJ, Liao YF. Phosphatidylinositol-4-phosphate 5-kinase type 1α attenuates Aβ production by promoting non-amyloidogenic processing of amyloid precursor protein. FASEB J 2020; 34:12127-12146. [PMID: 32686865 DOI: 10.1096/fj.202000113r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 06/17/2020] [Accepted: 06/29/2020] [Indexed: 11/11/2022]
Abstract
Alzheimer's disease (AD) is characterized by a chronic decline in cognitive function and is pathologically typified by cerebral deposition of amyloid-β peptide (Aβ). The production of Aβ is mediated by sequential proteolysis of amyloid precursor protein (APP) by β- and γ-secretases, and has been implicated as the essential determinant of AD pathology. Previous studies have demonstrated that the level of phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2] in the membrane may potentially modulate Aβ production. Given that PI(4,5)P2 is produced by type 1 phosphatidylinositol-4-phosphate 5-kinases (PIP5Ks), we sought to determine whether the level of PIP5K type Iα (PIP5K1A) can affect production of Aβ by modulating the lipid composition of the membrane. Using a HEK-derived cell line that constitutively expresses yellow fluorescent protein-tagged APP (APP-YFP), we demonstrated that overexpression of PIP5K1A results in significant enhancement of non-amyloidogenic APP processing and a concomitant suppression of the amyloidogenic pathway, leading to a marked decrease in secreted Aβ. Consistently, cells overexpressing PIP5K1A exhibited a significant redistribution of APP-YFP from endosomal compartments to the cell surface. Our findings suggest that PIP5K1A may play a critical role in governing Aβ production by modulating membrane distribution of APP, and as such, the pathway may be a valuable therapeutic target for AD.
Collapse
Affiliation(s)
- Po-Fan Wu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan.,TIGP in Interdisciplinary Neuroscience, National Cheng Kung University and Academia Sinica, Taipei, Taiwan
| | - Noopur Bhore
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan.,TIGP in Interdisciplinary Neuroscience, National Yang-Ming University and Academia Sinica, Taipei, Taiwan
| | - Yen-Lurk Lee
- TIGP in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ju-Yun Chou
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Yun-Wen Chen
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Pei-Yi Wu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Wen-Ming Hsu
- Department of Surgery, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Hsinyu Lee
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Yi-Shuian Huang
- TIGP in Interdisciplinary Neuroscience, National Cheng Kung University and Academia Sinica, Taipei, Taiwan.,TIGP in Interdisciplinary Neuroscience, National Yang-Ming University and Academia Sinica, Taipei, Taiwan.,TIGP in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Pei-Jung Lu
- TIGP in Interdisciplinary Neuroscience, National Cheng Kung University and Academia Sinica, Taipei, Taiwan.,Graduate Institute of Clinical Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yung-Feng Liao
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan.,TIGP in Interdisciplinary Neuroscience, National Cheng Kung University and Academia Sinica, Taipei, Taiwan.,TIGP in Interdisciplinary Neuroscience, National Yang-Ming University and Academia Sinica, Taipei, Taiwan
| |
Collapse
|
10
|
Gotoh N, Saito Y, Hata S, Saito H, Ojima D, Murayama C, Shigeta M, Abe T, Konno D, Matsuzaki F, Suzuki T, Yamamoto T. Amyloidogenic processing of amyloid β protein precursor (APP) is enhanced in the brains of alcadein α-deficient mice. J Biol Chem 2020; 295:9650-9662. [PMID: 32467230 PMCID: PMC7363152 DOI: 10.1074/jbc.ra119.012386] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 05/22/2020] [Indexed: 12/25/2022] Open
Abstract
Alzheimer's disease (AD) is a very common neurodegenerative disorder, chiefly caused by increased production of neurotoxic β-amyloid (Aβ) peptide generated from proteolytic cleavage of β-amyloid protein precursor (APP). Except for familial AD arising from mutations in the APP and presenilin (PSEN) genes, the molecular mechanisms regulating the amyloidogenic processing of APP are largely unclear. Alcadein α/calsyntenin1 (ALCα/CLSTN1) is a neuronal type I transmembrane protein that forms a complex with APP, mediated by the neuronal adaptor protein X11-like (X11L or MINT2). Formation of the ALCα-X11L-APP tripartite complex suppresses Aβ generation in vitro, and X11L-deficient mice exhibit enhanced amyloidogenic processing of endogenous APP. However, the role of ALCα in APP metabolism in vivo remains unclear. Here, by generating ALCα-deficient mice and using immunohistochemistry, immunoblotting, and co-immunoprecipitation analyses, we verified the role of ALCα in the suppression of amyloidogenic processing of endogenous APP in vivo We observed that ALCα deficiency attenuates the association of X11L with APP, significantly enhances amyloidogenic β-site cleavage of APP, especially in endosomes, and increases the generation of endogenous Aβ in the brain. Furthermore, we noted amyloid plaque formation in the brains of human APP-transgenic mice in an ALCα-deficient background. These results unveil a potential role of ALCα in protecting cerebral neurons from Aβ-dependent pathogenicity in AD.
Collapse
Affiliation(s)
- Naoya Gotoh
- Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Yuhki Saito
- Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Saori Hata
- Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Haruka Saito
- Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Daiki Ojima
- Department of Molecular Neurobiology, Faculty of Medicine, Kagawa University, Takamatsu, Japan
| | - Chiaki Murayama
- Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
- Department of Molecular Neurobiology, Faculty of Medicine, Kagawa University, Takamatsu, Japan
| | - Mayo Shigeta
- Laboratory for Animal Resource Development, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Takaya Abe
- Laboratory for Animal Resource Development, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
- Laboratory for Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Daijiro Konno
- Laboratory for Cell Asymmetry, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Fumio Matsuzaki
- Laboratory for Cell Asymmetry, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Toshiharu Suzuki
- Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Tohru Yamamoto
- Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
- Department of Molecular Neurobiology, Faculty of Medicine, Kagawa University, Takamatsu, Japan
| |
Collapse
|
11
|
Ng SS, Park JE, Meng W, Chen CP, Kalaria RN, McCarthy NE, Sze SK. Pulsed SILAM Reveals In Vivo Dynamics of Murine Brain Protein Translation. ACS OMEGA 2020; 5:13528-13540. [PMID: 32566817 PMCID: PMC7301365 DOI: 10.1021/acsomega.9b04439] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 05/08/2020] [Indexed: 06/11/2023]
Abstract
Identification of proteins that are synthesized de novo in response to specific microenvironmental cues is critical for understanding molecular mechanisms that underpin vital physiological processes and pathologies. Here, we report that a brief period of SILAM (Stable Isotope Labeling of Mammals) diet enables the determination of biological functions corresponding to actively translating proteins in the mouse brain. Our results demonstrate that the synapse, dendrite, and myelin sheath are highly active neuronal structures that display rapid protein synthesis, producing key mediators of chemical signaling as well as nutrient sensing, lipid metabolism, and amyloid precursor protein processing/stability. Together, these findings confirm that protein metabolic activity varies significantly between brain functional units in vivo. Our data indicate that pulsed SILAM approaches can unravel complex protein expression dynamics in the murine brain and identify active synthetic pathways and associated functions that are likely impaired in neurodegenerative diseases.
Collapse
Affiliation(s)
- Ser Sue Ng
- School
of Biological Sciences, Nanyang Technological
University, 60 Nanyang Drive, 637551 Singapore
| | - Jung Eun Park
- School
of Biological Sciences, Nanyang Technological
University, 60 Nanyang Drive, 637551 Singapore
| | - Wei Meng
- School
of Biological Sciences, Nanyang Technological
University, 60 Nanyang Drive, 637551 Singapore
| | - Christopher P. Chen
- Memory,
Aging and Cognition Centre, National University
Health System, 1E Kent
Ridge Road, 119228 Singapore
- Department
of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Blk MD3, 16 Medical Drive, 117600 Singapore
| | - Raj N. Kalaria
- Institute
of Neuroscience, Campus for Ageing and Vitality, Newcastle University, Newcastle
upon Tyne NE4 5PL, U.K.
| | - Neil E. McCarthy
- Centre
for Immunobiology, The Blizard Institute, Bart’s and The London
School of Medicine and Dentistry, Queen
Mary University of London, 4 Newark St, London E1
2AT, U.K.
| | - Siu Kwan Sze
- School
of Biological Sciences, Nanyang Technological
University, 60 Nanyang Drive, 637551 Singapore
| |
Collapse
|
12
|
Chau DDL, Yung KWY, Chan WWL, An Y, Hao Y, Chan HYE, Ngo JCK, Lau KF. Attenuation of amyloid-β generation by atypical protein kinase C-mediated phosphorylation of engulfment adaptor PTB domain containing 1 threonine 35. FASEB J 2019; 33:12019-12035. [PMID: 31373844 DOI: 10.1096/fj.201802825rr] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Amyloid-β (Aβ) is derived from the proteolytic processing of amyloid precursor protein (APP), and the deposition of extracellular Aβ to form amyloid plaques is a pathologic hallmark of Alzheimer's disease (AD). Although reducing Aβ generation and accumulation has been proposed as a means of treating the disease, adverse side effects and unsatisfactory efficacy have been reported in several clinical trials that sought to lower Aβ levels. Engulfment adaptor phosphotyrosine-binding (PTB) domain containing 1 (GULP1) is a molecular adaptor that has been shown to interact with APP to alter Aβ production. Therefore, the modulation of the GULP1-APP interaction may be an alternative approach to reducing Aβ. However, the mechanisms that regulate GULP1-APP binding remain elusive. As GULP1 is a phosphoprotein, and because phosphorylation is a common mechanism that regulates protein interaction, we anticipated that GULP1 phosphorylation would influence GULP1-APP interaction and thereby Aβ production. We show here that the phosphorylation of GULP1 threonine 35 (T35) reduces GULP1-APP interaction and suppresses the stimulatory effect of GULP1 on APP processing. The residue is phosphorylated by an isoform of atypical PKC (PKCζ). Overexpression of PKCζ reduces both GULP1-APP interaction and GULP1-mediated Aβ generation. Moreover, the activation of PKCζ via insulin suppresses APP processing. In contrast, GULP1-mediated APP processing is enhanced in PKCζ knockout cells. Similarly, PKC ι, another member of atypical PKC, also decreases GULP1-mediated APP processing. Intriguingly, our X-ray crystal structure of GULP1 PTB-APP intracellular domain (AICD) peptide reveals that GULP1 T35 is not located at the GULP1-AICD binding interface; rather, it immediately precedes the β1-α2 loop that forms a portion of the binding groove for the APP helix αC. Phosphorylating the residue may induce an allosteric effect on the conformation of the binding groove. Our results indicate that GULP1 T35 phosphorylation is a mechanism for the regulation of GULP1-APP interaction and thereby APP processing. Moreover, the activation of atypical PKC, such as by insulin, may confer a beneficial effect on AD by lowering GULP1-mediated Aβ production.-Chau, D. D.-L., Yung, K. W.-Y., Chan, W. W.-L., An, Y., Hao, Y., Chan, H.-Y. E., Ngo, J. C.-K., Lau, K.-F. Attenuation of amyloid-β generation by atypical protein kinase C-mediated phosphorylation of engulfment adaptor PTB domain containing 1 threonine 35.
Collapse
Affiliation(s)
- Dennis Dik-Long Chau
- Faculty of Science, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Kristen Wing-Yu Yung
- Faculty of Science, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - William Wai-Lun Chan
- Faculty of Science, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Ying An
- Faculty of Science, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Yan Hao
- Faculty of Science, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Ho-Yin Edwin Chan
- Faculty of Science, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Jacky Chi-Ki Ngo
- Faculty of Science, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Kwok-Fai Lau
- Faculty of Science, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
13
|
Carter CJ. Autism genes and the leukocyte transcriptome in autistic toddlers relate to pathogen interactomes, infection and the immune system. A role for excess neurotrophic sAPPα and reduced antimicrobial Aβ. Neurochem Int 2019; 126:36-58. [PMID: 30862493 DOI: 10.1016/j.neuint.2019.03.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 02/22/2019] [Accepted: 03/06/2019] [Indexed: 12/20/2022]
Abstract
Prenatal and early childhood infections have been implicated in autism. Many autism susceptibility genes (206 Autworks genes) are localised in the immune system and are related to immune/infection pathways. They are enriched in the host/pathogen interactomes of 18 separate microbes (bacteria/viruses and fungi) and to the genes regulated by bacterial toxins, mycotoxins and Toll-like receptor ligands. This enrichment was also observed for misregulated genes from a microarray study of leukocytes from autistic toddlers. The upregulated genes from this leukocyte study also matched the expression profiles in response to numerous infectious agents from the Broad Institute molecular signatures database. They also matched genes related to sudden infant death syndrome and autism comorbid conditions (autoimmune disease, systemic lupus erythematosus, diabetes, epilepsy and cardiomyopathy) as well as to estrogen and thyrotropin responses and to those upregulated by different types of stressors including oxidative stress, hypoxia, endoplasmic reticulum stress, ultraviolet radiation or 2,4-dinitrofluorobenzene, a hapten used to develop allergic skin reactions in animal models. The oxidative/integrated stress response is also upregulated in the autism brain and may contribute to myelination problems. There was also a marked similarity between the expression signatures of autism and Alzheimer's disease, and 44 shared autism/Alzheimer's disease genes are almost exclusively expressed in the blood-brain barrier. However, in contrast to Alzheimer's disease, levels of the antimicrobial peptide beta-amyloid are decreased and the levels of the neurotrophic/myelinotrophic soluble APP alpha are increased in autism, together with an increased activity of α-secretase. sAPPα induces an increase in glutamatergic and a decrease in GABA-ergic synapses creating and excitatory/inhibitory imbalance that has also been observed in autism. A literature survey showed that multiple autism genes converge on APP processing and that many are able to increase sAPPalpha at the expense of beta-amyloid production. A genetically programmed tilt of this axis towards an overproduction of neurotrophic/gliotrophic sAPPalpha and underproduction of antimicrobial beta-amyloid may explain the brain overgrowth and myelination dysfunction, as well as the involvement of pathogens in autism.
Collapse
Affiliation(s)
- C J Carter
- PolygenicPathways, 41C Marina, Saint Leonard's on Sea, TN38 0BU, East Sussex, UK.
| |
Collapse
|
14
|
Motodate R, Saito H, Sobu Y, Hata S, Saito Y, Nakaya T, Suzuki T. X11 and X11-like proteins regulate the level of extrasynaptic glutamate receptors. J Neurochem 2018; 148:480-498. [PMID: 30411795 DOI: 10.1111/jnc.14623] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 10/30/2018] [Accepted: 11/01/2018] [Indexed: 12/11/2022]
Abstract
X11/Mint 1 and X11-like (X11L)/Mint 2 are neuronal adaptor protein to regulate trafficking and/or localization of various membrane proteins. By analyzing the localization of neuronal membrane proteins in X11-, X11L-, and X11/X11L doubly deficient mice with membrane fractionation procedures, we found that deficient of X11 and X11L decreased the level of glutamate receptors in non-PSD fraction. This finding suggests that X11 and X11L regulate the glutamate receptor micro-localization to the extrasynaptic region. In vitro coimmunoprecipitation studies of NMDA receptors lacking various cytoplasmic regions with X11 and X11L proteins harboring domain deletion suggest that extrasynaptic localization of NMDA receptor may be as a result of the multiple interactions of the receptor subunits with X11 and X11L regulated by protein phosphorylation, while that of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor subunits is not dependent on the binding with X11 and X11L proteins. Because the loss of X11 and X11L tends to impair the exocytosis, but not endocytosis, of glutamate receptors, NMDA receptors are likely to be supplied to the extrasynaptic plasma membrane with a way distinct from the mechanism regulating the localization of NMDA receptors into synaptic membrane region. Reduced localization of NMDA receptor into the extrasynaptic region increased slightly the phosphorylation level of cAMP responsible element binding protein in brain of X11/X11L doubly deficient mice compare to wild-type mice, suggesting a possible role of X11 and X11L in the regulation of signal transduction pathway through extrasynaptic glutamate receptors. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/.
Collapse
Affiliation(s)
- Rika Motodate
- Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo, Japan
| | - Haruka Saito
- Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo, Japan
| | - Yuriko Sobu
- Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo, Japan
| | - Saori Hata
- Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo, Japan
| | - Yuhki Saito
- Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo, Japan
| | - Tadashi Nakaya
- Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo, Japan
| | - Toshiharu Suzuki
- Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo, Japan
| |
Collapse
|
15
|
Sun J, Roy S. The physical approximation of APP and BACE-1: A key event in alzheimer's disease pathogenesis. Dev Neurobiol 2017; 78:340-347. [PMID: 29106038 DOI: 10.1002/dneu.22556] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 10/17/2017] [Accepted: 11/01/2017] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD) is characterized by the accumulation of insoluble deposits of Amyloid β (Aβ) in brains. Aβ is derived by sequential cleavage of the amyloid precursor protein (APP) by β-site secretase enzyme (BACE-1) and γ-secretase. Proteolytic processing of APP by BACE-1 is the rate-limiting step in Aβ production, and this pathway is a prime target for AD drug development. Both APP and BACE-1 are membrane-spanning proteins, transported via secretory and endocytic pathways; and the physical interaction of APP and BACE-1 during trafficking is a key cell biological event initiating the amyloidogenic pathway. Here, we highlight recent research on intracellular trafficking/sorting of APP and BACE-1, and discuss how dysregulation of these pathways might lead to enhanced convergence of APP and BACE-1, and subsequent β-cleavage of APP. © 2018 Wiley Periodicals, Inc. Develop Neurobiol 78: 340-347, 2018.
Collapse
Affiliation(s)
- Jichao Sun
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, Wisconsin, 53705.,Department of Neuroscience, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, Wisconsin, 53705
| | - Subhojit Roy
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, Wisconsin, 53705.,Department of Neuroscience, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, Wisconsin, 53705
| |
Collapse
|
16
|
GULP1/CED-6 ameliorates amyloid-β toxicity in a Drosophila model of Alzheimer's disease. Oncotarget 2017; 8:99274-99283. [PMID: 29245900 PMCID: PMC5725091 DOI: 10.18632/oncotarget.20062] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 07/30/2017] [Indexed: 01/24/2023] Open
Abstract
Amyloidogenic processing of APP by β- and γ-secretases leads to the generation of amyloid-β peptide (Aβ), and the accumulation of Aβ in senile plaques is a hallmark of Alzheimer’s disease (AD). Understanding the mechanisms of APP processing is therefore paramount. Increasing evidence suggests that APP intracellular domain (AICD) interacting proteins influence APP processing. In this study, we characterized the overexpression of AICD interactor GULP1 in a Drosophila AD model expressing human BACE and APP695. Transgenic GULP1 significantly lowered the levels of both Aβ1-40 and Aβ1-42 without decreasing the BACE and APP695 levels. Overexpression of GULP1 also reduced APP/BACE-mediated retinal degeneration, rescued motor dysfunction and extended longevity of the flies. Our results indicate that GULP1 regulate APP processing and reduce neurotoxicity in a Drosophila AD model.
Collapse
|
17
|
Guénette S, Strecker P, Kins S. APP Protein Family Signaling at the Synapse: Insights from Intracellular APP-Binding Proteins. Front Mol Neurosci 2017; 10:87. [PMID: 28424586 PMCID: PMC5371672 DOI: 10.3389/fnmol.2017.00087] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 03/13/2017] [Indexed: 12/17/2022] Open
Abstract
Understanding the molecular mechanisms underlying amyloid precursor protein family (APP/APP-like proteins, APLP) function in the nervous system can be achieved by studying the APP/APLP interactome. In this review article, we focused on intracellular APP interacting proteins that bind the YENPTY internalization motif located in the last 15 amino acids of the C-terminal region. These proteins, which include X11/Munc-18-interacting proteins (Mints) and FE65/FE65Ls, represent APP cytosolic binding partners exhibiting different neuronal functions. A comparison of FE65 and APP family member mutant mice revealed a shared function for APP/FE65 protein family members in neurogenesis and neuronal positioning. Accumulating evidence also supports a role for membrane-associated APP/APLP proteins in synapse formation and function. Therefore, it is tempting to speculate that APP/APLP C-terminal interacting proteins transmit APP/APLP-dependent signals at the synapse. Herein, we compare our current knowledge of the synaptic phenotypes of APP/APLP mutant mice with those of mice lacking different APP/APLP interaction partners and discuss the possible downstream effects of APP-dependent FE65/FE65L or X11/Mint signaling on synaptic vesicle release, synaptic morphology and function. Given that the role of X11/Mint proteins at the synapse is well-established, we propose a model highlighting the role of FE65 protein family members for transduction of APP/APLP physiological function at the synapse.
Collapse
Affiliation(s)
| | - Paul Strecker
- Department of Biology, Division of Human Biology, University of KaiserslauternKaiserslautern, Germany
| | - Stefan Kins
- Department of Biology, Division of Human Biology, University of KaiserslauternKaiserslautern, Germany
| |
Collapse
|
18
|
Tremblay C, François A, Delay C, Freland L, Vandal M, Bennett DA, Calon F. Association of Neuropathological Markers in the Parietal Cortex With Antemortem Cognitive Function in Persons With Mild Cognitive Impairment and Alzheimer Disease. J Neuropathol Exp Neurol 2017; 76:70-88. [PMID: 28158844 PMCID: PMC7526851 DOI: 10.1093/jnen/nlw109] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The associations between cognitive function and neuropathological markers in patients with mild cognitive impairment (MCI) and Alzheimer disease (AD) remain only partly defined. We investigated relationships between antemortem global cognitive scores and β-amyloid (Aβ), tau, TDP-43, synaptic proteins and other key AD neuropathological markers assessed by biochemical approaches in postmortem anterior parietal cortex samples from 36 subjects (12 MCI, 12 AD and 12 not cognitively impaired) from the Religious Orders Study. Overall, the strongest negative correlation coefficients associated with global cognitive scores were obtained for insoluble phosphorylated tau (r2 = -0.484), insoluble Aβ42 (r2 = -0.389) and neurofibrillary tangle counts (r2 = -0.494) (all p < 0.001). Robust inverse associations with cognition scores were also established for TDP-43-positive cytoplasmic inclusions (r2 = -0.476), total insoluble tau (r2 = -0.385) and Aβ plaque counts (r2 = -0.426). Sarkosyl (SK)- or formic acid (FA)-extracted tau showed similar interrelations. On the other hand, synaptophysin (r2 = +0.335), pS403/404 TDP-43 (r2 = +0.265) and septin-3 (r2 = +0.257) proteins positively correlated with cognitive scores. This study suggests that tau and Aβ42 in their insoluble aggregated forms, synaptic proteins and TDP-43 are the markers in the parietal cortex that are most strongly associated with cognitive function. This further substantiates the relevance of investigating these markers to understand the pathogenesis of AD and develop therapeutic tools.
Collapse
Affiliation(s)
- Cyntia Tremblay
- Faculté de pharmacie, Université Laval, Québec, QC, Canada
- Centre Hospitalier Universitaire de Québec (CHU-Q) Research Center, Neuroscience Axis, Québec, QC, Canada
| | - Arnaud François
- Faculté de pharmacie, Université Laval, Québec, QC, Canada
- Centre Hospitalier Universitaire de Québec (CHU-Q) Research Center, Neuroscience Axis, Québec, QC, Canada
| | - Charlotte Delay
- Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement (RID-AGE) Research Group, University of Lille, INSERM U1167, Lille University Medical Center, Institut Pasteur de Lille, Lille, France (CD)
| | - Laure Freland
- Faculté de pharmacie, Université Laval, Québec, QC, Canada
- Centre Hospitalier Universitaire de Québec (CHU-Q) Research Center, Neuroscience Axis, Québec, QC, Canada
| | - Milène Vandal
- Faculté de pharmacie, Université Laval, Québec, QC, Canada
- Centre Hospitalier Universitaire de Québec (CHU-Q) Research Center, Neuroscience Axis, Québec, QC, Canada
| | - David A Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL
| | - Frédéric Calon
- Faculté de pharmacie, Université Laval, Québec, QC, Canada
- Centre Hospitalier Universitaire de Québec (CHU-Q) Research Center, Neuroscience Axis, Québec, QC, Canada
| |
Collapse
|
19
|
Motodate R, Saito Y, Hata S, Suzuki T. Expression and localization of X11 family proteins in neurons. Brain Res 2016; 1646:227-234. [DOI: 10.1016/j.brainres.2016.05.054] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 05/28/2016] [Accepted: 05/31/2016] [Indexed: 01/10/2023]
|
20
|
Yun HM, Park KR, Kim EC, Kim S, Hong JT. Serotonin 6 receptor controls Alzheimer's disease and depression. Oncotarget 2016; 6:26716-28. [PMID: 26449188 PMCID: PMC4694947 DOI: 10.18632/oncotarget.5777] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 08/29/2015] [Indexed: 12/16/2022] Open
Abstract
Alzheimer’s disease (AD) and depression in late life are one of the most severe health problems in the world disorders. Serotonin 6 receptor (5-HT6R) has caused much interest for potential roles in AD and depression. However, a causative role of perturbed 5-HT6R function between two diseases was poorly defined. In the present study, we found that a 5-HT6R antagonist, SB271036 rescued memory impairment by attenuating the generation of Aβ via the inhibition of γ-secretase activity and the inactivation of astrocytes and microglia in the AD mouse model. It was found that the reduction of serotonin level was significantly recovered by SB271036, which was mediated by an indirect regulation of serotonergic neurons via GABA. Selective serotonin reuptake inhibitor (SSRI), fluoxetine significantly improved cognitive impairment and behavioral changes. In human brain of depression patients, we then identified the potential genes, amyloid beta (A4) precursor protein-binding, family A, member 2 (APBA2), well known AD modulators by integrating datasets from neuropathology, microarray, and RNA seq. studies with correlation analysis tools. And also, it was demonstrated in mouse models and patients of AD. These data indicate functional network of 5-HT6R between AD and depression.
Collapse
Affiliation(s)
- Hyung-Mun Yun
- Department of Maxillofacial Tissue Regeneration, School of Dentistry and Research Center for Tooth and Periodontal Regeneration (MRC), Kyung Hee University, Seoul, Republic of Korea
| | - Kyung-Ran Park
- Department of Oral & Maxillofacial Regeneration, Kyung Hee University, Seoul, Republic of Korea
| | - Eun-Cheol Kim
- Department of Maxillofacial Tissue Regeneration, School of Dentistry and Research Center for Tooth and Periodontal Regeneration (MRC), Kyung Hee University, Seoul, Republic of Korea
| | - Sanghyeon Kim
- Stanley Brain Research Laboratory, Stanley Medical Research Institute, Rockville, MD, USA
| | - Jin Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, Chungbuk, Republic of Korea
| |
Collapse
|
21
|
The effects of the cellular and infectious prion protein on the neuronal adaptor protein X11α. Biochim Biophys Acta Gen Subj 2015; 1850:2213-21. [PMID: 26297964 DOI: 10.1016/j.bbagen.2015.08.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 07/27/2015] [Accepted: 08/18/2015] [Indexed: 01/06/2023]
Abstract
BACKGROUND The neuronal adaptor protein X11α is a multidomain protein with a phosphotyrosine binding (PTB) domain, two PDZ (PSD_95, Drosophila disks-large, ZO-1) domains, a Munc Interacting (MI) domain and a CASK interacting region. Amongst its functions is a role in the regulation of the abnormal processing of the amyloid precursor protein (APP). It also regulates the activity of Cu/Zn Superoxide dismutase (SOD1) through binding with its chaperone the copper chaperone for SOD1. How X11α production is controlled has remained unclear. METHODS Using the neuroblastoma cell line, N2a, and knockdown studies, the effect of the cellular and infectious prion protein, PrP(C) and PrP(Sc), on X11α is examined. RESULTS We show that X11α expression is directly proportional to the expression of PrP(C), whereas its levels are reduced by PrP(Sc). We also show PrP(Sc) to affect X11α at a functional level. One of the effects of prion infection is lowered cellular SOD1 levels, here by knockdown of X11α we identify that the effect of PrP(Sc) on SOD1 can be reversed indicating that X11α is involved in prion disease pathogenesis. CONCLUSIONS A role for the cellular and infectious prion protein, PrP(C) and PrP(Sc), respectively, in regulating X11α is identified in this work. GENERAL SIGNIFICANCE Due to the multiple interacting partners of X11α, dysfunction or alteration in X11α will have a significant cellular effect. This work highlights the role of PrP(C) and PrP(Sc) in the regulation of X11α, and provides a new target pathway to control X11α and its related functions.
Collapse
|
22
|
Abstract
The small, calcium-sensor protein, calmodulin, is ubiquitously expressed and central to cell function in all cell types. Here the literature linking calmodulin to Alzheimer's disease is reviewed. Several experimentally-verified calmodulin-binding proteins are involved in the formation of amyloid-β plaques including amyloid-β protein precursor, β-secretase, presenilin-1, and ADAM10. Many others possess potential calmodulin-binding domains that remain to be verified. Three calmodulin binding proteins are associated with the formation of neurofibrillary tangles: two kinases (CaMKII, CDK5) and one protein phosphatase (PP2B or calcineurin). Many of the genes recently identified by genome wide association studies and other studies encode proteins that contain putative calmodulin-binding domains but only a couple (e.g., APOE, BIN1) have been experimentally confirmed as calmodulin binding proteins. At least two receptors involved in calcium metabolism and linked to Alzheimer's disease (mAchR; NMDAR) have also been identified as calmodulin-binding proteins. In addition to this, many proteins that are involved in other cellular events intimately associated with Alzheimer's disease including calcium channel function, cholesterol metabolism, neuroinflammation, endocytosis, cell cycle events, and apoptosis have been tentatively or experimentally verified as calmodulin binding proteins. The use of calmodulin as a potential biomarker and as a therapeutic target is discussed.
Collapse
Affiliation(s)
- Danton H. O’Day
- Department of Biology, University of Toronto at Mississauga, Mississauga, Ontario, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Kristeen Eshak
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Michael A. Myre
- Center for Human Genetic Research, Richard B. Simches Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
23
|
Takei N, Sobu Y, Kimura A, Urano S, Piao Y, Araki Y, Taru H, Yamamoto T, Hata S, Nakaya T, Suzuki T. Cytoplasmic fragment of Alcadein α generated by regulated intramembrane proteolysis enhances amyloid β-protein precursor (APP) transport into the late secretory pathway and facilitates APP cleavage. J Biol Chem 2014; 290:987-95. [PMID: 25406318 DOI: 10.1074/jbc.m114.599852] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The neural type I membrane protein Alcadein α (Alcα), is primarily cleaved by amyloid β-protein precursor (APP) α-secretase to generate a membrane-associated carboxyl-terminal fragment (Alcα CTF), which is further cleaved by γ-secretase to secrete p3-Alcα peptides and generate an intracellular cytoplasmic domain fragment (Alcα ICD) in the late secretory pathway. By association with the neural adaptor protein X11L (X11-like), Alcα and APP form a ternary complex that suppresses the cleavage of both Alcα and APP by regulating the transport of these membrane proteins into the late secretory pathway where secretases are active. However, it has not been revealed how Alcα and APP are directed from the ternary complex formed largely in the Golgi into the late secretory pathway to reach a nerve terminus. Using a novel transgenic mouse line expressing excess amounts of human Alcα CTF (hAlcα CTF) in neurons, we found that expression of hAlcα CTF induced excess production of hAlcα ICD, which facilitated APP transport into the nerve terminus and enhanced APP metabolism, including Aβ generation. In vitro cell studies also demonstrated that excess expression of Alcα ICD released both APP and Alcα from the ternary complex. These results indicate that regulated intramembrane proteolysis of Alcα by γ-secretase regulates APP trafficking and the production of Aβ in vivo.
Collapse
Affiliation(s)
- Norio Takei
- From the Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-12 Nishi-6, Kita-ku, Sapporo 060-0812, Japan and
| | - Yuriko Sobu
- From the Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-12 Nishi-6, Kita-ku, Sapporo 060-0812, Japan and
| | - Ayano Kimura
- From the Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-12 Nishi-6, Kita-ku, Sapporo 060-0812, Japan and
| | - Satomi Urano
- From the Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-12 Nishi-6, Kita-ku, Sapporo 060-0812, Japan and
| | - Yi Piao
- From the Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-12 Nishi-6, Kita-ku, Sapporo 060-0812, Japan and
| | - Yoichi Araki
- From the Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-12 Nishi-6, Kita-ku, Sapporo 060-0812, Japan and
| | - Hidenori Taru
- From the Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-12 Nishi-6, Kita-ku, Sapporo 060-0812, Japan and
| | - Tohru Yamamoto
- Department of Molecular Neurobiology, Faculty of Medicine, Kagawa University, Miki-cho 761-0793, Japan
| | - Saori Hata
- From the Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-12 Nishi-6, Kita-ku, Sapporo 060-0812, Japan and
| | - Tadashi Nakaya
- From the Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-12 Nishi-6, Kita-ku, Sapporo 060-0812, Japan and
| | - Toshiharu Suzuki
- From the Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-12 Nishi-6, Kita-ku, Sapporo 060-0812, Japan and
| |
Collapse
|
24
|
Kozhevnikova OS, Korbolina EE, Stefanova NA, Muraleva NA, Orlov YL, Kolosova NG. Association of AMD-like retinopathy development with an Alzheimer’s disease metabolic pathway in OXYS rats. Biogerontology 2013; 14:753-62. [DOI: 10.1007/s10522-013-9439-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 06/08/2013] [Indexed: 01/27/2023]
|
25
|
Abstract
Mislocalization of axonal proteins can result in misassembly and/or miswiring of neural circuits, causing disease. To date, only a handful of genes that control polarized localization of axonal membrane proteins have been identified. Here we report that Drosophila X11/Mint proteins are required for targeting several proteins, including human amyloid precursor protein (APP) and Drosophila APP-like protein (APPL), to axonal membranes and for their exclusion from dendrites of the mushroom body in Drosophila, a brain structure involved in learning and memory. Axonal localization of APP is mediated by an endocytic motif, and loss of X11/Mint results in a dramatic increase in cell-surface levels of APPL, especially on dendrites. Mutations in genes required for endocytosis show similar mislocalization of these proteins to dendrites, and strongly enhance defects seen in X11/Mint mutants. These results suggest that X11/Mint-dependent endocytosis in dendrites may serve to promote the axonal localization of membrane proteins. Since X11/Mint binds to APP, and abnormal trafficking of APP contributes to Alzheimer's disease, deregulation of X11/Mint may be important for Alzheimer's disease pathogenesis.
Collapse
|
26
|
Saito Y, Inoue T, Zhu G, Kimura N, Okada M, Nishimura M, Kimura N, Murayama S, Kaneko S, Shigemoto R, Imoto K, Suzuki T. Hyperpolarization-activated cyclic nucleotide gated channels: a potential molecular link between epileptic seizures and Aβ generation in Alzheimer's disease. Mol Neurodegener 2012; 7:50. [PMID: 23034178 PMCID: PMC3524764 DOI: 10.1186/1750-1326-7-50] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 09/27/2012] [Indexed: 12/20/2022] Open
Abstract
Background One of the best-characterized causative factors of Alzheimer’s disease (AD) is the generation of amyloid-β peptide (Aβ). AD subjects are at high risk of epileptic seizures accompanied by aberrant neuronal excitability, which in itself enhances Aβ generation. However, the molecular linkage between epileptic seizures and Aβ generation in AD remains unclear. Results X11 and X11-like (X11L) gene knockout mice suffered from epileptic seizures, along with a malfunction of hyperpolarization-activated cyclic nucleotide gated (HCN) channels. Genetic ablation of HCN1 in mice and HCN1 channel blockage in cultured Neuro2a (N2a) cells enhanced Aβ generation. Interestingly, HCN1 levels dramatically decreased in the temporal lobe of cynomolgus monkeys (Macaca fascicularis) during aging and were significantly diminished in the temporal lobe of sporadic AD patients. Conclusion Because HCN1 associates with amyloid-β precursor protein (APP) and X11/X11L in the brain, genetic deficiency of X11/X11L may induce aberrant HCN1 distribution along with epilepsy. Moreover, the reduction in HCN1 levels in aged primates may contribute to augmented Aβ generation. Taken together, HCN1 is proposed to play an important role in the molecular linkage between epileptic seizures and Aβ generation, and in the aggravation of sporadic AD.
Collapse
Affiliation(s)
- Yuhki Saito
- Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita12-Nishi6, Kita-ku, Sapporo, 060-0812, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Park JH, Jung MS, Kim YS, Song WJ, Chung SH. Phosphorylation of Munc18-1 by Dyrk1A regulates its interaction with Syntaxin 1 and X11α. J Neurochem 2012; 122:1081-91. [PMID: 22765017 DOI: 10.1111/j.1471-4159.2012.07861.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Dual-specificity tyrosine(Y)-phosphorylation-regulated kinase 1A (Dyrk1A) is a protein kinase that might be responsible for mental retardation and early onset of Alzheimer's disease in Down's syndrome patients. Dyrk1A plays a role in many cellular pathways through phosphorylation of diverse substrate proteins; however, its role in synaptic vesicle exocytosis is poorly understood. Munc18-1, a central regulator of neurotransmitter release, interacts with Syntaxin 1 and X11α. Syntaxin 1 is a key soluble N-ethylmaleimide-sensitive factor attachment protein receptor protein involved in synaptic vesicle docking/fusion events, and X11α modulates amyloid precursor protein processing and β amyloid generation. In this study, we demonstrate that Dyrk1A interacts with and phosphorylates Munc18-1 at the Thr(479) residue. The phosphorylation of Munc18-1 at Thr(479) by Dyrk1A stimulated binding of Munc18-1 to Syntaxin 1 and X11α. Furthermore, the levels of phospho-Thr(479) -Munc18-1 were enhanced in the brains of transgenic mice over-expressing Dyrk1A protein, providing in vivo evidence of Munc18-1 phosphorylation by Dyrk1A. These results reveal a link between Munc18-1 and Dyrk1A in synaptic vesicle trafficking and amyloid precursor protein processing, suggesting that up-regulated Dyrk1A in Down's syndrome and Alzheimer's disease brains may contribute to some pathological features, including synaptic dysfunction and cognitive defect through abnormal phosphorylation of Munc18-1.
Collapse
Affiliation(s)
- Jung-Hwa Park
- Graduate Program in Neuroscience, Institute for Brain Science and Technology (IBST), FIRST Research Group, Inje University, Busan, South Korea
| | | | | | | | | |
Collapse
|
28
|
Maruta C, Saito Y, Hata S, Gotoh N, Suzuki T, Yamamoto T. Constitutive cleavage of the single-pass transmembrane protein alcadeinα prevents aberrant peripheral retention of Kinesin-1. PLoS One 2012; 7:e43058. [PMID: 22905201 PMCID: PMC3414480 DOI: 10.1371/journal.pone.0043058] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 07/18/2012] [Indexed: 02/06/2023] Open
Abstract
Various membrane proteins are shed by proteinases, constitutively and/or when stimulated by external signals. While the physiological significance of external signal-induced cleavages has been intensely investigated, relatively little is known about the function of constitutive cleavages. Alcadeinα (Alcα; also called Calsyntenin-1) is an evolutionarily conserved type I single-pass transmembrane protein that binds to kinesin-1 light chain (KLC) to activate kinesin-1's transport of Alcα-containing vesicles. We found that Alcα was constitutively and efficiently cleaved to liberate its ectodomain into the extracellular space, and that full-length Alcα protein was rarely detected on the cell surface. The secretion efficiency of the ectodomain was unaltered by a mutation that both abolished Alcα's KLC-binding activity and attenuated its peripheral transport, suggesting that Alcα's cleavage occurred, at least partly, en route to the cell surface. We further demonstrated that uncleavable mutant Alcα proteins readily accumulated on the cell surface and induced aberrant peripheral recruitment of KLC1 and kinesin heavy chain. Our observations suggest that Alcα is efficiently processed in part to minimize the inappropriate peripheral retention of kinesin-1. This role might exemplify the functional relevance of the constitutive cleavage of single-pass transmembrane proteins.
Collapse
Affiliation(s)
- Chiaki Maruta
- Laboratory of Neuroscience, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Yuhki Saito
- Laboratory of Neuroscience, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Saori Hata
- Laboratory of Neuroscience, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Naoya Gotoh
- Laboratory of Neuroscience, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Toshiharu Suzuki
- Laboratory of Neuroscience, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
- * E-mail: (TS); (TY)
| | - Tohru Yamamoto
- Laboratory of Neuroscience, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
- * E-mail: (TS); (TY)
| |
Collapse
|
29
|
Kohli BM, Pflieger D, Mueller LN, Carbonetti G, Aebersold R, Nitsch RM, Konietzko U. Interactome of the amyloid precursor protein APP in brain reveals a protein network involved in synaptic vesicle turnover and a close association with Synaptotagmin-1. J Proteome Res 2012; 11:4075-90. [PMID: 22731840 DOI: 10.1021/pr300123g] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Knowledge of the protein networks interacting with the amyloid precursor protein (APP) in vivo can shed light on the physiological function of APP. To date, most proteins interacting with the APP intracellular domain (AICD) have been identified by Yeast Two Hybrid screens which only detect direct interaction partners. We used a proteomics-based approach by biochemically isolating tagged APP from the brains of transgenic mice and subjecting the affinity-purified complex to mass spectrometric (MS) analysis. Using two different quantitative MS approaches, we compared the protein composition of affinity-purified samples isolated from wild-type mice versus transgenic mice expressing tagged APP. This enabled us to assess truly enriched proteins in the transgenic sample and yielded an overlapping set of proteins containing the major proteins involved in synaptic vesicle endo- and exocytosis. Confocal microscopy analyses of cotransfected primary neurons showed colocalization of APP with synaptic vesicle proteins in vesicular structures throughout the neurites. We analyzed the interaction of APP with these proteins using pulldown experiments from transgenic mice or cotransfected cells followed by Western blotting. Synaptotagmin-1 (Stg1), a resident synaptic vesicle protein, was found to directly bind to APP. We fused Citrine and Cerulean to APP and the candidate proteins and measured fluorescence resonance energy transfer (FRET) in differentiated SH-SY5Y cells. Differentially tagged APPs showed clear sensitized FRET emission, in line with the described dimerization of APP. Among the candidate APP-interacting proteins, again only Stg1 was in close proximity to APP. Our results strongly argue for a function of APP in synaptic vesicle turnover in vivo. Thus, in addition to the APP cleavage product Aβ, which influences synaptic transmission at the postsynapse, APP interacts with the calcium sensor of synaptic vesicles and might thus play a role in the regulation of synaptic vesicle exocytosis.
Collapse
Affiliation(s)
- Bernhard M Kohli
- Institute of Psychiatry Research and Psychogeriatric Medicine, Faculty of Science, University Zurich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
30
|
Gatta V, Granzotto A, Fincati K, Drago D, Bolognin S, Zatta P, Sensi SL. Microarray analysis of gene expression profiles in human neuroblastoma cells exposed to Aβ–Zn and Aβ–Cu complexes. FUTURE NEUROLOGY 2012. [DOI: 10.2217/fnl.12.35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aims: Abnormal metal accumulation is associated with Alzheimer’s disease and plays a relevant role in affecting amyloid-β (Aβ) peptide aggregation and neurotoxicity. Material & Methods: In the present study, employing a microarray analysis of 35,129 genes, we analyzed gene expression profile changes due to exposure to Aβ1-42 –Zn or Aβ1-42 –Cu complexes in neuronal-like cells (SH-SY5Y). Results: Microarray data indicated that Aβ–Zn or Aβ–Cu complexes selectively alter expression of genes mainly related to cell death, inflammatory responses, cytoprotective mechanisms and apoptosis. Conclusions: Taken together, these findings indicate that Aβ1–42 –Zn or Aβ1–42 –Cu show some commonalities in affecting Alzheimer’s disease-related target functions. The overall modulatory activity on these genes supports the idea of a possible net effect resulting in the activation of pathways that counteract toxic effects of Aβ–Zn or Aβ–Cu.
Collapse
Affiliation(s)
- Valentina Gatta
- Department of Oral Health & Biotechnological Sciences, “G. D’Annunzio” University, Chieti-Pescara, Italy
- Functional Genetics Unit – Center of Excellence in Aging (Ce.S.I.), Chieti, Italy
| | | | | | - Denise Drago
- CNS Repair Unit – INSPE, Biological Mass Spectrometry Unit, San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Bolognin
- Department of Neurological, Neuropsychological, Morphological & Motor Sciences – Physiology & Psychology Unit, Verona, Italy
| | - Paolo Zatta
- National Research Council, Biomedical Technology Institute (CNR-ITB), Metalloproteins Unit, Department of Biology, University of Padua, Padua, Italy
| | - Stefano L Sensi
- Department of Neuroscience & Imaging, “G. D’Annunzio” University, Chieti, Italy
| |
Collapse
|
31
|
Xie X, Yan X, Wang Z, Zhou H, Diao W, Zhou W, Long J, Shen Y. Open-closed motion of Mint2 regulates APP metabolism. J Mol Cell Biol 2012; 5:48-56. [PMID: 22730553 DOI: 10.1093/jmcb/mjs033] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The amyloid-β protein precursor (APP) plays a crucial role in the pathogenesis of Alzheimer's disease (AD). Knock-out and transgenic mouse studies of the adaptor protein Mint2 have revealed that it is a major player in regulating APP metabolism physiologically through the binding of its phosphotyrosine-binding (PTB) domain to the intracellular domain of APP. However, the molecular mechanism of APP dynamically binding to Mint2 remains elusive. Here, we report the structures of APP peptide-free and APP peptide-bound C-terminal Mint2 mutants at resolutions of 2.7 and 3.3 Å, respectively. Our structures reveal that APP peptide-free Mint2 exists in a closed state in which the ARM domain blocks the peptide-binding groove of the PTB domain. In sharp contrast, APP peptide-bound Mint2 exists in an open state in which the ARM domain drastically swings away from the bound peptide. Mutants that control the open-closed motion of Mint2 dynamically regulated APP metabolism both in vitro and in vivo. Our results uncover a novel open-closed mechanism of the PTB domain dynamically binding to its peptide substrate. Moreover, such a conformational switch may represent a general regulation mode of APP family members by Mint proteins, providing useful information for the treatment of AD.
Collapse
Affiliation(s)
- Xingqiao Xie
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Matsushima T, Saito Y, Elliott JI, Iijima-Ando K, Nishimura M, Kimura N, Hata S, Yamamoto T, Nakaya T, Suzuki T. Membrane-microdomain localization of amyloid β-precursor protein (APP) C-terminal fragments is regulated by phosphorylation of the cytoplasmic Thr668 residue. J Biol Chem 2012; 287:19715-24. [PMID: 22511769 DOI: 10.1074/jbc.m111.334847] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Amyloid β-precursor protein (APP) is primarily cleaved by α- or β-secretase to generate membrane-bound, C-terminal fragments (CTFs). In turn, CTFs are potentially subject to a second, intramembrane cleavage by γ-secretase, which is active in a lipid raft-like membrane microdomain. Mature APP (N- and O-glycosylated APP), the actual substrate of these secretases, is phosphorylated at the cytoplasmic residue Thr(668) and this phosphorylation changes the overall conformation of the cytoplasmic domain of APP. We found that phosphorylated and nonphosphorylated CTFs exist equally in mouse brain and are kinetically equivalent as substrates for γ-secretase, in vitro. However, in vivo, the level of the phosphorylated APP intracellular domain peptide (pAICD) generated by γ-cleavage of CTFs was very low when compared with the level of nonphosphorylated AICD (nAICD). Phosphorylated CTFs (pCTFs), rather than nonphosphorylated CTFs (nCTFs), were preferentially located outside of detergent-resistant, lipid raft-like membrane microdomains. The APP cytoplasmic domain peptide (APP(648-695)) with Thr(P)(668) did not associate with liposomes composed of membrane lipids from mouse brain to which the nonphosphorylated peptide preferentially bound. In addition, APP lacking the C-terminal 8 amino acids (APP-ΔC8), which are essential for membrane association, decreased Aβ generation in N2a cells. These observations suggest that the pCTFs and CTFΔC8 are relatively movable within the membrane, whereas the nCTFs are susceptible to being anchored into the membrane, an interaction made available as a consequence of not being phosphorylated. By this mechanism, nCTFs can be preferentially captured and cleaved by γ-secretase. Preservation of the phosphorylated state of APP-CTFs may be a potential treatment to lower the generation of Aβ in Alzheimer disease.
Collapse
Affiliation(s)
- Takahide Matsushima
- From the Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Beyer AS, von Einem B, Schwanzar D, Keller IE, Hellrung A, Thal DR, Ingelsson M, Makarova A, Deng M, Chhabra ES, Pröpper C, Böckers TM, Hyman BT, von Arnim CA. Engulfment adapter PTB domain containing 1 interacts with and affects processing of the amyloid-β precursor protein. Neurobiol Aging 2012; 33:732-43. [DOI: 10.1016/j.neurobiolaging.2010.06.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Revised: 06/08/2010] [Accepted: 06/09/2010] [Indexed: 01/22/2023]
|
34
|
Zhang D, Isack NR, Glodowski DR, Liu J, Chen CCH, Xu XZS, Grant BD, Rongo C. RAB-6.2 and the retromer regulate glutamate receptor recycling through a retrograde pathway. ACTA ACUST UNITED AC 2012; 196:85-101. [PMID: 22213799 PMCID: PMC3255976 DOI: 10.1083/jcb.201104141] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
RAB-6.2, its effector LIN-10, and the retromer complex maintain synaptic strength by recycling postsynaptic glutamate receptors along the retrograde transport pathway. Regulated membrane trafficking of AMPA-type glutamate receptors (AMPARs) is a key mechanism underlying synaptic plasticity, yet the pathways used by AMPARs are not well understood. In this paper, we show that the AMPAR subunit GLR-1 in Caenorhabditis elegans utilizes the retrograde transport pathway to regulate AMPAR synaptic abundance. Mutants for rab-6.2, the retromer genes vps-35 and snx-1, and rme-8 failed to recycle GLR-1 receptors, resulting in GLR-1 turnover and behavioral defects indicative of diminished GLR-1 function. In contrast, expression of constitutively active RAB-6.2 drove the retrograde transport of GLR-1 from dendrites back to cell body Golgi. We also find that activated RAB-6.2 bound to and colocalized with the PDZ/phosphotyrosine binding domain protein LIN-10. RAB-6.2 recruited LIN-10. Moreover, the regulation of GLR-1 transport by RAB-6.2 required LIN-10 activity. Our results demonstrate a novel role for RAB-6.2, its effector LIN-10, and the retromer complex in maintaining synaptic strength by recycling AMPARs along the retrograde transport pathway.
Collapse
Affiliation(s)
- Donglei Zhang
- The Waksman Institute, Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Alzheimer's disease (AD), the leading cause of dementia worldwide, is characterized by the accumulation of the β-amyloid peptide (Aβ) within the brain along with hyperphosphorylated and cleaved forms of the microtubule-associated protein tau. Genetic, biochemical, and behavioral research suggest that physiologic generation of the neurotoxic Aβ peptide from sequential amyloid precursor protein (APP) proteolysis is the crucial step in the development of AD. APP is a single-pass transmembrane protein expressed at high levels in the brain and metabolized in a rapid and highly complex fashion by a series of sequential proteases, including the intramembranous γ-secretase complex, which also process other key regulatory molecules. Why Aβ accumulates in the brains of elderly individuals is unclear but could relate to changes in APP metabolism or Aβ elimination. Lessons learned from biochemical and genetic studies of APP processing will be crucial to the development of therapeutic targets to treat AD.
Collapse
|
36
|
The role of lipoprotein receptors on the physiological function of APP. Exp Brain Res 2011; 217:377-87. [PMID: 21947084 DOI: 10.1007/s00221-011-2876-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 09/09/2011] [Indexed: 12/26/2022]
Abstract
In this review, we will primarily focus on the role of members of the low-density lipoprotein receptor (LDL-R) family that are involved in trafficking and processing of the amyloid precursor protein (APP). We will discuss the role of the LDL-receptor family members, low-density lipoprotein receptor-related protein 1 (LRP1), LRP1b, apolipoprotein E receptor 2, sortilin-related receptor (SorLA/LR11) and megalin/LRP2 on the physiological function of APP and its cellular localization. Additionally, we will focus on adaptor proteins that have been shown to influence the physiological function of LDL-R family members in combination with APP processing. The results in this review emphasize that the physiological function of APP cannot be explained by the focus on the APP protein alone but rather in combination with various direct or indirect interaction partners within the cellular environment.
Collapse
|
37
|
Hata S, Fujishige S, Araki Y, Taniguchi M, Urakami K, Peskind E, Akatsu H, Araseki M, Yamamoto K, Martins RN, Maeda M, Nishimura M, Levey A, Chung KA, Montine T, Leverenz J, Fagan A, Goate A, Bateman R, Holtzman DM, Yamamoto T, Nakaya T, Gandy S, Suzuki T. Alternative processing of γ-secretase substrates in common forms of mild cognitive impairment and Alzheimer's disease: evidence for γ-secretase dysfunction. Ann Neurol 2011; 69:1026-31. [PMID: 21681798 DOI: 10.1002/ana.22343] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE The most common pathogenesis for familial Alzheimer's disease (FAD) involves misprocessing (or alternative processing) of the amyloid precursor protein (APP) by γ-secretase due to mutations of the presenilin 1 (PS1) gene. This misprocessing/alternative processing leads to an increase in the ratio of the level of a minor γ-secretase reaction product (Aβ42) to that of the major reaction product (Aβ40). Although no PS1 mutations are present, altered Aβ42/40 ratios are also observed in sporadic Alzheimer's disease (SAD), and these altered ratios apparently reflect deposition of Aβ42 as amyloid. METHODS Using immunoprecipitation-mass spectrometry with quantitative accuracy, we analyzed in the cerebrospinal fluid (CSF) of various clinical populations the peptide products generated by processing of not only APP but also an unrelated protein, alcadein (Alc). Alc undergoes metabolism by the identical APP α-secretases and γ-secretases, yielding a fragment that we have named p3-Alc(α) because of the parallel genesis of p3-Alc(α) peptides and the p3 fragment of APP. As with Aβ, both major and minor p3-Alc(α) s are generated. We studied the alternative processing of p3-Alc(α) in various clinical populations. RESULTS We previously reported that changes in the Aβ42/40 ratio showed covariance in a linear relationship with the levels of p3-Alc(α) [minor/major] ratio in media conditioned by cells expressing FAD-linked PS1 mutants. Here we studied the speciation of p3-Alc(α) in the CSF from 3 groups of human subjects (n = 158): elderly nondemented control subjects; mild cognitive impairment (MCI) subjects with a clinical dementia rating (CDR) of 0.5; SAD subjects with CDR of 1.0; and other neurological disease (OND) control subjects. The CSF minor p3-Alc(α) variant, p3-Alc(α) 38, was elevated (p < 0.05) in MCI subjects or SAD subjects, depending upon whether the data were pooled and analyzed as a single cohort or analyzed individually as 3 separate cohorts. INTERPRETATION These results suggest that some SAD may involve alternative processing of multiple γ-secretase substrates, raising the possibility that the molecular pathogenesis of SAD might involve γ-secretase dysfunction.
Collapse
Affiliation(s)
- Saori Hata
- Department of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Intracellular trafficking of the amyloid β-protein precursor (APP) regulated by novel function of X11-like. PLoS One 2011; 6:e22108. [PMID: 21818298 PMCID: PMC3139598 DOI: 10.1371/journal.pone.0022108] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Accepted: 06/15/2011] [Indexed: 11/19/2022] Open
Abstract
Background Amyloid β (Aβ), a causative peptide of Alzheimer's disease, is generated by intracellular metabolism of amyloid β-protein precursor (APP). In general, mature APP (mAPP, N- and O-glycosylated form) is subject to successive cleavages by α- or β-, and γ-secretases in the late protein secretory pathway and/or at plasma membrane, while immature APP (imAPP, N-glycosylated form) locates in the early secretory pathway such as endoplasmic reticulum or cis-Golgi, in which imAPP is not subject to metabolic cleavages. X11-like (X11L) is a neural adaptor protein composed of a phosphotyrosine-binding (PTB) and two C-terminal PDZ domains. X11L suppresses amyloidogenic cleavage of mAPP by direct binding of X11L through its PTB domain, thereby generation of Aβ lowers. X11L expresses another function in the regulation of intracellular APP trafficking. Methodology In order to analyze novel function of X11L in intracellular trafficking of APP, we performed a functional dissection of X11L. Using cells expressing various domain-deleted X11L mutants, intracellular APP trafficking was examined along with analysis of APP metabolism including maturation (O-glycosylation), processing and localization of APP. Conclusions X11L accumulates imAPP into the early secretory pathway by mediation of its C-terminal PDZ domains, without being bound to imAPP directly. With this novel function, X11L suppresses overall APP metabolism and results in further suppression of Aβ generation. Interestingly some of the accumulated imAPP in the early secretory pathway are likely to appear on plasma membrane by unidentified mechanism. Trafficking of imAPP to plasma membrane is observed in other X11 family proteins, X11 and X11L2, but not in other APP-binding partners such as FE65 and JIP1. It is herein clear that respective functional domains of X11L regulate APP metabolism at multiple steps in intracellular protein secretory pathways.
Collapse
|
39
|
Suppression of Alzheimer's disease-related phenotypes by expression of heat shock protein 70 in mice. J Neurosci 2011; 31:5225-34. [PMID: 21471357 DOI: 10.1523/jneurosci.5478-10.2011] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Amyloid-β peptide (Aβ) plays an important role in the pathogenesis of Alzheimer's disease (AD). Aβ is generated by proteolysis of β-amyloid precursor protein (APP) and is cleared by enzyme-mediated degradation and phagocytosis by microglia and astrocytes. Some cytokines, such as TGF-β1, stimulate this phagocytosis. In contrast, cellular upregulation of HSP70 expression provides cytoprotection against Aβ. HSP70 activity in relation to inhibition of Aβ oligomerization and stimulation of Aβ phagocytosis has also been reported. Although these in vitro results suggest that stimulating the expression of HSP70 could prove effective in the treatment of AD, there is a lack of in vivo evidence supporting this notion. In this study, we address this issue, using transgenic mice expressing HSP70 and/or a mutant form of APP (APPsw). Transgenic mice expressing APPsw showed less of an apparent cognitive deficit when they were crossed with transgenic mice expressing HSP70. Transgenic mice expressing HSP70 also displayed lower levels of Aβ, Aβ plaque deposition, and neuronal and synaptic loss than control mice. Immunoblotting experiments and direct measurement of β- and γ-secretase activity suggested that overexpression of HSP70 does not affect the production Aβ. In contrast, HSP70 overexpression did lead to upregulation of the expression of Aβ-degrading enzyme and TGF-β1 both in vivo and in vitro. These results suggest that overexpression of HSP70 in mice suppresses not only the pathological but also the functional phenotypes of AD. This study provides the first in vivo evidence confirming the potential therapeutic benefit of HSP70 for the prevention or treatment of AD.
Collapse
|
40
|
Rosenfeld JA, Stephens LE, Coppinger J, Ballif BC, Hoo JJ, French BN, Banks VC, Smith WE, Manchester D, Tsai ACH, Merrion K, Mendoza-Londono R, Dupuis L, Schultz R, Torchia B, Sahoo T, Bejjani B, Weaver DD, Shaffer LG. Deletions flanked by breakpoints 3 and 4 on 15q13 may contribute to abnormal phenotypes. Eur J Hum Genet 2011; 19:547-54. [PMID: 21248749 DOI: 10.1038/ejhg.2010.237] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Non-allelic homologous recombination (NAHR) between segmental duplications in proximal chromosome 15q breakpoint (BP) regions can lead to microdeletions and microduplications. Several individuals with deletions flanked by BP3 and BP4 on 15q13, immediately distal to, and not including the Prader-Willi/Angelman syndrome (PW/AS) critical region and proximal to the BP4-BP5 15q13.3 microdeletion syndrome region, have been reported; however, because the deletion has also been found in normal relatives, the significance of these alterations is unclear. We have identified six individuals with deletions limited to the BP3-BP4 interval and an additional four individuals with deletions of the BP3-BP5 interval from 34 046 samples submitted for clinical testing by microarray-based comparative genomic hybridization (aCGH). Of four individuals with BP3-BP4 deletions for whom parental testing was conducted, two were apparently de novo and two were maternally inherited. A comparison of clinical features, available for five individuals in our study (four with deletions within BP3-BP4 and one with a BP3-BP5 deletion), with those in the literature show common features of short stature and/or failure to thrive, microcephaly, hypotonia, and premature breast development in some individuals. Although the BP3-BP4 deletion does not yet demonstrate statistically significant enrichment in abnormal populations compared with control populations, the presence of common clinical features among probands and the presence of genes with roles in development and nervous system function in the deletion region suggest that this deletion may have a role in abnormal phenotypes in some individuals.
Collapse
|
41
|
Kondo M, Shiono M, Itoh G, Takei N, Matsushima T, Maeda M, Taru H, Hata S, Yamamoto T, Saito Y, Suzuki T. Increased amyloidogenic processing of transgenic human APP in X11-like deficient mouse brain. Mol Neurodegener 2010; 5:35. [PMID: 20843325 PMCID: PMC2949864 DOI: 10.1186/1750-1326-5-35] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Accepted: 09/15/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND X11-family proteins, including X11, X11-like (X11L) and X11-like 2 (X11L2), bind to the cytoplasmic domain of amyloid β-protein precursor (APP) and regulate APP metabolism. Both X11 and X11L are expressed specifically in brain, while X11L2 is expressed ubiquitously. X11L is predominantly expressed in excitatory neurons, in contrast to X11, which is strongly expressed in inhibitory neurons. In vivo gene-knockout studies targeting X11, X11L, or both, and studies of X11 or X11L transgenic mice have reported that X11-family proteins suppress the amyloidogenic processing of endogenous mouse APP and ectopic human APP with one exception: knockout of X11, X11L or X11L2 has been found to suppress amyloidogenic metabolism in transgenic mice overexpressing the human Swedish mutant APP (APPswe) and the mutant human PS1, which lacks exon 9 (PS1dE9). Therefore, the data on X11-family protein function in transgenic human APP metabolism in vivo are inconsistent. RESULTS To confirm the interaction of X11L with human APP ectopically expressed in mouse brain, we examined the amyloidogenic metabolism of human APP in two lines of human APP transgenic mice generated to also lack X11L. In agreement with previous reports from our lab and others, we found that the amyloidogenic metabolism of human APP increased in the absence of X11L. CONCLUSION X11L appears to aid in the suppression of amyloidogenic processing of human APP in brain in vivo, as has been demonstrated by previous studies using several human APP transgenic lines with various genetic backgrounds. X11L appears to regulate human APP in a manner similar to that seen in endogenous mouse APP metabolism.
Collapse
Affiliation(s)
- Maho Kondo
- Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita12-Nishi6, Kita-ku, Sapporo 060-0812, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Sloan CD, Shen L, West JD, Wishart HA, Flashman LA, Rabin LA, Santulli RB, Guerin SJ, Rhodes CH, Tsongalis GJ, McAllister TW, Ahles TA, Lee SL, Moore JH, Saykin AJ. Genetic pathway-based hierarchical clustering analysis of older adults with cognitive complaints and amnestic mild cognitive impairment using clinical and neuroimaging phenotypes. Am J Med Genet B Neuropsychiatr Genet 2010; 153B:1060-9. [PMID: 20468060 PMCID: PMC3021757 DOI: 10.1002/ajmg.b.31078] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Hierarchical clustering is frequently used for grouping results in expression or haplotype analyses. These methods can elucidate patterns between measures that can then be applied to discerning their validity in discriminating between experimental conditions. Here a hierarchical clustering method is used to analyze the results of an imaging genetics study using multiple brain morphology and cognitive testing endpoints for older adults with amnestic mild cognitive impairment (MCI) or cognitive complaints (CC) compared to healthy controls (HC). The single nucleotide polymorphisms (SNPs) are a subset of those included on a larger array that are found in a reported Alzheimer's disease (AD) and neurodegeneration pathway. The results indicate that genetic models within the endpoints cluster together, while there are 4 distinct sets of SNPs that differentiate between the endpoints, with most significant results associated with morphology endpoints rather than cognitive testing of patients' reported symptoms. The genes found in at least one cluster are ABCB1, APBA1, BACE1, BACE2, BCL2, BCL2L1, CASP7, CHAT, CST3, DRD3, DRD5, IL6, LRP1, NAT1, and PSEN2. The greater associations with morphology endpoints suggests that changes in brain structure can be influenced by an individual's genetic background in the absence of dementia and in some cases (Cognitive Complaints group) even without those effects necessarily being detectable on commonly used clinical tests of cognition. The results are consistent with polygenic influences on early neurodegenerative changes and demonstrate the effectiveness of hierarchical clustering in identifying genetic associations among multiple related phenotypic endpoints.
Collapse
Affiliation(s)
- Chantel D. Sloan
- Computational Genetics Laboratory, Departments of Genetics and Community and Family Medicine, Dartmouth Medical School, Lebanon, NH
| | - Li Shen
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN,Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN
| | - John D. West
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN
| | - Heather A. Wishart
- Brain Imaging Laboratory, Department of Psychiatry, Dartmouth Medical School, Lebanon, NH
| | - Laura A. Flashman
- Brain Imaging Laboratory, Department of Psychiatry, Dartmouth Medical School, Lebanon, NH
| | - Laura A. Rabin
- Brain Imaging Laboratory, Department of Psychiatry, Dartmouth Medical School, Lebanon, NH
| | - Robert B. Santulli
- Brain Imaging Laboratory, Department of Psychiatry, Dartmouth Medical School, Lebanon, NH
| | - Stephen J. Guerin
- Brain Imaging Laboratory, Department of Psychiatry, Dartmouth Medical School, Lebanon, NH
| | - C. Harker Rhodes
- Department of Pathology and Laboratory Medicine, Dartmouth Medical School, Lebanon, NH
| | - Gregory J. Tsongalis
- Department of Pathology and Laboratory Medicine, Dartmouth Medical School, Lebanon, NH
| | - Thomas W. McAllister
- Brain Imaging Laboratory, Department of Psychiatry, Dartmouth Medical School, Lebanon, NH
| | - Tim A. Ahles
- Department of Psychiatry and Behavioral Sciences, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Stephen L. Lee
- Department of Medicine (Neurology), Dartmouth Medical School, Lebanon, NH
| | - Jason H. Moore
- Computational Genetics Laboratory, Departments of Genetics and Community and Family Medicine, Dartmouth Medical School, Lebanon, NH,Department of Computer Science, University of New Hampshire, Durham, NH,Department of Computer Science, University of Vermont, Burlington, VT,Translational Genomics Research Institute, Phoenix, AZ
| | - Andrew J. Saykin
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN,Brain Imaging Laboratory, Department of Psychiatry, Dartmouth Medical School, Lebanon, NH,Departments of Medical and Molecular Genetics, Neurology and Psychiatry, Indiana University School of Medicine, Indianapolis, IN,Address for Correspondence: Dr. Andrew J. Saykin, Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 950 West Walnut St., R2, E124, Indianapolis, IN 46202, Phone: 317-278-6947, Fax: 317-274-1067,
| |
Collapse
|
43
|
Chow VW, Mattson MP, Wong PC, Gleichmann M. An overview of APP processing enzymes and products. Neuromolecular Med 2010; 12:1-12. [PMID: 20232515 DOI: 10.1007/s12017-009-8104-z] [Citation(s) in RCA: 464] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The generation of amyloid beta-peptide (A beta) by enzymatic cleavages of the beta-amyloid precursor protein (APP) has been at the center of Alzheimer's disease (AD) research. While the basic process of beta- and gamma-secretase-mediated generation of A beta is text book knowledge, new aspects of A beta and other cleavage products have emerged in recent years. Also our understanding of the enzymes involved in APP proteolysis has increased dramatically. All of these discoveries contribute to a more complete understanding of APP processing and the physiologic and pathologic roles of its secreted and intracellular protein products. Understanding APP processing is important for any therapeutic strategy aimed at reducing A beta levels in AD. In this review, we provide a concise description of the current state of understanding the enzymes involved in APP processing, the cleavage products generated by different processing patterns, and the potential functions of those cleavage products.
Collapse
Affiliation(s)
- Vivian W Chow
- Department of Pathology, Division of Neuropathology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | |
Collapse
|
44
|
Shinohara M, Sato N, Kurinami H, Takeuchi D, Takeda S, Shimamura M, Yamashita T, Uchiyama Y, Rakugi H, Morishita R. Reduction of brain beta-amyloid (Abeta) by fluvastatin, a hydroxymethylglutaryl-CoA reductase inhibitor, through increase in degradation of amyloid precursor protein C-terminal fragments (APP-CTFs) and Abeta clearance. J Biol Chem 2010; 285:22091-102. [PMID: 20472556 DOI: 10.1074/jbc.m110.102277] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Epidemiological studies suggest that statins (hydroxymethylglutaryl-CoA reductase inhibitors) could reduce the risk of Alzheimer disease. Although one possible explanation is through an effect on beta-amyloid (Abeta) metabolism, its effect remains to be elucidated. Here, we explored the molecular mechanisms of how statins influence Abeta metabolism. Fluvastatin at clinical doses significantly reduced Abeta and amyloid precursor protein C-terminal fragment (APP-CTF) levels among APP metabolites in the brain of C57BL/6 mice. Chronic intracerebroventricular infusion of lysosomal inhibitors blocked these effects, indicating that up-regulation of the lysosomal degradation of endogenous APP-CTFs is involved in reduced Abeta production. Biochemical analysis suggested that this was mediated by enhanced trafficking of APP-CTFs from endosomes to lysosomes, associated with marked changes of Rab proteins, which regulate endosomal function. In primary neurons, fluvastatin enhanced the degradation of APP-CTFs through an isoprenoid-dependent mechanism. Because our previous study suggests additive effects of fluvastatin on Abeta metabolism, we examined Abeta clearance rates by using the brain efflux index method and found its increased rates at high Abeta levels from brain. As LRP1 in brain microvessels was increased, up-regulation of LRP1-mediated Abeta clearance at the blood-brain barrier might be involved. In cultured brain microvessel endothelial cells, fluvastatin increased LRP1 and the uptake of Abeta, which was blocked by LRP1 antagonists, through an isoprenoid-dependent mechanism. Overall, the present study demonstrated that fluvastatin reduced Abeta level by an isoprenoid-dependent mechanism. These results have important implications for the development of disease-modifying therapy for Alzheimer disease as well as understanding of Abeta metabolism.
Collapse
Affiliation(s)
- Mitsuru Shinohara
- Department of Clinical Gene Therapy, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
Multiple recent reports implicate amyloid precursor protein (APP) signaling in the pathogenesis of Alzheimer's disease, but the APP-dependent signaling network involved has not been defined. Here, we report a novel consensus sequence for interaction with the PDZ-1 and PDZ-2 domains of the APP-interacting proteins Mint1, Mint2, and Mint3 (X11alpha, X11beta, and X11gamma), and multiple novel interactors for these proteins, with the finding that transcriptional coactivators are highly represented among these interactors. Furthermore, we show that Mint3 interaction with a set of the transcriptional coactivators leads to nuclear localization and transactivation, whereas interaction of the same set with Mint1 or Mint2 prevents nuclear localization and transactivation. These results define new mediators of the signal transduction network mediated by APP.
Collapse
|
46
|
Mitchell JC, Perkinton MS, Yates DM, Lau KF, Rogelj B, Miller CC, McLoughlin DM. Expression of the neuronal adaptor protein X11alpha protects against memory dysfunction in a transgenic mouse model of Alzheimer's disease. J Alzheimers Dis 2010; 20:31-6. [PMID: 20378958 PMCID: PMC3023903 DOI: 10.3233/jad-2009-1341] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
X11alpha is a neuronal-specific adaptor protein that binds to the amyloid-beta protein precursor (AbetaPP). Overexpression of X11alpha reduces Abeta production but whether X11alpha also protects against Abeta-related memory dysfunction is not known. To test this possibility, we crossed X11alpha transgenic mice with AbetaPP-Tg2576 mice. AbetaPP-Tg2576 mice produce high levels of brain Abeta and develop age-related defects in memory function that correlate with increasing Abeta load. Overexpression of X11alpha alone had no detectable adverse effect upon behavior. However, X11alpha reduced brain Abeta levels and corrected spatial reference memory defects in aged X11alpha/AbetaPP double transgenics. Thus, X11alpha may be a therapeutic target for Alzheimer's disease.
Collapse
Affiliation(s)
- Jacqueline C. Mitchell
- MRC Centre for Neurodegeneration Research, King’s College London, Institute of Psychiatry, London, UK
| | - Michael S. Perkinton
- MRC Centre for Neurodegeneration Research, King’s College London, Institute of Psychiatry, London, UK
| | - Darran M. Yates
- MRC Centre for Neurodegeneration Research, King’s College London, Institute of Psychiatry, London, UK
| | - Kwok-Fai Lau
- Department of Biochemistry (Science), The Chinese University of Hong Kong, Shatin NT, Hong Kong SAR
| | - Boris Rogelj
- MRC Centre for Neurodegeneration Research, King’s College London, Institute of Psychiatry, London, UK
| | - Christopher C.J. Miller
- MRC Centre for Neurodegeneration Research, King’s College London, Institute of Psychiatry, London, UK
| | - Declan M. McLoughlin
- MRC Centre for Neurodegeneration Research, King’s College London, Institute of Psychiatry, London, UK
- Department of Psychiatry and Trinity College Institute of Neuroscience, Trinity College Dublin, St Patrick’s University Hospital, Dublin, Ireland
| |
Collapse
|
47
|
Gray EH, De Vos KJ, Dingwall C, Perkinton MS, Miller CC. Deficiency of the copper chaperone for superoxide dismutase increases amyloid-β production. J Alzheimers Dis 2010; 21:1101-5. [PMID: 20693630 PMCID: PMC3023902 DOI: 10.3233/jad-2010-100717] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The copper chaperone for superoxide dismutase (CCS) binds to both the β-site AβPP cleaving enzyme (BACE1) and to the neuronal adaptor protein X11α. BACE1 initiates AβPP processing to produce the amyloid-β (Aβ) peptide deposited in the brains of Alzheimer's disease patients. X11α also interacts directly with AβPP to inhibit Aβ production. However, whether CCS affects AβPP processing and Aβ production is not known. Here we show that loss of CCS increases Aβ production in both CCS knockout neurons and CCS siRNA-treated SHSY5Y cells and that this involves increased AβPP processing at the BACE1 site.
Collapse
Affiliation(s)
- Emma H. Gray
- MRC Centre for Neurodegeneration Research, Institute of Psychiatry, King’s College London, UK
| | - Kurt J. De Vos
- MRC Centre for Neurodegeneration Research, Institute of Psychiatry, King’s College London, UK
| | - Colin Dingwall
- MRC Centre for Neurodegeneration Research, Institute of Psychiatry, King’s College London, UK
- Pharmaceutical Sciences Research Division, King’s College London, UK
| | - Michael S. Perkinton
- MRC Centre for Neurodegeneration Research, Institute of Psychiatry, King’s College London, UK
| | - Christopher C.J. Miller
- MRC Centre for Neurodegeneration Research, Institute of Psychiatry, King’s College London, UK
| |
Collapse
|
48
|
Hata S, Fujishige S, Araki Y, Kato N, Araseki M, Nishimura M, Hartmann D, Saftig P, Fahrenholz F, Taniguchi M, Urakami K, Akatsu H, Martins RN, Yamamoto K, Maeda M, Yamamoto T, Nakaya T, Gandy S, Suzuki T. Alcadein cleavages by amyloid beta-precursor protein (APP) alpha- and gamma-secretases generate small peptides, p3-Alcs, indicating Alzheimer disease-related gamma-secretase dysfunction. J Biol Chem 2009; 284:36024-36033. [PMID: 19864413 PMCID: PMC2794718 DOI: 10.1074/jbc.m109.057497] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Revised: 10/24/2009] [Indexed: 02/03/2023] Open
Abstract
Alcadeins (Alcs) constitute a family of neuronal type I membrane proteins, designated Alc(alpha), Alc(beta), and Alc(gamma). The Alcs express in neurons dominantly and largely colocalize with the Alzheimer amyloid precursor protein (APP) in the brain. Alcs and APP show an identical function as a cargo receptor of kinesin-1. Moreover, proteolytic processing of Alc proteins appears highly similar to that of APP. We found that APP alpha-secretases ADAM 10 and ADAM 17 primarily cleave Alc proteins and trigger the subsequent secondary intramembranous cleavage of Alc C-terminal fragments by a presenilin-dependent gamma-secretase complex, thereby generating "APP p3-like" and non-aggregative Alc peptides (p3-Alcs). We determined the complete amino acid sequence of p3-Alc(alpha), p3-Alc(beta), and p3-Alc(gamma), whose major species comprise 35, 37, and 31 amino acids, respectively, in human cerebrospinal fluid. We demonstrate here that variant p3-Alc C termini are modulated by FAD-linked presenilin 1 mutations increasing minor beta-amyloid species Abeta42, and these mutations alter the level of minor p3-Alc species. However, the magnitudes of C-terminal alteration of p3-Alc(alpha), p3-Alc(beta), and p3-Alc(gamma) were not equivalent, suggesting that one type of gamma-secretase dysfunction does not appear in the phenotype equivalently in the cleavage of type I membrane proteins. Because these C-terminal alterations are detectable in human cerebrospinal fluid, the use of a substrate panel, including Alcs and APP, may be effective to detect gamma-secretase dysfunction in the prepathogenic state of Alzheimer disease subjects.
Collapse
Affiliation(s)
- Saori Hata
- Department of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Sayaka Fujishige
- Department of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Yoichi Araki
- Department of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Naoko Kato
- Department of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Masahiko Araseki
- Department of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Masaki Nishimura
- Neurology Unit, Molecular Neuroscience Research Center, Shiga University of Medical Science, Otsu 520-2192, Japan
| | - Dieter Hartmann
- Department of Anatomy, University of Bonn, 53115 Bonn, Germany
| | - Paul Saftig
- Institute of Biochemistry, University of Kiel, Kiel, Germany
| | - Falk Fahrenholz
- Institute of Biochemistry, Johannes Gutenberg-University, Mainz, Germany
| | - Miyako Taniguchi
- Department of Biological Regulation, School of Health Science, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan
| | - Katsuya Urakami
- Department of Biological Regulation, School of Health Science, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan
| | - Hiroyasu Akatsu
- Choju Medical Institute, Fukushimura Hospital, Toyohashi 441-8124, Japan
| | - Ralph N Martins
- Centre of Excellence for Alzheimer's Disease Research and Care and the Sir James McCusker Alzheimer's Disease Research Unit, School of Exercise, Biomedical and Health Sciences, Edith Cowan University, Joondalup, 6027 Western Australia, Australia
| | - Kazuo Yamamoto
- Department of Integrated Bioscience, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa 277-8562, Japan
| | - Masahiro Maeda
- Immuno-Biological Laboratories Co., Ltd., Fujioka 375-0005, Japan
| | - Tohru Yamamoto
- Department of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Tadashi Nakaya
- Department of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Sam Gandy
- Department of Neurology and Psychiatry, Alzheimer's Disease Research Center, Mount Sinai School of Medicine, New York, New York 10029; James J. Peters Veterans Administration Medical Center, Bronx, New York 10468.
| | - Toshiharu Suzuki
- Department of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan.
| |
Collapse
|
49
|
Mitchell JC, Ariff BB, Yates DM, Lau KF, Perkinton MS, Rogelj B, Stephenson JD, Miller CCJ, McLoughlin DM. X11beta rescues memory and long-term potentiation deficits in Alzheimer's disease APPswe Tg2576 mice. Hum Mol Genet 2009; 18:4492-500. [PMID: 19744962 DOI: 10.1093/hmg/ddp408] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Increased production and deposition of amyloid beta-protein (Abeta) are believed to be key pathogenic events in Alzheimer's disease. As such, routes for lowering cerebral Abeta levels represent potential therapeutic targets for Alzheimer's disease. X11beta is a neuronal adaptor protein that binds to the intracellular domain of the amyloid precursor protein (APP). Overexpression of X11beta inhibits Abeta production in a number of experimental systems. However, whether these changes to APP processing and Abeta production induced by X11beta overexpression also induce beneficial effects to memory and synaptic plasticity are not known. We report here that X11beta-mediated reduction in cerebral Abeta is associated with normalization of both cognition and in vivo long-term potentiation in aged APPswe Tg2576 transgenic mice that model the amyloid pathology of Alzheimer's disease. Overexpression of X11beta itself has no detectable adverse effects upon mouse behaviour. These findings support the notion that modulation of X11beta function represents a therapeutic target for Abeta-mediated neuronal dysfunction in Alzheimer's disease.
Collapse
Affiliation(s)
- Jacqueline C Mitchell
- MRC Centre for Neurodegeneration Research, King's College London, Institute of Psychiatry, London SE5 8AF, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Saluja I, Paulson H, Gupta A, Turner RS. X11alpha haploinsufficiency enhances Abeta amyloid deposition in Alzheimer's disease transgenic mice. Neurobiol Dis 2009; 36:162-8. [PMID: 19631749 DOI: 10.1016/j.nbd.2009.07.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Revised: 07/02/2009] [Accepted: 07/13/2009] [Indexed: 10/20/2022] Open
Abstract
The neuronal adaptor protein X11alpha/mint-1/APBA-1 binds to the cytoplasmic domain of the amyloid precursor protein (APP) to modulate its trafficking and metabolism. We investigated the consequences of reducing X11alpha in a mouse model of Alzheimer's disease (AD). We crossed hAPPswe/PS-1DeltaE9 transgenic (AD tg) mice with X11alpha heterozygous knockout mice in which X11alpha expression is reduced by approximately 50%. The APP C-terminal fragments C99 and C83, as well as soluble Abeta40 and Abeta42, were increased significantly in brain of X11alpha haploinsufficient mice. Abeta/amyloid plaque burden also increased significantly in the hippocampus and cortex of one year old AD tg/X11alpha (+/-) mice compared to AD tg mice. In contrast, the levels of sAPPalpha and sAPPbeta were not altered significantly in AD tg/X11alpha (+/-) mice. The increased neuropathological indices of AD in mice expressing reduced X11alpha suggest a normal suppressor role for X11alpha on CNS Abeta/amyloid deposition.
Collapse
|